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1 Introduction

The topologically twisted index is the supersymmetric partition function on Σg × S1 of
three-dimensional N = 2 gauge theories with a topological twist along the Riemann surface
Σg [1]. It can be defined as the equivariant Witten index

ZΣg×S1(yI , sI) = TrΣg(−1)F e−β{Q,Q†}
∏
I

yJII , (1.1)

of the theory compactified on Σg, where sI are magnetic fluxes on the Riemann surface
specifying the twist and yI are complexified fugacities for the flavor symmetries JI . For
theories with an AdS4 holographic dual, the index is supposed to count the number of
microstates of magnetically charged and topologically twisted asymptotically AdS4 black
holes. The entropy of the most general family of static twisted black holes in AdS4 × S7

has been reproduced in [2] by studying the large N limit of the topologically twisted index
of the dual ABJM theory [3].1

In this paper we study the large N limit of the refined topologically twisted index
of three-dimensional N = 2 gauge theories with a holographic dual. This index can be
defined only when g = 0 and it contains a further refinement with respect to rotational
U(1) symmetry of the two sphere. It corresponds to a background S1 × S2

ε , where ε

is the equivariant parameter for the rotation and it specifies the S1 fibration over S2.
Holographically, it is supposed to count the number of microstates of the magnetically
charged rotating AdS4 × S7 black holes found in [5] and their generalizations.

The original method used in [2], based on a decomposition of the partition function
in a sum over Bethe vacua, cannot be applied to the refined index. In this paper we
will take a different approach by evaluating directly the large N limit of the index matrix
model. Localization reduces the index to a finite-dimensional integral over gauge holonomy
variables, summed over topological sectors specified by gauge magnetic fluxes along S2. We
will assume that in the large N limit the fluxes can be treated as continuous variables and
we will take a saddle point approximation with respect to both holonomies and fluxes. The
method has been already efficiently used to study five-dimensional indices [6–8]. We will
of course reproduce the results in [2] and their generalizations [9, 10] for ε = 0 and we
will provide the general result for generic ε. One of the advantages of the direct method is
that it provides the distribution of magnetic fluxes that dominates the index at large N .
This can be useful for understanding the quantum mechanics obtained by a dimensional
reduction on the sphere [11].

A different method, valid in the Cardy limit (ε → 0), was proposed in [12] and suc-
cessfully applied to the N = 8 theory coupled to a fundamental hypermultiplet, which is
supposed to flow to ABJM in the infrared. We will explicit discuss the relation between
the two methods.

1This analysis has been extended to many other twisted black objects in AdS4 and in higher dimensions.
For a (partial) review, see [4].
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One of the results of our analysis is that, for the class of theories we will consider, the
large N refined index, to all perturbative orders in ε, can be written in a factorized form

logZ = i
2∑

σ=1

W̊(∆(σ))
ε(σ) , (1.2)

where yI = ei∆I and W̊(∆) is the on-shell twisted effective potential defined in section 3 and
proportional to the S3 free-energy of the N = 2 gauge theory at large N . The explicit form
of the gluing in given in (3.8). The result (1.2) is in complete agreement with the general
holographic expectations based on gravitational blocks [13] and correctly reproduce the
entropy of the rotating AdS4 × S7 black holes found in [5]. Similar large N factorizations
hold in higher dimensions too [8]. In this paper we work to all orders but perturbatively
in ε. A more refined analysis would be needed to understand if there are exponentially
suppressed corrections in ε to the result (1.2).

The paper is organized as follows. In section 2 we review the localization formula for
the refined topologically twisted index. In 3 we give a general overview of the available
methods for computing the topologically twisted inded both for ε = 0 and ε 6= 0. In
particular we point out the differences between the Bethe route used in [2] and the other
direct methods. A particular interesting technical point is the difference in the treatment
of the so-called tails regions of the eigenvalues distribution. The interested reader will find
details in section 3 and appendix A. In section 4 we present the general rules for computing
the index for a class of quivers with N3/2 scaling of the free-energy and holographically
dual to AdS4×M7 M-theory backgrounds, whereM7 is a seven-dimensional Sasaki-Einstein
manifold. We will explicitly present two examples, the ADHM quiver and the ABJM theory.
In section 5 we present the general rules for computing the index for a class of quivers with
N5/3 scaling of the free-energy and holographically dual to AdS4 backgrounds in massive
type IIA. A series of appendices contains the technical derivations and explicit formulae
for ADHM and ABJM solutions.

2 Refined twisted index for 3d N = 2 field theories

Consider a three-dimensional N = 2 gauge theory with gauge group G, I chiral multiplets
in a representation ⊕RI of the gauge group, and Chern-Simons couplings ka for the various
factors G(a) of the group G =

∏
a G(a). The refined topologically twisted index reads [1]

ZS1×S2
ε
(∆, s,∆m, sm|ε) = 1

|W|
∑
m∈Γh

∮
JK

rk(G)∏
i=1

dxi
2πixi

Zcl(ui,mi; ∆m, sm)Z1-loop(ui,mi; ∆, s|ε) ,

(2.1)
where

Z1-loop(ui,mi; ∆, s|ε) = q−
1
2
∑

α>0 |α(m)| ∏
α∈G

(
1− xαq|α(m)|/2

)

×
∏
I

∏
ρI∈RI

|BI |−1
2∏

`=− |BI |−1
2

(
xρ/2yν/2q`/2

1− xρyνq`

)sign(BI)

.

(2.2)
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Here, BI ≡ ρI(m)−ν(s)+1, α denotes the roots of the gauge group, ρ, ν are the weights of
the chiral multiplet under the gauge and flavor symmetry groups, respectively, and |W| is
the order of the Weyl group of G. In this formula, (m, s) are the gauge and flavor magnetic
fluxes on S2

ε , respectively; x = eiu, y = ei∆ are the gauge and flavor fugacities and q = eiε

is the fugacity for the angular momentum refinement.
The classical contributions come from the Chern-Simons terms and the topological

symmetries. A factor G(a) of the gauge group G contributes

ZCS
cl (ui,mi) =

rk(G(a))∏
i=1

xikami
i , (2.3)

where ka is the associated Chern-Simons coupling. A topological symmetry associated with
a U(1) factor contributes

Ztop
cl (u,m; ∆m, sm) = xsmζm , (2.4)

where sm is the topological magnetic flux and ζ = ei∆m is the topological fugacity. Observe
that the classical contribution Zcl(ui,mi) does not depend on the refinement parameter ε.

3 Matrix model large N limit

We can take various approaches to evaluate the large N limit of the refined index (2.1).
Each has its own virtues that we are going to briefly describe in the following.

3.1 The Bethe route

The large N limit of the unrefined index, (2.1) for ε = 0, was first considered in [2] for
the ABJM theory, and later generalized in [9, 10] to more general Chern-Simons quivers
with gauge group G =

∏|G|
a=1 U(N)a and matter transforming in the bi-fundamental, adjoint

and (anti-)fundamental representations with a holographic dual. Further generalizations
to other type of quivers relevant for holography can be found in [14–18].

The Bethe approach is based on the fact that the unrefined index can be written as a
sum of contributions

ZS1×S2(∆, s|0) =
∑
u=u∗

e−Ω(u;∆,s)
(

det
ij
∂2
uiujW̃(u; ∆)

)−1
, (3.1)

where W̃(u; ∆) and Ω(u; ∆, s) are the effective twisted superpotential and the effective
dilaton obtained by reducing the three-dimensional theory on S1, whose explicit expressions
can be found in [19, 20]. The sum is over the Bethe vacua, the critical points of the effective
twisted superpotential

exp
(

i∂W̃(u; ∆)
∂ui

) ∣∣∣∣
u=u∗

= 1 . (3.2)

This form of the index follows from (2.1) by observing that the sum over gauge magnetic
fluxes mi can be explicitly performed when ε = 0. This leads to a set of poles in the
integrand at the solutions to (3.2) and the residue theorem then gives (3.1) [2].
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The main idea behind the Bethe approach is that one contribution will dominate (3.1)
in the large N limit and this can be found by taking the large N limit of (3.2)

∂W̃(u; ∆)
∂ui

= 2πni , ni ∈ Z , (3.3)

where the integer ni are carefully chosen to guarantee the existence of the limit. For the
Chern-Simons gauge theories of interest, as shown in [2, 9], the gauge holonomies ui at
the saddle point are distributed along a curve in the complex plane whose size grows with
powers of N . In the large N limit, the twisted superpotential becomes a local functional

W̃(ρ(t), va(t); ∆) , (3.4)

of the eigenvalue density ρ(t) and of a set of functions va(t) that characterize the gauge
holonomies for the ath group. This expressions has to be extremized with respect to ρ(t)
and va(t), and the resulting distribution will then be used to evaluate (3.1).

It was proved in [9] that the “on-shell” value of the twisted superpotential for this class
of theories is always related to the free energy on S3, at large N , via

W̊(∆) ≡ W̃(u; ∆)
∣∣
u=u∗ = − iπ

2 FS3(∆̄) , (3.5)

where ∆̄ ≡ ∆/π denote the trial R-charges for the chiral fields. The identification between
flavor chemical potentials and R-charges is allowed by the fact the large N saddle point
solutions exist for

∑
I∈Wa

∆I = 2π, where Wa denotes a generic monomial term in the
superpotential, which correctly enforces the flavor symmetry constraint

∏
I∈Wa

yI = 1.
It will be important in the following that we can always use a set of constrained

variables ∆I such that W̃(ρ(t), va(t); ∆) contains only homogeneous functions of ∆I and
the on-shell superpotential W̊(∆) is itself a homogeneous function of degree two of ∆I [2, 9].
For example, for the ABJM theory we have [1]2

W̊(∆) = −2i
3 N

3/2√2∆1∆2∆3∆4 , (3.6)

where
∑4
I=1 ∆I = 2π.

For ε 6= 0 it is impossible to perform the summation over mi in (2.1). A Bethe vacua
formula exists for rational ε [21], but it seems difficult to use. We need to find a different
route.

3.2 The factorization route

The refined twisted index can be written by gluing two holomorphic blocks B(u; ∆|ε)
according to the formula [22]

ZS1×S2
ε
(∆, s|ε) = 1

|W|
∑
m∈Γh

∫ rk(G)∏
i=1

dxi
2πixi

B
(
u(1); ∆(1)|ε(1)

)
B
(
u(2); ∆(2)|ε(2)

)
, (3.7)

2To compare with [9, (3.32)], note that W̃here = −Vthere.
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where3

u
(σ)
i ≡ ui + ε(σ)

2 mi , ∆(σ)
I = ∆I −

ε(σ)

2 sI , σ = 1, 2,

ε(1) ≡ ε , ε(2) ≡ −ε .
(3.8)

If we assume that, in the limit of interest, the gauge fluxes mi can be treated as continuous
variables, we can then think of (3.7) as an integral over the two independent complex vari-
ables u(1) and u(2) and consider a saddle point with respect to them. In a slightly different
but equivalent context, the explicit analysis has been performed in [12] for theN = 8 theory
coupled to a fundamental hypermultiplet, which is supposed to flow to ABJM in the in-
frared. The analysis was performed in the Cardy limit (ε→ 0) and leads to the factorized re-
sult we are going to discuss and other similar and interesting results and relations among the
topologically twisted index, the superconformal index, and the sphere partition function.

The main point behind this route is the asymptotic expansion of the holomorphic
blocks in the limit of small ε. In this limit, the holomorphic blocks are singular (see
e.g. [22, (2.22)] and [21, (F.15)])

B(u; ∆|ε) ∼
ε→0

exp
( i
ε
W̃(u; ∆) + . . .

)
, (3.9)

where W̃(u; ∆) is the effective twisted superpotential of the two-dimensional theory. For
a general class of theories, if we first take the large N limit, the asymptotic series in ε

truncates to a polynomial and can be compactly written as

B(u(σ); ∆(σ)|ε(σ)) ∼ exp
( i
ε(σ) W̃hom

(
ρ(σ)(t), v(σ)

a (t); ∆(σ)
))

, (3.10)

valid up to exponentially small terms in ε, generalizing [12]. In this formula ρ(σ)(t) and
v

(σ)
a (t) are related to the large N distributions of the variables u(σ) and Whom is the large
N twisted superpotential discussed in section 3.1. It is important that W̃hom is written
homogeneously in terms of constrained variables satisfying

∑
I∈Wa

∆I = 2π. The explicit
dependence on ε in (3.10) comes from replacing ∆I with ∆(σ)

I , which now satisfy∑
I∈Wa

∆(σ)
I = 2π − ε(σ) . (3.11)

The analysis leading to (3.10) for a chiral contribution is explicitly discussed in appendix E.
It follows now from (3.7) and (3.10) that, treating u(σ) as independent variables, the

saddle point analysis reduces to two copies of the extremization discussed in section 3.1.
The final large N limit of the index is then given by

logZ = i
2∑

σ=1

W̊(∆(σ))
ε(σ) , (3.12)

where again we should use the homogeneous form of W̊ for this formula to hold.
3The different sign between gauge and flavor fugacity is due to our conventions where

∑
I∈Wa

sI = 2 for
each term Wa in the superpotential. See appendix E for details.
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3.3 A direct method

In this paper we will mostly pursue a direct method. The solution for ε = 0 suggests that
the mi’s are large and we can treat them effectively as continuous variables. Then we can
study the saddle point approximation of the refined index matrix model (2.1) with respect
to ui and mi. The method has been efficiently used to study five-dimensional indices [6–8].

Consider for example the contribution of a chiral multiplet to the refined twisted index.
At finite N it reads4

logZχ =
∑
ρ∈R

|Bρ|−1
2∑

`=− |Bρ|−1
2

sign(Bρ)
(

Li1
(
ei(ρ(u)+ν(∆)+`ε)

)
+ i

2g1(ρ(u) + ν(∆) + `ε)
)
, (3.13)

where Bρ ≡ ρ(m) − ν(s) + 1 and g1(u) = u − π. We take an ansatz where mi scales with
N similarly to the eigenvalues ui and we will replace them with a set of functions n(t) and
pa(t). Then, the chiral contribution (3.13) and the full integrand of the refined index (2.1)
become a local functional of ρ(t), va(t), n(t), and pa(t) that we will be able to extremize
directly. The explicit details are given in appendices A and D.

One of the advantage of the direct method is that it provides the distribution of
magnetic fluxes that dominates the index at large N and that can be useful for under-
standing the quantum mechanics obtained by a dimensional reduction on a sphere, whose
ground states are supposed to reproduce the entropy of magnetically charged black holes
in AdS4 [11].

Another advantage of the direct method is that it overcomes one of the technical
complication of the Bethe route discussed in section 3.1, namely the possible existence
of tails in the large N solution. They appear in theories with bi-fundamental fields if
the eigenvalue distribution, which is typically piece-wise continuous in the large N limit,
contains regions where

u
(b)
i − u

(a)
i + ∆(b,a) = exp

(
−
√
NY(b,a)(t)

)
, i = 1, . . . , N . (3.14)

Exponentially suppressed terms should be generically negligible, but this is not what hap-
pens in the Bethe approach. The reason is the following. For a bi-fundamental field, the
sum over weights splits into ∑

ρ∈R
=

N∑
i 6=j

+
N∑
i=j

. (3.15)

At large N , it is usual to discard the terms
∑N
i=j because they are suppressed by a power

of N compared to
∑N
i 6=j . Indeed this is what happens when we take the large N limit of the

effective twisted superpotential W̃. However, when evaluating (3.1) on the Bethe vacuum,

4Up to an overall phase, which including all contributions from vectors and bi-fundamental fields, is given
by − iπ

2

(∑
α∈G (α(m)− 1) +

∑
I

∑
ρI∈RI

(ρ(m)− ν(s) + 1)
)
. The sum over roots and weight vanishes for

all quivers where, at each node, the number of ingoing and outgoing arrows is equal. The remaining term
vanishes at large N since TrR(s) = 0 for the quivers of interest, see (4.6).
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we encounter terms like
N∑
i=1

log
(
u

(b)
i − u

(a)
i + ∆(b,a)

)
∼ −N3/2

∫
dtρ(t)Y(b,a)(t) , (3.16)

which contribute to the leading order for theories with N3/2 scaling. Such contributions
are crucial to obtain the correct result for the ABJM theory [2]. On the other hand,
ε 6= 0 effectively regularizes and suppresses the i = j contribution to the refined index,
as manifest from (3.13), and we can neglect problems associated with tail regions. More
details are given in appendix A.

4 Theories with N3/2 scaling of the index

In this section we consider a class of quiver Chern-Simons G =
∏|G|
a=1 U(N)a gauge theo-

ries with matters in bi-fundamental, adjoint and (anti-)fundamental representations of the
gauge group. We further require

|G|∑
a=1

ka = 0 . (4.1)

The theories we are interested in are holographically dual to AdS4 × Y7 backgrounds of
M-theory where Y7 are seven-dimensional Sasaki-Einstein spaces. They describe the low-
energy dynamics of N coincident M2-branes placed at the tip of the cone C(Y7). In the
M-theory phase N � ka the index scales as N3/2 as expected from supergravity.

We consider the following ansatz for the large N saddle point eigenvalue distribution

u
(a)
j = iN1/2tj + v

(a)
j , m

(a)
j = iN1/2nj + p

(a)
j . (4.2)

Observe that we have deformed the real integer fluxes mj into the complex plane in (4.2),
anticipating a complex saddle point. Moreover, the imaginary parts of u(a)

j and m
(a)
j do

not depend on the index a. At large N , we define the continuous functions

tj ≡ t(j/N) , v
(a)
j ≡ v

(a)(j/N) ,

nj ≡ n(j/N) , p
(a)
j ≡ p(a)(j/N) ,

(4.3)

and we introduce the normalized density of eigenvalues

ρ(t) = 1
N

dj
dt ,

∫
dtρ(t) = 1 . (4.4)

Our method generalizes the one used in [23] for the S3 free-energy. As in [23], there
exist some restrictions on the class of quivers for which it can be successfully used. For each
bi-fundamental connecting a and b there must be also a bi-fundamental connecting b and
a, and the total number of fundamental and anti-fundamental fields in the quiver must be
equal. For such theories to be devoid of long-range forces5 the quiver must also satisfy [9]∏

I∈a
yI = 1 , 2 +

∑
I∈a

(sI − 1) = 0 , (4.5)

5These are non-local terms in the equations of motion which scale with higher powers of N . To obtain
a consistent large N limit with the method presented here, they must cancel.
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where the
∏
I∈a and

∑
I∈a are taken over all bi-fundamental fields with one leg in the node

a.6 If we sum over all the nodes we also obtain the following constraint

|G|+
∑

I(bi-fund)
(sI − 1) = 0 . (4.6)

The above equation is equivalent to TrR = 0 for any trial R-symmetry. This statement is
valid at large N , where the trace is taken over all the bi-fundamental fermions and gauginos.

4.1 General rules

In this section we give the general rules for constructing the large N refined twisted index
of N ≥ 2 quiver gauge theories without long-range forces. The reader can find the details
in appendix A, here we only report the final results.

Let us set w(t) = it. We define the equivariant quantities

w(σ)(t) ≡ w(t) + iε(σ)

2 n(t) , v(σ)
a (t) ≡ va(t) + ε(σ)

2 pa(t) ,

∆(σ)
m ≡ ∆m −

ε(σ)

2 sm , ∆(σ)
I ≡ ∆I −

ε(σ)

2 sI , ε(1) ≡ ε , ε(2) ≡ −ε ,
(4.7)

and the closely related ones

∆(σ)
I ≡ 1

ω

(
∆I + π(ω − 1) + ε(σ)

2 (1− sI)
)
, v(σ)

a (t) ≡ v
(σ)
a (t)
ω

, (4.8)

with

ω ≡

√
1 +

(
ε

2π

)2
. (4.9)

We also define
δv(t) ≡ vb(t)− va(t) , δp(t) ≡ pb(t)− pa(t) . (4.10)

We work in an all-orders but perturbative expansion in ε. A more refined analysis of the rel-
evant approximations and asymptotic expansions would be needed to understand whether
there are non-perturbative corrections. We again refers to appendix A for more details.

1. Each gauge group a with CS level ka contributes

iN3/2ka

2∑
σ=1

1
ε(σ)

∫
dtρ(t)w(σ)(t)v(σ)

a (t) . (4.11)

2. A U(1)a topological symmetry with chemical potential and magnetic flux (∆(a)
m , s

(a)
m )

contributes

iN3/2
2∑

σ=1

∆(σ)
m

ε(σ)

∫
dtρ(t)w(σ)(t) . (4.12)

6Adjoint fields are counted twice. The second condition is satisfied for most of the quivers of interest
that are obtained by dimensionally reducing 4d quivers associated with D3-branes probing Calabi-Yau
singularities, adding Chern-Simons terms and flavoring with (anti)-fundamentals. See [9, 10] for details and
examples. For a quiver with a 4d parent, the condition is equivalent to the absence of anomalies for the
R-symmetry.
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3. Each vector multiplet contributes

iπ
12N

3/2
2∑

σ=1

∫
dtρ(t)2 ε

(σ) − 2π
w′(σ)(t)

. (4.13)

4. A pair of bi-fundamental chiral multiplets, one transforming in the (N,N) represen-
tation of U(N)a×U(N)b and with chemical potential and magnetic flux (∆(a,b), s(a,b))
and the other transforming in the (N,N) of U(N)a×U(N)b with chemical potential
and magnetic flux (∆(b,a), s(b,a)), contributes

iω3N3/2 ∑
I=(b,a):+
I=(a,b):−

2∑
σ=1

1
ε(σ)

∫
dtρ(t)2 g3(±δv(σ)(t) + ∆(σ)

I )
w′(σ)(t)

. (4.14)

Here, δv(t) ≡ vb(t)− va(t), and

gn(u) ≡ (2π)n

n! Bn

(
u

2π

)
, for n = 1, 2, . . . , (4.15)

where Bn(u) denotes the Bernoulli polynomials. Note that,

g1(u) = u− π , g2(u) = u2

2 − πu+ π2

3 , g3(u) = u3

6 −
π

2u
2 + π2

3 u . (4.16)

This expression has been derived under the assumption that

± δv(σ)(t) + ∆(σ)
I ∈ (0, 2π) . (4.17)

The solution might contain regions (tails) wherein δv(σ)(t) is frozen to the constant
boundary value ∓∆(σ)

I . In such regions the equations obtained from varying the
twisted index functional with respect to δv(t) and δp(t) need not hold.7

5. An adjoint chiral multiplet with chemical potential ∆(a,a) and magnetic flux s(a,a),
contributes

iω3N3/2
2∑

σ=1

g3(∆(σ)
(a,a))

ε(σ)

∫
dt ρ(t)2

w′(σ)(t)
. (4.18)

6. A chiral multiplet transforming in the fundamental representation of U(N)a and with
chemical potential and magnetic flux (∆a, sa), contributes

− 1
2N

3/2
2∑

σ=1

∫
dtρ(t)

(
(π −∆a − va(t))−

ε(σ)

2 (1− sa + pa(t))
)
|w(σ)|
ε(σ) . (4.19)

A chiral multiplet in the anti-fundamental representation and with chemical potential
and magnetic flux (∆̃a, s̃a), contributes

− 1
2N

3/2
2∑

σ=1

∫
dtρ(t)

(
(π − ∆̃a + va(t))−

ε(σ)

2 (1− s̃a − pa(t))
)
|w(σ)|
ε(σ) . (4.20)

7This is a largeN effect. As explained in [2], they hold when including subleading exponential corrections.
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4.2 ADHM quiver

The ADHM theory, which arise in the description of the moduli space of instantons [24],
is an N = 4 U(N) gauge theory with an adjoint hypermultiplet and r fundamental hyper-
multiplets. In N = 2 notation, the matter content is described by the quiver diagram

N r

Q

Q̃

φ1,2,3

(4.21)

Here, φI with I = 1, 2, 3, denotes the adjoint chiral multiplets, and Qia, Q̃ai with a =
1, . . . , N and i = 1, . . . , r represent the (anti-)fundamental chiral multiplets. They interact
through the superpotential

W = Q̃ia(φ3)abQbi + (φ3)ab[φ1, φ2]ba . (4.22)

With just one fundamental hypermultiplet, r = 1, the theory is supposed to flow to the
ABJM theory with k = 1 [3]. For generic r, the theory can be realized on the world-volume
of N M2-branes probing a C2 × C2/Zr singularity [25].

Let us introduce the chemical potentials (∆I ,∆, ∆̃) and magnetic fluxes (sI , s, s̃) as-
sociated with the fields (φI , Q, Q̃). We also denote by (∆m, sm), the chemical potential
and magnetic flux corresponding to the topological symmetry associated with the abelian
factor U(1). Then,

3∑
I=1

∆I = 2π , ∆ + ∆̃ + ∆3 = 2π ,

3∑
I=1

sI = 2 , s + s̃ + s3 = 2 .
(4.23)

Here, we use the fact that, for each monomial termWa in the superpotential the topological
twist requires

∑
I∈Wa

sI = 2 where the sum is restricted to the fields entering in Wa.
The analogous condition for the flavor symmetries is

∏
I∈Wa

yI = 1, which translates into∑
I∈Wa

∆I ∈ 2πZ. As in [1, 9] we will be able to find large N saddle point solutions for∑
I∈Wa

∆I = 2π. This explains the choices in (4.23).
Using the rules (4.12), (4.13), (4.18), (4.19), and (4.20) the large N refined twisted

index reads

logZ
N3/2 = iπ

12

2∑
σ=1

∫
dtρ(t)2 ε

(σ) − 2π
w′(σ)(t)

+ iω3
3∑
I=1

2∑
σ=1

g3(∆(σ)
I )

ε(σ)

∫
dt ρ(t)2

w′(σ)(t)

− i
2∑

σ=1

1
ε(σ)

∫
dtρ(t)

(
∆(σ)
m − ir2∆(σ)

3 sign(w(σ))
)
w(σ) ,

(4.24)

where we used the constraints (4.23). The index (4.24) can be more elegantly rewritten as

logZ(ρ(t), n(t),∆I ,∆m) = i
2∑

σ=1

W̃hom
(
ρ(t), w(σ)(t),∆(σ)

I ,∆(σ)
m

)
ε(σ) . (4.25)

– 11 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
5

in terms of the effective twisted superpotential for the ADHM theory (see e.g. [10, (3.4)])8

W̃hom(ρ(t), w(t),∆I ,∆m)
N3/2 = 1

2

3∏
I=1

∆I

∫
dt ρ(t)2

w′(t) −
∫

dtρ(t)w(t)
(

∆m − ir2∆3 sign
(
w(t)

))
,

(4.26)
and we used the equivariant parameters (4.7). Notice that all terms in (4.26) have been
written as homogeneous functions of (∆I ,∆m) using the constraints (4.23). Notice also that
the equivariant parameters ∆(σ)

I defined in (4.7) do not satisfy (4.23) and the relation (4.25)
holds only if the homogeneous form of W̃ is used.

The effective twisted superpotential (4.26) is at the core of the Bethe route approach
used in [1, 9]. The large N Bethe vacuum that dominates the index is obtained by extrem-
izing (4.26) with respect to ρ(t). For completeness and later use, we report here the result
of the extremization. We obtain [10, section 3.1.1]

ρ(t) = −r∆3|t|+ 2∆mt− 2ν
2∆1∆2∆3

, − 2ν
r∆3 − 2∆m

< t <
2ν

r∆3 + 2∆m
,

ν =
√
r

2∆1∆2

(
∆3 −

2
r

∆m

)(
∆3 + 2

r
∆m

)
,

(4.27)

where we included the Lagrange multiplier ν to ensure the normalization of ρ(t). Plugging
back the saddle point configuration (4.27) into (4.26) we then find

W̊(∆I ,∆m) ≡ W̃hom(ρ(t), w(t),∆I ,∆m)
∣∣∣
(4.27)

= −2i
3 N

3/2ν = − i
3N

3/2

√
2r∆1∆2

(
∆3 −

2
r

∆m

)(
∆3 + 2

r
∆m

)
,

(4.28)

that is a homogenous function of degree 2 of (∆I ,∆m). For r = 1, with the change of
variables ∆̃1 = ∆1, ∆̃2 = ∆2, ∆̃3 = 1

2∆3 − ∆m, ∆̃4 = 1
2∆3 + ∆m, (4.28) reduces to the

effective twisted superpotential for the ABJM theory [1]

W̊(∆̃I ,∆m) = −2i
3 N

3/2
√

2∆̃1∆̃2∆̃3∆̃4 , (4.29)

where
∑4
I=1 ∆̃I = 2π, as expected.

It was proved in [9] that the “on-shell” value of the twisted superpotential for this class
of theories is always related to the free energy on S3, at large N , via

W̊(∆) = − iπ
2 FS3(∆̄) , (4.30)

where ∆̄ ≡ ∆/π denote the trial R-charges for the chiral fields. We will see in the next
section that the S3 free energy constitutes the twisted index in the large N limit, in
agreement with the gravitational blocks standpoint proposed in [13].

8In order to recover the effective twisted superpotential for the ADHM theory as given in [10], we need
to recall that w(t) = it. It is convenient to consider an explicit dependence on w(t) in order to perform the
substitutions in (4.25).
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4.2.1 The unrefined case

Setting ε = 0 in (4.25) we obtain

logZ
N3/2 =

∫
dtρ(t)n(t)

(
∆m + r

2∆3 sign(t)
)
−
∫

dtρ(t)t
(
sm + r

2s3 sign(t)
)

(4.31)

− 1
2 (∆1∆2s3 + ∆1∆3s2 + ∆2∆3s1)

∫
dtρ(t)2 − 1

2∆1∆2∆3

∫
dtρ(t)2n′(t) .

Setting the variations of (4.31) with respect to ρ(t) and n(t) to zero, we find

0 = 2 (µ−∆mn(t) + tsm) + r sign(t) (s3t−∆3n(t))
+ 2ρ(t)

(
∆1∆2∆3n

′(t) + ∆1∆2s3 + ∆3∆2s1 + ∆1∆3s2
)
,

0 = ∆m + r

2∆3 sign(t) + ∆1∆2∆3ρ
′(t) ,

(4.32)

where we introduced the Lagrange multiplier µ to ensure the normalization of ρ(t). Thus,

ρ(t) =− t(2∆m+r∆3 sign(t))
2∆1∆2∆3

+c1 , (4.33)

n(t) =−1
2

(
t

3∑
I=1

sI
∆I
− t(s3r|t|+4µ+2c1 (∆1∆2s3 +∆1∆3s2 +∆2∆3s1))+2t2sm−2c2

r∆3|t|−2c1∆1∆2∆3 +2t∆m

)
,

where c1,2 are constants of integrations. The support of ρ(t) can be easily found by

ρ(t∓) = 0 ⇒ t∓ = ∓2c1
∆1∆2∆3
r∆3 ∓ 2∆m

. (4.34)

Then, the normalization of ρ(t) fixes the value of c1,∫ t+

t−
dtρ(t) = 1 ⇒ c1 = 1

∆3

√
(r∆3 − 2∆m)(r∆3 + 2∆m)

2r∆1∆2
. (4.35)

The constants µ and c2 are fixed by the requiring that n(t) to be regular at the endpoints
of the support of ρ(t). Therefore,

µ = −(r∆3 − 2∆m)(r∆3 + 2∆m) (∆1s2 + ∆2s1) + 2∆1∆2
(
r2∆3s3 − 4∆msm

)
2
√

2r∆1∆2(r∆3 − 2∆m)(r∆3 + 2∆m)
,

c2 = 2∆1∆2 (∆3sm − s3∆m)
r∆3

.

(4.36)

Plugging the constants c1,2 and µ back into (4.33), we finally find the following large N
saddle point solution

ρ(t) = 1√
2∆3

√
(r∆3 − 2∆m)(r∆3 + 2∆m)

r∆1∆2
− r∆3|t|+ 2∆mt

∆1∆2
,

n(t) = 1
4

(
rs3 + 2sm
r∆3 + 2∆m

+ rs3 − 2sm
r∆3 − 2∆m

− 2s1
∆1
− 2s2

∆2
− 2s3

∆3

)
t

+
(∆3sm − s3∆m)

(
r2∆3|t|+

√
2r∆1∆2(r∆3 − 2∆m)(r∆3 + 2∆m)

)
r∆3(r∆3 − 2∆m)(r∆3 + 2∆m) .

(4.37)
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Substituting (4.37) into (4.31) we finally obtain

logZ = 2
3N

3/2µ (4.38)

= −N
3/2

3
(r∆3 − 2∆m)(r∆3 + 2∆m) (∆1s2 + ∆2s1) + 2∆1∆2

(
r2∆3s3 − 4∆msm

)
2
√

2r∆1∆2(r∆3 − 2∆m)(r∆3 + 2∆m)
,

in agreement with [10, (3.15)].

4.2.2 Refined index: ∆(σ)
m = 0

We now turn to evaluate the refined twisted index in the branch ∆m = sm = 0. Setting
the variational derivative of the index (4.25) with respect to ρ(t) and n(t) to zero, we find
the saddle point

ρ(t) =
2r|t|−

∑2
σ=1

√
2r∆(σ)

1 ∆(σ)
2(∑2

σ=1

√
∆(σ)

1 ∆(σ)
2

)2 , −
2∑

σ=1

√
1
2r∆(σ)

1 ∆(σ)
2 <t<

2∑
σ=1

√
1
2r∆(σ)

1 ∆(σ)
2 ,

n(t) = 2∑2
σ=1

√
∆(σ)

1 ∆(σ)
2

2∑
σ=1

√
∆(σ)

1 ∆(σ)
2

ε(σ) t , µ=
2∑

σ=1

√
r∆(σ)

1 ∆(σ)
2 ∆(σ)

3√
2ε(σ) , (4.39)

where the Lagrange multiplier µ is included to ensure the normalization of ρ(t). Plugging
back the saddle point (4.39) into the index (4.25) we then obtain

logZ = 2
3N

3/2µ = N3/2

3

2∑
σ=1

√
2r∆(σ)

1 ∆(σ)
2 ∆(σ)

3
ε(σ) , (4.40)

that can be more elegantly rewritten as

logZ = i
2∑

σ=1

W̊(∆(σ))
ε(σ) , (4.41)

where W̊(∆) is given in (4.28).

4.2.3 Refined index: the general case

One can similarly evaluate the refined twisted index for generic values of the chemical
potentials.

We see from the occurrence of sign(w(σ)) in the functional (4.24) that the solution
is divided into three regions, delimited by the points where ρ(t) = 0 and w(σ)(t) =
i
(
t± ε

2n(t)
)

= 0. Schematically, we have:

t�

ρ = 0
t<

t− ε
2n(t) = 0

t>

t+ ε
2n(t) = 0

t�

ρ = 0
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Figure 1. Plots of (a) the density of eigenvalues ρ(t) and (b) the function n(t) for r = 2,
ε = 0.1, (∆1, s1) = (2.7, 1), (∆2, s2) = (1.6, 2), (∆m, sm) = (6.3 − 2π,−19),

∑3
I=1 ∆I = 2π, and∑3

I=1 sI = 2.

We assume here that t − ε
2n(t) vanishes before t + ε

2n(t). This happens for a region in
the space of chemical potentials. The other case is analogous. A piece-wise continuous
solution with these turning points can be explicitly found. The expressions are too long to
be reported here and are given in appendix B. The form of the solution is plotted in figure 1.

The refined index is still given by

logZ = i
2∑

σ=1

W̊(∆(σ))
ε(σ) , (4.42)

where W̊(∆) is given in (4.28). We clearly see that the large N index is obtained by A-
gluing two copies of the twisted superpotential/free energy in agreement with the general
holographic expectations based on gravitational blocks [13].

4.3 More about factorization

To conclude this example, it is interesting to understand the form of the general solution of
section 4.2.3 by connecting the result to the factorization method. The refined index (4.25)
depends explicitly on the distribution of magnetic flux n(t) through the variables w(σ)(t) =
i(t+ ε(σ)

2 n(t)). Defining the new quantites

iT (σ) = w(σ)(t) , ρ(σ)(T (σ)) = iρ(t)
w′(σ)(t)

, (4.43)

the index (4.25) becomes the sum

logZ = i
2∑

σ=1

W̃hom
(
ρ(σ)(T (σ)),∆(σ)

I ,∆(σ)
m

)
ε(σ) , (4.44)
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of the two ADHM twisted superpotentials

W̃hom(ρ(T ),∆I ,∆m)
N3/2 = i

2

3∏
I=1

∆I

∫
dT ρ(T )2 − i

∫
dTρ(T )T

(
∆m + r

2∆3 sign(T )
))

.

(4.45)
The two densities ρ(σ) replace the original quantities ρ(t) and n(t). They are independent
variables and are correctly normalized∫

dT (σ)ρ(σ)(T (σ)) =
∫

dtρ(t) = 1 . (4.46)

It follows that we can extremize independently the two terms in (4.44), the first with respect
to ρ(1) and the second with respect to ρ(2). Each extremization is equivalent to find the
critical point of the ADHM twisted superpotential with chemical potentials ∆(1) and ∆(2),
respectively, and the final result is hence given by the factorized form (4.42), confirming
the previous result.

This argument can be also used to evaluate n(t) and ρ(t). The densities ρ(σ) are
the piece-wise linear functions given in (4.27). ρ(t) and n(t) can be determined by the
consistency condition

iρ(t) = ρ(1)(−iw(1)(t))w′(1)(t) = ρ(2)(−iw(2)(t))w′(2)(t) , (4.47)

which follows from the definition of ρ(σ). This gives a first order differential equation for
n(t) that can be explicitly solved by∫

dT (1)ρ(1)(T (1))
∣∣∣
T (1)=t+ ε

2n(t)
=
∫

dT (2)ρ(2)(T (2))
∣∣∣
T (2)=t− ε2n(t)

+ const . (4.48)

In the ADHM case this is a quadratic equation for n(t) that should be solved in various
intervals.

More explicitly, ρ(σ)(T (σ)) have support in
[
T

(σ)
− , T

(σ)
+
]
, where T (σ)

± can be read off
from (4.27) by replacing (∆I ,∆m) with (∆(σ)

I ,∆(σ)
m ). The structure of intervals in the

variable t arises as follows. Since ρ(1) and ρ(2) are piece-wise continuous with junctions at
T (1) = 0 and T (2) = 0, which generically correspond to different values of t, there are three
regions for t that are depicted in figure 2. We assume that

T (1)(t) = t+ ε

2n(t) , T (2)(t) = t− ε

2n(t) , (4.49)

are monotonic functions of t. Notice that the assumption (4.49) has been used in deriving
the rules for the refined index in appendix A. We first determine the leftmost point t� as
the solution of

T
(1)
− = t� + ε

2n(t�) , T
(2)
− = t� −

ε

2n(t�) . (4.50)

A simultaneous solution to these equations can be found by carefully tuning the arbitrary
constant in (4.48) in the first interval, for example by choosing∫ t+ ε

2n(t)

T
(1)
−

dT (1)ρ(1)(T (1)) =
∫ t− ε2n(t)

T
(2)
−

dT (2)ρ(2)(T (2)) . (4.51)
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tt� t< t> t�

ρ(σ)(T (σ))

Figure 2. The structure of the intervals in t is obtained by comparing the distributions ρ(1) (in
red) and ρ(2) (in blue), that are the piece-wise linear functions of T given in (4.27).

We can similarly find t� by imposing T (1)
+ = t� + ε

2n(t�) and T
(2)
+ = t� − ε

2n(t�) and
fixing the constant in the third interval. Assuming that T (2) = 0 occurs before T (1) = 0
for consistency with the previous section, the point t< is determined by T (2)(t<) = t< −
ε
2n(t<) = 0 and t> is determined by T (1)(t>) = t> + ε

2n(t>) = 0. There is a remaining
arbitrary constant in the relation (4.48) in the middle interval

∫ t+ ε
2n(t)

0
dT (1)ρ(1)(T (1)) =

∫ t− ε2n(t)

0
dT (2)ρ(2)(T (2)) + const , (4.52)

that can be found by imposing that the equation holds at the junctions t< and t>. It
would seem that there are two conditions for one constant, but it is not difficult to see that
the two constraints are equivalent since the integral of ρ(σ)(T (σ)) is normalized to one. By
solving explicitly (4.48) in the three regions we find a piece-wise continuous function ρ(t)
and a piece-wise C1-function n(t) that coincide with the expressions in appendix B.

4.4 ABJM quiver

The ABJM theory [3] is a U(N)k × U(N)−k Chern-Simons gauge theory (the subscripts
are the Chern-Simons levels). In N = 2 notations it is described by the following quiver
diagram

Nk N−k

Ai

Bj

(4.53)

with bi-fundamental fields Ai, i = 1, 2 and Bi, i = 1, 2 transforming in the (N, N̄) and
(N̄ ,N) representation of the gauge group, respectively, and quartic superpotential

W = Tr(A1B1A2B2 −A1B2A2B1) . (4.54)

We assign chemical potentials ∆I , I = 1, . . . 4 and fluxes sI , I = 1, . . . 4 to the fields
A1, A2, B1, B2, respectively. Due to the quartic superpotential, they satisfy

4∑
I=1

∆I = 2π ,
4∑
I=1

sI = 2 . (4.55)
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As in [2], the first condition allows to find a large N limit9 while the second is a consequence
of the topological twist.

Using the rules (4.11) and (4.14), the large N refined twisted index reads

logZ
N3/2 = −iN3/2k

2∑
σ=1

w(σ)(t)δv(σ)(t)
ε(σ) + iπ

6

2∑
σ=1

∫
dtρ(t)2 ε

(σ) − 2π
w′(σ)(t)

+ iω3 ∑
I=(3,4):+
I=(1,2):−

2∑
σ=1

1
ε(σ)

∫
dtρ(t)2 g3(±δv(σ)(t) + ∆(σ)

I )
w′(σ)(t)

,
(4.56)

that can be more elegantly rewritten as

logZ(ρ(t), w(σ)(t),∆(σ)
I ) = i

2∑
σ=1

W̃hom
(
ρ(t), w(σ)(t), δv(σ)(t),∆(σ)

I

)
ε(σ) . (4.57)

Here, W̃hom(ρ(t), w(t), δv(t),∆I), with w(t) = it, is the effective twisted superpotential, see
e.g. [9, (3.28)],

W̃hom(ρ(t), w(t), δv(t),∆I)
N3/2 = −k

∫
dtρ(t)w(t)δv(t) +

∑
I=(3,4):+
I=(1,2):−

∫
dtρ(t)2 g3(±δv(t) + ∆I)

w′(t) ,

(4.58)
and we used again the A-gluing parameterization

w(σ)(t) ≡ w(t) + iε
(σ)

2 n(t) , δv(σ) ≡ δv(t) + ε(σ)

2 δp(t) , ∆(σ) = ∆I −
ε(σ)

2 sI ,

ε(1) ≡ ε , ε(2) ≡ −ε .
(4.59)

Importantly, the subscript hom in (4.58) indicates that the polynomial
∑
I g3(±δv(t)+∆I)

in (4.58) must be written as a homogeneous function of ∆I using the constraint (4.55).
Only if this is done, (4.57) holds.10

The more efficient way of extremizing (4.57) for generic ε is to use the factorization
trick discussed in section 4.3. Defining the new quantites

iT (σ) = w(σ)(t) , ρ(σ)(T (σ)) = iρ(t)
w′(σ)(t)

, (4.60)

the index (4.57) becomes the sum

logZ = i
2∑

σ=1

W̃hom
(
ρ(σ)(T (σ)), δv(σ)(T (σ)),∆(σ)

I

)
ε(σ) , (4.61)

9The invariance of the superpotential W under flavor symmetries requires
∏4
I=1 yI = 1, which is com-

patible with the more general constraint
∑4

I=1 ∆I ∈ 2πZ. We know from [2] that, for ε = 0, a saddle point
exists for

∑4
I=1 ∆I = 2π.

10Notice that
∑4

I=1 ∆(σ)
I 6= 2π, so to what extent the relation (4.55) has been used before substituting

∆I → ∆(σ)
I is important.
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of the two ABJM twisted superpotentials

W̃hom(ρ(T ), δv(T ),∆I)
N3/2 = −k i

∫
dtρ(T )Tδv(T )− i

∑
I=(3,4):+
I=(1,2):−

∫
dT ρ(T )2g3(±δv(T ) + ∆I) .

(4.62)
As in section 4.3 we can extremize independently the two terms in (4.61). The extremization
of (4.62) was performed in [2] finding the following distribution for

∑
I ∆I = 2π and

∆1 ≤ ∆2, ∆3 ≤ ∆4. We have a central region where

ρ(T ) = ν
∑4
I=1 ∆I + kT (∆3∆4 −∆1∆2)

(∆1 + ∆3)(∆2 + ∆3)(∆1 + ∆4)(∆2 + ∆4) ,

δv(T ) = ν(∆1∆2 −∆3∆4) + kT
∑
I<J<K ∆I∆J∆K

ν
∑4
I=1 ∆I + kT (∆3∆4 −∆1∆2)

,

− ν

k∆4
< T <

ν

k∆2
, (4.63)

with ν =
√

2k∆1∆2∆3∆4. There is a left tail where δv is frozen to the value −∆3,

ρ(T ) = ν + kT∆3
(∆1 + ∆3)(∆2 + ∆3)(∆4 −∆3) , − ν

k∆3
< T < − ν

k∆4
, (4.64)

and a right tail with δv = ∆1,

ρ(T ) = ν − kT∆1
(∆1 + ∆3)(∆1 + ∆4)(∆2 −∆1) ,

ν

k∆2
< T <

ν

k∆1
. (4.65)

The on-shell twisted superpotential is given by

W̊(∆I) = −2i
3 N

3/2√2k∆1∆2∆3∆4 . (4.66)

We thus find for the refined index

logZ = i
2∑

σ=1

W̊(∆(σ))
ε(σ) , (4.67)

in agreement with the general holographic expectations based on gravitational blocks [13].
As in section 4.3, the quantities ρ(t), δv(t), n(t), and p(t) can be explicitly obtained by

using the mapping (4.60). In particular, as clear from figure 3, the solution will be divided
into five regions. In each region, (4.60) provides a differential equation for n(t). Imposing
that the distribution is piece-wise continuous, we find a unique solution.

In appendix C, for reference, we give the full explicit solution for ε = 0, which can be
also find by a direct extremization of (4.57). Notice that for ε = 0 the five segments collapse
to three and the functions ρ(t) and δv(t) are the same as in (4.63), (4.64), and (4.65). The
distribution of magnetic fluxes n(t) is given explicitly in the appendix.

Comparison to the entropy of rotating AdS4 × S7 black holes. Here we simply
notice that the result (4.67) correctly reproduced the entropy of the rotating AdS4×S7 black
holes found in [5]. This was explicitly checked in [13, section 2], where a general formalism
based on gravitational blocks was proposed. The factorization in (4.67) is quantum field
theory analog of the gravitational block factorization.
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tt� t̄< t< t> t̄> t�

ρ(σ)(T (σ))

Figure 3. The structure of the intervals in t is obtained by comparing the distributions ρ(1) (in red)
and ρ(2) (in blue), that are the piece-wise linear functions of T given in (4.63), (4.64), and (4.65).

5 Theories with N5/3 scaling of the index

We now consider Chern-Simons G =
∏|G|
a=1 U(N)a gauge theories with matters in bi-

fundamental and adjoint representations of the gauge group that are holographically dual
to AdS4 backgrounds in massive type IIA. We assume

kCS ≡
|G|∑
a=1

ka 6= 0 , (5.1)

that corresponds to turning on the Romans mass F0 in the dual type IIA supergravity [26].
In the limit N � ka we can find a class of theories whose free-energy and indices scale
as N5/3 [27–29]. They are obtained by dimensionally reducing 4d quivers associated with
D3-branes probing Calabi-Yau singularities and adding Chern-Simons terms.

Following [9, 23], we consider the following ansatz for the large N saddle point eigen-
value distribution

u(a)(t) = N1/3(it+ v(t)) , m(a)(t) = iN1/3n(t) . (5.2)

Notice that the distribution is the same for all groups. We still need to satisfy (4.5) (or a
milder condition) but now the saddle-point exists also for chiral quivers [9].

5.1 General rules

Let us set w(t) = it+ v(t). We define the equivariant quantities

w(σ)(t) ≡ w(t) + iε
(σ)

2 n(t) , ∆(σ)
I = ∆I −

ε(σ)

2 sI ,

ε(1) = ε , ε(2) = −ε ,
(5.3)

and the closely related quantity

∆(σ)
I ≡ 1

ω

(
∆I + π(ω − 1) + ε(σ)

2 (1− sI)
)
, (5.4)

with ω as before, see (4.9).
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1. Each gauge group a with CS level ka contributes

− kaN5/3
∫

dtρ(t)n(t)w(t) . (5.5)

2. Each vector multiplet contributes

iπ
12N

5/3
2∑

σ=1

∫
dtρ(t)2 ε

(σ) − 2π
w′(σ)(t)

. (5.6)

3. A single bi-fundamental chiral multiplet transforming in a representation (N,N) of
U(N)a × U(N)b and with chemical potential and magnetic flux (∆(a,b), s(a,b)) con-
tributes

iω3N5/3
2∑

σ=1

g3
(
∆(σ)

(a,b)
)

ε(σ)

∫
dt ρ(t)2

w′(σ)(t)
. (5.7)

5.2 Large N twisted index: ε = 0 case

Let us consider a generic three-dimensional N = 2 Chern-Simons-matter quiver theory,
with |G| U(N) gauge nodes and some number of bi-fundamental and adjoint chiral multi-
plets of the type considered in [28, 29]. Using (5.5), (5.6), and (5.7) the large N twisted
index for ε = 0 can be written as

logZ
N5/3 = −kCS

∫
dtρ(t)n(t) (it+ v(t))−

∑
I

g3(∆I)
∫

dt ρ(t)2n′(t)
(1− iv′(t))2

−
(
|G|π

2

3 +
∑
I

(sI − 1)g2(∆I)
)∫

dt ρ(t)2

1− iv′(t) + µ

(∫
dtρ(t)− 1

)
,

(5.8)

where kCS ≡
∑|G|
a=1 ka and we introduced the Lagrange multiplier µ to ensure the normal-

ization of the density of eigenvalues. Here, ∆I and sI denote the chemical potentials and
magnetic charges for the flavor group of the theory. As before, they satisfy∑

I∈Wa

∆I = 2π ,
∑
I∈Wa

sI = 2 , (5.9)

for each superpotential terms Wa. Extremizing (5.8) with respect to the continuous func-
tions ρ(t), n(t), and v(t) we find the following general solution

ρ(t) = 31/6

2

(
kCS∑

I g3(∆I)

)1/3
− 2

33/2
kCS∑

I g3(∆I)
t2 ,

n(t) = −1
3

(
1 + i√

3

) |G|π2

3 +
∑
I(sI − 1)g2(∆I)∑
I g3(∆I)

t ,

v(t) = − 1√
3
t ,

µ = 31/6

2

(
1− i√

3

)(
kCS∑

I g3(∆I)

)1/3 (
|G|π

2

3 +
∑
I

(sI − 1)g2(∆I)
)
,

t± = ±35/6

2

(∑
I g3(∆I)
kCS

)1/3
.

(5.10)
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Using the above solution, we obtain

logZ = −3
5N

5/3µ = −N5/3 37/6

10

(
1− i√

3

)(
kCS∑

I g3(∆I)

)1/3 (
|G|π

2

3 +
∑
I

(sI−1)g2(∆I)
)
,

(5.11)
that matches the result for the large N twisted index evaluated via the Bethe ansatz
approach [30–32].11

5.3 Large N twisted index with refinement

Given the expressions (5.5), (5.6), and (5.7), the refined twisted index at large N can be
written as

logZ(ρ(t), n,∆) = i
2∑

σ=1

W̃hom
(
ρ(t), w(σ)(t),∆(σ)

)
ε(σ) , (5.12)

where W̃hom(ρ(t), w(t),∆) is the effective twisted superpotential, see e.g. [30, (2.4)],

W̃hom(ρ(t), w(t),∆)
N5/3 = 1

2kCS

∫
dtρ(t)w(t)2 +

∑
I

g3(∆I)
∫

dt ρ(t)2

w′(t) , (5.13)

written homogeneously in ∆I , and we used the A-gluing parameterization (5.3). One can
show that

G3(∆) ≡
∑
I

g3(∆I)
∣∣∣∣
hom

= 1
3!
∑
I,J,K

cIJK∆I∆J∆K , (5.14)

is proportional to the trial a-charge of the parent four-dimensional theory [29, 30], which
can be written in a homogeneous form using the (rescaled) ’tHooft anomaly coefficients
cIJK .12 For example, for the N = 8 super Yang-Mills at Chern-Simons level k [28]

G3(∆) = 1
2∆1∆2∆3 . (5.15)

Then, setting to zero the variational derivatives of (5.12) with respect to ρ(t) and w(σ)(t)
yields

0 = −2iµ+ kCS

2∑
σ=1

w(σ)(t)2

ε(σ) + 4ρ(t)
2∑

σ=1

1
ε(σ)

G3(∆(σ))
w′(σ)(t)

,

0 = kCSw
(σ)(t)w′(σ)(t) + 2G3(∆(σ))

(
ρ′(t)
w′(σ)(t)

− ρ(t)w′′(σ)(t)
w′(σ)(t)2

)
, for σ = 1, 2 .

(5.16)

Observe that δ logZ
δw(σ)(t) = 0 can be rewritten as

0 = d
dt

(1
2kCSw

(σ)(t)2 + 2G3(∆(σ)) ρ(t)
w′(σ)(t)

+ c(σ)
)
, for σ = 1, 2 , (5.17)

11The index can be written as a homogeneous function of ∆I using (5.9).
12For a four-dimensional toric quiver associated with D3-branes at a Calabi-Yau conical singularity,

cIJK = | det(vI , vJ , vK)|/2, where vI ∈ Z3 are the integer vectors defining the toric diagram [33].
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where c(σ) are constants of integrations to be determined later. This together with δ logZ
δρ(t) =

0 allows us to fix the Lagrange multiplier µ as

µ = i
2∑

σ=1

c(σ)

ε(σ) . (5.18)

Given the above equations it is now straightforward to check that

ρ(t) = 31/6k
1/3
CS∑2

σ=1G3(∆(σ))1/3 −
16kCS

33/2
(∑2

σ=1G3(∆(σ))1/3
)3 t

2 ,

w(σ)(t) = 2i
(

1 + i√
3

)
G3(∆(σ))1/3∑2
σ=1G3(∆(σ))1/3 t ,

µ = −37/6

4

(
1− i√

3

)
k

1/3
CS

2∑
σ=1

G3(∆(σ))2/3

ε(σ) ,

t± = ± 35/6

4k1/3
CS

2∑
σ=1

G3(∆(σ))1/3 ,

c(σ) = i3
7/6

4

(
1− i√

3

)
k

1/3
CS G3(∆(σ))2/3 ,

(5.19)

satisfies (5.16). Note that,

w(t) (5.3)= 1
2

2∑
σ=1

w(σ)(t) (5.19)= i
(

1 + i√
3

)
t ⇒ v(t) = − 1√

3
t . (5.20)

Moreover,

n(t) = −i
2∑

σ=1

w(σ)(t)
ε(σ)

(5.19)= 2
(

1 + i√
3

) 1∑2
σ=1G3(∆(σ))1/3

2∑
σ=1

G3(∆(σ))1/3

ε(σ) t . (5.21)

Substituting back the solution (5.19) into (5.12), we find that the large N refined index
takes the following factorized form

logZ = −3
5N

5/3µ = N5/3k
1/3
CS

9× 31/6

20

(
1− i√

3

) 2∑
σ=1

G3(∆(σ))2/3

ε(σ) , (5.22)

that can be more elegantly rewritten as

logZ = i
2∑

σ=1

W̊(∆(σ))
ε(σ) , (5.23)

where W̊(∆) is the on-shell value of the effective twisted superpotential (5.13), see e.g. [32,
(A.5)],

W̊(∆) = −iN5/3k
1/3
CS

9× 31/6

20

(
1− i√

3

)
G3(∆)2/3 . (5.24)

This expression was derived in [30–32] with the Bethe approach and it is proportional to
S3 free energy at large N [28, 29]. Once again we see that the result is in precise agreement
with the general holographic expectations based on gravitational blocks [13].

– 23 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
5

Acknowledgments

SMH is supported in part by the STFC Consolidated Grant ST/T000791/1. AZ is partially
supported by the INFN, and the MIUR-PRIN contract 2017CC72MK003.

A Derivation of general rules for quivers with N3/2 scaling of the index

We consider the following ansatz for the large N saddle point eigenvalue distribution

u
(a)
j = iN1/2tj + v

(a)
j , m

(a)
j = iN1/2nj + p

(a)
j . (A.1)

Observe that we have deformed the real integer fluxes mj into the complex plane in (A.1),
anticipating a complex saddle point. Moreover, the imaginary parts of u(a)

j and m
(a)
j do

not depend on the index a. At large N , we define the continuous functions

tj ≡ t(j/N) , v
(a)
j ≡ v

(a)(j/N) ,

nj ≡ n(j/N) , p
(a)
j ≡ p(a)(j/N) ,

(A.2)

and we introduce the normalized density of eigenvalues

ρ(t) = 1
N

dj
dt ,

∫
dtρ(t) = 1 . (A.3)

We also define
δv(t) ≡ vb(t)− va(t) , δp(t) ≡ pb(t)− pa(t) . (A.4)

In taking the continuum limit the sums over N become Riemann integrals, for example,

N∑
j=1
→ N

∫
dtρ(t) . (A.5)

Finally, we impose the constraint

kCS ≡
|G|∑
a=1

ka = 0 , (A.6)

as appropriate for quivers dual to M-theory on AdS4 × Y7 background, with Y7 a Sasaki-
Einstein five-manifold, and N3/2 scaling. We follow the logic of [2, 9], to which we refer
for more details about the method and assumptions.

A.1 Chern-Simons

Each group a with CS level ka contributes to the index as

logZCS = ika
N∑
i=1

miui

N�1= −N3/2ka

∫
dtρ(t) (n(t)va(t) + tpa(t))

+ iNka
∫

dtρ(t)pa(t)va(t)− iN2ka

∫
dtρ(t)tn(t) ,

(A.7)

– 24 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
5

where in the second equality we used the scaling ansatz (A.1) and took the continuum
limit. Summing over nodes the last term vanishes because of (A.6). Therefore, we obtain
at large N

logZCS = −N3/2ka

∫
dtρ(t) (n(t)va(t) + tpa(t)) , (A.8)

reproducing (4.11).

A.2 Chiral multiplet in bi-fundamental representation

Let us consider first the contribution of a single chiral multiplet, in the (N,N) representa-
tion of U(N)a×U(N)b. We denote the chemical potential and magnetic flux by (∆, s). The
polynomial piece in (3.13) only participates in the cancellation of long-range forces or oth-
erwise is subleading, as it can be checked explicitly using (4.5). The relevant contribution
from (3.13) is

logZ(b,a) =
N∑

i,j=1

|Bij |−1
2∑

`=−
|Bij |−1

2

sign(Bij) Li1
(
ei(u(b)

j −u
(a)
i +∆+`ε)

)
, (A.9)

where Bij = m
(b)
j −m

(a)
i − s + 1. We break

∑
i,j →

∑
i<j +

∑
i<j +(i→ j).

Observe that, in the large N limit,

logZi→j(b,a) = N

∫
dtρ(t)

|B(t)|−1
2∑

`=− |B(t)|−1
2

sign (B(t)) Li1
(
ei(δv(t)+∆+`ε)

)
, (A.10)

where B(t) ≡ δp(t)− s + 1, is subleading.

Digression. Performing the saddle point approximation in the (u−m)-plane, we obtain

Z(∆, s|ε) N�1∼
Z(b,a)(u,m; ∆, s|ε)

√
detH

∣∣∣∣
saddle point

, (A.11)

where H is the Hessian matrix

H =

∂ logZ(b,a)

∂u
(a)
i ∂u

(a)
j

∂ logZ(b,a)

∂u
(a)
i ∂u

(b)
j

∂ logZ(b,a)

∂u
(a)
i ∂m

(a)
j

∂ logZ(b,a)

∂u
(a)
i ∂m

(b)
j

∂ logZ(b,a)

∂u
(b)
i ∂u

(a)
j

∂ logZ(b,a)

∂u
(b)
i ∂u

(b)
j

∂ logZ(b,a)

∂u
(b)
i ∂m

(a)
j

∂ logZ(b,a)

∂u
(b)
i ∂m

(b)
j

∂ logZ(b,a)

∂m
(a)
i ∂u

(a)
j

∂ logZ(b,a)

∂m
(a)
i ∂u

(b)
j

∂ logZ(b,a)

∂m
(a)
i ∂m

(a)
j

∂ logZ(b,a)

∂m
(a)
i ∂m

(b)
j

∂ logZ(b,a)

∂m
(b)
i ∂u

(a)
j

∂ logZ(b,a)

∂m
(b)
i ∂u

(b)
j

∂ logZ(b,a)

∂m
(b)
i ∂m

(a)
j

∂ logZ(b,a)

∂m
(b)
i ∂m

(b)
j




4N×4N

. (A.12)

Let us set ε = 0. Then, Z(b,a)(u,m; ∆, s|0) becomes a linear function in the gauge magnetic
fluxes (m(a)

i ,m
(b)
i ). Explicitly, we can write

logZ(b,a)(u,m; ∆, s|0) =
N∑

i,j=1

(
m

(b)
j −m

(a)
i − s + 1

)
Li1

(
ei(u(b)

j −u
(a)
i +∆)

)
, (A.13)
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and, therefore,

H =

∂ logZ(b,a)

∂u
(a)
i ∂u

(a)
j

∂ logZ(b,a)

∂u
(a)
i ∂u

(b)
j

B

∂ logZ(b,a)

∂u
(b)
i ∂u

(a)
j

∂ logZ(b,a)

∂u
(b)
i ∂u

(b)
j

B 0




4N×4N

. (A.14)

where B is the 2N ×2N matrix appearing in the Jacobian of the Bethe approach [2, (2.25)]

B =


∂W̃(b,a)

∂u
(a)
i ∂u

(a)
j

∂W̃(b,a)

∂u
(a)
i ∂u

(b)
j

∂W̃(b,a)

∂u
(b)
i ∂u

(a)
j

∂W̃(b,a)

∂u
(b)
i ∂u

(b)
j


2N×2N

. (A.15)

Here, we used the relations

∂ logZ(b,a)

∂m
(b)
i

=
∂W̃(b,a)

∂u
(b)
i

,
∂ logZ(b,a)

∂m
(a)
i

=
∂W̃(b,a)

∂u
(a)
i

. (A.16)

Hence,

− 1
2 log detH = − log detB− iπ

2 = − log det
ij
∂2
u

(a)
i u

(b)
j

W̃(u; ∆)− iπ
2 . (A.17)

In the large N limit, we find13

− log detB = −N
∫

dtρ(t) Li1(ei(δv(t)+∆)) . (A.18)

Now, consider (A.10) in the ε→ 0 limit. At large N , we obtain

logZi→j(b,a) =
N∑
i=1

(
m

(b)
i −m

(a)
i − s + 1

)
Li1(ei(u(b)

i −u
(a)
i +∆))

= N

∫
dtρ(t)(δp(t)− s + 1) Li1(ei(δv(t)+∆)) .

(A.19)

Putting together (A.18) and (A.19), we then find the following contribution to the large
N twisted index

N(δp(t)− s)
∫

dtρ(t) Li1(ei(δv(t)+∆)) , (A.20)

that is subleading even in the tails, where (δv(t), δp(t)) are frozen to the constant boundary
values (−∆, s) up to exponentially small corrections. This is in contrast with the Bethe
approach where the subtle contributions of the tails to the large N twisted index must be
included [2].

For finite ε there is no complication and we can easily ignore the contributions of
logZi→j(b,a) and log detH, as they are suppressed by a power of N−1/2 in comparison to the
N3/2 scaling of the index.

13The interested reader can find the details in [2].
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Back to the refined case. Let us now focus on

logZi<j(b,a) =
N∑
i<j

|Bij |−1
2∑

`=−
|Bij |−1

2

sign(Bij)
∞∑
n=1

ein(u(b)
j −u

(a)
i +∆+`ε)

n

=
∞∑
n=1

1
n

N∑
i<j

einBijε − 1
einε − 1 e

in
(
u

(b)
j −u

(a)
i +∆− 1

2 (Bij−1)ε
)
.

(A.21)

In the large N limit we obtain

logZi<j(b,a) = N2
∞∑
n=1

ein(∆+ ε
2 s)

n (einε − 1)

∫
dtρ(t)In(t) , (A.22)

where we defined

In(t) ≡
∫
t
dt′ ρ(t′)e−nN1/2(t′−t)

(
einε(iN1/2(n(t′)−n(t))+pb(t′)−pa(t)−s+1) − 1

)
× ein(vb(t′)−va(t)− ε2 (iN1/2(n(t′)−n(t))+pb(t′)−pa(t)))

≡
∫
t
dt′In(t′, t) .

(A.23)

We will assume that the functions t± ε
2n(t) are monotonic, so that the integral is convergent

for sufficiently large N . The integral can be evaluated by a saddle point approximation.
Equivalently, performing integration by parts we obtain, up to sub-leading terms at large N ,

In(t) =−N
−1/2

n
In(t′, t)

∣∣∣
t

(A.24)

+ iε
2

∫
t
dt′ρ(t′)In(t′, t)n′(t′)cot

(
nε

2
(
iN1/2 (n(t′)−n(t)

)
+pb(t′)−pa(t)−s+1

))
.

We again perform integration by parts on the second line of (A.24) and find, at large N ,

In=−N
−1/2

n
ρ(t′)In(t′,t)

[
1+ iε

2 n′(t′)cot
(
nε

2
(
iN1/2(n(t′)−n(t)

)
+pb(t′)−pa(t)−s+1

))]
t

+ ε2

4

∫
t
dt′ρ(t′)In(t′,t)n′(t′)2. (A.25)

Via a repeated application of integration by parts we thus obtain the leading order result

In(t) = N−1/2

n
ρ(t)

(
einε(δp(t)+1−s) − 1

) (
ein(δv(t)− ε2 δp(t)))

×
∞∑
r=0

(1− i) (i + (−1)r)
2

(
εn′(t)

2

)r
cot

1
2 (1−(−1)r)

(
nε

2 (δp(t) + 1− s)
)
.

(A.26)

Performing the sum
∑∞
r=0 we find

In(t) = −N
−1/2

n
ρ(t)

(
einε(δp(t)+1−s) − 1

) (
ein(δv(t)− ε2 δp(t)))

×
[

1(
e−inε(δp(t)+1−s) − 1

) 1(
1 + ε

2n
′(t)
) + 1(

einε(δp(t)+1−s) − 1
) 1(

1− ε
2n
′(t)
)] . (A.27)
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Therefore, in the large N limit, (A.9) reduces to

logZi<j(b,a) = N3/2
∞∑
n=1

ein(δv(t)+∆+ ε
2 )

n2 (einε − 1)

∫
dtρ(t)2

(
e

inε
2 (δp(t)+1−s)

1 + ε
2n
′(t) − e−

inε
2 (δp(t)+1−s)

1− ε
2n
′(t)

)
.

(A.28)
Now, it remains to perform the sum over n. We obtain14

logZi<j(b,a) = −N3/2
∞∑
n=1

∫
dtρ(t)2

(Li2
(
ei(δv(t)+∆+ ε

2 (δp(t)−s+2n))
1 + ε

2n
′(t)

−
Li2

(
ei(δv(t)+∆− ε2 (δp(t)−s−2(n−1))))

1− ε
2n
′(t)

)
.

(A.29)

The summation
∑
i>j in (A.9) is similar to (A.29) and it reads15

logZi>j(b,a) = N3/2
∞∑
n=1

∫
dtρ(t)2

(Li2
(
e−i(δv(t)+∆+ ε

2 (δp(t)−s−2(n−1))))
1 + ε

2n
′(t)

−
Li2

(
e−i(δv(t)+∆− ε2 (δp(t)−s+2n)))

1− ε
2n
′(t)

)
.

(A.30)

Putting together (A.29) and (A.30), we finally arrive at the following compact expression
for the contribution of a chiral multiplet to the refined twisted index at large N

logZ(b,a) = N3/2
∫

dtρ(t)2
(
ψ
(
−δv(t)−∆− ε

2 (δp(t)− s) ; ε
)

1 + ε
2n
′(t)

−
ψ
(
−δv(t)−∆ + ε

2 (δp(t)− s + 2) ; ε
)

1− ε
2n
′(t)

)
.

(A.31)

Here, we introduced the “elliptic dilogarithm” function

ψ(∆; ε) ≡
∞∑
n=0

(
Li2

(
ei(∆+nε)

)
− Li2

(
e−i(∆−(n+1)ε)

))
. (A.32)

Asymptotic expansion around ε = 0. Starting with (A.31) we can write down the
following asymptotic expansion around ε = 0

logZχ =N3/2
∫

dtρ(t)2
[
−

3∑
l=0

1
πl
gl (−π (δp(t)−s))g3−l (δv(t)+∆)

∞∑
n=0

(
εn′(t)

2

)2n

+ 1
π3 g3 (−π (δp(t)−s))n′(t)−2

+ 1
π2 g2 (−π (δp(t)−s))g1 (δv(t)+∆)n′(t)−1

]
,

(A.33)

14Here, we used the relation Li2(eiu) =
∑∞

m=1
eimu

m2 and exchanged the order of summations.
15To have a convergent integral we need first to use the inversion formulæ (A.34). The polynomial pieces

only enter in the cancellation of long-range forces. See [2, 9] for more details.
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where we used the inversion formulæ

Lis(eiu) + (−1)s Lis(e−iu) = −(2πi)s

s! Bs

(
u

2π

)
≡ is−2gs(u) , (A.34)

for 0 < Re(u) < 2π. Here, the polynomial functions gs(u) are related to the Bernoulli
polynomials Bs(u) via (A.34) and for s = 1, 2, 3 are explicitly given in (4.16). Using∑∞
n=0 x

2n = (1− x2)−1, (A.33) is simplified to

logZ(b,a) = N3/2
∫

dtρ(t)2
(
G(δv(t) + ∆,−δp(t) + s, ε)

1 + ε
2n
′(t) − G(δv(t) + ∆, δp(t)− s + 2, ε)

1− ε
2n
′(t)

)
,

(A.35)
where we defined

G(u, s, ε) ≡ 1
ε

[
g3(u)−

(
ε

2π

)
g2(u)g1(πs) +

(
ε

2π

)2
g1(u)g2(πs)−

(
ε

2π

)3
g3(πs)

]
.

(A.36)
Let us define the equivariant quantities

w(1)(t) ≡ it+ iε
2 n(t) , v(1)

a (t) ≡ 1
ω

(
va + ε

2pa(t)
)
,

∆(1)
I ≡

1
ω

(
∆I + π(ω − 1) + ε

2(1− sI)
)
, ε(1) ≡ ε ,

w(2)(t) ≡ it− iε
2 n(t) , v(2)

a (t) ≡ 1
ω

(
va −

ε

2pa(t)
)
,

∆(2)
I ≡

1
ω

(
∆I + π(ω − 1)− ε

2(1− sI)
)
, ε(2) ≡ −ε ,

(A.37)

with

ω ≡

√
1 +

(
ε

2π

)2
. (A.38)

Remarkably, (A.36) obeys the following relations

G (δv(t) + ∆, s, ε) = ω3

ε
g3
(
δv(1)(t) + ∆(1)

)
,

G (δv(t) + ∆, 2− s, ε) = ω3

ε
g3
(
δv(2)(t) + ∆(2)

)
.

(A.39)

Then, (A.35) takes the following factorized form

logZ(b,a) = iω3N3/2
2∑

σ=1

1
ε(σ)

∫
dtρ(t)2 g3(δv(σ)(t) + ∆(σ))

w′(σ)(t)
. (A.40)

Thus, a pair of bi-fundamental chiral multiplets with chemical potentials and fluxes
(∆I , sI), I = (a, b), (b, a), transforming, respectively, in the (N,N) and (N,N) representa-
tion of U(N)a ×U(N)b contributes to the large N refined index

logZ(a↔b) = iω3N3/2 ∑
I=(b,a):+
I=(a,b):−

2∑
σ=1

1
ε(σ)

∫
dtρ(t)2 g3(±δv(σ)(t) + ∆(σ)

I )
w′(σ)(t)

, (A.41)

reproducing (4.14).
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The analysis for the large N contribution of a chiral multiplet in the adjoint represen-
tation of U(N)a is very similar. Setting

δv(σ)(t) = 0 , ∆(σ) ≡ ∆(σ)
(a,a) , (A.42)

in (A.40), it reads

logZ(a,a) = iω3N3/2
2∑

σ=1

g3(∆(σ)
(a,a))

ε(σ)

∫
dt ρ(t)2

w′(σ)(t)
, (A.43)

reproducing (4.18).

A.3 Chiral multiplet in (anti-)fundamental representation

A chiral multiplet transforming in the fundamental representation of U(N)a contributes to
the refined twisted index as16

logZfund =
N∑
i=1

|Bi|−1
2∑

`=− |Bi|−1
2

sign(Bi)
(

Li1
(
ei(−u(a)

i −∆−`ε)
)
− i

2g1(u(a)
i + ∆ + `ε)

)
. (A.44)

Here, Bi ≡ mi − s + 1 and (∆, s) label the chemical potential and the magnetic flux,
respectively. Consider first the term

− i
2

N∑
i=1

|Bi|−1
2∑

`=− |Bi|−1
2

sign(Bi)g1(u(a)
i + ∆ + `ε) = − i

2

N∑
i=1

(mi − s + 1)(u(a)
i + ∆− π). (A.45)

Substituting the ansatz (A.1) and taking the continuum limit, we can write

+ i
2N

2
∫

dtρ(t) tn(t) + 1
2N

3/2
∫

dtρ(t) (t(pa(t)− s + 1)− n(t)(π −∆− va(t)))

+ i
2N

∫
dtρ(t)(pa(t)− s + 1)(π −∆− va(t)) .

(A.46)

Let us now focus on

N∑
i=1

|Bi|−1
2∑

`=− |Bi|−1
2

sign(Bi) Li1
(
ei(−u(a)

i −∆−`ε)
)
. (A.47)

We need to extrapolate this formula to complex large values of Bi. The summation variable
` will also describe a path in the complex plane interpolating between points that, at large
N , scale as ± i

2
√
N n(t). The argument of Li1 then interpolates between points that scale

as e
√
N(t± ε2n(t)). To evaluate

∑ |Bi|−1
2

`=− |Bi|−1
2

, we consider distinct regions that are determined

by sign(t± ε
2n(t)). Explicitly, we consider

(i) t− ε

2n(t) < 0 , t+ ε

2n(t) < 0 ,

(ii) t− ε

2n(t) > 0 , t+ ε

2n(t) < 0 ,

(iii) t− ε

2n(t) > 0 , t+ ε

2n(t) > 0 ,

(A.48)

16Here, we applied the inversion formula (A.34) to (3.13).
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and a fourth region that can be similarly studied. In region (i), the contribution of (A.47)
to the large N refined twisted index is subleading, since the argument of Li1 is exponentially
suppressed for all values of `. Consider now region (iii). At large N , the argument of Li1
blows up for all values of ` and we obtain

− iN2
∫

(iii)
dtρ(t) tn(t)−N3/2

∫
(iii)

dtρ(t) (t(pa(t)− s + 1)− n(t)(π −∆− va(t))) +O(N) .

(A.49)
In region (ii), we restrict the sum over ` to the values where the argument of Li1 blows up,
namely to the values ` ≶ −1

ε (ui + ∆ + 2πc) for some c of order one, for −n(t) ≶ 0. Thus,
summing over `, the large N limit of (A.47) in region (ii) reads

− i
2N

2
∫

(ii)
dtρ(t) tn(t) + i

2εN
2
∫

(ii)
dtρ(t)

(
t2 + ε2

4 n(t)2
)

− 1
2N

3/2
∫

(ii)
dtρ(t) (t(pa(t)− s + 1)− n(t)(π −∆− va(t)))

− 1
ε
N3/2

∫
(ii)

dtρ(t)
(
t(π −∆− va(t))−

ε2

4 n(t)(pa(t)− s + 1)
)

+O(N) .

(A.50)

Putting together (A.46), (A.49), and (A.50), we find

logZfund = i
2N

2
∫

(i)
dtρ(t) tn(t) + i

2εN
2
∫

(ii)
dtρ(t)

(
t2 + ε2

4 n(t)2
)
− i

2N
2
∫

(iii)
dtρ(t) tn(t)

+ 1
2N

3/2
∫

(i)
dtρ(t) (t(pa(t)− s + 1)− n(t)(π −∆− va(t)))

− 1
ε
N3/2

∫
(ii)

dtρ(t)
(
t(π −∆− va(t))−

ε2

4 n(t)(pa(t)− s + 1)
)

− 1
2N

3/2
∫

(iii)
dtρ(t) (t(pa(t)− s + 1)− n(t)(π −∆− va(t))) +O(N) . (A.51)

The contribution of a chiral field with chemical potential ∆̃ and magnetic flux s̃, trans-
forming in the anti-fundamental representation of U(N)a is similarly given by

logZanti-fund =− i
2N

2
∫

(i)
dtρ(t)tn(t)− i

2εN
2
∫

(ii)
dtρ(t)

(
t2+ ε2

4 n(t)2
)

+ i
2N

2
∫

(iii)
dtρ(t)tn(t)

− 1
2N

3/2
∫

(i)
dtρ(t)

(
t(pa(t)+s̃−1)+n(t)(π−∆̃+va(t))

)
− 1
ε
N3/2

∫
(ii)

dtρ(t)
(
t(π−∆̃+va(t))+ ε2

4 n(t)(pa(t)+s̃−1)
)

+ 1
2N

3/2
∫

(iii)
dtρ(t)

(
t(pa(t)+s̃−1)+n(t)(π−∆̃+va(t))

)
+O(N). (A.52)

The first lines of (A.51) and (A.52) cancel each other out for theories with total number
of fundamentals equal to total number of anti-fundamentals, which we need to assume for
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consistency. Therefore, keeping only O(N3/2) terms in (A.51) and (A.52), we find

logZfund = −1
2N

3/2
2∑

σ=1

∫
dtρ(t)

(
(π −∆− va(t))−

ε(σ)

2 (1− s + pa(t))
)
|w(σ)|
ε(σ) ,

logZanti-fund = −1
2N

3/2
2∑

σ=1

∫
dtρ(t)

(
(π − ∆̃ + va(t))−

ε(σ)

2 (1− s̃− pa(t))
)
|w(σ)|
ε(σ) ,

(A.53)
where we used the A-gluing parameterization

w(1)(t) = it+ i ε2n(t) , ε(1) = ε ,

w(2)(t) = it− i ε2n(t) , ε(2) = −ε .
(A.54)

This reproduces (4.19) and (4.20), after relabeling (∆, s)→ (∆a, sa) and (∆̃, s̃)→ (∆̃a, s̃a).

A.4 Vector multiplet

The contribution of a vector multiplet can be obtained simply via

logZV = logZχ
∣∣∣
∆(a,a)=2π, s(a,a)=2

. (A.55)

From (A.43) we obtain the following expression for a vector multiplet

logZV = π

12N
3/2
∫

dtρ(t)2
(

ε− 2π
1 + ε

2n
′(t) −

ε+ 2π
1− ε

2n
′(t)

)
. (A.56)

B Saddle point of the ADHM refined twisted index

This appendix contains the large N saddle point for the ADHM quiver described in sec-
tion 4.2. The eigenvalue density distribution ρ(t) and the magnetic flux n(t), which ex-
tremize the refined index (4.25), are piece-wise functions supported on [t�, t�]. For ease
of notation, let us define

G3(v) ≡ v1v2v3 , δ
(σ)
+ ≡ 1

r

(
∆(σ)

3 + r

2∆m

)
, δ

(σ)
− ≡

1
r

(
∆(σ)

3 − r

2∆m

)
. (B.1)

We define the inner interval as

t< s.t. t< −
ε

2n(t<) = 0 , t> s.t. t> + ε

2n(t>) = 0 . (B.2)

Schematically, we have:

t�

ρ = 0
t<

t− ε
2n = 0

t>

t+ ε
2n = 0

t�

ρ = 0
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The transition points are at

t� = −
2∑

σ=1

√√√√∆(σ)
1 ∆(σ)

2 δ
(σ)
+

2r δ(σ)
−

, t< = −ε
√
G3(∆(1))

2∑
σ=1

1
ε(σ)

√√√√ δ
(σ)
+

2r∆(σ)
3 δ

(σ)
−

,

t> = −ε
√
G3(∆(2))

2∑
σ=1

1
ε(σ)

√√√√ δ
(σ)
−

2r∆(σ)
3 δ

(σ)
+

, t� =
2∑

σ=1

√√√√∆(σ)
1 ∆(σ)

2 δ
(σ)
−

2r δ(σ)
+

. (B.3)

In the left segment t∓ ε
2n(t) < 0, and we have

ρ(t) = 4r

 2∑
σ=1

√√√√G3(∆(σ))
δ

(σ)
−

−2(
t+ 1

2

2∑
σ=1

√√√√2δ(σ)
+ ∆(σ)

1 ∆(σ)
2

r δ
(σ)
−

)
,

n(t) = 2

 2∑
σ=1

√√√√G3(∆(σ))
δ

(σ)
−

−1 2∑
σ=1

1
ε(σ)

√√√√G3(∆(σ))
δ

(σ)
−

t

− 2

 2∑
σ=1

√√√√G3(∆(σ))
δ

(σ)
−

−1 2∏
σ=1

√√√√G3(∆(σ))
δ

(σ)
−

2∑
σ=1

1
ε(σ)

√√√√ 2δ(σ)
+

r∆(σ)
3

.

(B.4)

In the middle segment t− ε
2n(t) > 0, t+ ε

2n(t) < 0, and we find

ρ(t) = r

(
G3(∆(1))
1 + ε

2n
′(t) −

G3(∆(2))
1− ε

2n
′(t)

)(
δ

(2)
+

(
t− ε

2n(t)
)

+ δ
(2)
−

(
t+ ε

2n(t)
)

+ µε

)
,

n(t) = 2
ε

G3(∆(1))
δ

(1)
−

+ G3(∆(2))
δ

(2)
+

−1 (
c1t+ c2 +

√
c3t2 + c4t+ c5

)
,

(B.5)

with

c1=G3(∆(1))
δ

(1)
−

−G3(∆(2))
δ

(2)
+

, c2=−G3(∆(1))G3(∆(2))
δ

(1)
− δ

(2)
+

2∑
σ=1

√√√√ 2δ(σ)
+ δ

(σ)
−

r∆(σ)
3 G3(∆(σ))

,

c3=−4G3(∆(1))G3(∆(2))
δ

(1)
− δ

(2)
+

,

c4=−4G3(∆(1))G3(∆(2))
δ

(1)
− δ

(2)
+

(√√√√2δ(1)
+ ∆(1)

1 ∆(1)
2

rδ
(1)
−

−

√√√√2δ(2)
− ∆(2)

1 ∆(2)
2

rδ
(1)
+

)
, (B.6)

c5= 2
r

G3(∆(1))G3(∆(2))
δ

(1)
− δ

(2)
+

×

(
√√√√δ

(1)
+ ∆(1)

1 ∆(1)
2

rδ
(1)
−

+

√√√√δ
(2)
− ∆(2)

1 ∆(2)
2

rδ
(1)
+

)2

−
(

(δ(1)
+ −δ

(1)
− )∆(1)

1 ∆(1)
2

δ
(1)
−

−
(δ(2)

+ −δ
(2)
− )∆(2)

1 ∆(2)
2

δ
(2)
+

),
and

µ =
2∑

σ=1

1
ε(σ)

√
2r δ(σ)
− δ

(σ)
+ ∆(σ)

1 ∆(σ)
2 . (B.7)
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In the right segment t∓ ε
2n(t) > 0, and we have

ρ(t) = −4r

 2∑
σ=1

√√√√G3(∆(σ))
δ

(σ)
+

−2(
t− 1

2

2∑
σ=1

√√√√2δ(σ)
− ∆(σ)

1 ∆(σ)
2

r δ
(σ)
+

)
,

n(t) = 2

 2∑
σ=1

√√√√G3(∆(σ))
δ

(σ)
+

−1 2∑
σ=1

1
ε(σ)

√√√√G3(∆(σ))
δ

(σ)
+

t

+ 2

 2∑
σ=1

√√√√G3(∆(σ))
δ

(σ)
+

−1 2∏
σ=1

√√√√G3(∆(σ))
δ

(σ)
+

2∑
σ=1

1
ε(σ)

√√√√ 2δ(σ)
−

r∆(σ)
3

.

(B.8)

C ABJM unrefined twisted index at large N

In this appendix we provide the detailed form of the large N saddle point for the ABJM
unrefined twisted index. For notational convenience, we define

G1(v) ≡
4∑
I=1

vI , G2(v) ≡ v1v2 − v3v4 , G3(v) ≡
4∑

I<J<K

vIvJvK ,

G4(v) ≡ (v1 + v3)(v2 + v3)(v1 + v4)(v2 + v4) .
(C.1)

Then, the index can be written as

logZ
N3/2 = k

∫
dtρ(t) (tδp(t) + δv(t)n(t)) + µ

(∫
dtρ(t)− 1

)
+ 1

2G1(s)
∫

dt (ρ(t)δv(t))2

−
∫

dtρ(t)2δv(t)
(
G1(∆)δp(t) +

4∑
I=1

sI
∂G2(∆)
∂∆I

)
+G2(∆)

∫
dtρ(t)2δp(t) (C.2)

− 1
2

∫
dtρ(t)2

[ 4∑
I<J

(I,J 6=K)

∆I∆JsK + n′(t)
(
G3(∆)−G1(∆)δv(t)2 −G2(∆)δv(t)

) ]
,

where we included the Lagrange multiplier µ to enforce the normalization of ρ(t).
We define the inner segment as

t< s.t. δv(t<) = −∆3 , t> s.t. δv(t>) = ∆1 . (C.3)

Schematically, we have:

t�

ρ = 0
t<

δv = −∆3

δp = s3

t>

δv = ∆1

δp = −s1

t�

ρ = 0
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In the left segment, where δv(t) = −∆3 and δp(t) = s3, the equations obtained from
varying the index (4.57) with respect to δv(t) and δp(t) need not hold,17 and we obtain

ρ(t) = r2 −
k∆3

(∆1 + ∆3)(∆2 + ∆3)(∆3 −∆4) t ,

n(t) = µ

k∆3
+ s3

∆3
t+ c2

ρ(t) + ρ(t)
2k∆3

(C.4)

×
[
s1(∆3 −∆4)(∆2 + ∆3) + s2(∆1 + ∆3)(∆3 −∆4)− s4(∆1 + ∆3)(∆2 + ∆3)

+ s3

(
(∆3 −∆4)2 + (3∆3 − 2∆4)G1(∆) +

(
2− ∆4

∆3

)
G2(∆)

)]
,

where r2, c2 are constants of integrations. In the middle segment, we have

ρ(t)=r1−k
G2(∆)
G4(∆) t,

δv(t)= 1
G1(∆)

(
kt

ρ(t)+G2(∆)
)
,

δp(t)= k

G1(∆)ρ(t)

(
t

(
G1(s)
G1(∆)+n′(t)

)
+n(t)

)
+(∆1+∆3)(∆2+∆3)s4+(∆1+∆4)(∆2+∆4)s3

G1(∆)2

−(∆2+∆4)(∆2+∆3)s1+(∆1+∆3)(∆1+∆4)s2
G1(∆)2 ,

n(t)= c1
ρ(t)−

µ

k

G1(∆)
G2(∆)−

(∆3s4+∆4s3−∆1s2−∆2s1
G2(∆) + G1(s)

G1(∆)

)
t+ ρ(t)

2kG1(∆)G2(∆)2

×
{
s1(∆2+∆3)(∆2+∆4)[G1(∆)((G1(∆)−∆2)G2(∆)−G3(∆))+2G4(∆)]

+s2(∆1+∆3)(∆1+∆4)[G1(∆)((G1(∆)−∆1)G2(∆)−G3(∆))+2G4(∆)]
+s3(∆1+∆4)(∆2+∆4)[G1(∆)((G1(∆)−∆4)G2(∆)+G3(∆))−2G4(∆)]

+s4(∆1+∆3)(∆2+∆3)[G1(∆)((G1(∆)−∆3)G2(∆)+G3(∆))−2G4(∆)]
}
,

(C.5)

where r1, c1 are constants of integrations. In the right segment, extremizing the index with
respect to ρ(t) and n(t) at fixed (δv(t), δp(t)) = (∆1,−s1), we find

ρ(t) = r3 + k∆1
(∆1−∆2)(∆1 +∆3)(∆1 +∆4) t ,

n(t) =− µ

k∆1
+ s1

∆1
t+ c3

ρ(t) + ρ(t)
2k∆1

×
[
s2(∆1 +∆4)(∆1 +∆3)−s3(∆1−∆2)(∆1 +∆4)−s4(∆1−∆2)(∆1 +∆3)

−s1

(
(∆1−∆2)2 +(3∆1−2∆2)G1(∆)−

(
2−∆2

∆1

)
G2(∆)

)]
,

(C.6)

17This is a largeN effect. As explained in [2], they hold when including subleading exponential corrections.
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where r3, c3 are constants of integrations. The support of ρ(t) is then given by

ρ(t�)
∣∣
L.I. = 0 ⇒ t� = (∆1 + ∆3)(∆2 + ∆3)(∆3 −∆4)

k∆3
r2 ,

δv(t<)
∣∣
M.I. = −∆3 ⇒ t< = −(∆1 + ∆3)(∆2 + ∆3)(∆1 + ∆4)(∆2 + ∆4)

k∆4G1(∆4) r1 ,

δv(t>)
∣∣
M.I. = ∆1 ⇒ t> = (∆1 + ∆3)(∆2 + ∆3)(∆1 + ∆4)(∆2 + ∆4)

k∆2G1(∆) r1 ,

ρ(t�)
∣∣
R.I. = 0 ⇒ t� = −(∆1 −∆2)(∆1 + ∆3)(∆1 + ∆4)

k∆1
r3 .

(C.7)

Now, it has remained to determine the Lagrange multiplier µ and the constants of integra-
tions ci and ri, i = 1, 2, 3. First, note that the regularity of the magnetic flux n(t) at the
endpoints of the support of ρ(t) yields

Coeff [n(t�), ρ(t),−1] = 0 ⇒ c2 = 0 ,
Coeff [n(t�), ρ(t),−1] = 0 ⇒ c3 = 0 .

(C.8)

Second, the density ρ(t) and the magnetic flux n(t) are continuous piece-wise functions.
Thus, continuity of ρ(t) fixes the constants r23 and r3,

ρ(t<)
∣∣
M.I. = ρ(t<)

∣∣
L.I. ⇒ r2 = −(∆1 + ∆4)(∆2 + ∆4)

(∆3 −∆4)G1(∆) r1 ,

ρ(t>)
∣∣
M.I. = ρ(t>)

∣∣
R.I. ⇒ r3 = −(∆2 + ∆3)(∆2 + ∆4)

(∆1 −∆2)G1(∆) r1 .

(C.9)

Observe that
δv(t�)

∣∣
M.I. = −∆4 , δv(t�)

∣∣
M.I. = ∆2 . (C.10)

The continuity of n(t) gives

µ = (∆1 + ∆3)(∆2 + ∆3)(∆1 + ∆4)(∆2 + ∆4)
2G1(∆) r1

4∑
I=1

sI
∆I

,

c1 =
(

(∆1 + ∆3)(∆2 + ∆3)(∆1 + ∆4)(∆2 + ∆4)√
2k (∆1∆2 −∆3∆4)G1(∆)

r1

)2 ( 4∑
I=3

sI
∆I
−

2∑
I=1

sI
∆I

)
.

(C.11)

Finally, the normalization of ρ(t) fixes r1,∫
dtρ(t) = 1 ⇒ r1 = G1(∆)

√
2k∆1∆2∆3∆4

(∆1 + ∆3)(∆2 + ∆3)(∆1 + ∆4)(∆2 + ∆4) . (C.12)

Plugging back the saddle point into the unrefined index (C.2), we obtain

logZ = −2
3N

3/2µ = −N
3/2

3
√

2k∆1∆2∆3∆4

4∑
I=1

sI
∆I

, (C.13)

in precise agreement with [2, (2.89)].
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D Derivation of general rules for theories with N5/3 scaling of the index

We consider the following ansatz for the large N saddle point eigenvalue distribution

u(a)(t) = N1/3(it+ v(t)) , m(t) = iN1/3n(t) . (D.1)

Furthermore, we assume that

kCS ≡
|G|∑
a=1

ka 6= 0 , (D.2)

that corresponds to turning on the Romans mass F0 in the dual type IIA supergravity [26].

D.1 Chern-Simons

Using the scaling ansatz (D.1), each gauge group a with CS level ka contributes to the
twisted index as

logZCS = ika
N∑
i=1

miui
N�1= −kaN5/3

∫
dtρ(t)n(t)(it+ v(t)) . (D.3)

D.2 Chiral multiplet

Let us evaluate the large N contribution of a bi-fundamental chiral multiplet transforming
in a representation (N,N) of U(N)a × U(N)b and with chemical potential and magnetic
flux (∆, s) to the refined twisted index.18 As before, we break the sum

∑N
i,j=1 in (A.9)

into
∑
i<j +

∑
i>j +(i → j). The contribution coming from (i → j) is subleading. Let us

evaluate (A.21) in the large N limit. We find

logZi<j(b,a) = N2
∞∑
n=1

ein(∆+ ε
2 s)

n (einε − 1)

∫
dtρ(t)In(t) , (D.4)

where we defined

In(t) ≡
∫
t
dt′ ρ(t′)e−nN1/3(t′−t)

(
einε(iN1/3(n(t′)−n(t))−s+1) − 1

)
einN1/3(v(t′)−v(t)− i

2 ε(n(t′)−n(t)))

≡
∫
t
dt′In(t′, t) . (D.5)

Performing integration by parts we obtain

In(t) N�1= −N
−1/3

n
ρ(t′)In(t′, t)

∣∣∣
t

(D.6)

+
∫
t
dt′ ρ(t′)In(t′, t)

[
iv′(t′) + iε

2 n′(t′) cot
(
nε

2
(
iN1/3(n(t′)− n(t))− s + 1

))]
.

We again perform integration by parts on the second line of (D.6) and find, at large N ,

In=−N
−1/3

n
ρ(t′)In(t′,t)

[
1+iv′(t′)+ iε

2 n′(t′)cot
(
nε

2
(
iN1/3(n(t′)−n(t))−s+1

))]
t

(D.7)

−
∫
t
dt′ρ(t′)In(t′,t)

[
v′(t′)2− ε

2

4 n′(t′)2+εn′(t′)v′(t′)cot
(
nε

2
(
iN1/3(n(t′)−n(t))−s+1

))]
.

18The contribution of a chiral multiplet in the adjoint representation of U(N)a can be derived in exactly
the same fashion.
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Via a repeated application of integration by parts we can then write

In(t) = N−1/3

n
ρ(t)

(
einε(1−s) − 1

) ∞∑
l,r=1

(1 + i) (1 + i(−1)r) (l − r + 2)r−1
2r(r − 1)!

(
iv′(t)

)l−r+1

×
(
εn′(t)

)r−1 cot
1
2 (1+(−1)r)

(
nε

2 (1− s)
)
, (D.8)

where we only kept the leading order terms that contribute to the large N twisted index.
Here, (x)n is the Pochhammer symbol. Observe that the sum over l can be done explicitly
and thus we obtain

In = N−1/3

n
ρ(t)

(
einε(1−s) − 1

) ∞∑
r=1

ir−1(−1)b
r−1

2 c

2r−1
(εn′(t))r−1

(1− iv′(t))r cot
1
2 (1+(−1)r)

(
nε

2 (1− s)
)
.

(D.9)
The sum over r can also be done and we find the following compact expression for In

In(t) = N−1/3

n
ρ(t)e

inε
2 (1−s)

(
e

inε
2 (1−s)

(1− iv′(t)) + ε
2n
′(t) −

e−
inε
2 (1−s)

(1− iv′(t))− ε
2n
′(t)

)
. (D.10)

Therefore, in the large N limit, (D.4) is simplified to

logZi<j(b,a) =N5/3
∞∑
n=1

e
inε
2

n2 (einε−1)

∫
dtρ(t)2

 ein(∆+ ε
2 (1−s))

(1− iv′(t))+ ε
2n
′(t)−

ein(∆− ε2 (1−s))
(1− iv′(t))− ε

2n
′(t)

 .
(D.11)

Now, it remains to perform the sum over n. We obtain

logZi<j(b,a) = −N5/3
∞∑
n=1

∫
dtρ(t)2

 Li2
(
ei(∆+ε(n− s

2 )))
(1− iv′(t)) + ε

2n
′(t) −

Li2
(
ei(∆+ε(n−1+ s

2 )))
(1− iv′(t))− ε

2n
′(t)

 . (D.12)

The summation
∑
i>j is similar to (D.12) and it reads

logZi>j(b,a) = N5/3
∞∑
n=1

∫
dtρ(t)2

Li2
(
e−i(∆−ε(n−1+ s

2 )))
(1− iv′(t)) + ε

2n
′(t) −

Li2
(
e−i(∆−ε(n− s

2 )))
(1− iv′(t))− ε

2n
′(t)

 . (D.13)

Combining (D.12) and (D.13), we finally arrive at the following compact expression for the
contribution of a bi-fundamental chiral multiplet to the refined twisted index at large N

logZ(b,a) = N5/3
∫

dtρ(t)2
(

ψ
(
−∆ + ε s

2 ; ε
)

(1− iv′(t)) + ε
2n
′(t) −

ψ
(
−∆ + ε

(
1− s

2
)

; ε
)

(1− iv′(t))− ε
2n
′(t)

)
. (D.14)

ε = 0 case. Taking the ε→ 0 limit of (D.11) we easily obtain

logZi<j(b,a) = N5/3
∞∑
n=1

ein∆

n3

∫
dtρ(t)2

(
n

1− s

1− iv′(t) + i n′(t)
(1− iv′(t))2

)

= N5/3
∫

dtρ(t)2
(

Li2
(
ei∆
) 1− s

1− iv′(t) + i Li3
(
ei∆
) n′(t)

(1− iv′(t))2

)
.

(D.15)

– 38 –



J
H
E
P
1
2
(
2
0
2
2
)
0
2
5

The summation
∑
i>j is similar to (D.15) and it reads

logZi>j(b,a) = N5/3
∫

dtρ(t)2
(

Li2
(
e−i∆

) 1− s

1− iv′(t) − i Li3
(
e−i∆

) n′(t)
(1− iv′(t))2

)
. (D.16)

Combining (D.15) and (D.16), and using the inversion formulæ (A.34) for 0 < Re(∆) < 2π,
we finally obtain the contribution of a chiral multiplet to the large N twisted index

logZ(b,a)
∣∣
ε=0 = N5/3

∫
dtρ(t)2

(
g2(∆) 1− s

1− iv′(t) − g3(∆) n′(t)
(1− iv′(t))2

)
. (D.17)

Asymptotic expansion around ε = 0. Starting with (D.14) we can write down the
following asymptotic expansion around ε = 0

logZχ=−N5/3
∫

dtρ(t)2
{[
g3(∆) n′(t)

(1−iv′(t))2 + g2(∆)g1(πs)
π

1
1−iv′(t) + g1(∆)g2(πs)

π2 n′(t)−1

+ g3(πs)
π3

n′(t)−2

(1−iv′(t))−1

] ∞∑
n=0

(
εn′(t)

2(1−iv′(t))

)2n

− g3(πs)
π3

n′(t)−2

(1−iv′(t))−1−
g1(∆)g2(πs)

π2 n′(t)−1
}
. (D.18)

Using
∑∞
n=0 x

2n = (1− x2)−1, (D.18) is then simplified to

logZ(b,a) = N5/3
∫

dtρ(t)2
(

G(∆, s, ε)
(1− iv′(t)) + ε

2n
′(t) −

G(∆, 2− s, ε)
(1− iv′(t))− ε

2n
′(t)

)
, (D.19)

where G(∆, s, ε) is given in (A.36). Let us define the equivariant chemical potentials

w(1)(t) ≡ (it+ v(t)) + iε
2 n(t) , ∆(1)

I ≡
1
ω

(
∆I + π(ω − 1) + ε

2(1− sI)
)
,

w(2)(t) ≡ (it+ v(t))− iε
2 n(t) , ∆(2)

I ≡
1
ω

(
∆I + π(ω − 1)− ε

2(1− sI)
)
,

(D.20)

with ω as before, see (A.38). Then, (D.19) takes the following remarkable factorized form

logZ(b,a) = iω3

ε
N5/3

∫
dtρ(t)2

(
g3(∆(1))
w′(1)(t)

− g3(∆(2))
w′(2)(t)

)
, (D.21)

reproducing (5.7) after setting ∆ ≡ ∆(a,b) and s ≡ s(a,b).

D.3 Vector multiplet

The contribution of a vector multiplet can be simply obtained by using (A.55). In partic-
ular, from (D.19) we obtain the following expression for a vector multiplet

logZV = π

12N
5/3
∫

dtρ(t)2
(

ε− 2π
(1− iv′(t)) + ε

2n
′(t) −

ε+ 2π
(1− iv′(t))− ε

2n
′(t)

)
, (D.22)

that is (5.6).
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E Large N factorization and holomorphic blocks

In this section we sketch the derivation of formula (3.10) for generic theories with N3/2

scaling, generalizing [12]. A similar analysis could be done for theories with N5/3 scaling.
Consider the contribution (3.13) to the index of a chiral bi-fundamental multiplet. It

can be obtained by gluing two holomorphic blocks [22, 34, 35]

Z(b,a) =
2∏

σ=1
B
(
u(σ); ∆̄(σ)|ε(σ)

)
, (E.1)

where19

B(u; ∆|ε) = e
i

2εg2(u+∆)− i(r−1)
4 g1(u+∆)(q1−r/2xy; q)∞ , (E.2)

with x = eiu, y = ei∆, q = eiε, and r is the R-symmetry charge. The gluing rules are

u
(σ)
i ≡ ui + ε(σ)

2 mi , ∆̄(σ)
I = ∆I + ε(σ)

2 tI , σ = 1, 2,

ε(1) ≡ ε , ε(2) ≡ −ε ,
(E.3)

where t are flavor fluxes satisfying
∑
I∈Wa

tI = 0, with Wa denoteing a generic monomial
term in the superpotential. They are related to the set of fluxes sI used in the main text,
and satisfying

∑
I∈Wa

sI = 2, via sI = rI − tI .
Stripping off the exponential terms in (E.1), which only enter in the long-range forces

cancellation as before, the two blocks can be written in our favorite parameterization (3.8)
as

B
(
u(σ); ∆̄(σ)|ε(σ)

)
=
(
q(σ)x(σ) y(σ); q(σ)

)
∞
≡
(
x(σ) y(σ); 1/q(σ)

)−1

∞
. (E.4)

In the factorization method we introduce two set of quantities ρ(σ)(t) and δv(σ)(t)
for the independent variables u(σ)

i . Focusing on σ = 1 and restricting the analysis to an
asymptotic expansion in ε20

logB(1) = −
∞∑
s=0

(−iε)s−1Bs
s! Li2−s(x(1) y(1)) , (E.5)

where Bs =
{

1,−1
2 ,

1
6 , 0,−

1
30 , 0, . . .

}
is the sth Bernoulli number. At large N , each term in

this expansion can be treated as in [2, 9]. The steps are similar to the previous computations
and we refer to [2, 9] for details. We split the gauge sum into

∑
i<j and

∑
i>j , use the

inversion formulæ (A.34) in the second term and perform the large N limit. The final

19Here (x; q)∞ =
∏∞
n=0(1 − xqn) for |q| < 1 is the q-Pochhammer symbol. The formula (x; q−1)∞ =

1/(qx; q) is used to define the q-Pochhammer symbol for |q| > 1.
20We use the formula log(x; q−1)∞ =

∑∞
s=0(−iε)s−1 Bs

s! Li2−s(x) valid for |q−1| < 1. In this appendix we
assume that ε has a small negative imaginary part. To use the same expansion for the case σ = 2, we need
first to use the inversion formula given in the previous footnote.
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result, up to polynomial terms that enter in cancelling the long-range forces, is

logB(1)

N3/2

= −
∞∑
s=0

(−iε)s−1Bs
s!

∫
dtρ(1)(t)2

(
Li3−s(ei(δv(1)(t)+∆(1))) + (−1)3−s Li3−s(e−i(δv(1)(t)+∆(1)))

)
= −

∞∑
s=0

(−ε)s−1Bs
s!

∫
dtρ(1)(t)2g3−s(δv(1)(t) + ∆(1)) , (E.6)

where we used again (A.34). Since gs<0(u) ≡ 0, only the first few terms in this sum
contribute. The leading term for ε→ 0 is the contribution of a bi-fundamental chiral field
to the twisted superpotential [2, 9]21

i
εN3/2 W̃(ρ(t), δv(t); ∆)

∣∣∣∣
chiral

= 1
ε

∫
dtρ(t)2g3(δv(t) + ∆) , (E.7)

in agreement with (3.9).
The contribution of a vector multiplet is obtained from (E.6) by setting δv(t) = 0 and

∆ = 2π and s = 2. The contribution of the classical terms and (anti)-fundamental fields
can be easily computed.

Including all the contributions from all the fields (and the classical terms) and keeping
all perturbative orders in ε, we obtain the σ = 1 contribution to (3.10)

logB(1) ≡ i
ε(1) W̃hom(ρ(1)(t), δv(1)(t); ∆(1)) , (E.8)

where W̃hom is the full effective twisted superpotential computed in [2, 9] written as a homo-
geneous function of its variables. This can be done by using the constraints

∑
I∈Wa

∆I = 2π
to replace all occurrences of π in W̃. The explicit dependence on ε emerges from the re-
placement of the original variables with the equivariant counterparts (3.8). The final result
is correct only if using the homogeneous form of W̃ since now

∑
I∈Wa

∆(1)
I = 2π − ε(1).22

The final formula (E.8) is valid for the class of theories with N3/2 scaling considered
in this paper. The difference23

∑
vectors

logB(1)
∣∣∣∣
(E.6)

+
∑

bi-fund
logB(1)

∣∣∣∣
(E.6)

− i
ε
W̃hom

∣∣∣∣
bi-fund

, (E.9)

is indeed proportional to

− π

6
∑

I=(b,a):+
I=(a,b):−

(
±δv(1)(t)

)
− π2

6

[ ∑
I (bi-fund)

(∆I

π
− 1

)
+ |G|

]
+ πε

12

[ ∑
I (bi-fund)

(sI − 1) + |G|
]
.

(E.10)
21See [9, (3.17)], noting that W̃here = −Vthere, or compare, for example, (4.62) for the ABJM theory.
22Equivalently, we could use the expression for W̃ found in [2, 9] by replacing the original variables with

the equivariant counterpart (3.8) and all occurences of π with π − ε(1)

2 .
23Notice that vectors do not contribute to W̃ [2, 9].
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The first term in this expression vanishes because for each bi-fundamental connecting two
gauge groups we have an anti-bi-fundamental connecting the same groups. The second
and third term cancel because ∆I/π and sI can be regarded as R-charge assignments for
the fields and, at large N , we have TrR = 0 for all R-symmetries, as it follows from (4.6).
The analysis of the classical terms and (anti)-fundamental fields is easy and it is left to the
reader.

The case σ = 2 is completely analogous.24

Open Access. This article is distributed under the terms of the Creative Commons
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