THE STABLE ADAMS OPERATIONS ON HERMITIAN K-THEORY

JEAN FASEL AND OLIVIER HAUTION

ABSTRACT. We prove that exterior powers of (skew-)symmetric bundles induce a A-ring
structure on the ring GW°(X) @ GW?(X), when X is a scheme where 2 is invertible. Using
this structure, we define stable Adams operations on Hermitian K-theory. As a byproduct
of our methods, we also compute the ternary laws associated to Hermitian K-theory.
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From their introduction by Adams in his study of vector fields on spheres [Ada62], Adams
operations have been extremely useful in solving various problems in topology, algebra and
beyond. One may mention for instance the proof of Serre vanishing conjecture by Gillet-Soulé
[(GS87], or their use in intersection theory. In algebraic geometry, the work of several authors
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permitted to extend these operations (initially defined at the level of the Grothendieck group
Kjy) to the whole world of K-theory; the most recent and probably most natural extension
being due to Riou [Riol0] using (stable) motivic homotopy theory.

Over a scheme X, it is often useful to study vector bundles endowed with some extra dec-
oration, such as a symmetric or a symplectic form. The analogues of the Grothendieck group
Ko(X) in this context are the so-called Grothendieck—-Witt groups (or Hermitian K-theory
groups) GW*(X) for i € Z/4 (see e.g. [Sch17]), which classify symmetric and symplectic bun-
dles [Wal03]. Very often, the constructions and questions pertaining to algebraic K-theory
can be generalized to the context of Grothendieck—Witt groups. For instance, Serre’s Vanish-
ing Conjecture makes sense in this broader context [FS08].

As for the Adams operations, Zibrowius [Zib15, Zib18] has proved that the exterior power
operations on symmetric bundles yield a A-ring structure on the Grothendieck—Witt group
GWY(X) of any smooth variety X over a field of characteristic not two. This provides in
particular Adams operations on these groups. It is not very difficult to construct A-operations
in GWY(X), and a significant portion of the papers [Zib15, Zib18] consists in showing that this
pre-A-ring is actually a A-ring, which means that the A-operations verify certain additional
relations pertaining to their multiplicative and iterative behaviour. In particular, it is not
so difficult to construct the Adams operations ¢, but much harder to show that they are
multiplicative and verify the relations ¢¥™" = ¢ o ¢™. To prove that GWO(X ) is a A-ring,
Zibrowius followed the strategy used in [BGI71] for the analog problem in K-theory, and
reduced the question to proving that the symmetric representation ring GW?(G) of an affine
algebraic group G (over a field of characteristic not two) is a A-ring. This is done by further
reducing to the case when G is the split orthogonal group, and using explicit descriptions of
the representations of certain subgroups in that case.

A first purpose of this paper is to extend the construction of Zibrowius in two directions:

(1) allow X to be an arbitrary quasi-compact quasi-separated Z[%]—Scheme admitting an
ample family of line bundles,
(2) replace GW?(X) with GW=(X), the ring of symmetric and symplectic forms.

The objective is achieved by first showing that the map GW°(G) — GW(Gq) is injective,
when G is a split reductive algebraic group over Z[%] Since the target is a A-ring by the
result of Zibrowius, so is GW?(G), and thus also GW?(X) when X is as in (1).

For (2), a natural strategy is to mimic Zibrowius’s proof, by considering not just symmetric
representations of algebraic groups, but also skew-symmetric ones. Although we believe that
this idea might work, we were not able to implement it satisfyingly. Instead we observe that
we may pass from GW™(X) to GWT(X) using the quaternionic projective bundle theorem
[PW21].

The Witt groups are natural companions of the Grothendieck—Witt groups, obtained from
them by modding out the hyperbolic classes. Their behaviour is somewhat easier to under-
stand, and they keep track of an important part of the quadratic information, while forgetting
some of the K-theoretic information. Our A-ring structure on the Grothendieck—Witt groups
does not descend to one on the Witt groups. There is a good reason for this: the Witt
ring cannot admit a (functorial) A-ring structure, because it takes the value Fy on every al-
gebraically closed field, and Fy has no such structure. Nonetheless, we prove that the odd
Adams operations (as well as the even ones when additionally —1 is a square) do descend to
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operations on the Witt ring. It would be interesting to find algebraic axioms describing a
weak form of the structure of A-ring (including odd Adams operations) which applies to the
Witt ring, but we will not investigate this question further in this paper.

The next natural step consists in considering the groups GWi(X ) for ¢ odd, as well as
the higher Grothendieck—Witt groups GW;(X ) for j € Z. To do so, we focus on Adams
operations, and follow the approach pioneered by Riou [Riol0] to construct stable versions
of those. The fact that GWi(X ) is a A-ring ends up being a crucial input, allowing us
to understand the behaviour of the Adams operations with respect to stabilization. This
approach is carried out in Section 5, where we build a morphism of motivic ring spectra, for
any integer n € N

" GW - GW [H
Here the left-hand side is the spectrum representing Hermitian K-theory and the right-hand
side is the same after inversion of the class n* € GW™(X), which equals n when n is odd, and
the class of the hyperbolic n-dimensional symmetric form when n is even. These operations
extend the Adams operations on K-theory, in the sense that there is a commutative diagram
of motivic ring spectra

ew X GWL]

.

BGL —~ BGL[4]

in which the vertical morphisms are the forgetful maps and the bottom horizontal morphism
is the Adams operation on K-theory defined by Riou [Riol0, Definition 5.3.2].

When n is even, inverting n* in GW™(X) seems to be a fairly destructive procedure, so
in practice the stable even Adams operations are unlikely to be very valuable improvements
of their K-theoretic counterparts. By contrast, we expect that the odd operations will be
useful in many situations. For instance, Bachmann and Hopkins recently used them in [BH20]
to compute the n-inverted homotopy sheaves of the algebraic symplectic and special linear
cobordism spaces. Their construction of Adams operations is quite different in spirit to the
one presented here but satisfy (almost) the same properties (see [BH20, Remark 3.2]).

In the last section of this paper, we offer an application under the form of the computation
of the ternary laws associated to Hermitian K-theory. These laws are the analogue, in the
context of Sp-oriented ring spectra, of the formal group laws associated to any oriented ring
spectrum. In short, they express the characteristic classes of a threefold product of sym-
plectic bundles of rank 2, and are expected to play an important role in the classification of
Sp-oriented cohomology theories. We refer the interested reader to [DF23] for more informa-
tion on these laws.

Acknowledgments. The first named author is grateful to Aravind Asok, Baptiste Calmes
and Frédéric Déglise for useful discussions. Both authors warmly thank Alexey Ananyevskiy
for sharing a preprint on Adams operations which has been a source of inspiration for the
results of the present paper, and Tom Bachmann for very useful suggestions. They also
heartily thank the referee for a careful reading and useful comments that helped correct
mistakes and improve the exposition.
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1. GROTHENDIECK—WITT GROUPS AND SPECTRA

All schemes will be assumed to be quasi-compact and quasi-separated, and to admit an
ample family of line bundles.

Let X be a scheme. In this paper, we will denote by GW™*(X), resp. GW™(X), the
Grothendieck—Witt group of symmetric forms, resp. skew-symmetric forms, defined e.g. in
[Wal03, §6] using the exact category of vector bundles over X. The product of two skew-
symmetric forms being symmetric, we have a pairing

GW™(X) x GW™(X) - GWT(X)
turning GW*(X) = GWT(X) @ GW~(X) into a (commutative) Z/2-graded ring.

Assume now that X is a scheme over Z[1]. Following [Schi17, Definition 9.1], we can consider
the Grothendieck-Witt groups GW’(X) for any i, j € Z which are 4-periodic in i in the sense
that there are natural isomorphisms GW;-(X ) GW§+4(X ) for any i € Z. For X affine and
i = 0, the groups GW?(X ) are (naturally isomorphic to) the orthogonal K-theory groups
KO;(X) as defined by Karoubi, while for ¢ = 2 (and X still affine) the groups GW?(X ) are
(naturally isomorphic to) the symplectic K-theory groups KSp,;(X) ([Sch17, Corollary A.2]).

Also by [Wal03, Theorem 6.1] and [Sch17, Proposition 5.6] we have natural isomorphisms
GWT(X) ~ GWJ(X) and GW(X) ~ GW3(X).

Notation 1.1. We will denote by h € GW{(Spec(Z[1])), resp. T € GW§(Spec(Z[3])), the
class of the hyperbolic symmetric, resp. skew-symmetric, bilinear form. When u € (Z[%])X, we

will denote by (u) € GW{(Spec(Z[3])) the class of the symmetric bilinear form (z,y) — uzy,
and write e = —(—1). Thush=1—e.

The collection of groups GW;- (X) fit into a well-behaved cohomology theory, which is SL‘-
oriented by [PW19, Theorem 5.1], and in particular Sp-oriented. The functors X GW;(X )

are actually representable by explicit (geometric) spaces GW? in the A'-homotopy category
H(Z[3]) of Morel-Voevodsky (see [ST15, Theorem 1.3])

Further, one can express the aforementioned periodicity under the following form: there
exists an element v € GW{(Spec(Z[$])) such that multiplication by ~ induces the periodicity

isomorphisms

(1L.a) GW' ~ GW* ™,
When X is a Z[3]-scheme, the Z-graded ring
(1.b) GW§'™ (X) == P GW¢ (X)
JEZ

can be identified with the Z-graded subring GW=*(X) of GW*(X)[z*!] defined in Appendix B
(where v corresponds to x?), and we have a canonical isomorphism of Z/2-graded rings
GWEn(X)/(y — 1) = GW(X).

The Pl-projective bundle theorem of Schlichting [Sch17, Theorem 9.10] allows to build a
ring spectrum GW in S’H(Z[%]), having the property to represent Hermitian K-theory. A
convenient construction is recalled in [PW19, Theorem 12.2], and we explain the relevant
facts in the next few lines in order to fix notations.
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Recall first that Panin and Walter [P\W21] defined a smooth affine Z[$]-scheme HP™ for any
n € N, called the quaternionic projective space. On HP", there is a canonical bundle U of rank
2 endowed with a symplectic form ¢, yielding a canonical element u = (U, ¢) € GW ™ (HP™).
For any n € N, there are morphisms

(1.c) in: HP" — HP"!

such that ifu = u, whose colimit (say in the category of sheaves of sets) is denoted by
HP>. It is a geometric model of the classifying space BSp, of rank 2 symplectic bundles. As
HP? = Spec(Z[3]), we consider all these schemes as pointed by ig and note that ij(u) = 7.
Recall moreover from [PW 19, Theorem 9.8] that HP! is Al-weak equivalent to (P!)"2. In fact
HP! = 4, where the latter is the affine scheme considered for instance in [ADF16].

Notation 1.2. We set 7 := HP', that we consider as pointed by ig. We also denote by Q7
the right adjoint of the endofunctor 7 A (=) of H(Z[$]).

The spectrum GW is defined as the T-spectrum whose component in degree n is GW?"
and bonding maps

(1.d) o: T AGW — GW2+2

induced by multiplication by the class u—7 in GWZ(7). This T-spectrum determines uniquely
a Pl-spectrum in view of [Rio07, Proposition 2.22] or [PW19, Theorem 12.1], which has the
property that .

GW3(X) = [E51 X4, B! Bp1 GW]S?—[(Z[%])
for a smooth Z[$]-scheme X.

If now X is a regular Z[]-scheme with structural morphism px: X — Spec(Z[3]), we
can consider the functor p% : SH(Z[3]) — SH(X) and the spectrum p% GW. On the other
hand, one can consider the ]P%(—spectrum GW x representing Grothendieck—Witt groups in
the stable category SH(X). It follows from [PW19, discussion before Theorem 13.5] that the
natural map py GW — GWx is in fact an isomorphism. Consequently,

GW)(X) =[S X1, X5 Shipk GWsu(x)

and we say that GW is an absolute P'-spectrum over Z[%] It is in fact an absolute ring
spectrum by [PW19, Theorem 13.4].

2. EXTERIOR POWERS AND RANK TWO SYMPLECTIC BUNDLES

When V is a vector bundle on a scheme X, we denote its dual by VV. A bilinear form on
V is a morphism of vector bundles v: V — VY. When z,y € H°(X,V), we will sometimes
write v(x,y) instead of v(z)(y). We will abuse notation, and denote by A"v, for n € N, the

bilinear form on A"V given by the composite A"V A, A" (VY) = (A"V)V. We will also
denote the pair (A"V, A"v) by A™(V,v). Similar conventions will be used for the symmetric
or tensor powers of bilinear forms, or their tensor products.

Explicit formulas for symmetric and exterior powers are given as follows. Let n be an
integer, and denote by &,, the symmetric group on n letters and by e: &,, — {—1,1} the
signature homomorphism. Then for any open subscheme U of X and x1,...,%n,Y1,--.,Yn €
H°(U, V), we have

(2.a) (Sym™ v)(@1- - Tn, Y1+ Yn) = Z V(T1,Yo(1) V(@0 Yon))s
ceS,
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(2.b) (N @1 A Ayt A Agn) = D e(0)(21,Yo(1) - ¥(Tns Ya(n));
oeS,

or more succinctly
(2.c) (AN"v)(@i A Axp,yi A+ Ayy) = det(v(xi, yj))-

If V,W are vector bundles equipped with bilinear forms v, y, then for any i, j the bilinear
form A" (v L p) restricts to (A'v) @ (A p) on (A'V) @ (A?W) C A"™(V @ W). This yields
an isometry, for any n € N

(2.d) N'VeWrvou = | NV.v)o N"(W,p)
1=0

Lemma 2.1. Let (E,¢) and (F, @) be vector bundles over a scheme X equipped with bilinear
forms, of respective ranks e and f. Then we have an isometry

(AN(B, ) & (N (F,0)* = NT(E® Fe® ).

Proof. Let us first assume that E, F' are free and that X = Spec R is affine. Let (z1,...,z.),
resp. (y1,...,Yf), be an R-basis of H°(X,E), resp. H'(X, F). Then the element

(2.e) z= (i A Ax)® @ (yr A Ayp)®e
is a basis of H(X, (A°E)®/ @ (A F)®¢), and the element
(2.f) U = (:1:1®y1)/\---/\(:1:1®yf)/\(:132®y1)/\---/\(xe®yf)

is a basis of H(X, \*(E ® F). The mapping z + u then defines an isomorphism of line
bundles

(2.8) (NE)* & (NF)* = NH(EoF),
Consider now the matrices
A= (e(wi,zj)) € Me(R), B = (¢(yi,y;)) € My(R).
By (2.c) we have
(A°e)®) @ (N F)*9)(2,2) = (det A) - (det B)",
and A\ (¢ ® ¢)(u,u) is the determinant of the block matrix
e(z1,z1)B ... e(x1,2¢)B
C= : : € M.s(R).
e(ze,x1)B ... e(xe,7e)B
It then follows from [Bou70, II1, §9, Lemme 1, p.112] that
det C' = det(det(e(z;, ;) B)) = det(det(A)B®) = (det A) - (det B)°.
Therefore
(A°e)® @ (N F)®)(z,2) = N (e @ 9) (u, ),
which shows that (2.g) is the required isometry.
Next, assume given R-linear automorphisms a: HY(X, E) — H°(X, E) and 3: H*(X,F) —
HO(X,F). Replacing the basis (z1,...,z.) and (y1,... ,yf) by their images under a and

multiplies the element (2.¢) by the quantity (det )¢ - (det )7, and the element (2.f) by the
same quantity (this is a similar determinant computation as above, based on [Bou70, I11, §9,
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Lemme 1, p.112]). We deduce that the isometry (2.g) glues when E, F' are only (locally free)
vector bundles, and X is possibly non-affine. O

Lemma 2.2. Let V' be a vector bundle of constant rank n over a scheme X, equipped with a
nondegenerate bilinear form v. Then we have an isometry

A THVv) = (Vi) @ N'(V,v).

Proof. The natural morphism (A" ~!V)®V — A"V induces a morphism A"~V — Hom(V, A"V).
As V is a vector bundle (of finite rank) the natural morphism V'V ® A"V — Hom(V, A"V is
an isomorphism. Composing with the inverse of ¥ ® idany,, we obtain a morphism

s NIV S Ve A"V

To verify that it induces the required isometry, we may argue locally and assume that V' is
free and X = Spec R is affine. Pick an R-basis (v1,...,v,) of H*(X,V). Then (w1,...,w,)
is an R-basis of HO(X, A"~!V), where w; = (—1)" vy A=+ AD; Av,. Let z =vi A--- Ay, €
H(X, A"V), and note that w; A v; = z for all i € {1,...,n}. Consider the unique elements
vi, .., 0h € HO(X, V) satisfying v(v},v;) = §;; (Kronecker symbol) for all 4,5 € {1,...,n}.
Then we have

(2.h) s(wj)) =v; ®z, fori=1,...,n.

Consider the matrix A = (v(v;,v)) € M, (R). Observe that the j-th coordinate of v; in the
basis (v1,...,v,) is the (4, 7)-th coefficient of the matrix A~!, from which it follows that
(2.1) A = (v(vf,v3)) € M, (R).

17 7]
Let k,l € {1,...,n}. It follows from (2.c) that (A" 'v)(wg,w;) is the (k,l)-th cofactor of the

matrix A, and thus coincides with the (k,[)-th coefficient of the matrix (det A) -{(A~!). In
view of (2.i), we deduce that (using (2.c) for the last equality)

(N™10) (i ) = (v, 07) - det A = w(vf, o) - (A")(z, 2)
By the formula (2.h), this proves that s is the required isometry. O

In the rest of the section, we fix a Z[%]—scheme X. By a symplectic bundle on X, we will
mean a vector bundle on X equipped with a nondegenerate skew-symmetric form. For an
invertible element A € H(X,Oy), we denote by ()\) the trivial line bundle on X equipped
with the nondegenerate bilinear form given by (z,y) — Azy.

Lemma 2.3. Let (V,v) be a symplectic bundle of constant rank n over X. Then the exists
an isometry

N (Viv) = (1).

Proof. We may assume that X # @ and n > 1. Then we may write n = 2m for some integer
m (the form induced by (V, ) over the residue field of a closed point of X is skew-symmetric,
hence symplectic as 2 is invertible, and such forms over fields have even dimension [MH73, I,
(3.5)]). The morphism

Ven ~ yem g yem _y Amy g Amy ATVE Amyv g amy 0
descends to a morphism Ay,y: A"V — Ox. If (Vj,v;), for i = 1,2, are symplectic bundles
over X of ranks n; = 2m; such that (V,v) = (Vi,11) L (Va,12), we have a commutative
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diagram
ANUEY

A"V (A"V)Y

| |

(A™V1) ® (N Va) (AN™ V)Y @ (N2 V)Y
Therefore the identification A"V = A\"V1 @ A\"2V; yields an identification A,y = Av; 1) ®
)‘(V27V2)'
In order to prove that A(y,) induces the claimed isometry, we may assume that X is
the spectrum of a local ring. In this case the nondegenerate skew-symmetric form (V,v) is
hyperbolic [MH73, 1, (3.5)]. Given the behaviour of A,y with respect to orthogonal sums,

we may assume that n = 2 and that (V,v) is the hyperbolic plane. So there exists a basis
(v1,v2) of H*(X, V) such that

Am1 V1®/\m2 Vo

v(vi,v1) =0, v(vg,v3) =0 and v(vy,v9) = 1.
By (2.b) we have
(A?v)(v1 Avg, vy Avg) = 1.
Since Ay, (v1 Avg) = v(vr,v2) = 1 € HY(X,Ox), it follows that (v, induces an isometry

N2(V,v) ~ (1). O

Let V be a vector bundle over X. Consider the involution o of V®? exchanging the two
factors. Set V% = ker(o — id) and V¥ = ker(o + id). Since 2 is invertible we have a direct
sum decomposition V&2 = Vf_w e V2,

Let now v be a bilinear form on V. There are induced bilinear forms VSEQ on V§2 and v®?
on V®2. Writing (V, 1/)?2, resp. (V,v)%?, instead of (VPQ, V§2), resp. (V®2,1%?), we have an
orthogonal decomposition

(2) (V)2 = (V)32 L (V,0)22.
Lemma 2.4. There are isometries
(V)P ~ (2) @ Sym?(V,v) and (V,v)®? ~ (2) @ AX(V,v).
Proof. It is easy to see that the morphism
1 /\2V—>V®2 i VLAV U ® Uy — Vg @ vy,

induces an isomorphism A%V ~ V@2 If U is an open subscheme of X and vy, ve, wy, wy €
HO(U, V), we have, using (2.b)
v®2(i(vy A vg),i(wy A ws))

:V®2('U1 ® vy — g ® Vi, w1 ® wp — We & W)

=v(v1, w1)v(vg, we) — v(vy, w1 )v(vy, wa) — v(vy, we)v(ve, wy) + v(ve, wa)v (v, wr)

=2v(v1, wy)v(va, we) — 2v(ve, wy )V (v1, we)

=2(A\*v)(v1 A vg, w1 A ws),
proving the second statement. The first is proved in a similar fashion, using the morphism

Sym2V—>V®2 5 UV U1 QU2 4 U2 @ vy, O
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Lemma 2.5. There is an isometry
(V) = @) @ (Sym(V,v) L AX(V,v)).
Proof. This follows from Lemma 2.4 and (2.j). O

Lemma 2.6. Let E,F be vector bundles over X, respectively equipped with bilinear forms
g,p. Then there is an isometry

NAE® Fe @) = ((2) 0 Sym?(B,e) © NX(F,p)) L ((2) & AUE,¢) @ Sym?(F,¢) ).
Proof. 1t is easy to see that there is an isometry
(E® Fe@e)? = ((B,97 e (F,9)%) L ((B,92 @ (F9)F?),

so that the statement follows by five applications of Lemma 2.4 (and tensoring by the form
(271h). O

Proposition 2.7. Let E, F' be rank two vector bundles over a Z[%]—scheme X, equipped with
nondegenerate skew-symmetric forms e, . Then we have in GW™(X):

[(E,e) ® (F,p)] if n € {1,3},
n (B )P+ [(Foe)®? -2 ifn=2,
N'(EeFeap)] =4 AN
0 otherwise.

Proof. The cases n = 0,1 and n > 5 are clear. The case n = 4 follows from Lemma 2.1 and
Lemma 2.3. The case n = 3 then follows from the case n = 4 and Lemma 2.2. We now
consider the case n = 2. We have in GW™T(X)

IN2(E® F,e ® ¢)] = (2)[Sym?(E, €)] + (2)[Sym?(F, )] by 2.6 and 2.3
= [(B,9)%%] = (2) + [(F )] = (2) by 2.5 and 2.3
and (2) + (2) = 2 € GW ™ (Spec(Z[1])), as evidenced by the computation

1 =1\ /1 O 1 1y (2 0 0
1 1 0 1)\-1 1) \0o 2)°
3. GROTHENDIECK-WITT GROUPS OF REPRESENTATIONS

Let B be a commutative ring with 2 € B* and G be a flat affine group scheme over B.
Let Rp be the abelian category of representations of G over B, which are of finite type as B-
modules. We let Pg be the full subcategory of Rp whose objects are projective as B-modules.
The latter category is exact. If P is an object of Ppg, then its dual PV := Homp(P, B) is
naturally endowed with an action of G and thus can be seen as an object of Pg. The morphism
of functors w: 1 ~ vV is easily seen to be an isomorphism of functors Pg — Pp, and it follows
that Pp is an exact category with duality.

Let now DP(Rp), resp. DP(Pg), be the derived category of bounded complexes of objects
of Rp, resp. Pg. The category DP(Pp) is a triangulated category with duality in the sense
of Balmer ([Bal05, Definition 1.4.1]) and therefore one can consider its (derived) Witt groups
W{(DP(Pp)) ([Bal05, Definition 1.4.5]) that we denote by Wi(B;G) for simplicity. We can
also consider the Grothendieck-Witt groups GW*(DP(Pg)) (as defined in [Wal03, §2]) that
we similarly denote by GW*(B; Q).
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Lemma 3.1. Suppose that B is a field of characteristic not two. For any i € Z, we have
W H(B; @) = 0.

Proof. Since Pg = Rp, the category DP(Rp) is the derived category of an abelian category.
We can thus apply [BW02, Proposition 5.2]. O

We now suppose that A is a Dedekind domain with quotient field K (we assume that
A # K). We assume that 2 € A*, and let G be a flat affine group scheme over A. Then we
may consider the full subcategory Rg of R4 consisting of those representations of G over A,
which as A-modules are of finite length, or equivalently are torsion.

Any object of DP(P,) has a well-defined support, and we can consider the (full) subcategory
DE(P4) of DP(P4) whose objects are supported on a finite number of closed points of Spec(A).
This is a thick subcategory stable under the duality. As a consequence of [Bal05, Theorem 73],
we obtain a 12-term periodic long exact sequence

(3.a) - = W/(DR(Pa)) = W/(D"(Pa)) — W'(D"(Pa)/ D§(Pa)) — WH(DF(Pa)) = -+

We now identify the quotient category D(P4)/DE(Pa4). Note that the extension of scalars
induces a duality-preserving, triangulated functor DP(P4) — DP(Px) which is trivial on the
subcategory DE(PA). (The category DP(Py) is constructed by setting B = K above, for
the group scheme G over K obtained by base-change from G.) We thus obtain a duality-
preserving, triangulated functor

DP(P4)/ DR (Pa) — DP(Px).

Lemma 3.2. The functor DP(P4)/DE(Pa) — DP(Pk) is an equivalence of triangulated cat-
egories with duality.

Proof. We have a commutative diagram of functors

D"(P4) — DP(P)

l |

D"(R4) — D(Rk)

in which the vertical arrows are equivalences (use [Ser(G8, §2.2, Corollaire]. The composite
DE(P4) — DP(P4) — DP(R4) has essential image the subcategory DE(R4) of objects of
DP(R,4) whose homology is of finite length. As observed in [SerG8, Remarque, p.43], the
functor R4 — Rk induces an equivalence R4/ Rg ~ Rk . Then it follows from [Kel99, §1.15,
Lemma] that the induced functor DP(R4)/DE(R4) — DP(Rk) is an equivalence (the argu-
ment given in [Kel99, §1.15, Example (b)] works in the equivariant setting). The statement
follows. O

As a consequence, the exact sequence (3.&) becomes
(3.b) o WHDR(Py)) = WHA; Q) = WHK;Gg) — WIHL(DR(Py)) — -

Now, suppose that M is a representation of G over A that is of finite length. By [Ser(8,
§2.2, Corollaire], we have an exact sequence of representations

(3.c) 0P —>FP—>M—=0
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where Py, P, € P4. Note that the A-module M is torsion, hence M"Y = Hom 4 (M, A) vanishes.
We obtain an exact sequence, by dualizing

0— Py — P — Exth(M,A) =0

and it follows that M?* := Ext} (M, A) is naturally endowed with a structure of a representa-
tion of G over A. The isomorphisms Py — (Py)" and P — (P)')" induce an isomorphism
M — (M®)?, which does not depend on the choice of the resolution (3.c). The association
M — M? in fact defines a duality on the category Rg.

Lemma 3.3. For every i € Z, there exists an isomorphism
WHH(DR(Pa)) = WH(D"(R})).

Proof. This follows from the existence of an equivalence of triangulated categories D} (P4) —
DP(RM), which is compatible with the duality £ of DP(R), and the duality V of D§(P4) shifted
by 1. This equivalence is constructed using word-for-word the proof of [BW02, Lemma 6.4],
where the categories VBp, O-mod, O-fl- mod are replaced by Pa, R4, Rg. O

Lemma 3.4. For every i € Z, we have W*(DE(P4)) = 0.

Proof. In view of Lemma 3.3, this follows from [BW02, Proposition 5.2], as the category Rg
is abelian. 0

Proposition 3.5. Let A be a Dedekind domain with quotient field K, such that 2 € A*, and
let G be a flat affine group scheme over A. Then for every i € Z, the morphism W (A; G) —
W2(K; Gr) is injective.

Proof. This follows from Lemma 3.4 and the sequence (3.b). O

Theorem 3.6. Let A be a Dedekind domain with quotient field K, such that2 € A, and let G
be a split reductive group scheme over A. Then for every i € Z, the morphism GW2’(A; G) —
GW?(K;Gy) is injective.

Proof. We have a commutative diagram where rows are exact sequences (constructed in
[Wal03, Theorem 2.6])

Ko(4;G) GW2%=1(4; @) W21(A;G) —0

l | |

Ko(K;Gg) — GW? Y K:Gg) —= WY L(K;Gg) —=0

in which the vertical arrows are induced by the extension of scalars, and Ky(A;G) (resp.
Ko(K;Gg)) denotes the Grothendieck group of the triangulated category DP(P4) (resp.
DP(Pk)). Denoting by Ko(R4) (resp. Ko(Ry)) the Grothendieck group of the category R4
(resp. Rk), the natural morphisms Ko(Ra) — Ko(A4;G) and Ko(Rr) — Ko(K;G) are iso-
morphisms (their inverses are constructed using the Euler characteristic). Since the morphism
Ko(R4) — Ko(Rf) is an isomorphism by [Ser(68, Théoreme 5], so is Ko(A4;G) — Ko(K;Gk).
On the other hand, we have W21 (K Gx) = 0 by Lemma 3.1. We deduce that the morphism
GW?—1(A;G) - GW? (K ;G) is surjective.
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Next consider the commutative diagram where rows are exact sequences (see again [Wal03,
Theorem 2.6])

GW2=1(4; @) Ko(4;G) GW?(A;G) W2(A;G) —=0

| 5 | |

Gwzi_l(K;GK) > Ko(K;Gg) — GW2i(K; Gg) — Wzi(K; Gg)—=0

The indicated surjectivity and bijectivity have been obtained above, and the injectivity in
Proposition 3.5. The statement then follows from a diagram chase. O

4. THE A-OPERATIONS

Let X be a scheme, and G a flat affine group scheme over X. We denote by GW™(X; G)
and GW™ (X; G) the Grothendieck—Witt groups of the exact category of G-equivariant vector
bundles over X. We set GW*(X;G) = CWH(X;G) ® GW(X;G). When A is a commu-
tative noetherian Z[$]-algebra and X = Spec(A), by [Wal03, Theorem 6.1] we have natural
isomorphisms GW T (Spec(A); G) ~ GW?(A; G) and GW ™~ (Spec(A); G) ~ GW?(A4;G) (in the
notation of §3).

4.1. Exterior powers of metabolic forms. Let X be a scheme and G a flat affine group
scheme over X. Let £ — X be a G-equivariant vector bundle. For ¢ € {1, —1}, the associated
hyperbolic e-symmetric G-equivariant bundle over X is

(5o (2, 1)

where wg: E — (EY)Y is the canonical isomorphism. These constructions induce morphisms
of abelian groups (see e.g. [Wal03, Proposition 2.2 (c), Theorem 6.1])

(4.1.a) hy: Ko(X;G) - GWH(X;G), h_: Ko(X;G) - GW™(X;G)
where Ky(X;G) denotes the Grothendieck group of G-equivariant vector bundles on X.

Lemma 4.1.1. Let M be a G-equivariant vector bundle over X equipped with a G-equivariant
nondegenerate e-symmetric bilinear form u, for some e € {1, —1}. Assume that (M, p) admits
a (G-invariant) Lagrangian L, and let n € N.

(i) The class [N"(M, )] € GWE(X; G) depends only on n,e and the G-equivariant vector
bundle L over X (but not on (M, p)).

(ii) If n is odd, the G-equivariant nondegenerate "™ -symmetric bilinear form N\"(M, p) is
metabolic.

Proof. We may assume that X is connected. Let @ = M/L, and recall that pu induces an
isomorphism ¢: @ = LY. The vector bundle A" M is equipped with a decreasing filtration
by G-invariant subsheaves

(A"M)" =m(A'Le \""'M — \"M)
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fitting into commutative squares
NL©\"M (A"
1) l |
NL&N''Q—— (N"M)'/(\" M)

where the bottom horizontal arrow is an isomorphism (see e.g. [BGI71, V, Lemme 2.2.1]).
Since @Q ~ LV, this yields exact sequences of G-equivariant sheaves

(4.1.c) 0— (A\"M)T = (A"M)' = N'Lo N"LY — 0

from which we deduce by induction on i that (\"M )? is a subbundle of A"M (i.e. the quotient
N"M/(A\"M)" is a vector bundle). Assuming that L has rank r, then A\'L @ A" LY has
rank (:)( " ) By induction on i, using the sequences (4.1.c), we obtain

st =E0)(,")

j=i

An elementary computation with binomial coefficients then yields:
(4.1.d) rank(A"M)® + rank(A"M)" 1" = rank A" M.
Let 7,7 be integers. We have a commutative diagram

] e

(NL®A\"IM)” <—((\"M))" <— (\"M)"

where « is defined by setting, for every open subscheme U of X and z1,...,2;,91,...,y; €
HO(U, L) and 21, ... Ty Yjls -1 Yn € HO(U, M) (see (2.c))

(41e) a(xi A AT @Tipa A ANxp) (Y1 A AY; @Yjp1 A Ayp) = det(p(zs, y5)).

If i +j > n, then for each o € &, there exists e € {1,...,n} such that . € H°(U, L)
and Yo(e) € H°(U, L), so that (Te, Yo(e)) = 0, which by (4.1.e) implies that o = 0. Thus
(A"M)" C ((A"M)7)* in this case. In particular (A"M)® is a sub-Lagrangian of A"(M, p)
when 2¢ > n.

If n = 2k —1 with k € N, then 2rank(/A\"M)* = rank A" M by (4.1.d), hence the subbundle
(A"M)* is a Lagrangian in A"(M, ). This proves (ii). Moreover, it follows that the class
of A™(M, ) in GW*(X;G) coincides with the class of the hyperbolic form H,((\"M)*),
hence depends only on the class in K(X;G) of the G-equivariant vector bundle (A\"M)*
(see (4.1.a)). In view of the sequences (4.1.c), the latter depends only on the classes of
NL® A" LY in Ko(X;G) for i > k, from which (i) follows when n is odd.

Assume now that n = 2k with k& € N. Then the inclusion of the subbundle (A"M)* c
((A"M)*+1)L is an equality by rank reasons (see (4.1.d)). By [Wal03, Proposition 2.2 (d),
Theorem 6.1] we have

(4.1.f) (M, )] = [Hi(A"M)M )]+ [(A"M)*/(N"M)*1, p)] € GWH(X;G),
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where p is the bilinear form induced by g on (A"M)*/(A\"M)*+1, which in view of (4.1.b) is
G-equivariantly isometric to the form S fitting into the commutative diagram

AL & NM —— AL \FQ —=— N'L® \FLY

| | :
(N'L® N*M)Y <—(AL @ A*Q)Y <= (AFL @ A\*LY)Y

where the horizontal isomorphisms are induced by ¢: Q@ — LY. The formula (4.1.e) (and
the fact that ¢ is induced by p) yields the formula, for every open subscheme U of X and
Tlyeoe s ThyYlse- -5 Yk € HO(U7L) and fi,..., fk, 91, -+, gk € HO(U7LV)7

0 (Egj(fﬂi))>

ﬁ(ml/\"'/\mk@’fl/\‘”/\fkayl/\“‘/\yk@’gl/\"'/\gk):det<(fi(yj)) 0

(where 4,j run over 1,...,k, and so the indicated determinant is n x n), which shows that
the bilinear form S depends only on the G-equivariant vector bundle L (and not on u). It
follows that the isometry class of that G-equivariant form ((A"M)¥/(A"M)¥*1, p) depends
only on L. As above, the class of the hyperbolic form H;((A"M)*+1) in GWT(X;G) also
depends only on L, so that (i) follows from (4.1.f) when n is even. O

4.2. The A-ring structure. We will use the notion of (pre-) A-rings, recalled in Appendix A
below.

Proposition 4.2.1. Let X be a scheme and G a flat affine group scheme over X. Then the
extertor powers operations

M GWH(X;G) — GWH(X;G)
defined by (P, ) — (N'P, N'@) endow the ring GW*(X; G) with the structure of a pre-A-ring.

Proof. The structure of the proof is the same as that of [Zib15, Proposition 2.1, and is
based on the description of GW®(X; G) in terms of generators and relations (see e.g. [Wal03,
p.20]). It is clear that the exterior power operations descend to the set of isometry classes,
and moreover the total exterior power operation is additive in the sense of (2.d). Finally, let
M is a G-equivariant vector bundle over X equipped with a G-equivariant nondegenerate e-
symmetric bilinear form p, for some ¢ € {1,—1}. If (M, 1) admits a G-equivariant Lagrangian
L, then L is also a G-equivariant Lagrangian in the hyperbolic form H.(L), so that by
Lemma 4.1.1 (i) the forms A™(M, u) and A"(H.(L)) have the same class in GW*(X;G). O

Proposition 4.2.2. Let G be a split reductive group scheme over Z[%] Then the pre-A-ring
GW ™ (Spec(Z[1]); G) is a A-ring.

Proof. By [Zib15, Proposition 2.1] the pre-A-ring GW ™ (Spec(Q); Gg) is a A-ring. It follows
from Theorem 3.6 that GW ™ (Spec(Z[3]); G) is a pre-A-subring of GW ™ (Spec(Q); Gg), hence
a A-ring. O

Corollary 4.2.3. For every Z[%]-scheme X, the pre-A-ring GW™T(X) is a A-ring.

Proof. This follows from Proposition 4.2.2 (applied to the split reductive groups O,, and
O, x Oy), using the arguments of [BGIT71, Exposé VI, Théoreme 3.3] (see [Zib15, §3.2] for
details). 0
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When 2z € GW™(X) is the class of a rank two symplectic bundle, it follows from Lemma 2.3
that A\¢(z) = 1 + to + 2 (see (A.a)). In other words, in the notation of (C.1.b), we have

(4.2.a) N(z) = £;(z) € GWH(X) for all i € N~ {0}.

Lemma 4.2.4. The relations (A.b) and (A.c) are satisfied for all z,y,z € GW™(X).

Proof. By the symplectic splitting principle [PW21, §10], we may assume that x,y, z are each
represented by a rank two symplectic bundle. In view of (4.2.a), the relation (A.c) follows

from Lemma C.2.1. The relation (A.b) has been verified in Proposition 2.7, see Lemma
C.1.1. O

Theorem 4.2.5. For every Z[%]-scheme X, the pre-\-ring GW*(X) is a A-ring.

Proof. Taking Proposition 4.2.2 and Lemma 4.2.4 into account, it only remains to verify
(A.b) when z € GWT(X) and y € GW™(X). Let i > n, and consider the scheme X x HP'.
It is endowed with a universal symplectic bundle of rank two, whose class we denote by
u € GW™ (X x HP?). Denote again by x,y € GWE(X x HP?) the pullbacks of z,y € GW*(X).
Then using successively Proposition 4.2.2 and Lemma 4.2.4

Ar(zyu) = Ae(@)Ae(yu) = Ae(2)Ae(y)Ae ().
On the other hand, by Lemma 4.2.4
M (zyu) = M(zy) M (u).

The quaternionic projective bundle theorem [P\W21, Theorem 8.1] implies that the GW§*" (X)-
module GW{"*" (X x HP") is free on the basis 1,u,...,u’. Modding out v — 1, we obtain a
decomposition

CWH(X x HPY) = GWH(X) @ GWEX)u @ --- @ GWE(X)u'.

In view of (4.2.a), it follows from Lemma C.1.2 that the u"-component of the ¢"-coefficient
of M(zy)Ai(u) is N (zy), and that the u-component of the t"-coefficient of A\i(x)A¢(y)A(u)
is P,(A(x),...,A"(x), A\ (y),...,\"(y)). This proves (A.b). O

P,

Let X be a Z[%]—seheme. In view of Lemma B.1, the A-ring structure on GW*(X) induces

a A-ring structure on GWE(X) ~ GW§(X). Explicitly, denoting by p: GW*(X) —
GW{'"(X) the canonical homomorphism of abelian groups (see Appendix B), we have for
1 € Z and n € N,

p(X*(r)) - 4™ if r € GW*(X),
(4.2.b) AN (p(r) -4") = p(A™(r)) - ’yn(%Tﬂ) if r € GW™(X) and n is even,
p(A"(r)) - ’Y% if r € GW™(X) and n is odd.

5. THE ADAMS OPERATIONS

5.1. The unstable Adams operations. The A-operations constructed in §4 are not additive
(with the exception of A!), and there is a standard procedure to obtain additive operations
from the A-operations which is valid in any pre-A-ring, see e.g. [AT(9, §5]. Indeed, for any
Z[3]-scheme X, we define the (unstable) Adams operations

Y GWE(X) — GWEY(X)  forn e N\ {0}, i€ Z
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through the inductive formula (see e.g. [AT69, Proof of Proposition 5.4])
(5.1.a) Pt = N X2 (D) IATT R 4 (-1 A =0
For instance, this yields

Yl =id and o? = (id)? — 2)\%
We also define ¢/° as the composite
(5.1.b) 0 GW2i(X) 22 7m0(X) o GWI(X).

Assume now that (E,v) is a rank two symplectic bundle on X, and let x = [(E,v)] €
GW2(X) be its class. Then, by Lemma 2.3, we have for n € N~ {0}

r ifn=1,
AN(x)=Rv ifn=2,
0 ifn¢{1,2}.

Thus (5.1.a) yields the inductive formula for z as above (the class of a rank two symplectic
bundle)

(5.1.c) Y(z) = 2" N x) — "2 (z)  for n > 2.

Proposition 5.1.1. The operations "™ : GW§"(X) - GW(X) are ring morphisms for
n € N, and satisfy the relation Y™ o Y™ = ™" for m,n € N.

Proof. This follows from Theorem 4.2.5 (see for instance [AT69, Propositions 5.1 and 5.2]). [

Remark 5.1.2. The operations 9™ for n < 0 are classically defined using duality; since by
definition a nondegenerate symmetric (resp. skew-symmetric) form is isomorphic to its dual
(resp. the opposite of its dual), in our situation we could set, for n < 0

W (@) ¢Y~"(z)  when x € GW§(X) for i € Z,
x) = .
—¢™"(x) when z € GW%(X) for i € Z,
making Proposition 5.1.1 valid for m,n € Z.
5.2. Adams Operations on hyperbolic forms. Let X be a Z[%]-scheme, and consider its
Grothendieck group of vector bundles Ky(X). The exterior power operations yield a A-ring

structure on Ky(X) (and in particular Adams operations 9™ for n € N~ {0}, using the
formula (5.1.a)), such that the forgetful morphism

(5.2.2) Fi GWE™(X) — Ko(X)

(mapping 7 to 1) is a morphism of A-rings. In this section, we consider the hyperbolic mor-
phisms hg;: Ko(X) — GW§(X) (defined just below). Those are of course not morphisms
of A-rings (not even ring morphisms), but as we will see in Proposition 5.2.4, they do satisfy
some form of compatibility with the Adams operations.

We define morphisms
(5.2.b) hoi: Ko(X) — GW3(X) foricZ

by the requirements that hy = hy and he = h_ (see (4.1.a)) under the identifications
GWJ(X) ~ GWT(X) and GW3(X) ~ GW™(X), and for any vector bundle £ — X

(5.2.(3) - hQZ(E) = h2(i+2) (E) for i € Z.
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Lemma 5.2.1. Let a € Ko(X) and b € GW%j(X). Then, in the notation of (5.2.a) and
(5.2.b), we have for any i € Z

hai(a) - b= hyipg)(a- f(b)).

Proof. Let e,&' € {1,—1}. Let us consider vector bundles A, B on X, and a nondegenerate
g-symmetric bilinear form v on B. The isomorphism

1 0
% <0 1®”> % % %
(A®B)®(AY®B) ———— (A®B)® (A" ®B")~(A®B)® (A® B)
induces an isometry

((A®B)@(AV®B)’ <€/w3®y 1%1/)) ~ ((A®B)@(A®B)V7 <€€,wOA®B é))

as evidenced by the computation

10 0 /1 o0\ 0 1®v
0 1evY ) \edma@wp 0)\0 10v) \ecdwa® (v owp) 0

0 1l®v
doa@v 0 :

The lemma follows. U

Lemma 5.2.2. For any i,j € Z we have ha;j(1)ha;j(1) = 2hg;4)(1).

Proof. Take a =1 € Ko(X) and b = hy;(1) € GW%j(X) in Lemma 5.2.1. O

Observe that the classes h and 7 (see Notation 1.1) coincide respectively with ho(1) and
ho(1). Thus Lemma 5.2.2 implies that

(5.2.d) h*=2h ; hr=2r ; T7°=2yh.

Combining the relations AT = 27 and h = 1 + (—1) yields

(5.2.e) ()T =T

Lemma 5.2.3. For n € N, we have in GW"(Spec(Z[3])) (see Notation 1.1)

W (r) = {T’VT if n is odd.

2—=1)2y2  ifn is even.

Proof. We prove the lemma by induction on n, the cases n = 0,1 being clear. If n > 2, we
have by (5.1.c)

(5.2.4) W (r) = 7" (1) — (),
Assume that n is odd. Using the induction hypothesis together with (5.2.e) we obtain

n—1

() = 2<_1>an17_7an1 =27y 2 .

On the other hand, by induction we have

W2 (1) = 4y T = 1y

Combining these two computations with (5.2.f) proves the statement when n is odd.
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Assume now that n is even. Using the induction hypothesis we have
") = 73T = 2hyE = 2((-1)% +(-1) " ),

as well as

n—2

WA (r) =2(=1) "2 72,

and the result follows as above from (5.2.f) when n is even. O

Proposition 5.2.4. Let E — X be a vector bundle, and n € N,i € Z. For j € Z, let us
denote by I; the image of haj: Ko(X) — GW(X).
(i) If n is odd, then A" o ho;(E) lies in I;,.

(ii) If n is odd, then ¥™ o he;(E) lies in I;,.

(iii) If n is even, then ¢™ o hoi(E) lies in 2 GW3™(X) + I;,.
Proof. Statement (i) follows from Lemma 4.1.1 (ii) with G = 1 (observe that by construction
of the Grothendieck—Witt group, the classes of metabolic forms belong to the subgroup I;,, C
GW2"(X)). Let us prove (ii) by induction on n. This is clear when n = 1. Assume that
n is odd. When j € {1,...,n — 1} is even, the element 1"/ o ho;(E) belongs to Litn—j) by
induction. When j € {1,...,n} is odd the element M o hy;(E) belongs to I;; by (i). Since

L - Gng(n_k) (X) C Iy, for all k € Z by Lemma 5.2.1, it follows from the inductive formula
(5.1.a) that ¢" o ho;(E) belongs to I;,. The proof of (iii) is similar, noting that nA\" o hg;(F)
is divisible by 2 (the starting case n = 0 being clear from (5.1.b)). O

Recall the exact sequence of [Wal03, Theorem 2.6, for i € Z,
Ko(X) 225 GW2(X) - W2(X) — 0.

When X # @, the A-ring structure on GW§"" (X) does not descend to its quotient @, W (X),
for instance because A\?(ho(1)) = (—1) has nonzero image in the Witt ring. However, Propo-
sition 5.2.4 implies the following:

Corollary 5.2.5. Let n € N be odd. Then the operations ™, \": GW2{(X) — GWZ"(X)
descend to operations

P AT WH(X) = WH(X).

Remark 5.2.6. If —1 is a square in H°(X,Ox), then 2 = ho(1) € GWH(X). Therefore
Proposition 5.2.4 (iii) implies that the operation 9™ does descend to the Witt groups when n
is even (even though A" does not).

5.3. Adams operations on the universal rank two bundle. In this section, we consider
the universal symplectic bundle (U, ) over HP!, and denote by wu its class in GW2(HP!).

Proposition—Definition 5.3.1. Let n € N. There exists a unique element
2n—2 1
w(n) € GW3"*(Spec(Z[3])
such that
Y u— 1) =wn)- (u—71) € GW(HPY).
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Proof. The first Borel class of (U, ) in GW3(HP') is u — 7 (see [PW19, Theorem 9.9]). By
the quaternionic projective bundle theorem [P\W21, Theorem 8.1], the GW§"" (Spec(Z[3]))-
module GWg¥e" (HP') is free on the basis 1,u — 7. This implies in particular the uniqueness
part of the statement. Let us write

Y (u—7)=a+blu—71)

with @ € GW3"(Spec(Z[3])) and b € GW{" ?(Spec(Z[3])). Consider the morphism of Z[3]-
schemes io: Spec(Z[3]) = HP® — HP! of (1.c). Since ij(u) = 7, we have

a=1ij(a+blu—7))=ijop" (u—7) =" oig(u—71)=1"(0)=0.
So we may set w(n) = b. O
Lemma 5.3.2. Let m,n € N. Then w(mn) = w(n) - " (w(m)).
Proof. Indeed by Proposition 5.1.1, we have in GWZ™" (HP?)
P — 1) =" o™ (u—7)

= ¢"(w(m) - (u—7))

=¢"(w(m)) - " (u—7)

= w(n)-¢"(w(m)) - (u—7). O

From the inductive definition of the Adams operations, we deduce an inductive formula for
the classes w(n):

w(m
m

Lemma 5.3.3. We have w(0) = 0,w(1) =1, and if n > 2
w(n) =Tw(n — 1) —yw(n —2) + " L(7).

Proof. The computations of w(0) and w(1) are clear. Assume that n > 2. Then by (5.1.c) we
have in GW3"(HP')

Y (u—1) = P"(u) =P (1)
= w)" M () — " (w) — 7" () + " (7)
= W =) + (D () = 2= 7).

By the quaternionic projective bundle theorem [PW21, Theorem 8.1] we have (u—7)% = 0,
hence u(u — 7) = 7(u — 7), so that

(=) = (=) (rwln = 1) + 0" (7) = w(n - 2)),
from which the result follows. O

We are now in position to find an explicit expression for the elements w(n). For this, recall
from Notation 1.1 that h =1 —e.

Proposition 5.3.4. We have

- 1 n— n—
n(n h+(—1>71)771 if n is odd,
wn) =19,
ol 2 if n is even.
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Proof. We proceed by induction on n, the cases n = 0,1 being clear. Let n > 2. Assume that
n is even. Recall that hm = 27 by (5.2.d) and that 7(—1) = 7 by (5.2.¢). Combining these
observations with the explicit formula for w(n — 1) (known by induction) yields

Twin —1) = (n— 1)277%,
hence, using the inductive hypothesis and Lemma 5.2.3

n—2 (TL — 2)2 n—2 TL2 n—2

Twn —1) —qyw(n —2) +¢" 1) = (n - 1)*ry 2 — — T’ynTiz +772 = 77’/’}/77

which coincides with w(n) by Lemma 5.3.3, as required. ’
Assume that n is odd. Observe that h = <—1>an1 + (—1)7%3, so that we have by induction

- 1 n— n—:
wn—2)=(n— 2)<n 5 h— (—1>Tl)’yT$.
Therefore, using Lemma 5.3.3, Lemma 5.2.3 and (5.2.d) (and the inductive hypothesis)
w(n) =7w(n —1) —yw(n —2) + " 1(7)

12 B o o
= (n 21) 7_27‘23 _(n_2)<n2 1h—<—1>71>7 1 +2<_1>71771
—1 n—1 n— n—
= ((n=1%h— (= 2) "=k + (0= D(-1)*T +2-1)"F )y*T
n—1 n—1 n—1
= (T ) )y -

5.4. Inverting w(n). In order to define the stable Adams operations, we will be led to invert
the elements w(n) € GW%"_z(Spec(Z[%])). Let us first observe that it is equivalent to invert
somewhat simpler elements.

Definition 5.4.1. For n € N, we define an element n* € GW{(Spec(Z[1])) by

n =

N n if n is odd,
gh if n is even.

(Recall from Notation 1.1 that h =1 — e € GW{(Spec(Z[3])) is the hyperbolic class.)
Lemma 5.4.2. Let R = GW{"(Spec(Z[1])). Then the R-algebras R[-%] and R[] are

w(n)
isomorphic.

Proof. We use the explicit formulas of Proposition 5.3.4. Assume that n is odd. Since n = n*

divides w(n), it is invertible in R[—1~]. Conversely, writing n = 2m + 1 we have (recall that

¢ = —(—1), so that €2 = 1) <

wn) - (m(l+e)+€™) ="n(m(l —¢e)+ (—e)™) - (m(l+¢€)+€™)
"nim(l —e)e™ +m(l+e)(—e)" 4+ (—=1)™)
"nime™(1—e+ (=1)"(1+¢€)+ (—1)™)
Mp(2m 4 1)(—1)™ = y™n2(—1)™

Y
Y
Y
Y

(where the penultimate equality is seen for instance by distinguishing cases according to the
parity of m). It follows that w(n) is invertible in R[-L] = R[1].
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Now assume that n is even. Then, by (5.2.d)

n? n?

2
(5.4.a) w(n)? = (77) A2 = 7117"_1 = ndp*yn L

so that n* is invertible in R[%] On the other hand, using (5.2.d), we have

w

2
e, 0
(n)—2h n2h,

hence n is invertible in R[-L]. Thus (5.4.a) implies that w(n) is invertible in R[], O
We want now to formally invert the action of n* on the spectrum GW.

Definition 5.4.3. We consider the ring
(5.4.b) B =1Z[e]/(e* - 1),

and for n € N, we define an element n* € B by

n' = {
For any m,n € N, we have
(5.4.c) (mn)* =m*n* € B.

if n is odd,
(1—e) ifnis even.

s 3

Remark 5.4.4. Observe that the ring morphism B — GW§'"(Spec(Z[1])) given by e > €
maps n* to n*. The ring B may be identified with GW™ (SpecZ), but we will not use this
observation.

Denote by S € SH(Z[3]) the sphere spectrum. Recall that each invertible element u €
(Z[1])* defines an endomorphism (u) € EndSH(Z[%])(S) (see e.g. [DF23, 2.2.8]). Thus we may
define a ring homomorphism

which allows us to see n* as an endomorphism of the sphere spectrum and perform the formal

inversion of n* in an efficient way as explained in [Bacl8, §6]. In short, we consider the
diagram

SJUAN RN
and define S[-%] to be its homotopy colimit in SH(Z[3]). Further, we set

1 1
GW || :=Gwas|-|.
n n
This is naturally a motivic ring spectrum.
The B-algebra structure on GW§'"(Spec(Z([3])) induced by (5.4.d) is given by e + € (the

argument is detailed in the last paragraph of the proof of [PW19, Theorem 11.1.5]), and in
particular maps n* to n*. It thus follows from Lemma 5.4.2, that for any i € N, the morphism

GW[L] — Zf;"_l) GW/-1] induced by multiplication by w(n) € Gng(n_l)(Spec(Z[%]))
admits an inverse in SH(Z[3])

(5.4.¢) w(n)™: £ gw [H - GW[ }

1
n*
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For any 7,7 € Z and any smooth Z[%]—scheme X, the spectrum Eélzﬁn Yp1 X4 is a compact
object in SH(Z[3]) by [Jar00, §2.2, Lemma 2.2] and it follows from [Sta, Tag 094A] that we
have a canonical isomorphism

o 1 . 1
00 Iy _ i
(5.4.1) SR X, Nl Sk ( GW [nm sngarzy ~ EWI0 [n]
In case X is merely a regular Z[%]—scheme, the same property holds using the spectrum

Py (GW[-L]), where px: X — Spec(Z[1]) is the structural morphism.

5.5. The stable Adams operations. Recall from [PW19, §8] and [ST'15, Theorem 1.3]
that GW? is naturally isomorphic to the object Z x HGr in the homotopy category H(Z[%]),
where HGr denotes the infinite quaternionic Grassmannian. Thus, by [DF23, Theorem 4.1.4]
(where GW3(X) is denoted K Spo(X)) the Adams operations ¢": GW3(X) — GWZ"(X)
constructed in §5.1, where X runs over the smooth Z[%]-schemes, are induced by a unique
morphism 9" : GW? — GW?" in H(Z[}]). Using the periodicity isomorphisms (1.a), we
obtain Adams operations:

(5.5.a) Y GW? — GW?2™  for i odd.
We will need the following complement to [DF23, Theorem 4.1.4]:

Lemma 5.5.1. Let E € S”H(Z[%]) be a Sp-oriented ring spectrum, and consider for a,b € Z
the pointed motivic space € = QX245 E € H(Z[3]). Let iy,...,i, € Z be odd integers.
Then each map GW?' A--- A GW?'r — € in H(Z[L]) is determined by the induced maps

(5.5.b) GWg" (X1) x -+ x GWE(Xp) = [(X1 % - X Xo )4, Elyzpy)
where X1, ..., X, run over the smooth Z[§]-schemes.

Proof. By [PW19, §8], for j = 1,...,r, the pointed motivic space GW?% can be expressed as a
(homotopy) colimit of pointed smooth Z[4]-schemes Y, j = {—m,...,m} x HGr,, ; over m €
N, where HGr,, ; denotes an appropriate symplectic Grassmannian. Set Y, = Y, 1 A---AYy,
and G = GW21 A... AGW?7, Then by [PW19, Theorem 10.1] we have an exact sequence

0 = Km'[S* A Yin, Elyyzpa)) = (9, Elyeayyyy = M lVim, Elyyiapayy = 0.

The lim!-term vanishes by [PW19, Theorems 9.4,13.2,13.3] (see the proof of [PW19, Theo-
rem 13.1]). Thus a map G — & in H(Z[1]) is determined by its restrictions to [Ymv‘g]H(Z[%])v

for m € N, each of which is determined by its restriction to [(Yim1 X -+ X Yy )4, Elyy 771, In
2
view of [PW19, Lemma 7.6]. The latter is the image of the tuple of canonical maps
(Yig — GW?1 L Vi, = GW2r) € GWEH (V1) X -+ - x GWT (Vi)

under the map (5.5.b). O
We are now in position to follow the procedure described in [DF'23, §4] to construct the

n-th stable Adams operation, for n € N. For any integer ¢ € Z, consider the motivic space
cr 1 - 1 1
QW {—} — QXY GW [—} e H(Z[)).
n

* n* 2
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The composite ¥ GW? — L2 GW — L0 GW[L] in SH(Z[3]) yields by adjunction a
morphism

21 24 i 3 1
(5.5.¢) GW? - GW {n} in H(Z[3)),
while the morphism in S’H(Z[%])

2 (T A Gw? {%}) — $rYF GWE {ni} Zrlcowit), v 5i GW [H — Sl GwW [ni]
yields a morphism

(5.5.d) TaGw? {11 w2y {ni} in H(Z[%}).

n*

Using the morphism w(n)~" of (5.4.¢), we define a morphism in H(Z[3]), for i odd,
IRV - (5.5.c ; 1 Q2L w(n)~t . 1

(5.5.0) wps Gwe L gween 829, gy [ DI (-~}

Proposition 5.5.2. Leti € Z be odd and let n € N. Then the diagram

T AGW? GW2(i+2)
id7-/\2 /\w(n)%/z”l lw"
TA2 A Gw2n(i+2)—4 Gw2n(i+2)

commutes in H(Z[3]), where the horizontal arrows are induced by the bonding map o of (1.d).

Proof. Let X be a smooth Z[%]—scheme, and denote by p: HP' x HP! x X — X the projection.
Let uj,up € GWE(HP! x HP! x X) be the pullbacks of v € GWZ(HP') under the two
projections. Consider the diagram

~

GW5(X) = CW2HD (772 o X ) — GW2IHD(HP! x HP! x X)

w(n)zlﬁ”l ld}" ld}n

ngn(i+2)_4(X) ~ GW(2)n(H—2) (7-/\2 A X+) - ngn(l-‘r?) (HPI % HP! % X)

where the horizontal composites are given by z +— p*(z) - (u1 — 7)(ug — 7). Then, for z €
GW2!(X) we have by Proposition 5.1.1 and Proposition-Definition 5.3.1

WP (@) (ur =) (uz—7)) = p* (" ()" (ur =) ¥" (ua—1) = w(n)*p* (V" (2)) (w1 —7) (uz—7),

showing that the exterior square in the above diagram commutes. Since the lower right
horizontal arrow is injective (e.g. by [PW19, Lemma 7.6]), it follows that the interior left
square commutes. By Lemma 5.5.1, this implies that the following diagram commutes

QW2 Q%— Gw2(i+2)

Gw2n(i+2)—4 Q%— Gw2n(i+2)

which implies the statement by adjunction. O
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Corollary 5.5.3. Leti € Z be odd and let n € N. Then the diagram

TA2 A QW2 GQW2(i+2)

o | |

TA2 A Gw2z{n_1*} GW2(i+2) {n_l*}

commutes in H(Z[L]), where the upper horizontal arrow is induced by the map (1.d), and the
lower one by (5.5.d).

Proof. We have a commutative diagram

idyn2 AQP Yhw(n) 72

TA2 A GW2n(HD—4 o A2 A GW2n(i+2) =47 1y

| |

Gw2n(i+2) GW2n(2+2){%}

TH2 A GW{ L}

|

GW2(2‘+2) { L* }

Q%’S’Z?&w(n)’i*z

Combining this diagram with Proposition 5.5.2 yields the corollary, in view of (5.5.e). O

Proposition 5.5.4. For any r,n € N, the natural morphism

GW",GW [%”s%(z[é}) - ih(gld [(GW%W’ GW= {%HH(ZBD

is bijective.

Proof. We use (the proof of) [PW19, Theorem 13.1] (which applies to S = Spec(Z[1]) by
[PW19, Theorems 13.2 and 13.3]), with the difference that BO = GW should be replaced by
GW[n—l*], which does not affect any of the arguments appearing in its proof, by (5.4.f). This
yields the natural isomorphism

1 ; - 1
Gw, Gw ||| = lim [(GW2H)r awa {h)
n*llsn[y) = ieN n* ) In(z(3))
and the proposition follows using a cofinality argument. O

The transition maps in the limit appearing in Proposition 5.5.4 are given by the composite

|:(GW2(Z'+2) )/\7‘7 GW2(2'+2)7" { i

— HH(Z[%D N [(7-/\2 A GWZi)/\erW2(i+2)r {i}]y(z[%})

n*

y2 oo 2iynr 0T gw
(D355 W) 2 G [n*HSH(Z[él)

_ :(Z‘,OT" GW)" 87 GW [%Hs%(z[é])
= (w2, gwr {%H%%D’

where the first map is given by composition with the map 7% A GW? — GW20+2) induced
by (5.5.d). It thus follows from Proposition 5.5.3 that the family ¥ of (5.5.e), for ¢ odd,
defines an element of the limit appearing in Proposition 5.5.4 (with r = 1).
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Definition 5.5.5. For n € N, we denote by
1
" GW - GW [—}
n*
the morphism of spectra corresponding to the family ¥ of (5.5.e), for i odd, under the
bijection of Proposition 5.5.4 (with » = 1). We call it the stable n-th Adams operation.

Remark 5.5.6. If X is a regular Z[4]-scheme with structural morphism px : X — Spec(Z[3])),
we obtain a morphism of spectra

" GWy = pi GW —>p§(<GW [H) — (p' GW) [ni] — GWy [ni}
For ¢ € Z, let us define
By = QFTH(T"): GWH 5 QW2 {ni}
Note that, by construction, we have ¥ = {IV’Z" when ¢ is odd. Let us mention that the stable
Adams operation has the expected relation to the unstable one, also in even degrees:

Lemma 5.5.7. When X is a smooth Z[}]-scheme, for any i € Z, the morphism GW§'(X) —
GW%Z(X)[%] induced by UT equals w(n) ™.

Proof. This is true when ¢ is odd, since ¥} = \T/? in this case. Assume that ¢ is even. Let
p: X x HP! — X be the projection. We have a commutative diagram

~

CW2i(X) GW2H2(T A X)) GWZH2(HP! x X)

\IIZL\L lqj?+1 lqjﬁFl

GW3 (0[] = GW (T A X )[] —= GWE (HP! x X)[]

n*

where the horizontal composites are given by = +— p*(z) - (u — 7). Now, by the odd case
treated above, we have for x € GWZ (HP! x X)

~§‘+1(p*(a:) (u—1)) =wn) T (p*(x) - (u— 1)) by the odd case
= w(n)" . p*y"(z) -¥"(u —7) by Proposition 5.1.1
= p*(w(n)™ - Y™ () - (u—T) by Proposition—Definition 5.3.1.

The statement then follows from the injectivity of the lower horizontal composite (e.g. by
[PW19, Lemma 7.6]). O

Theorem 5.5.8. For any integer n € N, the stable Adams operation ¥": GW — GW[n—l*]
s a morphism of ring spectra.

Proof. We have first to check that the diagram in S”H(Z[%])

GWAGW Y . gW[L] A GW[L]
(5.5.6) l
GW L GW[-L]
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commutes, where the vertical arrows are the multiplications. In view of Proposition 5.5.4,
we have to check that the following diagram, in which the vertical maps are induced by the
multiplication in the ring spectrum GW, commutes in H(Z[3]), for any i € Z odd

n n

GW?2 A GW2 S GW*{L} AGW{ L}
CW* = GWH{ LY.

By Lemma 5.5.1 and Lemma 5.5.7 (taking into account [PW19, Theorem 11.4]), this reduces
to the formula, when X,Y are smooth Z[5]-schemes and € GWF'(X), y € GWF (V)

(5.5.8)  pi(w(n) " (@) - p3wn) " (x)) = wn) "> P" (pi(«) - p3(y)) € GWG'(X x V),
where p1: X XY — X, ps: X xY — Y are the projections. But the formula (5.5.g) readily

follows from Proposition 5.1.1.
Next, we need to prove the commutativity of the diagram in SH(Z[3])

S———-=GW
N
QW]
By adjunction, this reduces to the fact that
(1) = 1 € GWY(Specz[3))
a consequence of Lemma 5.5.7 and of the fact that ¢ (1) = 1. O

Proposition 5.5.9. For any integers m,n € N, the composite in S’H(Z[%])

GW[ Hi] :GW[—1 ]

m* ] Ln* (mn)*

is equal to V™. (Here \I’m[n—l*] denotes the image of the morphism V™ under the localisation
functor, and the last equality follows from (5.4.c).)

L

aw Y aw [ni]

Proof For every i €Z, applying the functor Q¥ SH(Z[3]) — H(Z[3]) to the morphism
L] GW[L] — GW[( ok -] yields a morphlsm

\Ilm{n } Gwm{n }%Gwzl{(mz)*}'

In view of Proposition 5.5.4, it will suffice to show that, for ¢ € N odd, the composite

. g 1 om . 1
Gw? =5 aw { b 2o awr {
equals U™ in H(Z[3]). By Lemma 5.5.1 and Lemma 5.5.7, it will then suffice to show that,
for each odd ¢ € N and each smooth Z[%]—scheme X, the composite

oW o) =7 awgon [ ] 7 awgoo L)
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equals w(mn)~" - ™", But this follows from Proposition 5.1.1 and Lemma 5.3.2. O

6. TERNARY LAWS FOR HERMITIAN K-THEORY

Recall from [DF23, §2.3] that ternary laws are the analogues for Sp-oriented cohomology
theories (or spectra) of formal group laws for oriented cohomology theories. In short, the
problem is to understand the Borel classes (in the relevant cohomology theory) of the sym-
plectic bundle U; ® Us ® Uz on HP™ x HP™ x HP”, where U; are the universal bundles on
the respective factors. The ternary laws permit to compute Borel classes of threefold prod-
ucts of symplectic bundles. At present, there are few computations of such laws, including
MW-motivic cohomology and motivic cohomology which are examples of the so-called addi-
tive ternary laws [DF23, Definition 3.3.3]. In this section, we compute the ternary laws of
Hermitian K-theory (and thus also of K-theory as a corollary), which are not additive.

Our first task is to express the Borel classes in Hermitian K-theory in terms of the \-
operations. We will denote by o;(Xy,...,X4) € Z[Xq,...,Xy] the elementary symmetric
polynomials.

Lemma 6.1. Let X be a Z[]-scheme and let e1, ..., es € GWE(X) be the classes of rank two
symplectic bundles over X. Then

0'1(61,...,64) ifi:1.
, €1,...,e4)+4 if 1= 2.
N(er+ - +eq) = 72(er 4) 4y f

os(er,...,eq) +301(e1,...,e4)y ifi=3.

0'4(61,...,64)—1—202(61,...,64)’74-6’72 if i =4.
Proof. In view of (4.2.a), it suffices to expand the product
(1 +teg +Yt2)(1 + teg + 1) (1 + tes + yt2) (1 + teg + t2). O

Lemma 6.2. In the ring Z[x1,x9, T3, x4,y|, we have the following equalities:

o1 — 4y ifi=1,
o9 — 3yoq + 62 ifi=2,
oilT1 =y, o 0= y) = 03 — 209y + 301y — 43° ifi =3,
oy — o3y + ooyt —oyP +yt ifi=4,
where o; = oi(x1,...,24) for any i € {1,...,4}.
Proof. Direct computation. O

In the next statement bZ-GW denotes the i-th Borel class with values in Hermitian K-theory
[PW21, Definition 8.3].

Proposition 6.3. Let X be a Z[%]—scheme. Let E be a symplectic bundle of rank 8 on X,
and e € GW3(X) its class. Then we have:

e—A4r ifi=1.
N2(e) — 3Te +4(2 — 3e)y ifi=2.
N(e) —272%(e) + 3(1 — 2¢)ve — 87y if i =3.
M(e) — TA3(e) — 2evA2%(e) — Tye + 292 ifi=4.

bW (B) =
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Proof. Using the symplectic splitting principle [PW21, §10], we may assume that E splits as
an orthogonal sum of rank two symplectic bundles, whose classes in GW%(X ) we denote by
e1,...,eq. The Borel classes bZ-GW (E) are then given by the elementary symmetric polynomials
in the elements e; — 7,...,e4 — 7, which can be computed using Lemma 6.2. For i = 1, the
result is immediate. For ¢ = 2, we have

ooler —T,...,eq —T) = 03(e1,...,eq) — 3701(€1,...,€4) + 672
and o3(eq,...,eq) = A%(e) — 4y by Lemma 6.1. As 72 = 2(1 — ¢)y, we find
oa(er —T,...,eq —7) = N2(e) — 4y — 3re +12(1 — €)y
proving the case i = 2. We now pass to the case i = 3. Using Lemma 6.2, we find
WW(E) = o3(er,...,eq) —2r09(e1, ..., e4) + 372 — 473
= M(e) = 3ye —2r(\%(e) — 479) 4+ 6(1 — €)ye — 167y
= \(e) 4+ 3(1 — 2¢)ye — 27A%(e) — 877.
In case i = 4, we have
bVYW(E) = ouler, ... eq) — Tosler, ... eq) + T200(e1, ... eq) — T + T
Using Lemma 6.1, we find
ouler,. .. eq) = N(e) — 203(eq,...,e4)y — 672 = N(e) — 2)\%(e)y + 292,
To3(er, ... eq) = T(A3(e) — 3ve) = TA3(e) — 37e,
2o9(e1,. .. eq4) = 2(1 — €)yoa(er,. .., eq) = 2(1 — €)yA3(e) — 8(1 — €)7>.
Since 73e = 47ve and 7% = 8(1 — €)72, we conclude summing up the previous expressions. [J

Our next task is to obtain an explicit formula for the A-operations on products of three
classes of rank two symplectic bundles, providing a different proof of [Anal7, Lemma 8.2].
It will be useful to have a basis for the symmetric polynomials in three variables w1, us, us.
Following [DF23, §2.3.3], we set, for 4,j,k € N,

(6.a) u1u2u3 Z ufubus

(a,b,c)
where the sum runs over the monomials u‘fugug in the orbit of ullu%ulg under the action of
the permutation of the variables uy, uo, us.

Lemma 6.4. Let X be a Z[3]-scheme, and let uy,ug,us € GW§(X) be the classes of rank
two symplectic bundles on X. Then

ujuU2U3 Zfi =1.
; 2 4 ifi=2.
)\Z(U1U2U3) — (uéuﬁ)’y U(ul)’y + ’Y ’le
o(udugus)y? — bujugugy? if i =3.
o(u)y! + uuduiy® — do(ui)y’ + 690 ifi =4
Proof. In view of (A.d) and (4.2.a), this follows from Lemma C.3.2. O

Finally, we are in position to compute the ternary laws of Hermitian K-theory. The com-
putation is obtained by combining Proposition 6.3 and Lemma 6.4 (applied to v~ 'ujusus).
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Proposition 6.5. Let E1, Ey, E3 be symplectic bundles of rank 2 on a Z[%]—scheme X. Let
uy,uz, u3 be their respective classes in GW2(X). Then the Borel class b$WV (E; ® Ey ® F3) €
GW3(X) equals (using the notation of (6.a))

wugusy "t — 4T ifi=1,
o(utud)y™t — 20(u?) — 3ruguguzy~! 4+ 12(1 — €)y if i =2,

Lo(uiu3) + 4ro(u?) — 167’7 if i =3,

—4(1 — e)yo(u?) — 2e0(udul) — To(uduguz)y~! + druugug + 8(1 — €)y?  ifi = 4.

o(uduguz)yt — 2(1 + 3€)ujugug — 27y~
o(ui) + ufuiuzy ™!

As a consequence of this proposition, we obtain the explicit expression of the ternary laws
associated to Hermitian K-theory (see [D1'23, Definition 2.3.2]). We use the notation (6.a).

Theorem 6.6. The ternary laws F; = F;(v1,v9,v3) of Hermitian K-theory (over the base
Spec(Z[%])) are

Fy = 2(1—€)o(v1)+7y Lo (vive)+y Loy vaus,

F2—2(1—2e) (V?)+2(1 —€)o(v1v2) + 277 Lo (vivg) — 3Ty Lvyvous +y Lo (viv3),
=2(1—€)o(v3)=2(1—€)o (vivy)+8(2—3€)v1v2v3+Ty Lo (vive) =277 Lo (viv2)+37y Lo (vivevs )+ Lo (vivaus),
= 0(v1)—2(1=€)o(vive)+2(1-2¢€)0 (v7v3)+2(1—€)o (vivavs) —T7 Lo (Vivavs)+277 Lo (vivivs )+ o (viviud).

Proof. We use the relations v; = u; — 7 and the previous theorem. For b1, we find

uugus = vV + To(vive) + 20 (vy) + 7
and the result follows quite easily from 72 = 2(1 — €)y and 7% = 47y. For i = 2, we first
compute
o(udud) = o(v¥vd) + 210 (vivy) +4(1 — €)yo (v}) + 8(1 — €)yo (vive) + 167y0 (v1) + 24(1 — €)y2.
Next,

—20(u?) = —20(v1)? — 410 (v)) — 12(1 — €)y
As by = o(uu)y ! — 20(u?) — 3ruuguzy =t + 12(1 — €), we finally obtain the result for bs.

We now treat the case 7 = 3, for which we have

1

by = o(ubugus)y ™t + (=2 — 6€)uyugus — 27y Lo (uiu3) + 4ro(ul) — 167y

Now,
o(Wugusz) = o(v3vgus) + 1o (Vivg) + 2(1 — €)yo (v3) + 370 (vivau3) + 6(1 — €)yo (vive)+
+127y0 (v3) + 18(1 — €)yv1vav3 + 287y0 (v1vg) + 40(1 — €)y?o(vy) + 48773
and we deduce that
by = 2(1 — €)o(v3) — 2(1 — €)a(vive) + 8(2 — 3€)v1vouz + Ty Lo (vive)—
' Lo (vivavs) + 4 o (vfvavs).
We conclude with the case ¢ = 4. The Borel class reads

“lo(ufuzug) — 20(utuz) — 7

—2ry Lo (vivd) 4+ 3y

-1
o(udugus) + druyugus+

by = o(ug) +7
+2(1 = e)o(uiui) — 4(1 — e)yo(uf) + 8(1 — €)y°.
First, we note that

o(u}) = o(v}) +4ro(vd) +12(1 — €)yo(v?) + 167y0(v1) + 24(1 — €)7>.
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while

WBdid = o(v3303) + 2ro(v3udus) +2(1 — o (v3ed) + 8(1 — o (vFvaus)+
+8770 (vive) + 32710203 + 8(1 — €)y2 o (v]) + 32(1 — €)7o (v1v2) + 327920 (v1) + 32(1 — €)7?
Using the above, we finally find

by = U(Uil) —-2(1— e)a(vi’vg) +2(1 — 2¢)o (v1v2) +2(1—¢€)o (U%’Ug’l)g)—

1 1 2,22

—7y o (vivaug) + 21y o (vivdus) + 4 o (vude3).

O

Remark 6.7. The ternary laws of the spectrum W representing (Balmer) Witt groups have
been computed by Ananyevskiy in [Anal7, Lemma 8.2]. In view of the morphism of ring
spectra GW — W, we may recover this result by setting 1 — e = 0 and 7 = 0 in the above
expression.

The above theorem yields an expression of the ternary laws of K-theory (those can of
course be computed more directly). As above, we want to write the Borel classes of threefold
products of symplectic bundles in terms of the first Borel classes of the bundles, and we
may use the forgetful functor from Hermitian K-theory to ordinary K-theory. Regarding
periodicity, the forgetful functor maps 7 to 252 and ~ to 4%, where 3 is the Bott element (of
bidegree (2,1)).

Theorem 6.8. The ternary laws F; = F;(v1,v9,v3,v4) of K-theory are

Fy = 40(v1)+28 20 (v1v2)+ B8~ 4v1v903,

Fy = 60 (v?)+40(v102)+48 20 (v3ve) —66 2010903+ B 1o (vivd),

Fy = 40 (v3) —40 (03 v9) +4001 vov3+26 20 (v3vg) —48 20 (viv3) +6 620 (vivavs ) +B 4o (vivaws),

Fy = o(v}) — 4o (v3vy) +60 (v3v3) + 40 (vivgvs) — 287 20 (vivaus) + 48 2o (vivivs) + B vivavs.

APPENDIX A. A\-RINGS

Here we recall a construction from [BGI71, V, §2.3]; a more accessible exposition can be
found in [AT69, §1], where the terminology “A-ring”/“special A\-ring” is used instead of “pre-
A-ring” /“A-ring”. Let R be a commutative ring. One defines a ring A(R), whose underlying
set is 1 + tR][t]]. The addition in A(R) is given by multiplication of power series, while
multiplication in A(R) is given by the formula

(D sat™) - (X 0nt™) = 32 Palfiees fosgs s g™,
neN neN neN

where P, are certain universal polynomials defined in (C.1.a) below. In this ring the neutral
element for the addition is the constant power series 1, and the multiplicative identity is the
power series 1 +t. A structure of pre-A-ring on R is a morphism of abelian groups

(A-2) N=AERSAR) 5 ore YA
neN
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When R, S are pre-\-rings, a ring morphism f: R — S is called a morphism of pre-A-rings if
it commutes with the operations A", i.e. if the following diagram commutes

A(f)

A(R) —= A(S)
,\f'T , Txf
R S

When R is a ring, a pre-A-ring structure on A(R) is defined by setting for j € N~ {0}
N ( > fnt") = Qij(f1, - it
neN ieN

where @); ; are certain universal polynomials defined in (C.2.a). Then R +— A(R) defines a
functor from the category of rings to that of pre-A-rings.

A pre-A-ring R is called a A-ring if A\; is a morphism of pre-A-rings. This amounts to the
following relations, for all n,i,5 € N~ {0}:

(A.b) N(zy) = Po(\(2),...,\"(2), A (y), ..., \"(y)) for z,y € R,

(A.c) N(MN(2) = Qi (N (2),...,A(2)) for z € R.

Note that if F is a subset of R such that (A.b) and (A.c) are satisfied for all z,y,z € E, then
(A.b) and (A.c) are satisfied for all z,y, z lying in the subgroup generated by F in R.
Note also that if R is a A-ring, and z,y, z € R, it follows from Lemma C.3.1 that

(A.d) N zyz) = R\ (), ..., A (@), A\ (), ..., N (y), AH(2), ..., \"(2)),

where R, is a polynomial defined in §C.3.

Lemma A.1. Let R be a commutative ring and x € R. Then in A(R) we have
MA4zt)=14+2t and N1 +at)=0 fori> 1.

Proof. This amounts to verifying that Q;;(x,0,...) = x when i = j = 1, and that Q;;(z,0,...) =
0 when ¢ > 1 or j > 1, which follows at once from (C.2.a) under U; — x and U — 0 for
s> 0. ]

Lemma A.2. Let R be a commutative ring and x € R. Let f; € R for i € N be such that
fo=1. Then

(Z fnt") S(L+at) =) far™" € A(R).
neN neN
Moreover, if v € RX, then 1+ xt is invertible in A(R), and (1 + xt)" = 1+ 2t for all i € Z.

Proof. The first formula amounts to verifying that P,(f1,..., fn,2,0,...) = fpz™, which
follows from (C.1.a) (and (C.0.a)) under Vi +— x and V; — 0 for j > 1. O

Lemma A.3. Let R be a A-ring, and consider the ring of Laurent polynomials R[x*'] with
coefficients in R. Then there exists a unique structure of A\-ring on R[z*'] such that R —
R[zTY] is a morphism of pre-A-rings and \i(x) = 1 + xt. In addition,

N(rz?) = A"(r)z™  for any r € R,i € Z,n € N.
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Proof. Let S = R[z*!]. By Lemma A.2, the element 1 + xt € A(S) is invertible and there
exists then a unique pre-A-ring structure A\;: S — A(S) such that \;(z) =1+ at and R — S
is a morphism of pre-A-rings. Consider the diagram

AGY)
A(S) A(A(9))
\ AGE) /
A(R) A(A(R))
bt AET y TAQ“” A
R A(R)
/ AS \
S 'f A(S)

Using the fact that A(R) and A(S) are A-rings [AT69, Theorem 1.4], we see that all maps are
ring morphisms. The interior middle square is commutative because R is a A-ring, and the
right one because A(R) — A(S) is a morphism of pre-A-rings. Commutativity of each of the
other three interior squares follows from the fact that R — S is a morphism of pre-A-rings.
We conclude that the exterior square is a diagram of R-algebras. To verify its commutativity
it thus suffices to observe its effect on z € S, which is done using Lemma A.1. We have
proved that S is A-ring. The last statement follows from Lemma A.2. O

APPENDIX B. GRADED RINGS

Let S = Sy @ S1 be a commutative Z/2-graded ring. There is a general procedure to
construct a commutative Z-graded ring out of S, which we now explain. We may consider
the ring of Laurent polynomials S[z*!] as a graded ring by setting |z| = 1 and |s| = 0 for any
s € S. We consider the Z-graded subgroup Scs [#F1] defined by

§i =S mod2) " 2, forie Z.

It is straightforward to check that S is in fact a Z-graded subring of S[z*!], and that the

canonical homomorphism of abelian groups S — S defined by u — ux® foru € S; and i = 0, 1,
has the property that the composite with the projection

S 85 8/(x?-1)

is an isomorphism of Z/2-graded rings.

Suppose next that G is an abelian group, and that S is a G-graded ring having the structure
of a A\-ring. We will say that S is a G-graded A-ring if \'(r) € S;, for any i € N, any g € G
and any r € Sy. As a corollary of Lemma A.3, we obtain the following result.

Lemma B.1. Let S be a commutative 7/2-graded \-ring. Then, the structure of \-ring on
S[z*] defined in Lemma A.3 induces a A-ring structure on S which turns it into a Z-graded

A-ring. If r € S; for some i € Z, there exists a unique s € S(; mod 2) such that r = sz’ and
we have

A(r) = XN'(s)z™ € S,,;.
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APPENDIX C. SOME POLYNOMIAL IDENTITIES

When Uy, ..., U, is a series of variables, we denote by 0, (U) € Z[U,...,U,,] the elemen-
tary symmetric functions, defined by the formula, valid in Z[Uy, ..., U,][t],

(C.0.a) H (1+tU;) Z t"on (U

1<i<m neN

C.1. The polynomials P,. By the theory of symmetric polynomials, there are polynomials
P, € Z[Xy,..., X, Y1,...,Y,] such that

(C.1.a) [T a+twvy) => t"Pu(o1(U),...,0n(U),01(V),...,0n(V))

1<i,j<m neN

holds in Z[Uy, ..., Upn, Vi, ..., Vy][t] for every m.
Let R be a commutative ring. For every z € R, let us define elements ¢;(x) € R for each
integer ¢ > 1 by the formula

x ifi=1,
(C.1.b) li(z) =<1 ifi=2,
0 ifi>2.
For elements aq,...,a, € R*, we consider the polynomial
(C.lc) Tarar ()= ] (L+tal---air) € BRIt

€1,..,er€{1,-1}
These polynomials can be expressed inductively as
(C.1.d) Taryar(t) = Tayary (tar) - Tay gy, (tarh).
Note that for any a € R*
Ta(t) =14 (a+a Mt + 12,
and for any a,b € R*, settingz =a+a ' and y =b+ b1,
(C.1.e) Tap(t) =1 + tay + 2 (22 + 4% — 2) + Py + t*

Lemma C.1.1. Let R be a commutative ring and x,y € R. Then

1 if n € {0,4},
Y ifne{1,3},
P,y (z), ..., 0h(x), 01(y), ..., Ly = ,
( 1(33) (x) 1(y) (y)) :EQ + y2 _9 an _ 2’
0 ifn > 4.
Proof. Consider the ring S = R[a,a™1,b,b7!]/(x —a—a ',y —b—b"1). Then S contains R.

We have o;(a,a™!) = ¢;(z) and a,-(b,b 1Y = ¢;(y) for all 4, so that, by (C.1.a) and (C.1.c)
Tap(t) =D Pulla(@), .. ln(@), (1Y), - -, L (y))E"

Thus the statement follows from (C.1.e). O
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Lemma C.1.2. Let R be a commutative ring and n € N\{0}. Then for everyry,...,r, € R,
the element

Py(r1,...,mn,01(B),...,4,(B)) — B"r, € R[B]
s a polynomial in B of degree < n — 1.
Proof. We may assume that R = Z[Xy,...,X,]| and that r;, = X, for all ¢ = 1,...,n. By
algebraic independence of the elementary symmetric polynomials, the ring R is then a subring
of R = Z[Uy,...,U,)], via X; + 0;(U). The ring S = R'[B, A, A7']/(B — A — A7!) then
contains R'[B], and thus also R[B]. Since o;(A, A~!) = £;(B) for all i, we have in S[t]

n

En:Pi(ol(U), s 0n(U), (B, (B =[] (1 + T A) (1 + tU; A7),
i=1 =1
and thus, in R/[B][t],

> Pi(o1(U), ..., on(U), (a(B), ... . lu(B) = [[(1 + tUiB + £2U7).

i=1 =1
Expanding the last product and looking at the t"-coefficients of both sides of the equation, we
see that P,(o1(U),...,0n(U),¢1(B),...,¢,(B)) has leading term B"0,(U) as a polynomial
in B (in view of (C.0.a)). O

C.2. The polynomials @; ;. By the theory of symmetric polynomials, there are polynomials
Qij; € Z[X1,...,X;j] (where 4,5 € N) such that

(C.2.a) 11 L+ Uay - Uayt) = > tQij(01(U),...,05(U))
1<ar < <a;<m €N
holds in Z[Uy, . .., Uy][t] for every m. For instance, we have Q1 ; = X; for any j € N~ {0}.
Lemma C.2.1. Let R be a commutative ring and x € R. Then
li(z) ifj=1andi+#0,
Q,-vj(ﬁl(a;),...,&j(x)) = 1 Zf’Lzl andj:2, or Zf’L:O,
0 otherwise.
Proof. Let S = R[a,a™!]/(x —a —a™!). Then S contains R. Setting w; = a, wy = a~! and
wg = 01in S for k > 2, we have oy (w) = ¢4 (x) for all k. Thus for all j € N
o 14+te 4+t ifj=1,
S tQut@. e by@) Y T Qe wa) =14 =2,

ieN 1o < <a;<m 1 otherwise.

O

C.3. The polynomials R,,. By the theory of symmetric polynomials, there are polynomials
R, €Z[Xy,...,Xn,Y1,...,Y,, Z1,..., Zy,] such that

I[I Q+wv;wie) => t"Ru(o1(U), ..., 0n0),01(V),...,00(V),00(W),...,00n(W))
1<4,5,k<m neN

holds in Z[Uy, ..., Upn, Vi, ..., Vin, W1, ..., Wy ][t] for every m.
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Lemma C.3.1. Forn <m, we have in Z[ X1, ..., Xm, Y1, ... Y, Z1, ..., Zp]
R,=P,(Xy,.... Xn, Pi(V1, Z1), ..., PB,(Y1, ..., Y0, Z1, ..., Zy)).
Proof. Observe that, in Z[Uy,...,Up, Vi,..., Vi][t],

I a+wvy HH1+tUV (Coaﬁ(Zan(V)U{Lt").

1<i,5<m i=1j5=1 i=1 neN

Since the elements Y, = o,(V) for » = 1,...,m are algebraically independent, in view of
(C.1.a) it follows that we have in Z[Uj, .. Um,Yl, o Yl[t], (writing Yy = 0 for s > m)

m

(C.3.2) N Pu(01(U),.. . 0n(U), Y0, Yo)i" = H (Z YnUi"t">.

neN i=1 neN
Now in Z[Vi,..., Vi, W1, ...

=Py(o1(V),...,om(V),o01(W),...,on(W)),
so that, in Z[Uq, ... Um,Vl, s Vi, Wi o W[t

[1 a+wiviwy) VT patrer) 273 Puor(), - ou), 1, pa)t”

W], set for any n € N,

1<i,j,k<m i=1 neN neN
Since the elements X, = 0,.(U),Y, = 0,(V),Z, = o,(W) for r = 1,...,m are algebraically
independent, this yields the statement. O

Lemma C.3.2. Let R be a commutative ring and x,y,z € R. Then

Ry(li(z), ..., (), 01(y), - ln(y), 1(2), ... . ln(2))

(1 if n € {0,8},

Yz if ne{1,7},
PP+t 4y = 2(at P+ 2P +4 if n € {2,6},
B x?’yz + 232 + xy2d — bryz if n € {3,5},

syt bt a2y — 4@ P+ 22+ 6 ifn =4,

0 ifn > 8.

Proof. Consider the ring S = Rla,a',b,b7 !, ¢, c_l]/(:n —a—aty—-b—blz—c—ch.
Then S contains R. We have o;(a, ) Z(:13),0’2( 7Y = 4i(y), oi(e, ) = £i(2) for all 4.
Writing r, = Rp,(¢1(x), ..., 0o (2), 01(y), ..., n(y),l1(2),...,ln(z)), we have by definition of
R, and (C.1.c)

@@

Tapelt) = rat™ € St].

neN
Since mape(t) = map(te) - map(te™t) by (C.1.d), it follows from (C.1.e) that m,p.(t) equals

(L+tzye+t2 (22 +y° = 2) + 3xyc® + 1) (1 +toye  +12(2? +y? = 2)c 2 + ayc 3 + e ™).

To conclude, we compute the coefficients 7, by expanding the above product. We have
rog =rg =1 and r, = 0 for n > 8, as well as

r1 =17 =xy(c+ c_l) = zy2.
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Using the fact that ¢ + ¢=2 = 22 — 2, we have
re =16 = (2% +y* — 2)(c® + ) + 2%y? = 2%y + 2?2 + P - 2(a? + P+ 2P) + 4.

Now ¢ + ¢ = 23 — 32, hence
b

r3 =15 = ay(c + ¢ 3) + (@® + y? — Day(c+ ) = yz + P2 + 2y — Sayz.
Finally ¢* + ¢™* = 2% — 422 + 2, hence
ry=ct et et (A )+ (P Yt -2 =t oyt 2t ey — At P 4 2%) 46

[Ada62]

O
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