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THE STABLE ADAMS OPERATIONS ON HERMITIAN K-THEORY

JEAN FASEL AND OLIVIER HAUTION

Abstract. We prove that exterior powers of (skew-)symmetric bundles induce a λ-ring
structure on the ring GW0(X)⊕GW2(X), when X is a scheme where 2 is invertible. Using
this structure, we define stable Adams operations on Hermitian K-theory. As a byproduct
of our methods, we also compute the ternary laws associated to Hermitian K-theory.
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Introduction

From their introduction by Adams in his study of vector fields on spheres [Ada62], Adams
operations have been extremely useful in solving various problems in topology, algebra and
beyond. One may mention for instance the proof of Serre vanishing conjecture by Gillet-Soulé
[GS87], or their use in intersection theory. In algebraic geometry, the work of several authors
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permitted to extend these operations (initially defined at the level of the Grothendieck group
K0) to the whole world of K-theory; the most recent and probably most natural extension
being due to Riou [Rio10] using (stable) motivic homotopy theory.

Over a scheme X, it is often useful to study vector bundles endowed with some extra dec-
oration, such as a symmetric or a symplectic form. The analogues of the Grothendieck group
K0(X) in this context are the so-called Grothendieck–Witt groups (or Hermitian K-theory
groups) GWi(X) for i ∈ Z/4 (see e.g. [Sch17]), which classify symmetric and symplectic bun-
dles [Wal03]. Very often, the constructions and questions pertaining to algebraic K-theory
can be generalized to the context of Grothendieck–Witt groups. For instance, Serre’s Vanish-
ing Conjecture makes sense in this broader context [FS08].

As for the Adams operations, Zibrowius [Zib15, Zib18] has proved that the exterior power
operations on symmetric bundles yield a λ-ring structure on the Grothendieck–Witt group
GW0(X) of any smooth variety X over a field of characteristic not two. This provides in
particular Adams operations on these groups. It is not very difficult to construct λ-operations
in GW0(X), and a significant portion of the papers [Zib15, Zib18] consists in showing that this
pre-λ-ring is actually a λ-ring, which means that the λ-operations verify certain additional
relations pertaining to their multiplicative and iterative behaviour. In particular, it is not
so difficult to construct the Adams operations ψn, but much harder to show that they are
multiplicative and verify the relations ψmn = ψm ◦ ψn. To prove that GW0(X) is a λ-ring,
Zibrowius followed the strategy used in [BGI71] for the analog problem in K-theory, and
reduced the question to proving that the symmetric representation ring GW0(G) of an affine
algebraic group G (over a field of characteristic not two) is a λ-ring. This is done by further
reducing to the case when G is the split orthogonal group, and using explicit descriptions of
the representations of certain subgroups in that case.

A first purpose of this paper is to extend the construction of Zibrowius in two directions:

(1) allow X to be an arbitrary quasi-compact quasi-separated Z[12 ]-scheme admitting an
ample family of line bundles,

(2) replace GW0(X) with GW±(X), the ring of symmetric and symplectic forms.

The objective is achieved by first showing that the map GW0(G) → GW0(GQ) is injective,
when G is a split reductive algebraic group over Z[12 ]. Since the target is a λ-ring by the

result of Zibrowius, so is GW0(G), and thus also GW0(X) when X is as in (1).
For (2), a natural strategy is to mimic Zibrowius’s proof, by considering not just symmetric

representations of algebraic groups, but also skew-symmetric ones. Although we believe that
this idea might work, we were not able to implement it satisfyingly. Instead we observe that
we may pass from GW−(X) to GW+(X) using the quaternionic projective bundle theorem
[PW21].

The Witt groups are natural companions of the Grothendieck–Witt groups, obtained from
them by modding out the hyperbolic classes. Their behaviour is somewhat easier to under-
stand, and they keep track of an important part of the quadratic information, while forgetting
some of the K-theoretic information. Our λ-ring structure on the Grothendieck–Witt groups
does not descend to one on the Witt groups. There is a good reason for this: the Witt
ring cannot admit a (functorial) λ-ring structure, because it takes the value F2 on every al-
gebraically closed field, and F2 has no such structure. Nonetheless, we prove that the odd
Adams operations (as well as the even ones when additionally −1 is a square) do descend to
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operations on the Witt ring. It would be interesting to find algebraic axioms describing a
weak form of the structure of λ-ring (including odd Adams operations) which applies to the
Witt ring, but we will not investigate this question further in this paper.

The next natural step consists in considering the groups GWi(X) for i odd, as well as
the higher Grothendieck–Witt groups GWi

j(X) for j ∈ Z. To do so, we focus on Adams
operations, and follow the approach pioneered by Riou [Rio10] to construct stable versions
of those. The fact that GW±(X) is a λ-ring ends up being a crucial input, allowing us
to understand the behaviour of the Adams operations with respect to stabilization. This
approach is carried out in Section 5, where we build a morphism of motivic ring spectra, for
any integer n ∈ N

Ψn : GW → GW
[ 1

n∗

]
.

Here the left-hand side is the spectrum representing Hermitian K-theory and the right-hand
side is the same after inversion of the class n∗ ∈ GW+(X), which equals n when n is odd, and
the class of the hyperbolic n-dimensional symmetric form when n is even. These operations
extend the Adams operations on K-theory, in the sense that there is a commutative diagram
of motivic ring spectra

GW
Ψn

//

��

GW[ 1
n∗ ]

��
BGL

Ψn
// BGL[ 1

n
]

in which the vertical morphisms are the forgetful maps and the bottom horizontal morphism
is the Adams operation on K-theory defined by Riou [Rio10, Definition 5.3.2].

When n is even, inverting n∗ in GW+(X) seems to be a fairly destructive procedure, so
in practice the stable even Adams operations are unlikely to be very valuable improvements
of their K-theoretic counterparts. By contrast, we expect that the odd operations will be
useful in many situations. For instance, Bachmann and Hopkins recently used them in [BH20]
to compute the η-inverted homotopy sheaves of the algebraic symplectic and special linear
cobordism spaces. Their construction of Adams operations is quite different in spirit to the
one presented here but satisfy (almost) the same properties (see [BH20, Remark 3.2]).

In the last section of this paper, we offer an application under the form of the computation
of the ternary laws associated to Hermitian K-theory. These laws are the analogue, in the
context of Sp-oriented ring spectra, of the formal group laws associated to any oriented ring
spectrum. In short, they express the characteristic classes of a threefold product of sym-
plectic bundles of rank 2, and are expected to play an important role in the classification of
Sp-oriented cohomology theories. We refer the interested reader to [DF23] for more informa-
tion on these laws.

Acknowledgments. The first named author is grateful to Aravind Asok, Baptiste Calmès
and Frédéric Déglise for useful discussions. Both authors warmly thank Alexey Ananyevskiy
for sharing a preprint on Adams operations which has been a source of inspiration for the
results of the present paper, and Tom Bachmann for very useful suggestions. They also
heartily thank the referee for a careful reading and useful comments that helped correct
mistakes and improve the exposition.
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1. Grothendieck–Witt groups and spectra

All schemes will be assumed to be quasi-compact and quasi-separated, and to admit an
ample family of line bundles.

Let X be a scheme. In this paper, we will denote by GW+(X), resp. GW−(X), the
Grothendieck–Witt group of symmetric forms, resp. skew-symmetric forms, defined e.g. in
[Wal03, §6] using the exact category of vector bundles over X. The product of two skew-
symmetric forms being symmetric, we have a pairing

GW−(X)×GW−(X) → GW+(X)

turning GW±(X) = GW+(X)⊕GW−(X) into a (commutative) Z/2-graded ring.
Assume now thatX is a scheme over Z[12 ]. Following [Sch17, Definition 9.1], we can consider

the Grothendieck–Witt groups GWi
j(X) for any i, j ∈ Z which are 4-periodic in i in the sense

that there are natural isomorphisms GWi
j(X) ≃ GWi+4

j (X) for any i ∈ Z. For X affine and

i = 0, the groups GW0
j(X) are (naturally isomorphic to) the orthogonal K-theory groups

KOj(X) as defined by Karoubi, while for i = 2 (and X still affine) the groups GW2
j (X) are

(naturally isomorphic to) the symplectic K-theory groups KSpj(X) ([Sch17, Corollary A.2]).
Also by [Wal03, Theorem 6.1] and [Sch17, Proposition 5.6] we have natural isomorphisms
GW+(X) ≃ GW0

0(X) and GW−(X) ≃ GW2
0(X).

Notation 1.1. We will denote by h ∈ GW0
0(Spec(Z[

1
2 ])), resp. τ ∈ GW2

0(Spec(Z[
1
2 ])), the

class of the hyperbolic symmetric, resp. skew-symmetric, bilinear form. When u ∈ (Z[12 ])
×, we

will denote by 〈u〉 ∈ GW0
0(Spec(Z[

1
2 ])) the class of the symmetric bilinear form (x, y) 7→ uxy,

and write ǫ = −〈−1〉. Thus h = 1− ǫ.

The collection of groups GWi
j(X) fit into a well-behaved cohomology theory, which is SLc-

oriented by [PW19, Theorem 5.1], and in particular Sp-oriented. The functors X 7→ GWi
j(X)

are actually representable by explicit (geometric) spaces GWi in the A1-homotopy category
H(Z[12 ]) of Morel-Voevodsky (see [ST15, Theorem 1.3])

[Σj
S1X+,GWi]H(Z[ 1

2
]) = GWi

j(X).

Further, one can express the aforementioned periodicity under the following form: there
exists an element γ ∈ GW4

0(Spec(Z[
1
2 ])) such that multiplication by γ induces the periodicity

isomorphisms

(1.a) GWi ≃ GWi+4 .

When X is a Z[12 ]-scheme, the Z-graded ring

(1.b) GWeven
0 (X) :=

⊕

j∈Z

GW2j
0 (X)

can be identified with the Z-graded subring ̂GW±(X) of GW±(X)[x±1] defined in Appendix B
(where γ corresponds to x2), and we have a canonical isomorphism of Z/2-graded rings
GWeven

0 (X)/(γ − 1) ≃ GW±(X).
The P1-projective bundle theorem of Schlichting [Sch17, Theorem 9.10] allows to build a

ring spectrum GW in SH(Z[12 ]), having the property to represent Hermitian K-theory. A
convenient construction is recalled in [PW19, Theorem 12.2], and we explain the relevant
facts in the next few lines in order to fix notations.
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Recall first that Panin and Walter [PW21] defined a smooth affine Z[12 ]-scheme HPn for any
n ∈ N, called the quaternionic projective space. On HPn, there is a canonical bundle U of rank
2 endowed with a symplectic form ϕ, yielding a canonical element u = (U,ϕ) ∈ GW−(HPn).
For any n ∈ N, there are morphisms

(1.c) in : HP
n → HPn+1

such that i∗nu = u, whose colimit (say in the category of sheaves of sets) is denoted by
HP∞. It is a geometric model of the classifying space BSp2 of rank 2 symplectic bundles. As
HP0 = Spec(Z[12 ]), we consider all these schemes as pointed by i0 and note that i∗0(u) = τ .

Recall moreover from [PW19, Theorem 9.8] that HP1 is A1-weak equivalent to (P1)∧2. In fact
HP1 = Q4, where the latter is the affine scheme considered for instance in [ADF16].

Notation 1.2. We set T := HP1, that we consider as pointed by i0. We also denote by ΩT

the right adjoint of the endofunctor T ∧ (−) of H(Z[12 ]).

The spectrum GW is defined as the T -spectrum whose component in degree n is GW2n

and bonding maps

(1.d) σ : T ∧GW2n → GW2n+2

induced by multiplication by the class u−τ in GW2
0(T ). This T -spectrum determines uniquely

a P1-spectrum in view of [Rio07, Proposition 2.22] or [PW19, Theorem 12.1], which has the
property that

GWi
j(X) = [Σ∞

P1X+,Σ
−j
S1Σ

i
P1 GW]SH(Z[ 1

2
])

for a smooth Z[12 ]-scheme X.

If now X is a regular Z[12 ]-scheme with structural morphism pX : X → Spec(Z[12 ]), we

can consider the functor p∗X : SH(Z[12 ]) → SH(X) and the spectrum p∗X GW. On the other

hand, one can consider the P1
X-spectrum GWX representing Grothendieck–Witt groups in

the stable category SH(X). It follows from [PW19, discussion before Theorem 13.5] that the
natural map p∗X GW → GWX is in fact an isomorphism. Consequently,

GWi
j(X) = [Σ∞

P1X+,Σ
−j
S1Σ

i
P1p

∗
X GW]SH(X)

and we say that GW is an absolute P1-spectrum over Z[12 ]. It is in fact an absolute ring
spectrum by [PW19, Theorem 13.4].

2. Exterior powers and rank two symplectic bundles

When V is a vector bundle on a scheme X, we denote its dual by V ∨. A bilinear form on
V is a morphism of vector bundles ν : V → V ∨. When x, y ∈ H0(X,V ), we will sometimes
write ν(x, y) instead of ν(x)(y). We will abuse notation, and denote by

∧
nν, for n ∈ N, the

bilinear form on
∧
nV given by the composite

∧
nV

∧nν
−−−→

∧
n(V ∨) → (

∧
nV )∨. We will also

denote the pair (
∧
nV,

∧
nν) by

∧
n(V, ν). Similar conventions will be used for the symmetric

or tensor powers of bilinear forms, or their tensor products.
Explicit formulas for symmetric and exterior powers are given as follows. Let n be an

integer, and denote by Sn the symmetric group on n letters and by ǫ : Sn → {−1, 1} the
signature homomorphism. Then for any open subscheme U of X and x1, . . . , xn, y1, . . . , yn ∈
H0(U, V ), we have

(2.a) (Symn ν)(x1 · · · xn, y1 · · · yn) =
∑

σ∈Sn

ν(x1, yσ(1)) · · · ν(xn, yσ(n)),
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(2.b) (
∧
nν)(x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn) =

∑

σ∈Sn

ǫ(σ)ν(x1, yσ(1)) · · · ν(xn, yσ(n)),

or more succinctly

(2.c) (
∧
nν)(x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn) = det(ν(xi, yj)).

If V,W are vector bundles equipped with bilinear forms ν, µ, then for any i, j the bilinear
form

∧
i+j(ν ⊥ µ) restricts to (

∧
iν)⊗ (

∧
jµ) on (

∧
iV )⊕ (

∧
jW ) ⊂

∧
i+j(V ⊕W ). This yields

an isometry, for any n ∈ N

(2.d)
∧n(V ⊕W,ν ⊕ µ) ≃

n

⊥
i=0

∧i(V, ν)⊗
∧n−i(W,µ)

Lemma 2.1. Let (E, ε) and (F,ϕ) be vector bundles over a scheme X equipped with bilinear
forms, of respective ranks e and f . Then we have an isometry

(
∧
e(E, ε))⊗f ⊗ (

∧
f (F,ϕ))⊗e ≃

∧
ef (E ⊗ F, ε⊗ ϕ).

Proof. Let us first assume that E,F are free and that X = SpecR is affine. Let (x1, . . . , xe),
resp. (y1, . . . , yf ), be an R-basis of H0(X,E), resp. H0(X,F ). Then the element

(2.e) z = (x1 ∧ · · · ∧ xe)
⊗f ⊗ (y1 ∧ · · · ∧ yf )

⊗e

is a basis of H0(X, (
∧
eE)⊗f ⊗ (

∧
fF )⊗e), and the element

(2.f) u = (x1 ⊗ y1) ∧ · · · ∧ (x1 ⊗ yf ) ∧ (x2 ⊗ y1) ∧ · · · ∧ (xe ⊗ yf)

is a basis of H0(X,
∧
ef (E ⊗ F ). The mapping z 7→ u then defines an isomorphism of line

bundles

(2.g) (
∧eE)⊗f ⊗ (

∧fF )⊗e
∼
−→

∧ef (E ⊗ F ),

Consider now the matrices

A = (ε(xi, xj)) ∈Me(R), B = (ϕ(yi, yj)) ∈Mf (R).

By (2.c) we have

((
∧eε)⊗f ⊗ (

∧fF )⊗e)(z, z) = (detA)f · (detB)e,

and
∧
ef (ε⊗ ϕ)(u, u) is the determinant of the block matrix

C =



ε(x1, x1)B . . . ε(x1, xe)B

...
...

ε(xe, x1)B . . . ε(xe, xe)B


 ∈Mef (R).

It then follows from [Bou70, III, §9, Lemme 1, p.112] that

detC = det(det(ε(xi, xj)B)) = det(det(A)Be) = (detA)f · (detB)e.

Therefore

((
∧eε)⊗f ⊗ (

∧fF )⊗e)(z, z) =
∧ef (ε⊗ ϕ)(u, u),

which shows that (2.g) is the required isometry.
Next, assume given R-linear automorphisms α : H0(X,E) → H0(X,E) and β : H0(X,F ) →

H0(X,F ). Replacing the basis (x1, . . . , xe) and (y1, . . . , yf ) by their images under α and β

multiplies the element (2.e) by the quantity (detα)e · (det β)f , and the element (2.f) by the
same quantity (this is a similar determinant computation as above, based on [Bou70, III, §9,
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Lemme 1, p.112]). We deduce that the isometry (2.g) glues when E,F are only (locally free)
vector bundles, and X is possibly non-affine. �

Lemma 2.2. Let V be a vector bundle of constant rank n over a scheme X, equipped with a
nondegenerate bilinear form ν. Then we have an isometry

∧
n−1(V, ν) ≃ (V, ν)⊗

∧
n(V, ν).

Proof. The natural morphism (
∧
n−1V )⊗V →

∧
nV induces a morphism

∧
n−1V → Hom(V,

∧
nV ).

As V is a vector bundle (of finite rank) the natural morphism V ∨ ⊗
∧
nV → Hom(V,

∧
nV ) is

an isomorphism. Composing with the inverse of ν ⊗ id∧nV , we obtain a morphism

s :
∧n−1V → V ⊗

∧nV.

To verify that it induces the required isometry, we may argue locally and assume that V is
free and X = SpecR is affine. Pick an R-basis (v1, . . . , vn) of H

0(X,V ). Then (w1, . . . , wn)
is an R-basis of H0(X,

∧
n−1V ), where wi = (−1)n−iv1 ∧ · · · ∧ v̂i ∧ vn. Let z = v1 ∧ · · · ∧ vn ∈

H0(X,
∧
nV ), and note that wi ∧ vi = z for all i ∈ {1, . . . , n}. Consider the unique elements

v∗1 , . . . , v
∗
n ∈ H0(X,V ) satisfying ν(v∗i , vj) = δij (Kronecker symbol) for all i, j ∈ {1, . . . , n}.

Then we have

(2.h) s(wi) = v∗i ⊗ z, for i = 1, . . . , n.

Consider the matrix A = (ν(vi, vj)) ∈ Mn(R). Observe that the j-th coordinate of v∗i in the
basis (v1, . . . , vn) is the (i, j)-th coefficient of the matrix A−1, from which it follows that

(2.i) t(A−1) = (ν(v∗i , v
∗
j )) ∈Mn(R).

Let k, l ∈ {1, . . . , n}. It follows from (2.c) that (
∧
n−1ν)(wk, wl) is the (k, l)-th cofactor of the

matrix A, and thus coincides with the (k, l)-th coefficient of the matrix (detA) · t(A−1). In
view of (2.i), we deduce that (using (2.c) for the last equality)

(
∧n−1ν)(wk, wl) = ν(v∗k, v

∗
l ) · detA = ν(v∗k, v

∗
l ) · (

∧nν)(z, z).

By the formula (2.h), this proves that s is the required isometry. �

In the rest of the section, we fix a Z[12 ]-scheme X. By a symplectic bundle on X, we will
mean a vector bundle on X equipped with a nondegenerate skew-symmetric form. For an
invertible element λ ∈ H0(X,OX ), we denote by 〈λ〉 the trivial line bundle on X equipped
with the nondegenerate bilinear form given by (x, y) 7→ λxy.

Lemma 2.3. Let (V, ν) be a symplectic bundle of constant rank n over X. Then the exists
an isometry ∧

n(V, ν) ≃ 〈1〉.

Proof. We may assume that X 6= ∅ and n ≥ 1. Then we may write n = 2m for some integer
m (the form induced by (V, ν) over the residue field of a closed point of X is skew-symmetric,
hence symplectic as 2 is invertible, and such forms over fields have even dimension [MH73, I,
(3.5)]). The morphism

V ⊗n ≃ V ⊗m ⊗ V ⊗m →
∧
mV ⊗

∧
mV

∧mν⊗id
−−−−−→ (

∧
mV )∨ ⊗

∧
mV → OX

descends to a morphism λ(V,ν) :
∧
nV → OX . If (Vi, νi), for i = 1, 2, are symplectic bundles

over X of ranks ni = 2mi such that (V, ν) = (V1, ν1) ⊥ (V2, ν2), we have a commutative
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diagram
∧
mV

∧mν // (
∧
mV )∨

(
∧
m1V1)⊗ (

∧
m2V2)

∧m1ν1⊗∧m2ν2 //

OO

(
∧
m1V1)

∨ ⊗ (
∧
m2V2)

∨

OO

Therefore the identification
∧
nV =

∧
n1V1 ⊗

∧
n2V2 yields an identification λ(V,ν) = λ(V1,ν1)⊗

λ(V2,ν2).
In order to prove that λ(V,ν) induces the claimed isometry, we may assume that X is

the spectrum of a local ring. In this case the nondegenerate skew-symmetric form (V, ν) is
hyperbolic [MH73, I, (3.5)]. Given the behaviour of λ(V,ν) with respect to orthogonal sums,
we may assume that n = 2 and that (V, ν) is the hyperbolic plane. So there exists a basis
(v1, v2) of H

0(X,V ) such that

ν(v1, v1) = 0, ν(v2, v2) = 0 and ν(v1, v2) = 1.

By (2.b) we have

(
∧2ν)(v1 ∧ v2, v1 ∧ v2) = 1.

Since λ(V,ν)(v1 ∧ v2) = ν(v1, v2) = 1 ∈ H0(X,OX ), it follows that λ(V,ν) induces an isometry∧
2(V, ν) ≃ 〈1〉. �

Let V be a vector bundle over X. Consider the involution σ of V ⊗2 exchanging the two
factors. Set V ⊗2

+ = ker(σ − id) and V ⊗2
− = ker(σ + id). Since 2 is invertible we have a direct

sum decomposition V ⊗2 = V ⊗2
+ ⊕ V ⊗2

− .

Let now ν be a bilinear form on V . There are induced bilinear forms ν⊗2
+ on V ⊗2

+ and ν⊗2
−

on V ⊗2
− . Writing (V, ν)⊗2

+ , resp. (V, ν)⊗2
− , instead of (V ⊗2

+ , ν⊗2
+ ), resp. (V ⊗2

− , ν⊗2
− ), we have an

orthogonal decomposition

(2.j) (V, ν)⊗2 = (V, ν)⊗2
+ ⊥ (V, ν)⊗2

− .

Lemma 2.4. There are isometries

(V, ν)⊗2
+ ≃ 〈2〉 ⊗ Sym2(V, ν) and (V, ν)⊗2

− ≃ 〈2〉 ⊗
∧2(V, ν).

Proof. It is easy to see that the morphism

i :
∧2V → V ⊗2 ; v1 ∧ v2 7→ v1 ⊗ v2 − v2 ⊗ v1,

induces an isomorphism
∧

2V ≃ V ⊗2
− . If U is an open subscheme of X and v1, v2, w1, w2 ∈

H0(U, V ), we have, using (2.b)

ν⊗2(i(v1 ∧ v2), i(w1 ∧ w2))

=ν⊗2(v1 ⊗ v2 − v2 ⊗ v1, w1 ⊗ w2 − w2 ⊗ w1)

=ν(v1, w1)ν(v2, w2)− ν(v2, w1)ν(v1, w2)− ν(v1, w2)ν(v2, w1) + ν(v2, w2)ν(v1, w1)

=2ν(v1, w1)ν(v2, w2)− 2ν(v2, w1)ν(v1, w2)

=2(
∧2ν)(v1 ∧ v2, w1 ∧ w2),

proving the second statement. The first is proved in a similar fashion, using the morphism

Sym2 V → V ⊗2 ; v1v2 7→ v1 ⊗ v2 + v2 ⊗ v1. �
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Lemma 2.5. There is an isometry

(V, ν)⊗2 ≃ 〈2〉 ⊗
(
Sym2(V, ν) ⊥

∧2(V, ν)
)
.

Proof. This follows from Lemma 2.4 and (2.j). �

Lemma 2.6. Let E,F be vector bundles over X, respectively equipped with bilinear forms
ε, ϕ. Then there is an isometry

∧2(E ⊗ F, ε⊗ ϕ) ≃
(
〈2〉 ⊗ Sym2(E, ε) ⊗

∧2(F,ϕ)
)
⊥

(
〈2〉 ⊗

∧2(E, ε) ⊗ Sym2(F,ϕ)
)
.

Proof. It is easy to see that there is an isometry

(E ⊗ F, ε⊗ ϕ)⊗2
− ≃

(
(E, ε)⊗2

+ ⊗ (F,ϕ)⊗2
−

)
⊥

(
(E, ε)⊗2

− ⊗ (F,ϕ)⊗2
+

)
,

so that the statement follows by five applications of Lemma 2.4 (and tensoring by the form
〈2−1〉). �

Proposition 2.7. Let E,F be rank two vector bundles over a Z[12 ]-scheme X, equipped with

nondegenerate skew-symmetric forms ε, ϕ. Then we have in GW+(X):

[
∧n(E ⊗ F, ε⊗ ϕ)] =





[(E, ε) ⊗ (F,ϕ)] if n ∈ {1, 3},

[(E, ε)⊗2] + [(F,ϕ)⊗2]− 2 if n = 2,

1 if n ∈ {0, 4},

0 otherwise.

Proof. The cases n = 0, 1 and n ≥ 5 are clear. The case n = 4 follows from Lemma 2.1 and
Lemma 2.3. The case n = 3 then follows from the case n = 4 and Lemma 2.2. We now
consider the case n = 2. We have in GW+(X)

[
∧2(E ⊗ F, ε⊗ ϕ)] = 〈2〉[Sym2(E, ε)] + 〈2〉[Sym2(F,ϕ)] by 2.6 and 2.3

= [(E, ε)⊗2]− 〈2〉 + [(F,ϕ)⊗2]− 〈2〉 by 2.5 and 2.3

and 〈2〉+ 〈2〉 = 2 ∈ GW+(Spec(Z[12 ])), as evidenced by the computation
(
1 −1
1 1

)(
1 0
0 1

)(
1 1
−1 1

)
=

(
2 0
0 2

)
. �

3. Grothendieck–Witt groups of representations

Let B be a commutative ring with 2 ∈ B× and G be a flat affine group scheme over B.
Let RB be the abelian category of representations of G over B, which are of finite type as B-
modules. We let PB be the full subcategory of RB whose objects are projective as B-modules.
The latter category is exact. If P is an object of PB , then its dual P∨ := HomB(P,B) is
naturally endowed with an action of G and thus can be seen as an object of PB . The morphism
of functors ̟ : 1 ≃ ∨∨ is easily seen to be an isomorphism of functors PB → PB , and it follows
that PB is an exact category with duality.

Let now Db(RB), resp. D
b(PB), be the derived category of bounded complexes of objects

of RB , resp. PB . The category Db(PB) is a triangulated category with duality in the sense
of Balmer ([Bal05, Definition 1.4.1]) and therefore one can consider its (derived) Witt groups
Wi(Db(PB)) ([Bal05, Definition 1.4.5]) that we denote by Wi(B;G) for simplicity. We can
also consider the Grothendieck–Witt groups GWi(Db(PB)) (as defined in [Wal03, §2]) that
we similarly denote by GWi(B;G).
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Lemma 3.1. Suppose that B is a field of characteristic not two. For any i ∈ Z, we have

W2i+1(B;G) = 0.

Proof. Since PB = RB, the category Db(RB) is the derived category of an abelian category.
We can thus apply [BW02, Proposition 5.2]. �

We now suppose that A is a Dedekind domain with quotient field K (we assume that
A 6= K). We assume that 2 ∈ A×, and let G be a flat affine group scheme over A. Then we
may consider the full subcategory Rfl

A of RA consisting of those representations of G over A,
which as A-modules are of finite length, or equivalently are torsion.

Any object of Db(PA) has a well-defined support, and we can consider the (full) subcategory
Db

fl(PA) of D
b(PA) whose objects are supported on a finite number of closed points of Spec(A).

This is a thick subcategory stable under the duality. As a consequence of [Bal05, Theorem 73],
we obtain a 12-term periodic long exact sequence

(3.a) · · · → Wi(Db
fl(PA)) → Wi(Db(PA)) → Wi(Db(PA)/D

b
fl(PA)) → Wi+1(Db

fl(PA)) → · · ·

We now identify the quotient category Db(PA)/D
b
fl(PA). Note that the extension of scalars

induces a duality-preserving, triangulated functor Db(PA) → Db(PK) which is trivial on the
subcategory Db

fl(PA). (The category Db(PK) is constructed by setting B = K above, for
the group scheme GK over K obtained by base-change from G.) We thus obtain a duality-
preserving, triangulated functor

Db(PA)/D
b
fl(PA) → Db(PK).

Lemma 3.2. The functor Db(PA)/D
b
fl(PA) → Db(PK) is an equivalence of triangulated cat-

egories with duality.

Proof. We have a commutative diagram of functors

Db(PA) //

��

Db(PK)

��
Db(RA) // Db(RK)

in which the vertical arrows are equivalences (use [Ser68, §2.2, Corollaire]. The composite
Db

fl(PA) → Db(PA) → Db(RA) has essential image the subcategory Db
fl(RA) of objects of

Db(RA) whose homology is of finite length. As observed in [Ser68, Remarque, p.43], the
functor RA → RK induces an equivalence RA/R

fl
A ≃ RK . Then it follows from [Kel99, §1.15,

Lemma] that the induced functor Db(RA)/D
b
fl(RA) → Db(RK) is an equivalence (the argu-

ment given in [Kel99, §1.15, Example (b)] works in the equivariant setting). The statement
follows. �

As a consequence, the exact sequence (3.a) becomes

(3.b) · · · → Wi(Db
fl(PA)) → Wi(A;G) → Wi(K;GK) → Wi+1(Db

fl(PA)) → · · ·

Now, suppose that M is a representation of G over A that is of finite length. By [Ser68,
§2.2, Corollaire], we have an exact sequence of representations

(3.c) 0 → P1 → P0 →M → 0
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where P0, P1 ∈ PA. Note that the A-moduleM is torsion, henceM∨ = HomA(M,A) vanishes.
We obtain an exact sequence, by dualizing

0 → P∨
0 → P∨

1 → Ext1A(M,A) → 0

and it follows that M ♯ := Ext1A(M,A) is naturally endowed with a structure of a representa-
tion of G over A. The isomorphisms P0 → (P∨

0 )
∨ and P1 → (P∨

1 )
∨ induce an isomorphism

M → (M ♯)♯, which does not depend on the choice of the resolution (3.c). The association
M 7→M ♯ in fact defines a duality on the category Rfl

A.

Lemma 3.3. For every i ∈ Z, there exists an isomorphism

Wi+1(Db
fl(PA)) ≃ Wi(Db(Rfl

A)).

Proof. This follows from the existence of an equivalence of triangulated categories Db
fl(PA) →

Db(Rfl
A), which is compatible with the duality ♯ of Db(Rfl

A), and the duality ∨ of Db
fl(PA) shifted

by 1. This equivalence is constructed using word-for-word the proof of [BW02, Lemma 6.4],
where the categories VBO,O-mod,O- fl -mod are replaced by PA, RA, R

fl
A. �

Lemma 3.4. For every i ∈ Z, we have W2i(Db
fl(PA)) = 0.

Proof. In view of Lemma 3.3, this follows from [BW02, Proposition 5.2], as the category Rfl
A

is abelian. �

Proposition 3.5. Let A be a Dedekind domain with quotient field K, such that 2 ∈ A×, and
let G be a flat affine group scheme over A. Then for every i ∈ Z, the morphism W2i(A;G) →
W2i(K;GK) is injective.

Proof. This follows from Lemma 3.4 and the sequence (3.b). �

Theorem 3.6. Let A be a Dedekind domain with quotient field K, such that 2 ∈ A×, and let G
be a split reductive group scheme over A. Then for every i ∈ Z, the morphism GW2i(A;G) →
GW2i(K;GK) is injective.

Proof. We have a commutative diagram where rows are exact sequences (constructed in
[Wal03, Theorem 2.6])

K0(A;G) //

��

GW2i−1(A;G) //

��

W2i−1(A;G) //

��

0

K0(K;GK) // GW2i−1(K;GK) // W2i−1(K;GK) // 0

in which the vertical arrows are induced by the extension of scalars, and K0(A;G) (resp.
K0(K;GK)) denotes the Grothendieck group of the triangulated category Db(PA) (resp.
Db(PK)). Denoting by K0(RA) (resp. K0(RK)) the Grothendieck group of the category RA
(resp. RK), the natural morphisms K0(RA) → K0(A;G) and K0(RK) → K0(K;G) are iso-
morphisms (their inverses are constructed using the Euler characteristic). Since the morphism
K0(RA) → K0(RK) is an isomorphism by [Ser68, Théorème 5], so is K0(A;G) → K0(K;GK).
On the other hand, we have W2i−1(K;GK) = 0 by Lemma 3.1. We deduce that the morphism
GW2i−1(A;G) → GW2i−1(K;GK) is surjective.



12 JEAN FASEL AND OLIVIER HAUTION

Next consider the commutative diagram where rows are exact sequences (see again [Wal03,
Theorem 2.6])

GW2i−1(A;G) //

����

K0(A;G) //

≃

��

GW2i(A;G) //

��

W2i(A;G) //
� _

��

0

GW2i−1(K;GK) // K0(K;GK) // GW2i(K;GK) // W2i(K;GK) // 0

The indicated surjectivity and bijectivity have been obtained above, and the injectivity in
Proposition 3.5. The statement then follows from a diagram chase. �

4. The λ-operations

Let X be a scheme, and G a flat affine group scheme over X. We denote by GW+(X;G)
and GW−(X;G) the Grothendieck–Witt groups of the exact category of G-equivariant vector
bundles over X. We set GW±(X;G) = GW+(X;G) ⊕ GW−(X;G). When A is a commu-
tative noetherian Z[12 ]-algebra and X = Spec(A), by [Wal03, Theorem 6.1] we have natural

isomorphisms GW+(Spec(A);G) ≃ GW0(A;G) and GW−(Spec(A);G) ≃ GW2(A;G) (in the
notation of §3).

4.1. Exterior powers of metabolic forms. Let X be a scheme and G a flat affine group
scheme over X. Let E → X be a G-equivariant vector bundle. For ε ∈ {1,−1}, the associated
hyperbolic ε-symmetric G-equivariant bundle over X is

Hε(E) =
(
E ⊕ E∨,

(
0 1

ε̟E 0

))

where ̟E : E → (E∨)∨ is the canonical isomorphism. These constructions induce morphisms
of abelian groups (see e.g. [Wal03, Proposition 2.2 (c), Theorem 6.1])

(4.1.a) h+ : K0(X;G) → GW+(X;G), h− : K0(X;G) → GW−(X;G)

where K0(X;G) denotes the Grothendieck group of G-equivariant vector bundles on X.

Lemma 4.1.1. Let M be a G-equivariant vector bundle over X equipped with a G-equivariant
nondegenerate ε-symmetric bilinear form µ, for some ε ∈ {1,−1}. Assume that (M,µ) admits
a (G-invariant) Lagrangian L, and let n ∈ N.

(i) The class [
∧
n(M,µ)] ∈ GW±(X;G) depends only on n, ε and the G-equivariant vector

bundle L over X (but not on (M,µ)).
(ii) If n is odd, the G-equivariant nondegenerate εn-symmetric bilinear form

∧
n(M,µ) is

metabolic.

Proof. We may assume that X is connected. Let Q = M/L, and recall that µ induces an

isomorphism ϕ : Q
∼
−→ L∨. The vector bundle

∧
nM is equipped with a decreasing filtration

by G-invariant subsheaves

(
∧
nM)i = im(

∧
iL⊗

∧
n−iM →

∧
nM)
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fitting into commutative squares

(4.1.b)

∧
iL⊗

∧
n−iM //

��

(
∧
nM)i

��∧
iL⊗

∧
n−iQ // (

∧
nM)i/(

∧
nM)i+1

where the bottom horizontal arrow is an isomorphism (see e.g. [BGI71, V, Lemme 2.2.1]).
Since Q ≃ L∨, this yields exact sequences of G-equivariant sheaves

(4.1.c) 0 → (
∧
nM)i+1 → (

∧
nM)i →

∧
iL⊗

∧
n−iL∨ → 0

from which we deduce by induction on i that (
∧
nM)i is a subbundle of

∧
nM (i.e. the quotient∧

nM/(
∧
nM)i is a vector bundle). Assuming that L has rank r, then

∧
iL ⊗

∧
n−iL∨ has

rank
(
r
i

)(
r
n−i

)
. By induction on i, using the sequences (4.1.c), we obtain

rank(
∧
nM)i =

r∑

j=i

(
r

j

)(
r

n− j

)
.

An elementary computation with binomial coefficients then yields:

(4.1.d) rank(
∧
nM)i + rank(

∧
nM)n+1−i = rank

∧
nM.

Let i, j be integers. We have a commutative diagram

∧
iL⊗

∧
n−iM // //

α

��

(
∧
nM)i �

� //

��

∧
nM

∧nµ

��
(
∧
jL⊗

∧
n−jM)∨ ((

∧
nM)j)∨? _oo (

∧
nM)∨oooo

where α is defined by setting, for every open subscheme U of X and x1, . . . , xi, y1, . . . , yj ∈
H0(U,L) and xi+1, . . . , xn, yj+1, . . . , yn ∈ H0(U,M) (see (2.c))

(4.1.e) α(x1 ∧ · · · ∧ xi ⊗ xi+1 ∧ · · · ∧ xn)(y1 ∧ · · · ∧ yj ⊗ yj+1 ∧ · · · ∧ yn) = det(µ(xi, yj)).

If i + j > n, then for each σ ∈ Sn there exists e ∈ {1, . . . , n} such that xe ∈ H0(U,L)
and yσ(e) ∈ H0(U,L), so that µ(xe, yσ(e)) = 0, which by (4.1.e) implies that α = 0. Thus

(
∧
nM)i ⊂ ((

∧
nM)j)⊥ in this case. In particular (

∧
nM)i is a sub-Lagrangian of

∧
n(M,µ)

when 2i > n.
If n = 2k−1 with k ∈ N, then 2 rank(

∧
nM)k = rank

∧
nM by (4.1.d), hence the subbundle

(
∧
nM)k is a Lagrangian in

∧
n(M,µ). This proves (ii). Moreover, it follows that the class

of
∧
n(M,µ) in GW±(X;G) coincides with the class of the hyperbolic form Hε((

∧
nM)k),

hence depends only on the class in K0(X;G) of the G-equivariant vector bundle (
∧
nM)k

(see (4.1.a)). In view of the sequences (4.1.c), the latter depends only on the classes of∧
iL⊗

∧
n−iL∨ in K0(X;G) for i ≥ k, from which (i) follows when n is odd.

Assume now that n = 2k with k ∈ N. Then the inclusion of the subbundle (
∧
nM)k ⊂

((
∧
nM)k+1)⊥ is an equality by rank reasons (see (4.1.d)). By [Wal03, Proposition 2.2 (d),

Theorem 6.1] we have

(4.1.f) [(M,µ)] = [H1((
∧
nM)k+1)] + [((

∧
nM)k/(

∧
nM)k+1, ρ)] ∈ GW+(X;G),
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where ρ is the bilinear form induced by µ on (
∧
nM)k/(

∧
nM)k+1, which in view of (4.1.b) is

G-equivariantly isometric to the form β fitting into the commutative diagram

∧
kL⊗

∧
kM // //

α

��

∧
kL⊗

∧
kQ

��

≃ //
∧
kL⊗

∧
kL∨

β

��
(
∧
kL⊗

∧
kM)∨ (

∧
kL⊗

∧
kQ)∨? _oo (

∧
kL⊗

∧
kL∨)∨

≃oo

where the horizontal isomorphisms are induced by ϕ : Q
∼
−→ L∨. The formula (4.1.e) (and

the fact that ϕ is induced by µ) yields the formula, for every open subscheme U of X and
x1, . . . , xk, y1, . . . , yk ∈ H0(U,L) and f1, . . . , fk, g1, . . . , gk ∈ H0(U,L∨),

β(x1 ∧ · · · ∧ xk ⊗ f1 ∧ · · · ∧ fk, y1 ∧ · · · ∧ yk ⊗ g1 ∧ · · · ∧ gk) = det

(
0 (εgj(xi))

(fi(yj)) 0

)

(where i, j run over 1, . . . , k, and so the indicated determinant is n × n), which shows that
the bilinear form β depends only on the G-equivariant vector bundle L (and not on µ). It
follows that the isometry class of that G-equivariant form ((

∧
nM)k/(

∧
nM)k+1, ρ) depends

only on L. As above, the class of the hyperbolic form H1((
∧
nM)k+1) in GW+(X;G) also

depends only on L, so that (i) follows from (4.1.f) when n is even. �

4.2. The λ-ring structure. We will use the notion of (pre-)λ-rings, recalled in Appendix A
below.

Proposition 4.2.1. Let X be a scheme and G a flat affine group scheme over X. Then the
exterior powers operations

λi : GW±(X;G) → GW±(X;G)

defined by (P,ϕ) 7→ (
∧
iP,

∧
iϕ) endow the ring GW±(X;G) with the structure of a pre-λ-ring.

Proof. The structure of the proof is the same as that of [Zib15, Proposition 2.1], and is
based on the description of GW±(X;G) in terms of generators and relations (see e.g. [Wal03,
p.20]). It is clear that the exterior power operations descend to the set of isometry classes,
and moreover the total exterior power operation is additive in the sense of (2.d). Finally, let
M is a G-equivariant vector bundle over X equipped with a G-equivariant nondegenerate ε-
symmetric bilinear form µ, for some ε ∈ {1,−1}. If (M,µ) admits a G-equivariant Lagrangian
L, then L is also a G-equivariant Lagrangian in the hyperbolic form Hε(L), so that by
Lemma 4.1.1 (i) the forms

∧
n(M,µ) and

∧
n(Hε(L)) have the same class in GW±(X;G). �

Proposition 4.2.2. Let G be a split reductive group scheme over Z[12 ]. Then the pre-λ-ring

GW+(Spec(Z[12 ]);G) is a λ-ring.

Proof. By [Zib15, Proposition 2.1] the pre-λ-ring GW+(Spec(Q);GQ) is a λ-ring. It follows
from Theorem 3.6 that GW+(Spec(Z[12 ]);G) is a pre-λ-subring of GW+(Spec(Q);GQ), hence
a λ-ring. �

Corollary 4.2.3. For every Z[12 ]-scheme X, the pre-λ-ring GW+(X) is a λ-ring.

Proof. This follows from Proposition 4.2.2 (applied to the split reductive groups On and
Om × On), using the arguments of [BGI71, Exposé VI, Théorème 3.3] (see [Zib15, §3.2] for
details). �
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When x ∈ GW−(X) is the class of a rank two symplectic bundle, it follows from Lemma 2.3
that λt(x) = 1 + tx+ t2 (see (A.a)). In other words, in the notation of (C.1.b), we have

(4.2.a) λi(x) = ℓi(x) ∈ GW±(X) for all i ∈ Nr {0}.

Lemma 4.2.4. The relations (A.b) and (A.c) are satisfied for all x, y, z ∈ GW−(X).

Proof. By the symplectic splitting principle [PW21, §10], we may assume that x, y, z are each
represented by a rank two symplectic bundle. In view of (4.2.a), the relation (A.c) follows
from Lemma C.2.1. The relation (A.b) has been verified in Proposition 2.7, see Lemma
C.1.1. �

Theorem 4.2.5. For every Z[12 ]-scheme X, the pre-λ-ring GW±(X) is a λ-ring.

Proof. Taking Proposition 4.2.2 and Lemma 4.2.4 into account, it only remains to verify
(A.b) when x ∈ GW+(X) and y ∈ GW−(X). Let i ≥ n, and consider the scheme X × HPi.
It is endowed with a universal symplectic bundle of rank two, whose class we denote by
u ∈ GW−(X×HPi). Denote again by x, y ∈ GW±(X×HPi) the pullbacks of x, y ∈ GW±(X).
Then using successively Proposition 4.2.2 and Lemma 4.2.4

λt(xyu) = λt(x)λt(yu) = λt(x)λt(y)λt(u).

On the other hand, by Lemma 4.2.4

λt(xyu) = λt(xy)λt(u).

The quaternionic projective bundle theorem [PW21, Theorem 8.1] implies that the GWeven
0 (X)-

module GWeven
0 (X × HPi) is free on the basis 1, u, . . . , ui. Modding out γ − 1, we obtain a

decomposition

GW±(X ×HPi) = GW±(X)⊕GW±(X)u ⊕ · · · ⊕GW±(X)ui.

In view of (4.2.a), it follows from Lemma C.1.2 that the un-component of the tn-coefficient
of λt(xy)λt(u) is λ

n(xy), and that the un-component of the tn-coefficient of λt(x)λt(y)λt(u)
is Pn(λ

1(x), . . . , λn(x), λ1(y), . . . , λn(y)). This proves (A.b). �

Let X be a Z[12 ]-scheme. In view of Lemma B.1, the λ-ring structure on GW±(X) induces

a λ-ring structure on ̂GW±(X) ≃ GWeven
0 (X). Explicitly, denoting by ρ : GW±(X) →

GWeven
0 (X) the canonical homomorphism of abelian groups (see Appendix B), we have for

i ∈ Z and n ∈ N,

(4.2.b) λn(ρ(r) · γi) =





ρ(λn(r)) · γni if r ∈ GW+(X),

ρ(λn(r)) · γ
n(2i+1)

2 if r ∈ GW−(X) and n is even,

ρ(λn(r)) · γ
n(2i+1)−1

2 if r ∈ GW−(X) and n is odd.

5. The Adams operations

5.1. The unstable Adams operations. The λ-operations constructed in §4 are not additive
(with the exception of λ1), and there is a standard procedure to obtain additive operations
from the λ-operations which is valid in any pre-λ-ring, see e.g. [AT69, §5]. Indeed, for any
Z[12 ]-scheme X, we define the (unstable) Adams operations

ψn : GW2i
0 (X) → GW2ni

0 (X) for n ∈ Nr {0}, i ∈ Z
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through the inductive formula (see e.g. [AT69, Proof of Proposition 5.4])

(5.1.a) ψn − λ1ψn−1 + λ2ψn−2 + · · ·+ (−1)n−1λn−1ψ1 + (−1)nnλn = 0.

For instance, this yields
ψ1 = id and ψ2 = (id)2 − 2λ2.

We also define ψ0 as the composite

(5.1.b) ψ0 : GW2i
0 (X)

rank
−−−→ Zπ0(X) → GW0

0(X).

Assume now that (E, ν) is a rank two symplectic bundle on X, and let x = [(E, ν)] ∈
GW2

0(X) be its class. Then, by Lemma 2.3, we have for n ∈ Nr {0}

λn(x) =





x if n = 1,

γ if n = 2,

0 if n 6∈ {1, 2}.

Thus (5.1.a) yields the inductive formula for x as above (the class of a rank two symplectic
bundle)

(5.1.c) ψn(x) = xψn−1(x)− γψn−2(x) for n ≥ 2.

Proposition 5.1.1. The operations ψn : GWeven
0 (X) → GWeven

0 (X) are ring morphisms for
n ∈ N, and satisfy the relation ψm ◦ ψn = ψmn for m,n ∈ N.

Proof. This follows from Theorem 4.2.5 (see for instance [AT69, Propositions 5.1 and 5.2]). �

Remark 5.1.2. The operations ψn for n < 0 are classically defined using duality; since by
definition a nondegenerate symmetric (resp. skew-symmetric) form is isomorphic to its dual
(resp. the opposite of its dual), in our situation we could set, for n < 0

ψn(x) =

{
ψ−n(x) when x ∈ GW4i

0 (X) for i ∈ Z,

−ψ−n(x) when x ∈ GW4i+2
0 (X) for i ∈ Z,

making Proposition 5.1.1 valid for m,n ∈ Z.

5.2. Adams Operations on hyperbolic forms. Let X be a Z[12 ]-scheme, and consider its
Grothendieck group of vector bundles K0(X). The exterior power operations yield a λ-ring
structure on K0(X) (and in particular Adams operations ψn for n ∈ N r {0}, using the
formula (5.1.a)), such that the forgetful morphism

(5.2.a) f : GWeven
0 (X) → K0(X)

(mapping γ to 1) is a morphism of λ-rings. In this section, we consider the hyperbolic mor-
phisms h2i : K0(X) → GWeven

0 (X) (defined just below). Those are of course not morphisms
of λ-rings (not even ring morphisms), but as we will see in Proposition 5.2.4, they do satisfy
some form of compatibility with the Adams operations.

We define morphisms

(5.2.b) h2i : K0(X) → GW2i
0 (X) for i ∈ Z

by the requirements that h0 = h+ and h2 = h− (see (4.1.a)) under the identifications
GW0

0(X) ≃ GW+(X) and GW2
0(X) ≃ GW−(X), and for any vector bundle E → X

(5.2.c) γ · h2i(E) = h2(i+2)(E) for i ∈ Z.
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Lemma 5.2.1. Let a ∈ K0(X) and b ∈ GW2j
0 (X). Then, in the notation of (5.2.a) and

(5.2.b), we have for any i ∈ Z

h2i(a) · b = h2(i+j)(a · f(b)).

Proof. Let ε, ε′ ∈ {1,−1}. Let us consider vector bundles A,B on X, and a nondegenerate
ε-symmetric bilinear form ν on B. The isomorphism

(A⊗B)⊕ (A∨ ⊗B)

(
1 0
0 1⊗ ν

)

−−−−−−−−−→ (A⊗B)⊕ (A∨ ⊗B∨) ≃ (A⊗B)⊕ (A⊗B)∨

induces an isometry
(
(A⊗B)⊕ (A∨ ⊗B),

(
0 1⊗ ν

ε′̟A ⊗ ν 0

))
≃

(
(A⊗B)⊕ (A⊗B)∨,

(
0 1

εε′̟A⊗B 0

))
,

as evidenced by the computation
(
1 0
0 1⊗ ν∨

)(
0 1

εε′̟A ⊗̟B 0

)(
1 0
0 1⊗ ν

)
=

(
0 1⊗ ν

εε′̟A ⊗ (ν∨ ◦̟B) 0

)

=

(
0 1⊗ ν

ε′̟A ⊗ ν 0

)
.

The lemma follows. �

Lemma 5.2.2. For any i, j ∈ Z we have h2i(1)h2j(1) = 2h2(i+j)(1).

Proof. Take a = 1 ∈ K0(X) and b = h2j(1) ∈ GW2j
0 (X) in Lemma 5.2.1. �

Observe that the classes h and τ (see Notation 1.1) coincide respectively with h0(1) and
h2(1). Thus Lemma 5.2.2 implies that

(5.2.d) h2 = 2h ; hτ = 2τ ; τ2 = 2γh.

Combining the relations hτ = 2τ and h = 1 + 〈−1〉 yields

(5.2.e) 〈−1〉τ = τ.

Lemma 5.2.3. For n ∈ N, we have in GW2n
0 (Spec(Z[12 ])) (see Notation 1.1)

ψn(τ) =

{
τγ

n−1
2 if n is odd.

2〈−1〉
n
2 γ

n
2 if n is even.

Proof. We prove the lemma by induction on n, the cases n = 0, 1 being clear. If n ≥ 2, we
have by (5.1.c)

(5.2.f) ψn(τ) = τψn−1(τ)− γψn−2(τ).

Assume that n is odd. Using the induction hypothesis together with (5.2.e) we obtain

τψn−1(τ) = 2〈−1〉
n−1
2 τγ

n−1
2 = 2τγ

n−1
2 .

On the other hand, by induction we have

γψn−2(τ) = γτγ
n−3
2 = τγ

n−1
2 .

Combining these two computations with (5.2.f) proves the statement when n is odd.
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Assume now that n is even. Using the induction hypothesis we have

τψn−1(τ) = τ2γ
n−2
2 = 2hγ

n
2 = 2(〈−1〉

n
2 + 〈−1〉

n−2
2 )γ

n
2 ,

as well as

γψn−2(τ) = 2〈−1〉
n−2
2 γ

n
2 ,

and the result follows as above from (5.2.f) when n is even. �

Proposition 5.2.4. Let E → X be a vector bundle, and n ∈ N, i ∈ Z. For j ∈ Z, let us

denote by Ij the image of h2j : K0(X) → GW2j
0 (X).

(i) If n is odd, then λn ◦ h2i(E) lies in Iin.
(ii) If n is odd, then ψn ◦ h2i(E) lies in Iin.
(iii) If n is even, then ψn ◦ h2i(E) lies in 2GW2in

0 (X) + Iin.

Proof. Statement (i) follows from Lemma 4.1.1 (ii) with G = 1 (observe that by construction
of the Grothendieck–Witt group, the classes of metabolic forms belong to the subgroup Iin ⊂
GW2in

0 (X)). Let us prove (ii) by induction on n. This is clear when n = 1. Assume that
n is odd. When j ∈ {1, . . . , n − 1} is even, the element ψn−j ◦ h2i(E) belongs to Ii(n−j) by

induction. When j ∈ {1, . . . , n} is odd the element λj ◦ h2i(E) belongs to Iij by (i). Since

Iik ·GW
2i(n−k)
0 (X) ⊂ Iin for all k ∈ Z by Lemma 5.2.1, it follows from the inductive formula

(5.1.a) that ψn ◦ h2i(E) belongs to Iin. The proof of (iii) is similar, noting that nλn ◦ h2i(E)
is divisible by 2 (the starting case n = 0 being clear from (5.1.b)). �

Recall the exact sequence of [Wal03, Theorem 2.6], for i ∈ Z,

K0(X)
h2i−−→ GW2i

0 (X) → W2i(X) → 0.

WhenX 6= ∅, the λ-ring structure on GWeven
0 (X) does not descend to its quotient

⊕
i∈Z W

2i(X),

for instance because λ2(h0(1)) = 〈−1〉 has nonzero image in the Witt ring. However, Propo-
sition 5.2.4 implies the following:

Corollary 5.2.5. Let n ∈ N be odd. Then the operations ψn, λn : GW2i
0 (X) → GW2in

0 (X)
descend to operations

ψn, λn : W2i(X) → W2ni(X).

Remark 5.2.6. If −1 is a square in H0(X,OX ), then 2 = h0(1) ∈ GW0
0(X). Therefore

Proposition 5.2.4 (iii) implies that the operation ψn does descend to the Witt groups when n
is even (even though λn does not).

5.3. Adams operations on the universal rank two bundle. In this section, we consider
the universal symplectic bundle (U,ϕ) over HP1, and denote by u its class in GW2

0(HP
1).

Proposition–Definition 5.3.1. Let n ∈ N. There exists a unique element

ω(n) ∈ GW2n−2
0 (Spec(Z[

1

2
]))

such that

ψn(u− τ) = ω(n) · (u− τ) ∈ GW2n
0 (HP1).
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Proof. The first Borel class of (U,ϕ) in GW2
0(HP

1) is u − τ (see [PW19, Theorem 9.9]). By
the quaternionic projective bundle theorem [PW21, Theorem 8.1], the GWeven

0 (Spec(Z[12 ]))-

module GWeven
0 (HP1) is free on the basis 1, u − τ . This implies in particular the uniqueness

part of the statement. Let us write

ψn(u− τ) = a+ b(u− τ)

with a ∈ GW2n
0 (Spec(Z[12 ])) and b ∈ GW2n−2

0 (Spec(Z[12 ])). Consider the morphism of Z[12 ]-

schemes i0 : Spec(Z[12 ]) = HP0 → HP1 of (1.c). Since i∗0(u) = τ , we have

a = i∗0(a+ b(u− τ)) = i∗0 ◦ ψ
n(u− τ) = ψn ◦ i∗0(u− τ) = ψn(0) = 0.

So we may set ω(n) = b. �

Lemma 5.3.2. Let m,n ∈ N. Then ω(mn) = ω(n) · ψn(ω(m)).

Proof. Indeed by Proposition 5.1.1, we have in GW2mn
0 (HP1)

ψmn(u− τ) = ψn ◦ ψm(u− τ)

= ψn(ω(m) · (u− τ))

= ψn(ω(m)) · ψn(u− τ)

= ω(n) · ψn(ω(m)) · (u− τ). �

From the inductive definition of the Adams operations, we deduce an inductive formula for
the classes ω(n):

Lemma 5.3.3. We have ω(0) = 0, ω(1) = 1, and if n ≥ 2

ω(n) = τω(n− 1)− γω(n− 2) + ψn−1(τ).

Proof. The computations of ω(0) and ω(1) are clear. Assume that n ≥ 2. Then by (5.1.c) we
have in GW2n

0 (HP1)

ψn(u− τ) = ψn(u)− ψn(τ)

= uψn−1(u)− γψn−2(u)− τψn−1(τ) + γψn−2(τ)

= uψn−1(u− τ) + (u− τ)ψn−1(τ)− γψn−2(u− τ).

By the quaternionic projective bundle theorem [PW21, Theorem 8.1] we have (u− τ)2 = 0,
hence u(u− τ) = τ(u− τ), so that

ψn(u− τ) = (u− τ)
(
τω(n− 1) + ψn−1(τ)− γω(n− 2)

)
,

from which the result follows. �

We are now in position to find an explicit expression for the elements ω(n). For this, recall
from Notation 1.1 that h = 1− ǫ.

Proposition 5.3.4. We have

ω(n) =





n
(n− 1

2
h+ 〈−1〉

n−1
2

)
γ

n−1
2 if n is odd,

n2

2
τγ

n−2
2 if n is even.
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Proof. We proceed by induction on n, the cases n = 0, 1 being clear. Let n ≥ 2. Assume that
n is even. Recall that hτ = 2τ by (5.2.d) and that τ〈−1〉 = τ by (5.2.e). Combining these
observations with the explicit formula for ω(n− 1) (known by induction) yields

τω(n− 1) = (n− 1)2τγ
n−2
2 ,

hence, using the inductive hypothesis and Lemma 5.2.3

τω(n− 1)− γω(n− 2) + ψn−1(τ) = (n− 1)2τγ
n−2
2 −

(n− 2)2

2
τγ

n−2
2 + τγ

n−2
2 =

n2

2
τγ

n−2
2 ,

which coincides with ω(n) by Lemma 5.3.3, as required.

Assume that n is odd. Observe that h = 〈−1〉
n−1
2 + 〈−1〉

n−3
2 , so that we have by induction

ω(n− 2) = (n− 2)
(n− 1

2
h− 〈−1〉

n−1
2

)
γ

n−3
2 .

Therefore, using Lemma 5.3.3, Lemma 5.2.3 and (5.2.d) (and the inductive hypothesis)

ω(n) = τω(n− 1)− γω(n− 2) + ψn−1(τ)

=
(n− 1)2

2
τ2γ

n−3
2 − (n− 2)

(n− 1

2
h− 〈−1〉

n−1
2

)
γ

n−1
2 + 2〈−1〉

n−1
2 γ

n−1
2

=
(
(n− 1)2h− (n− 2)

n − 1

2
h+ (n− 2)〈−1〉

n−1
2 + 2〈−1〉

n−1
2

)
γ

n−1
2

= n
(n− 1

2
h+ 〈−1〉

n−1
2

)
γ

n−1
2 . �

5.4. Inverting ω(n). In order to define the stable Adams operations, we will be led to invert
the elements ω(n) ∈ GW2n−2

0 (Spec(Z[12 ])). Let us first observe that it is equivalent to invert
somewhat simpler elements.

Definition 5.4.1. For n ∈ N, we define an element n⋆ ∈ GW0
0(Spec(Z[

1
2 ])) by

n⋆ =

{
n if n is odd,
n
2h if n is even.

(Recall from Notation 1.1 that h = 1− ǫ ∈ GW0
0(Spec(Z[

1
2 ])) is the hyperbolic class.)

Lemma 5.4.2. Let R = GWeven
0 (Spec(Z[12 ])). Then the R-algebras R[ 1

n⋆ ] and R[ 1
ω(n) ] are

isomorphic.

Proof. We use the explicit formulas of Proposition 5.3.4. Assume that n is odd. Since n = n⋆

divides ω(n), it is invertible in R[ 1
ω(n) ]. Conversely, writing n = 2m+ 1 we have (recall that

ǫ = −〈−1〉, so that ǫ2 = 1)

ω(n) · (m(1 + ǫ) + ǫm) = γmn(m(1− ǫ) + (−ǫ)m) · (m(1 + ǫ) + ǫm)

= γmn(m(1− ǫ)ǫm +m(1 + ǫ)(−ǫ)m + (−1)m)

= γmn(mǫm(1− ǫ+ (−1)m(1 + ǫ)) + (−1)m)

= γmn(2m+ 1)(−1)m = γmn2(−1)m

(where the penultimate equality is seen for instance by distinguishing cases according to the
parity of m). It follows that ω(n) is invertible in R[ 1

n⋆ ] = R[ 1
n
].
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Now assume that n is even. Then, by (5.2.d)

(5.4.a) ω(n)2 =
(n2
2
τ
)2
γn−2 =

n4

2
hγn−1 = n3n⋆γn−1,

so that n⋆ is invertible in R[ 1
ω(n) ]. On the other hand, using (5.2.d), we have

(n⋆)2 =
n2

2
h = n

n

2
h,

hence n is invertible in R[ 1
n⋆ ]. Thus (5.4.a) implies that ω(n) is invertible in R[ 1

n⋆ ]. �

We want now to formally invert the action of n⋆ on the spectrum GW.

Definition 5.4.3. We consider the ring

(5.4.b) B = Z[e]/(e2 − 1),

and for n ∈ N, we define an element n∗ ∈ B by

n∗ =

{
n if n is odd,
n
2 (1− e) if n is even.

For any m,n ∈ N, we have

(5.4.c) (mn)∗ = m∗n∗ ∈ B.

Remark 5.4.4. Observe that the ring morphism B → GWeven
0 (Spec(Z[12 ])) given by e 7→ ǫ

maps n∗ to n⋆. The ring B may be identified with GW+(SpecZ), but we will not use this
observation.

Denote by S ∈ SH(Z[12 ]) the sphere spectrum. Recall that each invertible element u ∈

(Z[12 ])
× defines an endomorphism 〈u〉 ∈ EndSH(Z[ 1

2
])(S) (see e.g. [DF23, 2.2.8]). Thus we may

define a ring homomorphism

(5.4.d) B → EndSH(Z[ 1
2
])(S), e 7→ −〈−1〉,

which allows us to see n∗ as an endomorphism of the sphere spectrum and perform the formal
inversion of n∗ in an efficient way as explained in [Bac18, §6]. In short, we consider the
diagram

S
n∗

−→ S
n∗

−→ . . .

and define S[ 1
n∗ ] to be its homotopy colimit in SH(Z[12 ]). Further, we set

GW
[ 1

n∗

]
:= GW∧ S

[ 1

n∗

]
.

This is naturally a motivic ring spectrum.
The B-algebra structure on GWeven

0 (Spec(Z[12 ])) induced by (5.4.d) is given by e 7→ ǫ (the
argument is detailed in the last paragraph of the proof of [PW19, Theorem 11.1.5]), and in
particular maps n∗ to n⋆. It thus follows from Lemma 5.4.2, that for any i ∈ N, the morphism

GW[ 1
n∗ ] → Σ

i(n−1)
T GW[ 1

n∗ ] induced by multiplication by ω(n)i ∈ GW
2i(n−1)
0 (Spec(Z[12 ]))

admits an inverse in SH(Z[12 ])

(5.4.e) ω(n)−i : Σ
i(n−1)
T GW

[ 1

n∗

]
→ GW

[ 1

n∗

]
.
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For any i, j ∈ Z and any smooth Z[12 ]-scheme X, the spectrum Σj
S1Σ

i
P1Σ

∞
P1X+ is a compact

object in SH(Z[12 ]) by [Jar00, §2.2, Lemma 2.2] and it follows from [Sta, Tag 094A] that we
have a canonical isomorphism

(5.4.f)
[
Σ∞
P1X+,Σ

−j
S1Σ

i
P1

(
GW

[ 1

n∗

])]
SH(Z[ 1

2
])
= GWi

j(X)
[ 1

n∗

]

In case X is merely a regular Z[12 ]-scheme, the same property holds using the spectrum

p∗X(GW[ 1
n∗ ]), where pX : X → Spec(Z[12 ]) is the structural morphism.

5.5. The stable Adams operations. Recall from [PW19, §8] and [ST15, Theorem 1.3]
that GW2 is naturally isomorphic to the object Z×HGr in the homotopy category H(Z[12 ]),
where HGr denotes the infinite quaternionic Grassmannian. Thus, by [DF23, Theorem 4.1.4]
(where GW2

0(X) is denoted KSp0(X)) the Adams operations ψn : GW2
0(X) → GW2n

0 (X)
constructed in §5.1, where X runs over the smooth Z[12 ]-schemes, are induced by a unique

morphism ψn : GW2 → GW2n in H(Z[12 ]). Using the periodicity isomorphisms (1.a), we
obtain Adams operations:

(5.5.a) ψn : GW2i → GW2ni for i odd.

We will need the following complement to [DF23, Theorem 4.1.4]:

Lemma 5.5.1. Let E ∈ SH(Z[12 ]) be a Sp-oriented ring spectrum, and consider for a, b ∈ Z

the pointed motivic space E = Ω∞
P1Σ

a
S1Σ

b
P1E ∈ H(Z[12 ]). Let i1, . . . , ir ∈ Z be odd integers.

Then each map GW2i1 ∧ · · · ∧GW2ir → E in H(Z[12 ]) is determined by the induced maps

(5.5.b) GW2i1
0 (X1)× · · · ×GW2ir

0 (Xr) → [(X1 × · · · ×Xr)+, E ]H(Z[ 1
2
])

where X1, . . . ,Xr run over the smooth Z[12 ]-schemes.

Proof. By [PW19, §8], for j = 1, . . . , r, the pointed motivic space GW2ij can be expressed as a
(homotopy) colimit of pointed smooth Z[12 ]-schemes Ym,j = {−m, . . . ,m}×HGrm,j over m ∈
N, where HGrm,j denotes an appropriate symplectic Grassmannian. Set Ym = Ym,1∧· · ·∧Ym,r
and G = GW2i1 ∧ · · · ∧GW2ir . Then by [PW19, Theorem 10.1] we have an exact sequence

0 → lim
m

1[S1 ∧ Ym, E ]H(Z[ 1
2
]) → [G, E ]H(Z[ 1

2
]) → lim

m
[Ym, E ]H(Z[ 1

2
]) → 0.

The lim1-term vanishes by [PW19, Theorems 9.4,13.2,13.3] (see the proof of [PW19, Theo-
rem 13.1]). Thus a map G → E in H(Z[12 ]) is determined by its restrictions to [Ym, E ]H(Z[ 1

2
]),

for m ∈ N, each of which is determined by its restriction to [(Ym,1 × · · · ×Ym,r)+, E ]H(Z[ 1
2
]), in

view of [PW19, Lemma 7.6]. The latter is the image of the tuple of canonical maps

(Ym,1 → GW2i1 , . . . , Ym,r → GW2ir ) ∈ GW2i1
0 (Ym,1)× · · · ×GW2ir

0 (Ym,r)

under the map (5.5.b). �

We are now in position to follow the procedure described in [DF23, §4] to construct the
n-th stable Adams operation, for n ∈ N. For any integer i ∈ Z, consider the motivic space

GW2i
{ 1

n∗

}
= Ω∞

T ΣiT GW
[ 1

n∗

]
∈ H(Z[

1

2
]).
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The composite Σ∞
T GW2i → ΣiT GW → ΣiT GW[ 1

n∗ ] in SH(Z[12 ]) yields by adjunction a
morphism

(5.5.c) GW2i → GW2i
{ 1

n∗

}
in H(Z[

1

2
]),

while the morphism in SH(Z[12 ])

Σ∞
T

(
T ∧GW2i

{ 1

n∗

})
= ΣT Σ

∞
T GW2i

{ 1

n∗

}
ΣT (counit)
−−−−−−−→ ΣT Σ

i
T GW

[ 1

n∗

]
= Σi+1

T GW
[ 1

n∗

]

yields a morphism

(5.5.d) T ∧GW2i
{ 1

n∗

}
→ GW2(i+1)

{ 1

n∗

}
in H(Z[

1

2
]).

Using the morphism ω(n)−i of (5.4.e), we define a morphism in H(Z[12 ]), for i odd,

(5.5.e) Ψn
i : GW2i ψn

−−→ GW2ni (5.5.c)
−−−−→ GW2ni

{ 1

n∗

}
Ω∞

T
Σi

T
ω(n)−i

−−−−−−−−→ GW2i
{ 1

n∗

}
.

Proposition 5.5.2. Let i ∈ Z be odd and let n ∈ N. Then the diagram

T ∧2 ∧GW2i //

id
T ∧2 ∧ω(n)2ψn

��

GW2(i+2)

ψn

��

T ∧2 ∧GW2n(i+2)−4 // GW2n(i+2)

commutes in H(Z[12 ]), where the horizontal arrows are induced by the bonding map σ of (1.d).

Proof. Let X be a smooth Z[12 ]-scheme, and denote by p : HP1×HP1×X → X the projection.

Let u1, u2 ∈ GW2
0(HP

1 × HP1 × X) be the pullbacks of u ∈ GW2
0(HP

1) under the two
projections. Consider the diagram

GW2i
0 (X)

≃ //

ω(n)2ψn

��

GW
2(i+2)
0 (T ∧2 ∧X+)

ψn

��

// GW
2(i+2)
0 (HP1 ×HP1 ×X)

ψn

��

GW
2n(i+2)−4
0 (X)

≃ // GW
2n(i+2)
0 (T ∧2 ∧X+) // GW

2n(i+2)
0 (HP1 ×HP1 ×X)

where the horizontal composites are given by x 7→ p∗(x) · (u1 − τ)(u2 − τ). Then, for x ∈
GW2i

0 (X) we have by Proposition 5.1.1 and Proposition–Definition 5.3.1

ψn(p∗(x)·(u1−τ)(u2−τ)) = p∗(ψn(x))·ψn(u1−τ)·ψ
n(u2−τ) = ω(n)2·p∗(ψn(x))(u1−τ)(u2−τ),

showing that the exterior square in the above diagram commutes. Since the lower right
horizontal arrow is injective (e.g. by [PW19, Lemma 7.6]), it follows that the interior left
square commutes. By Lemma 5.5.1, this implies that the following diagram commutes

GW2i //

ω(n)2ψn

��

Ω2
T GW2(i+2)

Ω2
T
ψn

��

GW2n(i+2)−4 // Ω2
T GW2n(i+2)

which implies the statement by adjunction. �
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Corollary 5.5.3. Let i ∈ Z be odd and let n ∈ N. Then the diagram

T ∧2 ∧GW2i //

id
T ∧2 ∧Ψn

i

��

GW2(i+2)

Ψn
i+2

��

T ∧2 ∧GW2i{ 1
n∗ } // GW2(i+2){ 1

n∗ }

commutes in H(Z[12 ]), where the upper horizontal arrow is induced by the map (1.d), and the
lower one by (5.5.d).

Proof. We have a commutative diagram

T ∧2 ∧GW2n(i+2)−4 //

��

T ∧2 ∧GW2n(i+2)−4{ 1
n∗ }

id
T ∧2 ∧Ω∞

T
Σi

T
ω(n)−i−2

//

��

T ∧2 ∧GW2i{ 1
n∗ }

��

GW2n(i+2) // GW2n(i+2){ 1
n∗ }

Ω∞
T
Σi+2

T
ω(n)−i−2

// GW2(i+2){ 1
n∗ }

Combining this diagram with Proposition 5.5.2 yields the corollary, in view of (5.5.e). �

Proposition 5.5.4. For any r, n ∈ N, the natural morphism
[
GW∧r,GW

[ 1

n∗

]]
SH(Z[ 1

2
])
→ lim

i odd

[
(GW2i)∧r,GW2ir

{ 1

n∗

}]
H(Z[ 1

2
])

is bijective.

Proof. We use (the proof of) [PW19, Theorem 13.1] (which applies to S = Spec(Z[12 ]) by
[PW19, Theorems 13.2 and 13.3]), with the difference that BO = GW should be replaced by
GW[ 1

n∗ ], which does not affect any of the arguments appearing in its proof, by (5.4.f). This
yields the natural isomorphism

[
GW∧r,GW

[ 1

n∗

]]
SH(Z[ 1

2
])
→ lim

i∈N

[
(GW2i)∧r,GW2ir

{ 1

n∗

}]
H(Z[ 1

2
])
,

and the proposition follows using a cofinality argument. �

The transition maps in the limit appearing in Proposition 5.5.4 are given by the composite
[
(GW2(i+2))∧r,GW2(i+2)r

{ 1

n∗

}]
H(Z[ 1

2
])
→

[
(T ∧2 ∧GW2i)∧r,GW2(i+2)r

{ 1

n∗

}]
H(Z[ 1

2
])

=
[
(Σ2

T Σ
∞
T GW2i)∧r,Σ

(i+2)r
T GW

[ 1

n∗

]]
SH(Z[ 1

2
])

=
[
(Σ∞

T GW2i)∧r,ΣirT GW
[ 1

n∗

]]
SH(Z[ 1

2
])

=
[
(GW2i)∧r,GW2ir

{ 1

n∗

}]
H(Z[ 1

2
])
,

where the first map is given by composition with the map T ∧2 ∧GW2i → GW2(i+2) induced
by (5.5.d). It thus follows from Proposition 5.5.3 that the family Ψn

i of (5.5.e), for i odd,
defines an element of the limit appearing in Proposition 5.5.4 (with r = 1).
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Definition 5.5.5. For n ∈ N, we denote by

Ψn : GW → GW
[ 1

n∗

]
.

the morphism of spectra corresponding to the family Ψn
i of (5.5.e), for i odd, under the

bijection of Proposition 5.5.4 (with r = 1). We call it the stable n-th Adams operation.

Remark 5.5.6. If X is a regular Z[12 ]-scheme with structural morphism pX : X → Spec(Z[12 ])),
we obtain a morphism of spectra

Ψn : GWX = p∗X GW → p∗X

(
GW

[ 1

n∗

])
= (p∗X GW)

[ 1

n∗

]
= GWX

[ 1

n∗

]
.

For i ∈ Z, let us define

Ψ̃n
i = Ω∞

T ΣiT (Ψ
n) : GW2i → GW2ni

{ 1

n∗

}
.

Note that, by construction, we have Ψn
i = Ψ̃n

i when i is odd. Let us mention that the stable
Adams operation has the expected relation to the unstable one, also in even degrees:

Lemma 5.5.7. When X is a smooth Z[12 ]-scheme, for any i ∈ Z, the morphism GW2i
0 (X) →

GW2i
0 (X)[ 1

n∗ ] induced by Ψ̃n
i equals ω(n)−iψn.

Proof. This is true when i is odd, since Ψn
i = Ψ̃n

i in this case. Assume that i is even. Let
p : X ×HP1 → X be the projection. We have a commutative diagram

GW2i
0 (X)

∼ //

Ψ̃n
i
��

GW2i+2
0 (T ∧X+)

Ψ̃n
i+1

��

// GW2i+2
0 (HP1 ×X)

Ψ̃n
i+1

��

GW2i
0 (X)[ 1

n∗ ]
∼ // GW2i+2

0 (T ∧X+)[
1
n∗ ] // GW2i+2

0 (HP1 ×X)[ 1
n∗ ]

where the horizontal composites are given by x 7→ p∗(x) · (u − τ). Now, by the odd case
treated above, we have for x ∈ GW2i

0 (HP
1 ×X)

Ψ̃n
i+1(p

∗(x) · (u− τ)) = ω(n)−i−1ψn(p∗(x) · (u− τ)) by the odd case

= ω(n)−i−1 · p∗ψn(x) · ψn(u− τ) by Proposition 5.1.1

= p∗(ω(n)−i · ψn(x)) · (u− τ) by Proposition–Definition 5.3.1.

The statement then follows from the injectivity of the lower horizontal composite (e.g. by
[PW19, Lemma 7.6]). �

Theorem 5.5.8. For any integer n ∈ N, the stable Adams operation Ψn : GW → GW[ 1
n∗ ]

is a morphism of ring spectra.

Proof. We have first to check that the diagram in SH(Z[12 ])

(5.5.f)

GW∧GW
Ψn∧Ψn

//

��

GW[ 1
n∗ ] ∧GW[ 1

n∗ ]

��
GW

Ψn
// GW[ 1

n∗ ]
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commutes, where the vertical arrows are the multiplications. In view of Proposition 5.5.4,
we have to check that the following diagram, in which the vertical maps are induced by the
multiplication in the ring spectrum GW, commutes in H(Z[12 ]), for any i ∈ Z odd

GW2i ∧GW2i
Ψ̃n

i ∧Ψ̃
n
i //

��

GW2i{ 1
n∗ } ∧GW2i{ 1

n∗ }

��
GW4i

Ψ̃n
2i // GW4i{ 1

n∗ }.

By Lemma 5.5.1 and Lemma 5.5.7 (taking into account [PW19, Theorem 11.4]), this reduces
to the formula, when X,Y are smooth Z[12 ]-schemes and x ∈ GW2i

0 (X), y ∈ GW2i
0 (Y )

(5.5.g) p∗1(ω(n)
−iψn(x)) · p∗2(ω(n)

−iψn(x)) = ω(n)−2iψn(p∗1(x) · p
∗
2(y)) ∈ GW4i

0 (X × Y ),

where p1 : X × Y → X, p2 : X × Y → Y are the projections. But the formula (5.5.g) readily
follows from Proposition 5.1.1.

Next, we need to prove the commutativity of the diagram in SH(Z[12 ])

S
ε //

ε
##●

●●
●●

●●
●●

GW

Ψn

��
GW[ 1

n∗ ]

By adjunction, this reduces to the fact that

Ψ̃n
0 (1) = 1 ∈ GW0

0(SpecZ[
1

2
]),

a consequence of Lemma 5.5.7 and of the fact that ψn(1) = 1. �

Proposition 5.5.9. For any integers m,n ∈ N, the composite in SH(Z[12 ])

GW
Ψn

−−→ GW
[ 1

n∗

] Ψm[ 1
n∗ ]

−−−−−→ GW
[ 1

m∗

][ 1

n∗

]
= GW

[ 1

(mn)∗

]

is equal to Ψmn. (Here Ψm[ 1
n∗ ] denotes the image of the morphism Ψm under the localisation

functor, and the last equality follows from (5.4.c).)

Proof. For every i ∈ Z, applying the functor Ω∞
T ΣiT : SH(Z[12 ]) → H(Z[12 ]) to the morphism

Ψm[ 1
n∗ ] : GW[ 1

n∗ ] → GW[ 1
(mn)∗ ] yields a morphism

Ψ̃m
i

{ 1

n∗

}
: GW2i

{ 1

n∗

}
→ GW2i

{ 1

(mn)∗

}
.

In view of Proposition 5.5.4, it will suffice to show that, for i ∈ N odd, the composite

GW2i Ψ̃n
i−−→ GW2i

{ 1

n∗

}
Ψ̃m

i−−→ GW2i
{ 1

(mn)∗

}

equals Ψ̃mn
i in H(Z[12 ]). By Lemma 5.5.1 and Lemma 5.5.7, it will then suffice to show that,

for each odd i ∈ N and each smooth Z[12 ]-scheme X, the composite

GW2i
0 (X)

ω(n)−i·ψn

−−−−−−→ GW2i
0 (X)

[ 1

n∗

]
ω(m)−i·ψm

−−−−−−−→ GW2i
0 (X)

[ 1

(mn)∗

]
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equals ω(mn)−i · ψmn. But this follows from Proposition 5.1.1 and Lemma 5.3.2. �

6. Ternary laws for Hermitian K-theory

Recall from [DF23, §2.3] that ternary laws are the analogues for Sp-oriented cohomology
theories (or spectra) of formal group laws for oriented cohomology theories. In short, the
problem is to understand the Borel classes (in the relevant cohomology theory) of the sym-
plectic bundle U1 ⊗ U2 ⊗ U3 on HPn × HPn × HPn, where Ui are the universal bundles on
the respective factors. The ternary laws permit to compute Borel classes of threefold prod-
ucts of symplectic bundles. At present, there are few computations of such laws, including
MW-motivic cohomology and motivic cohomology which are examples of the so-called addi-
tive ternary laws [DF23, Definition 3.3.3]. In this section, we compute the ternary laws of
Hermitian K-theory (and thus also of K-theory as a corollary), which are not additive.

Our first task is to express the Borel classes in Hermitian K-theory in terms of the λ-
operations. We will denote by σi(X1, . . . ,X4) ∈ Z[X1, . . . ,X4] the elementary symmetric
polynomials.

Lemma 6.1. Let X be a Z[12 ]-scheme and let e1, . . . , e4 ∈ GW2
0(X) be the classes of rank two

symplectic bundles over X. Then

λi(e1 + · · · + e4) =





σ1(e1, . . . , e4) if i = 1.

σ2(e1, . . . , e4) + 4γ if i = 2.

σ3(e1, . . . , e4) + 3σ1(e1, . . . , e4)γ if i = 3.

σ4(e1, . . . , e4) + 2σ2(e1, . . . , e4)γ + 6γ2 if i = 4.

Proof. In view of (4.2.a), it suffices to expand the product

(1 + te1 + γt2)(1 + te2 + γt2)(1 + te3 + γt2)(1 + te4 + γt2). �

Lemma 6.2. In the ring Z[x1, x2, x3, x4, y], we have the following equalities:

σi(x1 − y, . . . , x4 − y) =





σ1 − 4y if i = 1,

σ2 − 3yσ1 + 6y2 if i = 2,

σ3 − 2σ2y + 3σ1y
2 − 4y3 if i = 3,

σ4 − σ3y + σ2y
2 − σ1y

3 + y4 if i = 4,

where σi = σi(x1, . . . , x4) for any i ∈ {1, . . . , 4}.

Proof. Direct computation. �

In the next statement bGW
i denotes the i-th Borel class with values in Hermitian K-theory

[PW21, Definition 8.3].

Proposition 6.3. Let X be a Z[12 ]-scheme. Let E be a symplectic bundle of rank 8 on X,

and e ∈ GW2
0(X) its class. Then we have:

bGW
i (E) =





e− 4τ if i = 1.

λ2(e)− 3τe+ 4(2 − 3ǫ)γ if i = 2.

λ3(e)− 2τλ2(e) + 3(1 − 2ǫ)γe− 8τγ if i = 3.

λ4(e)− τλ3(e)− 2ǫγλ2(e)− τγe+ 2γ2 if i = 4.
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Proof. Using the symplectic splitting principle [PW21, §10], we may assume that E splits as
an orthogonal sum of rank two symplectic bundles, whose classes in GW2

0(X) we denote by
e1, . . . , e4. The Borel classes b

GW
i (E) are then given by the elementary symmetric polynomials

in the elements e1 − τ, . . . , e4 − τ , which can be computed using Lemma 6.2. For i = 1, the
result is immediate. For i = 2, we have

σ2(e1 − τ, . . . , e4 − τ) = σ2(e1, . . . , e4)− 3τσ1(e1, . . . , e4) + 6τ2

and σ2(e1, . . . , e4) = λ2(e)− 4γ by Lemma 6.1. As τ2 = 2(1− ǫ)γ, we find

σ2(e1 − τ, . . . , e4 − τ) = λ2(e) − 4γ − 3τe+ 12(1 − ǫ)γ

proving the case i = 2. We now pass to the case i = 3. Using Lemma 6.2, we find

bGW
3 (E) = σ3(e1, . . . , e4)− 2τσ2(e1, . . . , e4) + 3τ2e− 4τ3

= λ3(e)− 3γe− 2τ(λ2(e)− 4γ) + 6(1− ǫ)γe− 16τγ

= λ3(e) + 3(1 − 2ǫ)γe− 2τλ2(e)− 8τγ.

In case i = 4, we have

bGW
4 (E) = σ4(e1, . . . , e4)− τσ3(e1, . . . , e4) + τ2σ2(e1, . . . , e4)− τ3e+ τ4.

Using Lemma 6.1, we find

σ4(e1, . . . , e4) = λ4(e) − 2σ2(e1, . . . , e4)γ − 6γ2 = λ4(e) − 2λ2(e)γ + 2γ2,

τσ3(e1, . . . , e4) = τ(λ3(e)− 3γe) = τλ3(e)− 3τγe,

τ2σ2(e1, . . . , e4) = 2(1− ǫ)γσ2(e1, . . . , e4) = 2(1− ǫ)γλ2(e)− 8(1− ǫ)γ2.

Since τ3e = 4τγe and τ4 = 8(1− ǫ)γ2, we conclude summing up the previous expressions. �

Our next task is to obtain an explicit formula for the λ-operations on products of three
classes of rank two symplectic bundles, providing a different proof of [Ana17, Lemma 8.2].
It will be useful to have a basis for the symmetric polynomials in three variables u1, u2, u3.
Following [DF23, §2.3.3], we set, for i, j, k ∈ N,

(6.a) σ(ui1u
j
2u
k
3) =

∑

(a,b,c)

ua1u
b
2u
c
3

where the sum runs over the monomials ua1u
b
2u
c
3 in the orbit of ui1u

j
2u
k
3 under the action of

the permutation of the variables u1, u2, u3.

Lemma 6.4. Let X be a Z[12 ]-scheme, and let u1, u2, u3 ∈ GW2
0(X) be the classes of rank

two symplectic bundles on X. Then

λi(u1u2u3) =





u1u2u3 if i = 1.

σ(u21u
2
2)γ − 2σ(u21)γ

2 + 4γ3 if i = 2.

σ(u31u2u3)γ
2 − 5u1u2u3γ

3 if i = 3.

σ(u41)γ
4 + u21u

2
2u

2
3γ

3 − 4σ(u21)γ
5 + 6γ6 if i = 4.

Proof. In view of (A.d) and (4.2.a), this follows from Lemma C.3.2. �

Finally, we are in position to compute the ternary laws of Hermitian K-theory. The com-
putation is obtained by combining Proposition 6.3 and Lemma 6.4 (applied to γ−1u1u2u3).
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Proposition 6.5. Let E1, E2, E3 be symplectic bundles of rank 2 on a Z[12 ]-scheme X. Let

u1, u2, u3 be their respective classes in GW2
0(X). Then the Borel class bGW

i (E1 ⊗ E2 ⊗E3) ∈
GW2i

0 (X) equals (using the notation of (6.a))




u1u2u3γ
−1 − 4τ if i = 1,

σ(u21u
2
2)γ

−1 − 2σ(u21)− 3τu1u2u3γ
−1 + 12(1 − ǫ)γ if i = 2,

σ(u31u2u3)γ
−1 − 2(1 + 3ǫ)u1u2u3 − 2τγ−1σ(u21u

2
2) + 4τσ(u21)− 16τγ if i = 3,

σ(u41) + u21u
2
2u

2
3γ

−1 − 4(1 − ǫ)γσ(u21)− 2ǫσ(u21u
2
2)− τσ(u31u2u3)γ

−1 + 4τu1u2u3 + 8(1− ǫ)γ2 if i = 4.

As a consequence of this proposition, we obtain the explicit expression of the ternary laws
associated to Hermitian K-theory (see [DF23, Definition 2.3.2]). We use the notation (6.a).

Theorem 6.6. The ternary laws Fi = Fi(v1, v2, v3) of Hermitian K-theory (over the base
Spec(Z[12 ])) are

F1 = 2(1−ǫ)σ(v1)+τγ
−1σ(v1v2)+γ

−1v1v2v3,

F2 = 2(1−2ǫ)σ(v21)+2(1− ǫ)σ(v1v2)+2τγ−1σ(v21v2)−3τγ−1v1v2v3+γ
−1σ(v21v

2

2),

F3 = 2(1−ǫ)σ(v3
1
)−2(1−ǫ)σ(v2

1
v2)+8(2−3ǫ)v1v2v3+τγ

−1σ(v3
1
v2)−2τγ−1σ(v2

1
v2
2
)+3τγ−1σ(v2

1
v2v3)+γ

−1σ(v3
1
v2v3),

F4 = σ(v41)−2(1−ǫ)σ(v31v2)+2(1−2ǫ)σ(v21v
2

2)+2(1−ǫ)σ(v21v2v3)−τγ
−1σ(v31v2v3)+2τγ−1σ(v21v

2

2v3)+γ
−1σ(v21v

2

2v
2

3).

Proof. We use the relations vi = ui − τ and the previous theorem. For b1, we find

u1u2u3 = v1v2v3 + τσ(v1v2) + τ2σ(v1) + τ3

and the result follows quite easily from τ2 = 2(1 − ǫ)γ and τ3 = 4τγ. For i = 2, we first
compute

σ(u21u
2
2) = σ(v21v

2
2)+2τσ(v21v2)+4(1− ǫ)γσ(v21)+8(1− ǫ)γσ(v1v2)+16τγσ(v1)+24(1− ǫ)γ2.

Next,

−2σ(u21) = −2σ(v1)
2 − 4τσ(v1)− 12(1 − ǫ)γ

As b2 = σ(u21u
2
2)γ

−1 − 2σ(u21)− 3τu1u2u3γ
−1 + 12(1 − ǫ), we finally obtain the result for b2.

We now treat the case i = 3, for which we have

b3 = σ(u31u2u3)γ
−1 + (−2− 6ǫ)u1u2u3 − 2τγ−1σ(u21u

2
2) + 4τσ(u21)− 16τγ

Now,

σ(u31u2u3) = σ(v31v2v3) + τσ(v31v2) + 2(1 − ǫ)γσ(v31) + 3τσ(v21v2v3) + 6(1− ǫ)γσ(v21v2)+

+12τγσ(v21) + 18(1 − ǫ)γv1v2v3 + 28τγσ(v1v2) + 40(1 − ǫ)γ2σ(v1) + 48τγ2

and we deduce that

b3 = 2(1 − ǫ)σ(v31)− 2(1− ǫ)σ(v21v2) + 8(2 − 3ǫ)v1v2v3 + τγ−1σ(v31v2)−

−2τγ−1σ(v21v
2
2) + 3τγ−1σ(v21v2v3) + γ−1σ(v31v2v3).

We conclude with the case i = 4. The Borel class reads

b4 = σ(u41) + γ−1σ(u21u
2
2u

2
3)− 2σ(u21u

2
2)− τγ−1σ(u31u2u3) + 4τu1u2u3+

+2(1− ǫ)σ(u21u
2
2)− 4(1 − ǫ)γσ(u21) + 8(1− ǫ)γ2.

First, we note that

σ(u41) = σ(v41) + 4τσ(v31) + 12(1 − ǫ)γσ(v21) + 16τγσ(v1) + 24(1 − ǫ)γ2.
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while

u21u
2
2u

2
3 = σ(v21v

2
2v

2
3) + 2τσ(v21v

2
2v3) + 2(1− ǫ)γσ(v21v

2
2) + 8(1− ǫ)γσ(v21v2v3)+

+8τγσ(v21v2)+32τγv1v2v3+8(1− ǫ)γ2σ(v21)+32(1− ǫ)γ2σ(v1v2)+32τγ2σ(v1)+32(1− ǫ)γ3.

Using the above, we finally find

b4 = σ(v41)− 2(1− ǫ)σ(v31v2) + 2(1− 2ǫ)σ(v21v
2
2) + 2(1 − ǫ)σ(v21v2v3)−

−τγ−1σ(v31v2v3) + 2τγ−1σ(v21v
2
2v3) + γ−1σ(v21v

2
2v

2
3).

�

Remark 6.7. The ternary laws of the spectrum W representing (Balmer) Witt groups have
been computed by Ananyevskiy in [Ana17, Lemma 8.2]. In view of the morphism of ring
spectra GW → W, we may recover this result by setting 1 − ǫ = 0 and τ = 0 in the above
expression.

The above theorem yields an expression of the ternary laws of K-theory (those can of
course be computed more directly). As above, we want to write the Borel classes of threefold
products of symplectic bundles in terms of the first Borel classes of the bundles, and we
may use the forgetful functor from Hermitian K-theory to ordinary K-theory. Regarding
periodicity, the forgetful functor maps τ to 2β2 and γ to β4, where β is the Bott element (of
bidegree (2, 1)).

Theorem 6.8. The ternary laws Fi = Fi(v1, v2, v3, v4) of K-theory are

F1 = 4σ(v1)+2β−2σ(v1v2)+β
−4v1v2v3,

F2 = 6σ(v21)+4σ(v1v2)+4β−2σ(v21v2)−6β−2v1v2v3+β
−4σ(v21v

2
2),

F3 = 4σ(v31)−4σ(v21v2)+40v1v2v3+2β−2σ(v31v2)−4β−2σ(v21v
2
2)+6β−2σ(v21v2v3)+β

−4σ(v31v2v3),

F4 = σ(v41)−4σ(v31v2)+6σ(v21v
2
2)+4σ(v21v2v3)−2β−2σ(v31v2v3)+4β−2σ(v21v

2
2v3)+β

−4v21v
2
2v

2
3 .

Appendix A. λ-rings

Here we recall a construction from [BGI71, V, §2.3]; a more accessible exposition can be
found in [AT69, §1], where the terminology “λ-ring”/“special λ-ring” is used instead of “pre-
λ-ring”/“λ-ring”. Let R be a commutative ring. One defines a ring Λ(R), whose underlying
set is 1 + tR[[t]]. The addition in Λ(R) is given by multiplication of power series, while
multiplication in Λ(R) is given by the formula

(∑

n∈N

fnt
n
)
·
(∑

n∈N

gnt
n
)
=

∑

n∈N

Pn(f1, . . . , fn, g1, . . . , gn)t
n,

where Pn are certain universal polynomials defined in (C.1.a) below. In this ring the neutral
element for the addition is the constant power series 1, and the multiplicative identity is the
power series 1 + t. A structure of pre-λ-ring on R is a morphism of abelian groups

(A.a) λt = λRt : R→ Λ(R) ; r 7→
∑

n∈N

λn(r)tn.
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When R,S are pre-λ-rings, a ring morphism f : R→ S is called a morphism of pre-λ-rings if
it commutes with the operations λn, i.e. if the following diagram commutes

Λ(R)
Λ(f)

// Λ(S)

R
f //

λRt

OO

S

λSt

OO

When R is a ring, a pre-λ-ring structure on Λ(R) is defined by setting for j ∈ Nr {0}

λj
(∑

n∈N

fnt
n
)
=

∑

i∈N

Qi,j(f1, . . . , fij)t
i,

where Qi,j are certain universal polynomials defined in (C.2.a). Then R 7→ Λ(R) defines a
functor from the category of rings to that of pre-λ-rings.

A pre-λ-ring R is called a λ-ring if λt is a morphism of pre-λ-rings. This amounts to the
following relations, for all n, i, j ∈ Nr {0}:

(A.b) λn(xy) = Pn(λ
1(x), . . . , λn(x), λ1(y), . . . , λn(y)) for x, y ∈ R,

(A.c) λi(λj(z)) = Qi,j(λ
1(z), . . . , λij(z)) for z ∈ R.

Note that if E is a subset of R such that (A.b) and (A.c) are satisfied for all x, y, z ∈ E, then
(A.b) and (A.c) are satisfied for all x, y, z lying in the subgroup generated by E in R.

Note also that if R is a λ-ring, and x, y, z ∈ R, it follows from Lemma C.3.1 that

(A.d) λn(xyz) = Rn(λ
1(x), . . . , λn(x), λ1(y), . . . , λn(y), λ1(z), . . . , λn(z)),

where Rn is a polynomial defined in §C.3.

Lemma A.1. Let R be a commutative ring and x ∈ R. Then in Λ(R) we have

λ1(1 + xt) = 1 + xt and λi(1 + xt) = 0 for i > 1.

Proof. This amounts to verifying thatQij(x, 0, . . .) = x when i = j = 1, and thatQij(x, 0, . . .) =
0 when i > 1 or j > 1, which follows at once from (C.2.a) under U1 7→ x and Us 7→ 0 for
s > 0. �

Lemma A.2. Let R be a commutative ring and x ∈ R. Let fi ∈ R for i ∈ N be such that
f0 = 1. Then (∑

n∈N

fnt
n
)
· (1 + xt) =

∑

n∈N

fnx
ntn ∈ Λ(R).

Moreover, if x ∈ R×, then 1 + xt is invertible in Λ(R), and (1 + xt)i = 1 + xit for all i ∈ Z.

Proof. The first formula amounts to verifying that Pn(f1, . . . , fn, x, 0, . . .) = fnx
n, which

follows from (C.1.a) (and (C.0.a)) under V1 7→ x and Vj 7→ 0 for j > 1. �

Lemma A.3. Let R be a λ-ring, and consider the ring of Laurent polynomials R[x±1] with
coefficients in R. Then there exists a unique structure of λ-ring on R[x±1] such that R →
R[x±1] is a morphism of pre-λ-rings and λt(x) = 1 + xt. In addition,

λn(rxi) = λn(r)xni for any r ∈ R, i ∈ Z, n ∈ N.
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Proof. Let S = R[x±1]. By Lemma A.2, the element 1 + xt ∈ Λ(S) is invertible and there
exists then a unique pre-λ-ring structure λt : S → Λ(S) such that λt(x) = 1 + xt and R → S
is a morphism of pre-λ-rings. Consider the diagram

Λ(S)
Λ(λSt ) // Λ(Λ(S))

Λ(R)
Λ(λRt )

//

cc●●●●●●●●

Λ(Λ(R))

88rrrrrrrrrr

R
λRt //

λRt

OO

{{✇✇
✇✇
✇✇
✇✇
✇✇
✇

Λ(R)

λ
Λ(R)
t

OO

&&▲▲
▲▲

▲▲
▲▲

▲▲

S
λSt //

λSt

OO

Λ(S)

λ
Λ(S)
t

OO

Using the fact that Λ(R) and Λ(S) are λ-rings [AT69, Theorem 1.4], we see that all maps are
ring morphisms. The interior middle square is commutative because R is a λ-ring, and the
right one because Λ(R) → Λ(S) is a morphism of pre-λ-rings. Commutativity of each of the
other three interior squares follows from the fact that R → S is a morphism of pre-λ-rings.
We conclude that the exterior square is a diagram of R-algebras. To verify its commutativity
it thus suffices to observe its effect on x ∈ S, which is done using Lemma A.1. We have
proved that S is λ-ring. The last statement follows from Lemma A.2. �

Appendix B. Graded rings

Let S = S0 ⊕ S1 be a commutative Z/2-graded ring. There is a general procedure to
construct a commutative Z-graded ring out of S, which we now explain. We may consider
the ring of Laurent polynomials S[x±1] as a graded ring by setting |x| = 1 and |s| = 0 for any

s ∈ S. We consider the Z-graded subgroup Ŝ ⊂ S[x±1] defined by

Ŝi := S(i mod 2) · x
i, for i ∈ Z.

It is straightforward to check that Ŝ is in fact a Z-graded subring of S[x±1], and that the

canonical homomorphism of abelian groups S → Ŝ defined by u 7→ uxi for u ∈ Si and i = 0, 1,
has the property that the composite with the projection

S → Ŝ
π
−→ Ŝ/(x2 − 1)

is an isomorphism of Z/2-graded rings.

Suppose next that G is an abelian group, and that S is a G-graded ring having the structure
of a λ-ring. We will say that S is a G-graded λ-ring if λi(r) ∈ Sig for any i ∈ N, any g ∈ G
and any r ∈ Sg. As a corollary of Lemma A.3, we obtain the following result.

Lemma B.1. Let S be a commutative Z/2-graded λ-ring. Then, the structure of λ-ring on

S[x±1] defined in Lemma A.3 induces a λ-ring structure on Ŝ which turns it into a Z-graded

λ-ring. If r ∈ Ŝi for some i ∈ Z, there exists a unique s ∈ S(i mod 2) such that r = sxi and
we have

λn(r) = λn(s)xni ∈ Ŝni.
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Appendix C. Some polynomial identities

When U1, . . . , Um is a series of variables, we denote by σn(U) ∈ Z[U1, . . . , Um] the elemen-
tary symmetric functions, defined by the formula, valid in Z[U1, . . . , Um][t],

(C.0.a)
∏

1≤i≤m

(1 + tUi) =
∑

n∈N

tnσn(U).

C.1. The polynomials Pn. By the theory of symmetric polynomials, there are polynomials
Pn ∈ Z[X1, . . . ,Xn, Y1, . . . , Yn] such that

(C.1.a)
∏

1≤i,j≤m

(1 + tUiVj) =
∑

n∈N

tnPn(σ1(U), . . . , σn(U), σ1(V ), . . . , σn(V ))

holds in Z[U1, . . . , Um, V1, . . . , Vm][t] for every m.
Let R be a commutative ring. For every x ∈ R, let us define elements ℓi(x) ∈ R for each

integer i ≥ 1 by the formula

(C.1.b) ℓi(x) =





x if i = 1,

1 if i = 2,

0 if i > 2.

For elements a1, . . . , ar ∈ R×, we consider the polynomial

(C.1.c) πa1,...,ar(t) =
∏

ε1,...,εr∈{1,−1}

(1 + taε11 · · · aεnn ) ∈ R[t].

These polynomials can be expressed inductively as

(C.1.d) πa1,...,ar(t) = πa1,...,ar−1(tar) · πa1,...,ar−1(ta
−1
r ).

Note that for any a ∈ R×

πa(t) = 1 + (a+ a−1)t+ t2,

and for any a, b ∈ R×, setting x = a+ a−1 and y = b+ b−1,

(C.1.e) πa,b(t) = 1 + txy + t2(x2 + y2 − 2) + t3xy + t4.

Lemma C.1.1. Let R be a commutative ring and x, y ∈ R. Then

Pn(ℓ1(x), . . . , ℓn(x), ℓ1(y), . . . , ℓn(y)) =





1 if n ∈ {0, 4},

xy if n ∈ {1, 3},

x2 + y2 − 2 if n = 2,

0 if n > 4.

Proof. Consider the ring S = R[a, a−1, b, b−1]/(x− a− a−1, y − b− b−1). Then S contains R.
We have σi(a, a

−1) = ℓi(x) and σi(b, b
−1) = ℓi(y) for all i, so that, by (C.1.a) and (C.1.c)

πa,b(t) =
∑

n

Pn(ℓ1(x), . . . , ℓn(x), ℓ1(y), . . . , ℓn(y))t
n.

Thus the statement follows from (C.1.e). �
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Lemma C.1.2. Let R be a commutative ring and n ∈ Nr{0}. Then for every r1, . . . , rn ∈ R,
the element

Pn(r1, . . . , rn, ℓ1(B), . . . , ℓn(B))−Bnrn ∈ R[B]

is a polynomial in B of degree ≤ n− 1.

Proof. We may assume that R = Z[X1, . . . ,Xn] and that ri = Xi for all i = 1, . . . , n. By
algebraic independence of the elementary symmetric polynomials, the ring R is then a subring
of R′ = Z[U1, . . . , Un], via Xi 7→ σi(U). The ring S = R′[B,A,A−1]/(B − A − A−1) then
contains R′[B], and thus also R[B]. Since σi(A,A

−1) = ℓi(B) for all i, we have in S[t]

n∑

i=1

Pi(σ1(U), . . . , σn(U), ℓ1(B), . . . , ℓn(B))ti =
n∏

i=1

(1 + tUiA)(1 + tUiA
−1),

and thus, in R′[B][t],

n∑

i=1

Pi(σ1(U), . . . , σn(U), ℓ1(B), . . . , ℓn(B))ti =

n∏

i=1

(1 + tUiB + t2U2
i ).

Expanding the last product and looking at the tn-coefficients of both sides of the equation, we
see that Pn(σ1(U), . . . , σn(U), ℓ1(B), . . . , ℓn(B)) has leading term Bnσn(U) as a polynomial
in B (in view of (C.0.a)). �

C.2. The polynomials Qi,j. By the theory of symmetric polynomials, there are polynomials
Qi,j ∈ Z[X1, . . . ,Xij ] (where i, j ∈ N) such that

(C.2.a)
∏

1≤α1<···<αj≤m

(1 + Uα1 · · ·Uαj
t) =

∑

i∈N

tiQi,j(σ1(U), . . . , σij(U))

holds in Z[U1, . . . , Um][t] for every m. For instance, we have Q1,j = Xj for any j ∈ Nr {0}.

Lemma C.2.1. Let R be a commutative ring and x ∈ R. Then

Qi,j(ℓ1(x), . . . , ℓij(x)) =





ℓi(x) if j = 1 and i 6= 0,

1 if i = 1 and j = 2, or if i = 0,

0 otherwise.

Proof. Let S = R[a, a−1]/(x − a − a−1). Then S contains R. Setting w1 = a, w2 = a−1 and
wk = 0 in S for k > 2, we have σk(w) = ℓk(x) for all k. Thus for all j ∈ N

∑

i∈N

tiQi,j(ℓ1(x), . . . , ℓij(x))
(C.2.a)
=

∏

1≤α1<···<αj≤m

(1 + wα1 · · ·wαj
t) =





1 + tx+ t2 if j = 1,

1 + t if j = 2,

1 otherwise.
�

C.3. The polynomials Rn. By the theory of symmetric polynomials, there are polynomials
Rn ∈ Z[X1, . . . ,Xn, Y1, . . . , Yn, Z1, . . . , Zn] such that

∏

1≤i,j,k≤m

(1 + tUiVjWk) =
∑

n∈N

tnRn(σ1(U), . . . , σn(U), σ1(V ), . . . , σn(V ), σ1(W ), . . . , σn(W ))

holds in Z[U1, . . . , Um, V1, . . . , Vm,W1, . . . ,Wm][t] for every m.
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Lemma C.3.1. For n ≤ m, we have in Z[X1, . . . ,Xm, Y1, . . . , Ym, Z1, . . . , Zm]

Rn = Pn(X1, . . . ,Xn, P1(Y1, Z1), . . . , Pn(Y1, . . . , Yn, Z1, . . . , Zn)).

Proof. Observe that, in Z[U1, . . . , Um, V1, . . . , Vm][t],

∏

1≤i,j≤m

(1 + tUiVj) =

m∏

i=1

m∏

j=1

(1 + tUiVj)
(C.0.a)
=

m∏

i=1

(∑

n∈N

σn(V )Uni t
n
)
.

Since the elements Yr = σr(V ) for r = 1, . . . ,m are algebraically independent, in view of
(C.1.a) it follows that we have in Z[U1, . . . , Um, Y1, . . . , Ym][t], (writing Ys = 0 for s > m)

(C.3.a)
∑

n∈N

Pn(σ1(U), . . . , σn(U), Y1, . . . , Yn)t
n =

m∏

i=1

(∑

n∈N

YnU
n
i t
n
)
.

Now in Z[V1, . . . , Vm,W1, . . . ,Wm], set for any n ∈ N,

pn = Pn(σ1(V ), . . . , σm(V ), σ1(W ), . . . , σm(W )),

so that, in Z[U1, . . . , Um, V1, . . . , Vm,W1, . . . ,Wm][t],

∏

1≤i,j,k≤m

(1 + tUiVjWk)
(C.1.a)
=

m∏

i=1

(∑

n∈N

pnU
n
i t
n
)

(C.3.a)
=

∑

n∈N

Pn(σ1(U), . . . , σn(U), p1, . . . , pn)t
n.

Since the elements Xr = σr(U), Yr = σr(V ), Zr = σr(W ) for r = 1, . . . ,m are algebraically
independent, this yields the statement. �

Lemma C.3.2. Let R be a commutative ring and x, y, z ∈ R. Then

Rn(ℓ1(x), . . . , ℓn(x), ℓ1(y), . . . , ℓn(y), ℓ1(z), . . . , ℓn(z))

=





1 if n ∈ {0, 8},

xyz if n ∈ {1, 7},

x2y2 + x2z2 + y2z2 − 2(x2 + y2 + z2) + 4 if n ∈ {2, 6},

x3yz + xy3z + xyz3 − 5xyz if n ∈ {3, 5},

x4 + y4 + z4 + x2y2z2 − 4(x2 + y2 + z2) + 6 if n = 4,

0 if n > 8.

Proof. Consider the ring S = R[a, a−1, b, b−1, c, c−1]/(x − a − a−1, y − b − b−1, z − c − c−1).
Then S contains R. We have σi(a, a

−1) = ℓi(x), σi(b, b
−1) = ℓi(y), σi(c, c

−1) = ℓi(z) for all i.
Writing rn = Rn(ℓ1(x), . . . , ℓn(x), ℓ1(y), . . . , ℓn(y), ℓ1(z), . . . , ℓn(z)), we have by definition of
Rn and (C.1.c)

πa,b,c(t) =
∑

n∈N

rnt
n ∈ S[t].

Since πa,b,c(t) = πa,b(tc) · πa,b(tc
−1) by (C.1.d), it follows from (C.1.e) that πa,b,c(t) equals

(1+ txyc+ t2(x2+y2−2)c2+ t3xyc3+ t4c4)(1+ txyc−1+ t2(x2+y2−2)c−2+ t3xyc−3+ t4c−4).

To conclude, we compute the coefficients rn by expanding the above product. We have
r0 = r8 = 1 and rn = 0 for n > 8, as well as

r1 = r7 = xy(c+ c−1) = xyz.
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Using the fact that c2 + c−2 = z2 − 2, we have

r2 = r6 = (x2 + y2 − 2)(c2 + c−2) + x2y2 = x2y2 + x2z2 + y2z2 − 2(x2 + y2 + z2) + 4.

Now c3 + c−3 = z3 − 3z, hence

r3 = r5 = xy(c3 + c−3) + (x2 + y2 − 2)xy(c + c−1) = x3yz + xy3z + xyz3 − 5xyz.

Finally c4 + c−4 = z4 − 4z2 + 2, hence

r4 = c4 + c−4 + x2y2(c2 + c−2) + (x2 + y2 − 2)2 = x4 + y4 + z4 + x2y2z2 − 4(x2 + y2 + z2) + 6.

�
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