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Scientific abstract

This thesis presents some recently published results ([10, 30]) regarding two
classical models of fluid dynamics: the 1D shallow water equations (SWE)
and the 3D incompressible semigeostrophic equations. In the context of
SWEs, we examine the behavior of pre-existing C1-class singular points in
the solution, and point out the distinction between the hyperbolic regime
and the parabolic regime. We provide a local description of the solution near
the singular points by means of the so-called wavefront expansion and derive
shock times where possible.

Concerning semigeostrophic equations, we study the relationship between
hyperbolic-elliptic transitions and singularities. To this end, we adopt a ge-
ometric framework, coming from Lychagin’s theory of Monge–Ampère equa-
tions, which provides a clear and useful representation of generalized solutions
and singularities. Specifically, we study a pull-back metric on generalized so-
lutions, seen as Lagrangian submanifolds of a suitable phase space, and its
relations with the symbol type of the equations and their singularities. Fi-
nally, we study the Eady problem, a classical benchmark initial setting for
the semigeostrophic equations, as an example of application of the ideas pre-
sented.
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Lay summary

The singularities of a mathematical model are often its most intriguing fea-
tures. They can reveal its limits of validity and suggest worthwhile new
questions to ask on the underlying physical phenomenon. Singularities are
especially relevant to fluid models. The Navier-Stokes existence and smooth-
ness problem is one of the oldest on the Clay Institute’s list, and has survived
attacks by mathematicians for centuries. Since direct approaches have had
limited success so far, researchers have turned to mathematical models in
order to gain insights into the behavior of the parent equations. Models that
derive from the Navier-Stokes equations through simplifying assumptions can
isolate specific features such as nonlinear, dissipative, and dispersive effects,
to be investigated separately. Also, studying models often leads to discov-
ering mathematical structures and methods which motivates new research
questions on the parent system, where one expects to be able to find similar
structures. This is the spirit of the present thesis.

We will investigate these ideas with particular reference to two models.
The first of them, called the “shallow water equations”, comes from oceanog-
raphy, and describes the motion of long waves on the surface of the water.
The second, called the “semigeostrophic equations”, comes from meteorology
and is used in weather prediction on a subcontinental scale.

The partial differential equations that cosntitute a model can generally
assume elliptic or hyperbolic behavior depending on their structure. For ex-
ample, under “normal” conditions, shallow water equations are hyperbolic
while semigeostrophic equations are elliptic. However, it is possible that the
model is capable of assuming both elliptic and hyperbolic behavior depending
on the choice of parameters and the solution at hand. For example, shallow
water equations are hyperbolic where the surface of the water is strictly above
the bottom and become elliptical where the surface lies below the bottom.
Obviously, this last case has no physical meaning, a fact which is reflected
in the instability that occurs in the solution as soon as it becomes elliptic.
The transition point between the two regimes, where the free surface inter-
sects the seabed, plays a special role. In fact, the solution still makes perfect
sense there (just think of a dry point), but the system of equations becomes
parabolic. Since the properties of a parabolic system differ substantially from
those of a hyperbolic (or elliptic) system, it is commonly believed that the ap-
pearance of parabolic points in the solution must necessarily be accompanied
by a singularity. Furthermore, singularities already present in the solution
are expected to interact in some way with the parabolic points. The main
objective of this thesis is to investigate these ideas in the two aforementioned
models of shallow water equations and semigeostrophic equations.
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Introduction

The singularities of a mathematical model are often its most intriguing fea-
tures. They can reveal its limits of validity and suggest worthwhile new
questions to ask on the underlying physical phenomenon. Singularities are
especially relevant to fluid models. The Navier-Stokes existence and smooth-
ness problem is one of the oldest on the Clay Institute’s list, and has survived
attacks by mathematicians for centuries. Since direct approaches have had
limited success so far, researchers have turned to mathematical models in
order to gain insights into the behavior of the parent equations. Models that
derive from the Navier-Stokes equations through simplifying assumptions can
isolate specific features such as nonlinear, dissipative, and dispersive effects,
and allow one to investigate them separately. Also, studying models often
leads to discovering mathematical structures and methods useful for their
analysis. This, in turn, motivates new research questions on the parent sys-
tem, where one expects to be able to find similar structures. This is the spirit
of the present thesis.

Once a specific model is selected, there are at least two approaches to
the study of its singularities: (i) one can either fix time and study the spa-
tial structure of a singularity already present in the solution, or (ii) try to
understand how a singularity develops as the solution evolves in time. We
use the terminology kinematic and dynamic singularities to distinguish be-
tween the two approaches. In this thesis, we are interested in a specific
feature of fluid dynamics equations, i.e., their variable symbol type. The
Navier-Stokes equations are mixed type PDE system, being able to assume
elliptical, parabolic or hyperbolic behaviour across the domain depending on
the solution at hand. The a priori knowledge of the flow regime (elliptic or
hyperbolic) expected in the solution is crucial to correctly specify a math-
ematical problem (i.e., boundary conditions) based on the Navier–Stokes
or Euler (inviscid Navier–Stokes) equations. If the flow regime happens to
change at some point, the mathematical problem breaks down, and the solu-
tion usually becomes unstable. Because of this, it is generally believed that
parabolic transitions cannot occur as long as the solution remains smooth.

9



10 CONTENTS

The parabolic regions thus acquire a special importance, because it is where
singularities are expected to occur.

We investigate these ideas within two mathematical models. The first of
them consists of the so-called shallow water equations on a variable bottom
topography. This is one of the simplest models for gravity waves on the sur-
face of water, and neglects both dissipative and dispersive effects. Parabolic
regions are found where the water surface intersects the bottom, that is, at
“dry points”. The second model we consider is the so called semigeostrophic
equations, a three-dimensional model for numerical weather prediction on a
subcontinental scale. Parabolic regions here correspond to the early forma-
tion stages of a weather front. Two fairly different mathematical frameworks
are employed for each model: asymptotic power expansions are at the core
of investigations on dry points, while Monge–Ampère geometry will be the
main tool for studying weather fronts.

The thesis is organized as follows. We shall discuss the shallow water
equations and dry points in Chapter 1, drawing material from the recent
work [10]. This chapter contains almost exclusively original material, except
made for §1.1 that serves as an introduction on the wavefront expansion tech-
nique. The semigeostrophic equations will take the rest of the thesis. They
are introduced in Chapter 2, along with a review of the set of hypothesis
underlying their derivation [91]. The second part of the chapter deals with
the duality structure of the semigeostrophic equations [16], and is closed by a
revisitation of the Chynoweth and Sewell fronts in three spatial dimensions.
This chapter contains no original results, and the only element of novelty
is the style of presentation. Chapter 3) deals with Monge–Ampère geom-
etry and its applications to the semigeostrophic equations. Novel material
is contained in the sections 3.3 and 3.4, where Monge–Ampère geometry is
employed in the reconstruction of the velocity field for a given generalized
solution, and the comparison of Chynoweth–Sewell fronts to gas dynamical
shocks. This material is part of an article in preparation. Chapter 4 presents
recently published material on pseudo-Riemannian geometry of generalized
solutions in the semigeostrophic context [30]. Apart from the introductory
paragraph, everything in this chapter is original material. Chapter 5 contains
unpublished material on the Eady problem, a classical example of a dynamic
singularity, analysed in light of the geometry introduced in Chapters 3 and
4. The presentation style is the only original element in Sections 5.1 and
5.2, devoted to a review of the mathematical problem and its solution. Orig-
inal results are concentrated in Sections 5.3, 5.4, and 5.5, where the Eady
problem is analysed from the point of view of Monge–Ampère geometry, and
the velocity field is retrieved from the knowledge of the generalized solution
using a numerical algorithm.



Chapter 1

The shallow water equations

Shallow water equations (SWE) are a classic oceanographic model used in
studies of long gravitational waves on the water surface. Plane waves are
governed by

∂η

∂t
+
∂uη

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+
∂(η + b)

∂x
= 0, (1.1)

where η(x, t) represents the thickness of the water layer, b(x) is the bottom
elevation over a reference level, and u(x, t) represents the depth-averaged hor-
izontal component of the velocity field [15, 87]. All the variables involved in
(1.1) are considered dimensionless. An alternative form of SWE is obtained
by using the absolute elevation ζ of the water surface as the dependent vari-
able instead of the depth η,

ζ(x, t) = b(x) + η(x, t), (1.2)

whereby,

∂ζ

∂t
+

∂

∂x
(u(ζ − b)) = 0,

∂u

∂t
+ u

∂u

∂x
+
∂ζ

∂x
= 0. (1.3)

SWE represent one of the simplest fluid models that contemplates the
interaction between the free surface and the seabed: the system, normally
hyperbolic, becomes parabolic locally at the points where the water surface
touches the seabed. The type transition that occurs at the dry points and its
relation to the singularities of the solution is the main topic of this chapter,
in which we will review some of the results published in [10]. Specifically, we
consider a class of initial conditions for (1.1) in which the globally continuous
water surface has discontinuous slope. We will show that the evolution of
these initial conditions is substantially different depending on whether the

11



12 CHAPTER 1. THE SHALLOW WATER EQUATIONS

singular point is located within the fluid-filled domain or on its boundary
(i.e., on a dry point).

The chapter is organized as follows. We start by reviewing the dynamics
of first order singularities in the hyperbolic regime and the wavefront expan-
sion technique in Section 1.1. We apply these ideas in Section 1.2 to study
the dynamics of first-order hyperbolic singularities which which arise from a
specific class of initial conditions. We conclude this chapter with a discus-
sion on first order singularities occurring at the boundary of the fluid-filled
domain, i.e., at dry points, in Section 1.3. All the material in this chapter is
drawn and adapted from the recent publication [10].

1.1 Overview of near-front local analysis

When a disturbance propagates in still water, information about the so-
lution can be extracted by the wavefront expansion technique [92]. This
method essentially consists of an asymptotic expansion of the solution near
the “wavefront”, i.e., the disturbance front, which delimits the disturbed re-
gion of the solution from the quiescent one (see Figure 1.1). In hyperbolic
conditions, the wavefront expansion can provide information on the motion
of the front and the slope of the upstream surface. The wavefront expansion
consists of three steps: (i) a translating reference frame moving with the
disturbance front is adopted; (ii) an asymptotic expansion of the solution
is carried out upstream of the wave front; (iii) the asymptotic expansion is
inserted in the SWE to obtain a system of ODEs governing the evolution of
its time-dependent coefficients.

We consider a globally continuous piecewise smooth solution to the SWE,
with a jump discontinuity of the k-th order derivatives across a curve x =
X(t) in the spacetime plane (Figure 1.1), and we make two key assumptions:
(i) the curve x = X(t) is a characteristic curve of the system; (ii) a constant
state is established downstream of x = X(t). In this setting, it is convenient
to use the form (1.3) of the SWE, so the constant equilibrium state down-
stream of the wavefront is simply represented by ζ = 0 and u = 0. We adopt
the translating coordinate system

ξ = x−X(t), (1.4)

which brings the SWE (1.3) to the form

∂ζ

∂t
− Ẋ

∂ζ

∂ξ
+

∂

∂ξ
(u(ζ − b)) = 0,

∂u

∂t
+ (u− Ẋ)

∂u

∂ξ
+
∂ζ

∂ξ
= 0. (1.5)
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Then, we make the following ansatz on the form of the solution upstream of
the wavefront, that is, for ξ < 0,

ζ
∣∣
ξ<0

= ζ0(t) + ζ1(t)ξ + ζ2(t)ξ
2 + . . . ,

u
∣∣
ξ<0

= u0(t) + u1(t)ξ + u2(t)ξ
2 + . . . .

(1.6)

This ansatz essentially assumes that the solution is one-sided analytic in
a neighbourhood of the wave front; henceforth, we will refer to it as the
wavefront expansion of the solution. Its coefficients are to be determined by
substituting expansion (1.6) back into (1.5). Although ζ0 and u0 are formally
included in these expansions, both their values are fixed to zero to ensure
that the series (1.6) continuously connect to the constant state at ξ = 0.
Here uk(t) and ζk(t) can be viewed as limits of the relevant derivatives of u
and ζ for ξ → 0−, that is

uk(t) = lim
ξ→0−

1

k!

∂ku

∂ξk
(ξ, t), ζk(t) = lim

ξ→0−

1

k!

∂kζ

∂ξk
(ξ, t). (1.7)

Similarly, the bottom topography is expanded in powers of ξ,

b(X(t) + ξ)
∣∣
ξ<0

= b0(t) + b1(t)ξ + b2(t)ξ
2 + . . . , (1.8)

where the time dependent coefficients bk are evaluated as

bk(t) =
1

k!

∂kb

∂ξk
(0, t) =

1

k!

dkb

dxk
(X(t)). (1.9)

Plugging the expansions (1.6) and (1.8) into equations (1.5) and collecting
the various powers of ξ yields two infinite hierarchies of ODEs,

ζ̇n + (n+ 1)
[
(u0 − Ẋ)ζn+1 − b0un+1

]
− (n+ 1)bn+1u0+

+ (n+ 1)
n∑

k=1

(ζk − bk)un+1−k = 0,
(1.10)

u̇n + (n+ 1)
[
ζn+1 + (u0 − Ẋ)un+1

]
+

n∑
k=1

k ukun+1−k = 0 (1.11)

for n ≥ 1, while, using u0 = ζ0 = 0, n = 0 yields

−Ẋζ1 − b0u1 = 0, ζ1 − Ẋu1 = 0. (1.12)
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Equations (1.12) can be used to determine the wavefront speed Ẋ: if the
solution has discontinuous first derivatives across the wavefront, at least one
among u1 and ζ1 is different from zero; this in turn implies that the coefficient
matrix of the linear system (1.12) is singular, that is

Ẋ2 + b0 = 0, (1.13)

where b0(ξ, t) ≡ b(X(t)). This first order nonlinear equation can in principle
be solved to get the wavefront motion, which will depend solely on the bottom
topography (with the choice of sign of Ẋ set by the initial data). The same
result is obtained if the solution has a k-th order jump, with k < ∞, across
the wavefront.

The structure of equations (1.10)–(1.11) is such that, for any fixed n,
variables of order up to n + 1 are involved. However, higher order variables
enter the system in such a way that both can be canceled by taking a single
linear combination of the two equations. This becomes more transparent by
writing system (1.10)–(1.11) in matrix form

U̇n + (n+ 1)AUn+1 + Fn = 0, A =

(
−Ẋ −b0

1 −Ẋ

)
, (1.14)

where Un = (ζn, un)T , and Fn comprises variables of order up to n. The ma-
trix A is singular due to relation (1.13); thus, multiplying the above equation
on the left by the eigenvector (1, Ẋ) corresponding to the eigenvalue 0 of A,
we get

ζ̇n + Ẋu̇n + (1, Ẋ)Fn = 0, (1.15)

which is free of higher order variables. One of the two equations of order
(n − 1) can now be used to replace ζn with un, or vice versa. For example,
from (1.11) we get

ζn = Ẋun −
1

n

(
u̇n−1 +

n−1∑
k=1

kukun−k

)
. (1.16)

Once (1.16) is substituted into (1.15), a first order differential equation is
eventually obtained, where neither ζn nor any higher order variable appear,
and the only unknown is un. By iterating this procedure, one can in principle
solve the hierarchy (1.10)–(1.11) up to any desired order.

The case n = 1 is of crucial importance for the prediction of gradient
catastrophes at the wavefront. Setting n = 1, equations (1.15) and (1.16)
give

ζ̇1 + Ẋu̇1 + 2(ζ1 − b1)u1 + Ẋu21 = 0, ζ1 = Ẋu1 , (1.17)
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The bottom term b1 in (1.17) can be expressed in terms of X(t) from

2Ẍ + b1 = 0, (1.18)

which is obtained by taking the time derivative of (1.13). Using (1.18),
equations (1.17) may be combined so as to obtain two independent ODEs
for u1 and ζ1,

u̇1 +
3

2
u21 +

5Ẍ

2Ẋ
u1 = 0, ζ̇1 +

3

2Ẋ
ζ21 +

3Ẍ

2Ẋ
ζ1 = 0. (1.19)

The Riccati-like mapping

ζ1 =
2

3
Ẋ(t)

ϕ̇(t)

ϕ(t)

linearizes the second equation in (1.19),

5ϕ̇(t)Ẍ(t) + 2ϕ̈(t)Ẋ(t) = 0 ,

which yields the quadrature solution

ζ1(t) =
(Ẋ(0)/Ẋ(t))3/2

ζ1(0)−1 + 3
2
Ẋ(0)3/2I(t)

, where I(t) =

∫ t

0

Ẋ(s)−5/2 ds. (1.20)

It is often more convenient to focus on the dependence of the surface slope
ζ1 on the wavefront position rather than on time. By making use of (1.13)
and the change of variable t = X−1(x), the integral above can be expressed
as

I(x) =

∫ X−1(x)

X−1(x0)

Ẋ− 5
2 (t′) dt′ =

∫ x

x0

Ẋ− 7
2 (X−1(x′)) dx′ =

∫ x

x0

(−b(x′))−
7
4 dx′,

(1.21)

where x0 is the initial condition X(0) = x0. Thus, equation (1.20) takes the
form

ζ1(t) =
(b(x0)/b(x))3/4

ζ1(0)−1 + 3
2
(−b(x0))3/4I(X)

∣∣∣
x=X(t)

. (1.22)

Of course, this construction relies on the existence of the inverse function
X−1(x), and is well defined only for as long as the wavefront advances in the
same direction.

The last equation allows one to predict the development of a gradient
catastrophe at the wavefront location based on the given initial conditions
and the bottom shape. It was used by Greenspan [40] to investigate the
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Figure 1.1: A wavefront x = X(t) advancing towards the shore, i.e., Ẋ > 0.
It bounds a constant region on its right, where the fluid is quiescent, and a
perturbed region on its left.

breaking of a wavefront approaching a sloping beach with a straight bottom,
and by Gurtin [41], who extended Greenspan’s analysis to general bottom
shapes. In addition to the initial value ζ1(0), the breaking conditions depend
on the bottom topography, and in particular on its slope immediately close
to the shoreline, which turns out to play a crucial role [41] (see also [42]).

1.2 Non-frontlike initial conditions

In the previous section we reviewed the wavefront expansion technique with
application on a generic wavefront propagating in still medium. In this sec-
tion we consider wavefronts generated by a class of initial data containing a
singularity in the slope of the water surface.

In many physical interesting situations, the initial conditions for the SWE
are piecewise smooth and globally continuous. The wavefront expansion tech-
nique provides a valuable tool for their analysis, especially in the presence
of nontrivial bottom topographies. When ∂b

∂x
= 0, the shallow water sys-

tem admits Riemann invariants and simple waves. This allows to look for
singularities from a global perspective, and compute the least shock time
associated with given initial conditions (see [12]). On the other hand, when
∂b
∂x

̸= 0, the SWE are inhomogeneous, and Riemann variables are no longer
invariant along characteristic curves. Simple waves are unavailable as well,
hence for general bottom shapes only the local viewpoint of the wavefront
expansion for the study of singularities is in general available for analytical
advances. We describe here how the machinery of the wavefront expansion
applies to a prototypical example, and discuss the special case of a flat bot-
tom in the next section.



1.2. NON-FRONTLIKE INITIAL CONDITIONS 17

Figure 1.2: Sketch of trajectories of the two wavefronts x = Xr(t) and

x = Xℓ(t) arising from piecewise differentiable initial conditions(̃1.23)–(1.24).
This data class identifies three distinct regions, L, S and R, in the spacetime
plane. The field variables of the SWE are denoted differently in each of the
three regions so defined.

1.2.1 Piecewise smooth initial conditions

We assign initial conditions as follows: the fluid is initially at rest, and the
water surface is composed by a constant part on the right, glued at the origin
to a general smooth part on the left,

u(x, 0) = 0 for any x ∈ R (1.23)

and

ζ(x, 0) =

{
ζin(x) for x ≤ 0,

0 for x > 0.
(1.24)

Here, ζin(x) is a smooth function in (−∞, 0], subject to the condition ζin(0) =
0, which ensures the global continuity of the initial data. We further require
that ζ ′in(0) ̸= 0 (and bounded), so that the water surface has a discontinuous
first derivative, a corner, at x = 0 for t = 0. Finally, we assume that
ζin(x) > b(x) in some neighbourhood of x = 0. This assumption ensures that
the SWE are locally hyperbolic so that a couple of distinct characteristics
pass through the origin in the spacetime plane (see Figures 1.2 and 1.4).
These characteristics satisfy{

Ẋr = u+
√
η

Xr(0) = 0
,

{
Ẋℓ = u−√

η

Xℓ(0) = 0
. (1.25)

As remarked in [92], higher order singularities in the solution to a hyperbolic
system propagate along its characteristic curves. Because of this, the singular
point initially located at x = 0 splits into a pair of singular points transported
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along the two characteristic curves x = Xr(t) and x = Xℓ(t) after the initial
time. Thus, for t > 0, and as long as shocks (gradient catastrophes) do not
arise, the solution is composed by three distinct smooth parts defined by the
above pair of characteristics (see Figure 1.2). We append the superscript
“+” to variables in the region R, that is for x > Xr(t), characterized by the
constant state u+(x, t) = 0, ζ+(x, t) = 0. Similarly we denote with a “−” the
variables in the region L (x < Xℓ(t)) which we regard as known functions of
(x, t), i.e., (u−(x, t), ζ−(x, t)) solve the SWE with initial condition ζ(x, 0) =
ζin(x) on x < 0. Finally, we denote with capital letters V,N, Z the solution
in the middle region S, that is for Xℓ(t) < x < Xr(t). We call this portion
of the spacetime plane, enclosed by the two singular points, the shoulder
[13, 12].

Even if no singularity were to occur in the L region, loss of regularity could
certainly happen in the shoulder region S. Although we cannot generally
rule out the onset of singularities in the interior of S, we focus here on its
boundaries, i.e. the characteristic curves x = Xℓ(t) and x = Xr(t). The
machinery described in the previous paragraph is immediately applicable to
the right wavefront x = Xr(t), whereas it requires some further adaptation
to be used for x = Xℓ(t) because it propagates across a nonconstant state.
Thus, we focus on the solution near the right boundary of the shoulder region,
x = Xr(t).

Piecewise initial conditions (1.24) and (1.23) introduce an element of
novelty with respect to the analysis of Gurtin [41] mentioned in the previous
section. The setting considered by Gurtin consists of a travelling wavefront
stemming from some unspecified initial conditions. The wavefront analysis
is then applied to this dynamical setting, starting from some generic time,
arbitrarily picked as the initial one. On the other hand, if the fluid is initially
at rest, the wavefronts arise as a consequence of the fluid relaxation.

The shoulder region is empty at the initial time, so special attention is
needed to identify initial conditions for the wavefront equations (1.19), which
we rewrite here for convenience,

u̇1 +
3

2
u21 +

5Ẍ

2Ẋ
u1 = 0, ζ̇1 +

3

2Ẋ
ζ21 +

3Ẍ

2Ẋ
ζ1 = 0. (1.26)

Note that neither u1 or η1 are defined at t = 0, as they represent the limits of
the relevant quantities for x → Xr(t)

− with Xℓ(t) < x < Xr(t). However, a
consistent definition for u1(0) and ζ1(0) can still be given in terms of appro-
priate limits as (x, t) → (0, 0) from the interior of S, provided the gradients
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∇Z and ∇V are continuous up to the boundary ∂S. Namely we define{
u1(0) ≡ lim(x,t)→(0,0)

∂V
∂x

ζ1(0) ≡ lim(x,t)→(0,0)
∂Z
∂x

with (x, t) ∈ S. (1.27)

These values are computed from the given initial conditions as follows. From
the continuity hypothesis on the solution, the fields Z, V , as well as their
gradients, can be extended to the boundary ∂S along the two characteristics
Xr, Xℓ by taking the appropriate limits (the same applies to ζ−, u−, ζ+, u+

on their respective domains), and we have

ζ−(Xℓ(t), t) = Z(Xℓ(t), t), 0 = Z(Xr(t), t). (1.28)

Taking a time derivative, these two relations give

∂ζ−

∂x
(Xℓ(t), t)Ẋℓ(t)+

∂ζ−

∂t
(Xℓ(t), t) =

∂Z

∂x
(Xℓ(t), t)Ẋℓ +

∂Z

∂t
(Xℓ(t), t), (1.29)

and

0 =
∂Z

∂x
(Xr(t), t)Ẋr +

∂Z

∂t
(Xr(t), t). (1.30)

The continuity of Z,∇Z on the closure of S implies

lim
t→0+

∂Z

∂x
(Xℓ(t), t) = lim

t→0+

∂Z

∂x
(Xr(t), t) ≡ ζ1(0), (1.31)

and

lim
t→0+

∂Z

∂t
(Xℓ(t), t) = lim

t→0+

∂Z

∂t
(Xr(t), t). (1.32)

Therefore, taking the difference of equations (1.29) and (1.30), and passing
to the limit t→ 0+ yields an expression for the initial value ζ1(0),

ζ1(0) =
∂ζ−

∂x
(0, 0)Ẋℓ(0) + ∂ζ−

∂t
(0, 0)

Ẋℓ(0) − Ẋr(0)
. (1.33)

This expression may be simplified by observing that, since the velocity field
u is identically 0 at t = 0, equation (1.25) implies Ẋr(0) = −Ẋℓ(0). Fur-
thermore, the continuity equation (i.e., the first equation in (1.3)) implies
∂ζ
∂t

(x, 0) = 0 for x ̸= 0, so (1.33) simplifies to

ζ1(0) =
1

2

∂ζ−

∂x
(0, 0) ≡ ζ ′in(0−)

2
, (1.34)

where we have used the notation ζ ′in(0−) to denote a one-sided derivative.
Interestingly, immediately after the initial time, the slope of the water surface
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Figure 1.3: Sketch of the solution at a very early stage t≪ 1. The shoulder
part is approximately a segment with slope tan(β) ≃ −ζ1(0), half of the
surface slope in the region L, tan(α) ≃ −ζ ′0(0−).

Figure 1.4: Sketch of initial conditions of class (1.24) (left) and a snapshot
of their evolution at an instant t > 0 prior to any shock development (right).
The shoulder part of the solution, not present at the initial time, is enclosed
by the two moving points x = Xr(t) and x = Xℓ(t) for t > 0.

in region of the shoulder is half that of the neighboring region L (see Figure
1.3). Thus, according to (1.34), the initial slope of the shoulder part ζ ′in(0−)
equals the algebraic mean of the slope values on the two sides. As ζ1 = Ẋru1,
we also obtain the corresponding initial condition for u1,

u1(0) =
ζ ′in(0−)

2Ẋr(0)
=

ζ ′in(0−)

2
√

−b(0)
. (1.35)

Here equation (1.13) has been used in the last equality. Thus, together with
these initial conditions, (1.20) (or (1.22)) determine the onset of a gradient
catastrophe at the wavefront x = Xr(t). The gradient blow-up rate depends
on the bottom shape b(x) as well as the given initial data ζin(x). Of particular
relevance is the sign of the surface slope ζ ′in(0−) near the singular point x = 0,
which markedly affects the solution behaviour.
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1.2.2 The case of a flat bottom

In this section we examine the special case ∂b
∂x

= 0, which corresponds to a
horizontal seabed. Under these conditions, the SWE with initial conditions
(1.23)–(1.24) can be solved using the method of characteristics [12]. This
allows us to compare check the consistency of the assumptions and results of
the previous section in a particular case where the exact solution is available.
We start by recalling the problem set-up and solution [12]. In this setting,
we use the form (1.1) of the SWE, and assign initial conditions on the depth
function by

η(x, 0) =

{
ηin(x) for x < 0,

Q for x > 0,
(1.36)

where Q > 0 is a constant. We insist that the velocity field is everywhere zero
at the initial time. For t > 0, the solution is composed of the three regions
represented in Figure 1.2. To determine the solution within the shoulder
region, we write the SWE (1.1) in the characteristic form,

∂tR± + λ±∂xR± = 0, (1.37)

where the characteristic velocities λ± and the Riemann invariants R± are
respectively defined by

λ± = u±√
η, R± = u± 2

√
η. (1.38)

The basic property of Riemann invariants is

R± = constant along
dx

dt
= λ±. (1.39)

Characteristics with tangent λ− intersect the curve x = Xr(t) (because it
is a characteristic curve with tangent λ+). Therefore, since the solution is
constant for x > Xr(t), the Riemann invariant R− is constant throughout
the regions R and S as well as on their common boundary1, and takes the
value

R− = −2
√
Q. (1.40)

Specifically, in the shoulder region we have

V = 2
√
N − 2

√
Q. (1.41)

Characteristic curves of the family λ+ satisfy, within the shoulder region,

dx

dt
= V +

√
N. (1.42)

1This is generally true for sufficiently small times, i.e., as long as shocks do not occur.
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Figure 1.5: Space-time diagram of the shoulder region for small times and
initial data u(x, 0) = 0 with indication of the coordinate grid (t0, t). The
shoulder boundaries correspond to t0 = t and t0 = 0.

The velocity V may be eliminated using 1.41, so this equation becomes

dx

dt
= 3

√
N − 2

√
Q. (1.43)

Note that the r.h.s. in this equation is constant because both R+ and R−
are constant along the characteristics of the λ+-family.

We assign initial conditions for this equation along the left boundary of
the shoulder region, that is

x(t0) = Xℓ(t0) for t = t0. (1.44)

Therefore, we obtain a parametric expression for positive characteristics,

x = Xℓ(t0) + (3
√
N − 2

√
Q)(t− t0). (1.45)

where t acts as the curve parameter, and t0 acts as a label for the character-
istic curves. Note that the right boundary of S is the positive characteristic
labelled by t0 = 0. As long as shocks do not occur, the parameters (t0, t)
can be used as a local coordinate system in the shoulder region (see Figure
1.5). In other words, we think of (1.45) as defining a change of variables
(t0, t) 7→ (x, t) in the shoulder region. Because the field variables N and V
are constant along positive characteristics, we have, in the new coordinates
∂N
∂t

= ∂V
∂t

= 0, and
N = N(t0), V = V (t0). (1.46)

Furthermore, as long as the solution is continuous, the value of the field
variables is fixed by the solution η−, u− in the L region. Therefore, we
obtain

N(t0) = η−(Xℓ(t0), t0), V (t0) = u−(Xℓ(t0), t0), (1.47)
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which represents the full solution in the shoulder region. Gradient catastro-
phes are identified by the condition

∞ =
∂N

∂x
≡

∂N
∂t0
∂x
∂t0

, (1.48)

which corresponds to

∂x

∂t0
= 0 with

∂N

∂t0
̸= 0. (1.49)

It follows from (1.45) that the first time at which the characteristic t0 inter-
sects another characteristic of the same family is

t = t0 +
3
√
N(t0) − 2

√
Q− Ẋ(t0)

3d
√
N

dt0

. (1.50)

The infimum of (1.50) over t0 provides the catastrophe time for the shoulder
part of the solution 2

We are now ready to show consistency of the assumptions and results
of the previous section within the closed form solution obtained here. To
begin with, we note that the gradient of the field variables ∇N and ∇V is
continuous on the closure of S for sufficiently small times. Indeed, using
(t0, t) as coordinates,

∂N

∂x
=

dN
dt0
∂x
∂t0

,
∂N

∂t
= −

∂x
∂t
∂x
∂t0

dN

dt0
, (1.51)

which shows that ∇N is continuous as long as ∂x
∂t0

̸= 0, i.e., as long as shocks

do not arise. A similar result holds for V . Observe that ∂x
∂t0

is well defined on
both the left boundary t0 = t and the right boundary t0 = 0 of the shoulder:

∂x

∂t0

∣∣∣∣
t0=t

= Ẋℓ(t) − 3
√
N(t) + 2

√
Q, (1.52)

∂x

∂t0

∣∣∣∣
t0=0

= −2
√
Q+ 3t

d
√
N(t0)

dt0

∣∣∣∣
t0=0

. (1.53)

Furthermore, since Ẋℓ(0) = −
√
Q and N(0) = Q,

∂x

∂t0
(0, 0) = −2

√
Q. (1.54)

2When computing this infimum, one has must ensure that (1.45) evaluated at (1.50)
falls within the shoulder region.
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Thus we see that xt0 is continuous and different from zero up to the bound-
aries of the shoulder domain for sufficiently small times (i.e., as long as shocks
do not occur), and so are the gradients ∇N and ∇V .

Secondly, in this example a direct computation can be performed of the
water surface’s slope in the shoulder region at the initial time. Indeed, by
using (1.47), we get

dN

dt0

∣∣∣∣
t0=0

=
dη−(Xℓ(t0), t0)

dt0

∣∣∣∣
t0=0

=
∂η−

∂t
(0, 0) + Ẋℓ(0)

∂η−

∂x
(0, 0). (1.55)

On the other hand, the initial condition u(x, 0) = 0, combined with the

continuity equation, implies ∂η−

∂t
(0, 0) = 0, so

dN

dt0

∣∣∣∣
t0=0

= Ẋℓ(0)
∂η−

∂x
(0, 0) = −

√
Q η′in(0). (1.56)

Combining (1.54) and (1.56), we conclude that

∂N

∂x
(0, 0) =

dN
dt0
∂x
∂t0

=
η′in(0)

2
, (1.57)

in accordance with (1.34).

1.3 Dry points

In this section, we consider a family of initial data for (1.1) of the kind

η(x, 0) =

{
ηin(x) for x < 0,

0 for x > 0,
(1.58)

with
u(x, 0) = 0, ∀x ∈ R. (1.59)

We further require ηin(0) = 0 in order to ensure continuity of the initial data.
From a physical point of view, this setup mimics a shoreline placed at x = 0
at the initial time. At dry points (η = 0), the SWEs become parabolic, and
the characteristic velocities in the (x, t)-plane coincide,

λ± = u. (1.60)

For this reason, singular points found in the dry region do not split and give
rise to a shoulder as hyperbolic singular points would. Since generally not all
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Figure 1.6: Schematic of moving dry point x = X(t), separating a fluid-filled
region on its left, where the water surface is strictly above the bottom, and
a dry region to its right, where surface and bottom curves coincide.

derivatives of η(x, 0) will be continuous at the shoreline, this will represent a
singular point. After the initial instant, the shoreline, which we will denote
by x = X(t), will be advected by the velocity field.

In the terminology of gas dynamics often used for hyperbolic systems,
η(x, t) plays the role of a gas density, and the dry state on one side of the
shoreline is understood as a vacuum. For this reason, the term “vacuum
boundary” will also be used when referring to x = X(t). We consider the
setup depicted in Figure 1.6, where the shoreline x = X(t) separates a fluid-
filled region to its left from a dry region on its right. In the dry region, we have
by definition η = 0, while the velocity field must satisfy the inhomogeneous
Hopf equation,

∂u

∂t
+ u

∂u

∂x
+
db

dx
= 0. (1.61)

To study the local behavior of the solution near the shoreline, we adopt the
co-moving coordinate system (1.4), so that the SWE (1.1) read

∂η

∂t
− Ẋ

∂η

∂ξ
+
∂uη

∂ξ
= 0,

∂u

∂t
+ (u− Ẋ)

∂u

∂ξ
+

∂

∂ξ
(η + b) = 0. (1.62)

Next, we introduce the wavefront expansion of the solution in the wet region
(i.e., ξ < 0). We consider a power series representation for η, u and b in the
form

η(X(t) + ξ, t)
∣∣
ξ<0

= η0(t) + η1(t)ξ + η2(t)ξ
2 + . . . (1.63)

u(X(t) + ξ, t)
∣∣
ξ<0

= u0(t) + u1(t)ξ + u2(t)ξ
2 + . . . (1.64)

b(X(t) + ξ)
∣∣
ξ<0

= b0(t) + b1(t)ξ + b2(t)ξ
2 + . . . (1.65)

with coefficients defined by

uk(t) := lim
ξ→0−

1

k!

∂ku

∂ξk
(ξ, t), ηk(t) := lim

ξ→0−

1

k!

∂kη

∂ξk
(ξ, t), (1.66)
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n (I) (II)

0 0 = 0 u̇0 + b1 + η1 = 0
1 η̇1 + 2u1η1 = 0 u̇1 + 2b2 + u21 + 2η2 = 0
2 η̇2 + 3u2η1 + 3u1η2 = 0 u̇2 + 3b3 + 3u1u2 + 3η3 = 0
3 η̇3 + 4u3η1 + 4u2η2 + 4u1η3 = 0 u̇3 + 4b4 + 2u22 + 4u1u3 + 4η4 = 0
...

...
...

Table 1.1: The first equations (I)–(II) for the unknown coefficients of the
formal series (1.63)–(1.64) for u(X(t) + ξ, t), η(X(t) + ξ, t) and b(X(t) + ξ).

bk(t) :=
1

k!

∂kb

∂ξk
(0, t) =

1

k!

dkb

dxk
(X(t)). (1.67)

We set η0 = 0 in order to ensure continuity of the water surface at the
shoreline. Inserting the power expansions (1.63)–(1.65) in equations (1.62),
and collecting terms of the same order O(ξn), we obtain the following infinite
hierarchy of ODEs: for n = 0,

u̇0 + b1 + η1 = 0 , (1.68)

and for n > 0,

η̇n + (n+ 1)(u0 − Ẋ)ηn+1 + (n+ 1)
n∑

k=1

ukηn+1−k = 0, (1.69)

u̇n + (n+ 1)(u0 − Ẋ)un+1 + (n+ 1)(ηn+1 + bn+1) +
n∑

k=1

kulun+1−k = 0 .

(1.70)

Note that for n = 0 system (1.62) yields a single equation, as the η-equation
in (1.62) is automatically satisfied and hence provides no information. Since
Ẋ = u0, the hierarchy simplifies to

η̇n + (n+ 1)
n∑

k=1

ukηn+1−k = 0, (I)

u̇n + (n+ 1)(ηn+1 + bn+1) +
n∑

k=1

k ulun+1−k = 0. (II)

Table 1.1 shows the explicit form of the first few equations in this hierarchy.

Remark 1.3.1. A closer look to this hieararchy of ODEs reveals some in-
teresting features [10]:
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1. Using u0 = Ẋ, equation (1.68) can be written as

Ẍ + b1 + η1 = 0 . (1.71)

This relates the acceleration of the wavefront (the vacuum boundary)
x = X(t) to the slope of the water surface behind it, which is precisely
b1 + η1.

2. A truncation of the infinite hierarchy (I)-(II) to some order n = N
would correspond to a reduction of the continuum governed by the SWE
to a finite number of degrees of freedom dynamics, with η and u being
polynomial functions of x, respectively of order N + 1 and N . To this
end, it is clear that a necessary condition for this to happen is that the
bottom topography be a polynomial of degree N , as opposed to an infi-
nite power series. This is reflected by the structure of the hierarchy (II),
which would lose the terms {bn} (generated by the bottom topography
for n > N) that make equations (II) inhomogeneous. Homogeneity
would allow to set the corresponding series coefficients {ηn+1, un} to
zero if so initially, thereby reducing the power series solutions to mere
ξ-polynomials. However, the very same structure of (II) shows that the
condition of polynomial bottom profiles in general cannot be sufficient
for an exact truncation of the series: even in the absence of the {bn}
terms the equations in hierarchy (II) for n > N are not truly homo-
geneous, since functions of lower index series-coefficient {(un, ηn)} for
n < N enter themselves as inhomogeneous forcing functions in all the
remaining n > N infinite system.

3. The case of a quadratic bottom profile,

b(x) = c0 + c1x+ c2x
2/2 (1.72)

for some constants c0, c1 and c2, say, is clearly special (and often the
one considered in the literature). In fact, for this case b1 = c1+c2X(t),
b2 = c2 (and of course bn = 0 for n > 2). With null initial data ηn+1(0)
and un(0) for n > 1, equations (I)-(II) are consistent with ηn+1(t) = 0
and un(t) = 0 for t > 0, n > 1, and hence the hierarchy truncates to a
finite, closed system for the four unknowns X(t), η1(t), η2(t), and u1(t),

Ẍ + c2X + c1 + η1 = 0 ,

η̇1 + 2u1η1 = 0 ,

η̇2 + 3u1η2 = 0 ,

u̇1 + u21 + 2η2 + c2 = 0 .

(1.73)
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4. For n = 1 equation (I) gives

η̇1 + 2u1η1 = 0 ; (1.74)

this implies that if the initial conditions are such that η1(0) = 0, then
η1(t) = 0 at all subsequent times, at least for as long as the solution
maintains the regularity assumed for the convergence of the power series
expressions (1.63)–(1.64) for all the variables involved. Note that since
η
∣∣
ξ=0

is the layer thickness at the front ξ = 0, the condition

η1 ≡
∂η

∂ξ

∣∣∣∣
ξ=0

= 0 (1.75)

implies that the derivative of the free surface matches that of the bot-
tom at the dry point, that is, the free surface is tangent to the bottom
there.

This last point in Remark 1.3.1 plays an important role in the classifica-
tion and properties of the solutions with vacuum points, to which we turn
next. Specifically, we analyze below the two cases η1 = 0 and η1 < 0 sep-
arately; in the literature these two different cases are commonly referred to
as the “nonphysical” and “physical” vacuum points, respectively (see, e.g.,
[56]), and we will henceforth conform to this terminology.

1.3.1 Nonphysical vacuum points

We first consider the case η1(0) = 0, for which the water surface is tangent
to the bottom at the vacuum boundary. From equation (1.71) it follows that
the motion of the wavefront is solely determined by the bottom shape as
solution to the problem

Ẍ + b′(X(t)) = 0, X(0) = x0, Ẋ(0) = u0(0). (1.76)

Upon multiplying this equation by Ẋ(t), it can be integrated once, to get

Ẋ2

2
+ b(X(t)) = constant. (1.77)

Thus, the motion of a nonphysical vacuum point turns out to be the same
as that of a (unit mass) particle located at x in a potential b(x): the particle
is repelled by local maxima of the bottom topography, and is attracted by
local minima. This motion enters the equations of hierarchy (II) by providing
the {bn(t)} terms, which drive the evolution of the u- and η-coefficients by
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entering their respective equation as prescribed forcing functions of time,
since (1.76) is no longer coupled to the {un, ηn} equations.

The special case of a quadratic form for bottom profiles is further sim-
plified for non-physical vacuum. In particular, if c2 = 0, i.e., the bottom
is a straight line, the first equation in system (1.73) reduces to Ẍ + c1 = 0
and the motion of the vacuum point X(t) is that of uniform acceleration. If
the bottom has a symmetric parabolic shape, c1 = 0 and the same equation
becomes Ẍ + c2X = 0. Thus, the motion of the non-physical vacuum point
X(t) depends on the concavity of the parabolic bottoms: if it is upward,
the motion is oscillatory harmonic, while if it is downward the point X(t) is
exponentially repelled from the origin at x = 0.

For general bottom profiles that can be expressed as (convergent) power
series, the case of non-physical vacuum yields a remarkable property for the
infinite hierarchy (I)-(II). When η1 = 0, the coupling term u2η1 in equa-
tion (2, I) of Table 1.1 is suppressed and equations (1, II) and (2, I) of Ta-
ble 1.1, become a closed system of two nonlinear differential equations for
the two unknowns u1(t) and η2(t),

u̇1 + u21 + 2η2 + 2b2 = 0, η̇2 + 3u1η2 = 0. (1.78)

As remarked above, the function b2(t) can be thought of as an assigned time
dependent forcing function, defined by

b2(t) =
1

2
b′′(X(t)), (1.79)

and hence determined by the solution X(t) satisfying the uncoupled equa-
tion (1.76). System (1.78) admits an immediate reduction: the first equation
is of Riccati type, hence the substitution

u1 =
ϕ̇

ϕ
(1.80)

for a new dependent variable ϕ(t) allows the reduction of system (1.78) to a
single second order ODE,

ϕ̈+
2C

ϕ2
+ 2 b2 ϕ = 0 , (1.81)

since the η̇2 equation can be integrated at once,

η̇2 +
3ϕ̇

ϕ
η2 = 0 ⇒ η2 =

C

ϕ3
, (1.82)

for some constant C.
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Remark 1.3.2. A few comments are now in order [10]:

1. A glance at Table (1.1) and at system (I)-(II) shows that beyond (1.78)
the equations of the hierarchy constitute a recursive system of linear
differential equations for the index-shifted pair of unknowns {un, ηn+1}.
In fact, the condition η1 = 0 eliminates the term containing un+1 from
the summation (II) making the system closed at any order n with re-
spect to all the dependent variables up to that order, and, more impor-
tantly, past the first equation pair the system is linear, as its coefficients
are determined only by the lower index variables ui, ηj, with i < n and
j < n+1. For this reason, the possible occurrence of movable singular-
ities, determined by the initial conditions, is entirely governed by the
leading order nonlinear pair of equations (1.78). (For the present case
of nonphysical vacuum, this extends to non-flat bottoms an analogous
result in [12]).

2. If one assumes that u, η and the bottom topography at the initial
time are in fact (one-sided) analytic functions admitting the expansion
(1.63)–(1.65), then the Cauchy–Kovalevskaya Theorem (see, e.g. [37])
assures that the solution of the initial value problem of system (1.62)
exist and is analytic for some finite time determined by the initial in-
terval of convergence, i.e., by the initial values of the series’ coefficients.
Depending on these initial data, the maximum time of existence could
then be completely determined by the reduced system (1.78) and 1.79),
since, as per the previous comment, the infinite system of equations
past the (u1, η2)-pair is linear and so its singularities coincide with
those of the forcing functions, which in turn are entirely determined by
this pair.

3. Equation (1.81) is isomorphic to that of a point (unit) mass subject to
a force field −(2C/ϕ2 + b2ϕ), which in general will be time-dependent
through b2. This can have interesting consequences. For instance, the
coefficient b2 can be time-periodic by the choice

b(x) = c0 +
c2
2
x2 +

c4
4
x4 , (1.83)

which makes equation (1.76) for X(t) that of a Duffing oscillator [81],

Ẍ + c2X + c4X
3 = 0 . (1.84)

As well known (see e.g. [81]) this equation has periodic solutions de-
pending on the constants c1 and c2 and on its initial conditions. In
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this case, for some classes of initial data, equation (1.81) can be viewed
as that of a parametrically forced nonlinear oscillator, and resonances

due to the periodic forcing b2(t) = c2 + 3c4
(
X(t)

)2
from the solutions

of (1.84) could arise, which in turn could generate nontrivial dynamics.
This would further enrich the types of time evolution of PDE solutions
supported by this class of bottom profiles with nonphysical vacuum
initial data.

Next, we will switch our focus to the case of a physical vacuum, which is
significantly different as some of the properties of its nonphysical counterpart
cease to hold.

1.3.2 Physical vacuum points

When the surface of the water intersects the seabed with a finite angle other
than zero, we speak of a physical vacuum point. In this case, η1(0) ̸= 0,
and equation (1.71) is no longer sufficient to determine the motion of the
wavefront X(t). As a consequence, the whole hierarchy of equations (I)–(II),
for the unknowns X(t), un(t), ηn(t), n = 0, 1, . . . is now completely coupled
as (I)–(II) involve variables of order n+ 1 at any fixed n ≥ 0.

This issue does not occur in the hyperbolic setup considered in Section
1.1, where the singularity propagates in a constant state background. Indeed,
whether ζ1 = 0 or ζ1 ̸= 0, equations (1.12) can always determine the motion
of the wavefront X(t). In fact, the coefficient u0, which is zero due to the
quiescent conditions established downstream of the wave front, does not enter
the equations (1.12).

In the present setting, however, the lack of information about the velocity
field in the dry region makes the coefficient u0 unknown a priori. Note that
this is also true for non-physical vacuum points; however, thanks to the
condition η1 = 0, (1.68) can be used to determine the motion of the wave
front and, consequently, its velocity u0.

There is no preferential way to assign the velocity field in the dry region
as a particular solution to (1.61). Moreover, even if the velocity field in
the dry region was known, this would be useless to determine u0. Indeed,
the velocity field is generically discontinuous at physical dry boundary. This
result, already proved in [13] (§ 3.2) for a horizontal bottom, is extended here
to more general topography:

Proposition 1.3.1. If the water surface is transverse to the bottom at the
vacuum point x = X(t) and analytic for x < X(t), and the velocity field u is
initially continuous, then u is discontinuous at x = X(t) in a neighbourhood
of the initial time.
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Proof. To see this, Taylor expand the velocity field for ξ > 0,

u
∣∣
ξ>0

= ur0(t) + ur1(t)ξ + ur2(t)ξ
2 + . . . , urk(t) = lim

ξ→0+

1

k!

∂ku

∂ξk
(ξ, t). (1.85)

The coefficients of this expansion evolve in time according to (1.61), which
gives

u̇rn + (n+ 1)bn+1 +
n∑

k=1

k urku
r
n+1−k = 0. (IIr)

For n = 0, (II) and (IIr) yield

b1 + η1 + u̇0 = 0, b1 + u̇r0 = 0, (1.86)

and these two equations together imply

dJuK
dt

:= u̇r0 − u̇0 = η1 ̸= 0, (1.87)

where JuK := ur0−u0 denotes the jump of the velocity field at the dry bound-
ary. This means that , in the plane (t, JuK), the graph of JuK(t) is never
tangent to the t-axis. Moreover, since η1 has constant sign (it is negative in
the situation considered so far), the velocity jump JuK(t) can vanish vanish
at most once. Hence, adjusting for a possible time shift, we see that the
discontinuity of the velocity field at the vacuum/dry point has to emerge at
t = 0+.

Another way of stating this result is that a shock wave always forms
at a physical vacuum point for the velocity-like component of the system.
However, as pointed out in [13], this is a non-standard kind of shock. Besides
being uncoupled to the other dependent variable (in this case the water
surface that maintains its initial continuity for a nonzero time interval) it
also does not involve dissipation of conserved quantities, in general. It is
indeed not too difficult to verify that the Rankine-Hugoniot conditions for
mass, momentum and energy are all satisfied at the same time for this non-
standard shock.

1.4 Summary of Chapter 1

In this chapter, we examined a class of singularities of the SWE model with
variable seabed. Specifically, we considered first order singularities in the
depth field and studied their temporal evolution. After a review of the travel-
ing front type initial conditions (Section 1.1), widely studied in the literature
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[40, 41], we considered the evolution of generic initial conditions containing
first order singular points in the depth field. We have shown that singu-
lar points in the hyperbolic regime generally undergo splitting into a pair
of traveling fronts, and we have derived the shock conditions at the leading
front location through the wavefront local analysis (Section 1.2). We have
validated our results in the particular case of a flat and horizontal bottom,
where the general solution to the SWEs is available in closed form. Finally,
we applied the same ideas to study first-order singular points that lie at the
edge of the fluid-filled region (Section 1.3). Since the SWE system becomes
parabolic at the dry points, the singularities present there do not undergo
splitting and are advected by the fluid velocity. We then highlighted the
fundamental differences between dry boundaries where the water surface is
tangent to the seabed (nonphysical vacuum), and dry points where the water
surface is transverse to the seabed (physical vacuum). Most importantly, the
motion of nonphysical vacuum boundaries is solely dependent on the local
shape of the seabed, and is not influenced by the adjacent mass of fluid. By
contrast, the motion of physical vacuum boundaries depends on the motion
of the fluid throughout its domain, and cannot therefore be determined by a
local analysis.
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Chapter 2

The semigeostrophic equations

Large-scale atmospheric flows are dominated by the Coriolis force and the
pressure force. When these opposing forces balance each other exactly, the
resulting equilibrium flow is called geostrophic. Real physical systems are
usually found in nearly geostrophic conditions. However, the exact balance
is only a rough approximation of reality, and does not allow predictions to
be made. Several models for “nearly geostrophic” flows have been proposed
over the years. The basic idea of all these models is that the acceleration
of the fluid is small, being equal to the difference between two almost equal
opposing forces. The common progenitors of all these models are the so-
called hydrostatic primitive equations (HPEs), which descend from the Euler
equations through a standard set of assumptions like those of shallow and
hydrostatic atmosphere [91].

The hypothesis of nearly geostrophic equilibrium is handled differently by
the various models. One of the most important example is represented by the
so-called semigeostrophic equations. This is a model for subcontinental flows,
and is derived from the HPEs through Hoskins’ “geostrophic momentum
approximation” [47].

Semigeostrophic equations have attracted much interest over the past
fifty years due primarily to their ability to represent weather fronts (see for
example [46, 19, 23]). Physically, a weather front is a (relatively) thin re-
gion in the atmosphere where the fluid thermodynamic properties change
suddenly. From the mathematical point of view, a weather front in the semi-
geostrophic context is understood as a singular surface within the flow across
which the field variables experience a jump discontinuity. In the seminal work
[16], Chynoweth and Sewell gave the first characterization of semigeostrophic
fronts in terms of catastrophe theory. Specifically, they advised a new method
to model weather fonts using singular solutions to the semigeostrophic equa-
tions. By far, is not clear the extent to which the Chynoweth and Sewell

35
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fronts share the properties of more classical constructions (say for example
[19]). For this reason, we shall call them Chynoweth–Sewell fronts.

This chapter is structured as follows. We start with a review of the HPEs
and the main hypotheses underlying their derivation [46, 91]. Next, we in-
troduce the geostrophic momentum approximation and the semigeostrophic
equations [47]. We proceed with a discussion on the vorticity-streamfunction
formulation of the semigeostrophic equations [79] and the role of the Leg-
endre transformation [16]. We conclude the chapter with a discussion on
Chynoweth–Sewell fronts [16], and a consistent way to extend this notion to
three spatial dimensions.

2.1 Overview on the parent model (HPEs)

In this section, we present the HPEs in the form given in [46] and review
the main assumptions underlying their derivation. Atmospheric flows of geo-
physical interest are governed by the Euler equations in a rotating reference
frame,

Du

Dt
+ 2Ω× u +

1

ρ
∇p+ ∇ϕ = 0, (2.1)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.2)

Dŝ

Dt
= 0. (2.3)

The unknowns are the velocity field u, the density ρ, the pressure p, and
the specific entropy ŝ. The pseudo-vector Ω represents the Earth’s angular
velocity, and the term 2Ω×u represents the Coriolis force. The given function
ϕ, called the geopotential, combines the effects of gravity and the centrifugal
force. The Earth’s surface (i.e., the mean sea level) is modeled as a geoid,
i.e., one of the level sets of the geopotential, which is customarily taken as
ϕ = 0. The operator D/Dt is the material time derivative. Its evaluation on
a scalar function F (t, x, y, z) yields the rate of change of F along the particles
trajectories. In other words,

DF

Dt
:=

d

dt
F (t, r(t, r0)), (2.4)

where r represents the position vector, and r(t, r0) represents the trajectory
of the particle found at r0 for t = 0.

Equations (2.1)–(2.3) involve more unknowns than variables and thus do
not form a closed system. This issue is normally overcome by prescribing a
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“caloric equation of state” relating pressure, density, and entropy. Assuming
that the atmosphere consists of a single polytropic ideal gas, we are given a
caloric equation of state in the form

ŝ = cv log
p

ργ
, γ =

cp
cv
, R = cp − cv, (2.5)

where cp and cv represent the specific heats of the gas (air) (see for example
formula (6.39) of [92]).

Before introducing any approximation, we need to specify the geometry
of the fluid domain under consideration. We shall not consider the whole
Earth’s atmosphere as our domain, but rather select a portion of the atmo-
sphere in the northern hemisphere. The spatial extension of this domain
is limited by the need to represent it globally with a co-rotating Cartesian
frame. In practice, it is customary to consider a portion of the atmosphere
of sufficiently small extension to be able to consider the sea level (ϕ = 0) on
which it lies flat.

The co-rotating Cartesian frame is built as follows. Let (x, y, h) a carte-
sian coordinate system based at a point on the sea level ϕ = 0 with the h-axis
directed along ∇ϕ. The remaining two coordinate axes (x, y) form a right-
handed system with x increasing eastwards and y increasing northwards. The
meaning of (x, y, h) is that of “linearized” longitude, latitude, and elevation
above the sea level respectively. In these coordinates, the geopotential ϕ is
usually approximated as

ϕ = gh, (2.6)

where g is a constant. We denote the compenents of the relative fluid velocity
in this frame by

u = (u, v, ḣ). (2.7)

Moreover, the Earth’s angular velocity reads

Ω = (0,Ω cos(φ),Ω sin(φ)), (2.8)

so that the Coriolis force becomes

2Ω× u = 2(wΩ cosφ− vΩ sinφ, uΩ sinφ,−uΩ cosφ). (2.9)

Here, Ω represents the Earth spin frequency, and φ represents the latitude.
The Earth angular velocity is simplified by a first set of assumptions: (i)

the atmosphere can be safely assumed “shallow”, since the horizontal length
scale is much bigger than the vertical scale in geophysical flows, and this
amounts to neglecting the cos(φ) term in (2.8) (see [91]); (ii) on horizontal
scales of the order of ∼ 103 km, it is acceptable to assume f := 2Ω sin(φ)
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constant across the fluid domain (“f -plane approximation”). Under these
assumptions, the Earth angular velocity becomes

Ω = (0, 0, f/2), (2.10)

and the Coriolis force becomes

2Ω× u = (−fv, fu, 0). (2.11)

In meteorology, it is customary to use a a quantity known as potential
temperature to keep track of entropy. The potential temperature is defined
as the temperature a parcel of air would have at the current entropy and the
reference pressure. In other words,

θ :=
∂ĥ

∂ŝ

∣∣∣∣
p=p0

, (2.12)

where ĥ(ŝ, p) := ê+ p/ρ is the specific enthalpy of the fluid. For a polytropic
ideal gas, we have [92]

ĥ(ŝ, p) =
γ

γ − 1
p

γ−1
γ eŝ/cp , (2.13)

whereby,

θ =
1

R
p

γ−1
γ

0 eŝ/cp . (2.14)

Because θ is a function of the entropy alone, it is advected by an isentropic
flow. Therefore, equation (2.3) may be equivalently written as

Dθ

Dt
= 0. (2.15)

The most important hypothesis underlying the derivation of the HPEs
is that of a hydrostatic atmosphere. It amounts to neglecting the vertical
component of the fluid acceleration, i.e.,

1

ρ

∂p

∂h
+
∂ϕ

∂h
= 0. (2.16)

and, using (2.6), may be written

∂p

∂h
= −ρg. (2.17)

Since ρ and g are strictly positive quantities, equation (2.17) implies that p is
a monotone function of h and so there exists the inverse function. Therefore,
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it makes sense to use p (or a monotone function thereof) as the “vertical”
coordinate in place of h. Because p is a function of space and time, the
coordinate change that we wish to accomplish is a time-depending one. This
aspect poses some complications, e.g., the relative velocity and acceleration
do not transform as vector fields. This issue is overcome in classical literature
with an extensive use of the chain rule (see for example [50, 91]).

In this manuscript, we follow the work of Hoskins and Bretherton [46],
where the physical elevation h is replaced by a monotone function of p known
as the pseudo-height and defined as

z = za

[
1 −

(
p

p0

) γ−1
γ
]
. (2.18)

Here, za represents the pseudo-height (or thickness) of the atmosphere, which
depends on reference values for the pressure p0 and density ρ0

1,

za =
γ

γ − 1

p0
ρ0g

. (2.19)

Remark 2.1.1. The physical significance of the pseudo-height is clarified
by observing that z = h in an hydrostatic atmosphere with uniform entropy.
Also, za represents the actual thickness of the atmosphere in these conditions.
To see this, set ŝ = const. in (2.5), whereby

p

ργ
=
p0
ργ0
. (2.20)

Next, use this equation to eliminate ρ in (2.17) to get(
p0
p

)1/γ
∂p

∂h
= −ρ0g. (2.21)

Upon setting p = p0 and ρ = ρ0 at h = 0, integration of both sides yields,

h =
γ

γ − 1

p0
ρ0g

[
1 −

(
p

p0

) γ−1
γ
]
, (2.22)

which is precisely (2.18).

The change of variables we wish to accomplish is

(t, x, y, h) 7→ (t, x, y, z). (2.23)

1p0 and ρ0 represent the average value of the pressure and density at the sea level (over
the surface ϕ = 0).
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It is implied that p will no longer be a dependent variable, but rather a known
function of z. Its place in the set of dependent variables is taken by h, or,
equivalently, by ϕ. It must be noted the Jacobian relation

∂z

∂h
=
∂(t, x, y, z)

∂(t, x, y, h)
=

(
∂(t, x, y, h)

∂(t, x, y, z)

)−1

=

(
∂h

∂z

)−1

. (2.24)

We start with the hydrostatic relation (2.16), which, by a straightforward
application of the chain rule, is shown to become

1

ρ

∂p

∂z
+
∂ϕ

∂z
= 0. (2.25)

Moreover, using (2.18) and recalling (2.14), it is possible to show that

1

ρ

∂p

∂z
= −g

θ

θ0
, (2.26)

so the hydrostatic balance condition (2.25) may be written

g
θ

θ0
=
∂ϕ

∂z
. (2.27)

The change of variable for the other equations of the system (2.1)–(2.3) is
explicitly worked out in [50]. We simply note that the relative fluid velocity
becomes

u = (u, v, w), (2.28)

where

w :=
Dz

Dt
=
∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
+ ḣ

∂z

∂h
, (2.29)

and the continuity equation (2.2) becomes

∂r

∂t
+
∂ru

∂x
+
∂rv

∂y
+
∂rw

∂z
= 0. (2.30)

Here, the quantity

r := ρ
∂h

∂z
(2.31)

is known as the pseudo-density, and can be shown to be a function of z only.
Indeed, from (2.18) it follows

∂z

∂h
=

ρ

ρ0

(
p

p0

)−1/γ

, (2.32)
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and therefore

r ≡ ρ
∂h

∂z
= ρ0

(
p

p0

)1/γ

= ρ0

(
1 − z

za

) 1
γ−1

. (2.33)

Using this result in the continuity equation (2.30) yields

r

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
+ w

∂r

∂z
= 0. (2.34)

Hoskins [46] shows that neglecting the term ∂r/∂z in the continuity equation
is a form of Boussinesq approximation, and is acceptable on the typical scale
of validity of the other assumptions. Thus, the continuity equations reduces
to the nondivergence statement on the new relative velocity,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.35)

Remark 2.1.2. Despite the fact that they are denoted the same way, the
relative fluid velocities (2.7) and (2.28) are not the same vector field. By this
we mean that they are not pushed forward to one another by the change of
variables (2.23). This property is restored if a 4-dimensional spacetime view
is taken, and the fluid velocity is augmented by a unit component in the time
direction.

The HPEs given in [47] are

Du

Dt
− fv +

∂ϕ

∂x
= 0, (2.36)

Dv

Dt
+ fu+

∂ϕ

∂y
= 0, (2.37)

g
θ

θ0
=
∂ϕ

∂z
, (2.38)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.39)

Dθ

Dt
= 0. (2.40)

They form a closed system of five equations in the five unknowns (u, v, w, ϕ, θ).

2.2 The geostrophic momentum approxima-

tion

A geophysical flow is said to be in geostrophic equilibrium if pressure forces
are exactly balanced by the Coriolis force. In these conditions, the net force
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acting on parcels is zero and they experience no acceleration. In other words,

u = − 1

f

∂ϕ

∂y
=: ug, v =

1

f

∂ϕ

∂x
=: vg, (2.41)

where ug and vg are respectively called the zonal and the meridional com-
ponent of the geostrophic wind. In general flow regimes, the actual velocity
field can be decomposed in its geostrophic and ageostrophic parts,

u = ug + ua, v = vg + va, (2.42)

and typically |ua| ≪ |ug| and |va| ≪ |vg|. The semigeostrophic equations
are obtained from the HPEs by the so called geostrophic momentum approx-
imation. Formally, this amounts to replacing u and v by their respective
geostrophic parts in the acceleration terms appearing in (2.36), (2.37), but
neither in D/Dt nor in the Coriolis term,

Dug
Dt

− fv +
∂ϕ

∂x
= 0, (2.43)

Dvg
Dt

+ fu+
∂ϕ

∂y
= 0, (2.44)

g
θ

θ0
=
∂ϕ

∂z
, (2.45)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.46)

Dθ

Dt
= 0. (2.47)

The geostrophic momentum approximation is justified by Hoskins [47] using
the following argument. The momentum balance equations (2.36) – (2.37)
may be written in the form

u = ug −
1

f

Dvg
Dt

− 1

f 2

D2u

Dt2
, (2.48)

v = vg +
1

f

Dug
Dt

− 1

f 2

D2v

Dt2
, (2.49)

which can be concatenated to express u and v as a series in f−1 with coeffi-
cients depending on the geostrophic wind and its time derivatives,

u = ug −
1

f

Dvg
Dt

− 1

f 2

D2ug
Dt2

+
1

f 3

D3vg
Dt3

+ . . . , (2.50)
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v = vg +
1

f

Dug
Dt

− 1

f 2

D2vg
Dt2

− 1

f 3

D3ug
Dt3

+ . . . . (2.51)

For subcontinental mid-latitude atmospheric flows, the Coriolis parameter
is usually large (f ≈ 10−4s−1). This means that each of the terms in the
above expansion is much smaller than the preceding one, and truncation
at any finite order makes sense. In particular, the geostrophic momentum
approximation is equivalent to retaining terms up to O(f−1),

u ∼= ug −
1

f

Dvg
Dt

, v ∼= vg +
1

f

Dug
Dt

, (2.52)

which precisely corresponds to (2.43), (2.44).
The semigeostrophic equations admit two important Lagrangian invari-

ants. The first one is the total geostrophic energy,

D

Dt
(Kg + V ) = 0, (2.53)

which consists of the sum of the geostrophic kinetic energy Kg = 1
2
(usg + v2g)

and the potential energy V = −gzθ/θ0. The second quantity is the so called
geostrophic potential vorticity qg (or simply potential vorticity),

Dqg
Dt

= 0, (2.54)

which represents the geostrophic counterpart of Ertel’s potential vorticity,
and is defined by and is defined by

qg = ζg · ∇θ. (2.55)

Here,

ζg =

(
− ∂vg
∂z

+
∂(ug, vg)

∂(y, z)
,
∂ug
∂z

+
∂(ug, vg)

∂(z, x)
, 1+

∂vg
∂x

− ∂ug
∂y

+
∂(ug, vg)

∂(x, y)

)
, (2.56)

represents the geostrophic absolute vorticity.

2.3 Dimensionless variables

In this manuscript, we adopt a dimensionless set of variables, introduced in
[85], which clears the semigeostrophic equations from all physical constants.
We take f−1, L, f 2L2/g, f 2L2, θ0 as measure units for time, horizontal length,
vertical length, geopotential, and potential temperature respectively, with L
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being some unspecified horizontal length scale. Using the same notation for a
variable and its dimensionless counterpart, the semigeostrophic system (2.43)
– (2.47) becomes

Dug
Dt

− v +
∂ϕ

∂x
= 0, (2.57)

Dvg
Dt

+ u+
∂ϕ

∂y
= 0, (2.58)

θ =
∂ϕ

∂z
, (2.59)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.60)

Dθ

Dt
= 0, (2.61)

where

ug = −∂ϕ
∂y
, vg =

∂ϕ

∂x
. (2.62)

2.4 Vorticity-streamfunction formulation

The semigeostrophic equations can be cast in a way which is formally anal-
ogous to the vorticity-streamfunction formulation for 2D Euler flows. In
this section, we introduce the vorticity-streamfunction problem for the semi-
geostrophic equations in physical variables, and later discuss the advantages
brought by the (partial) Legendre transform and the use of dual variables.
In this subject, the following notation is classically used,

X := x+ vg, Y := y − ug, Z := θ, (2.63)

with X and Y physically representing the two horizontal components of the
absolute momentum associated with the geostrophic wind. Using these vari-
ables, one may write the evolution equations (2.57), (2.58) and (2.61) in the
form,

DX

Dt
= ug,

DY

Dt
= vg,

DZ

Dt
= 0. (2.64)

Moreover, equations (2.62) and (2.59) may be written, using (2.63), as

X =
∂P

∂x
, Y =

∂P

∂y
, Z =

∂P

∂z
, (2.65)
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where

P :=
x2

2
+
y2

2
+ ϕ, (2.66)

is called the modified geopotential. Combining the definition of qg (2.55) with
(2.63) and (2.65), one can express the potential vorticity in terms of the
modified geopotential alone. This relation occurs in the peculiar form of a
Monge–Ampère equation,

det Hess(P ) = qg. (2.67)

Remark 2.4.1. A widely accepted definition for a 2-dimensional Monge–
Ampère equation can be found in p. 324 of [18] (see also [55]). This defini-
tion is consistently extended to equations having three or more independent
variables as follows. A Monge–Ampère equation is a nonlinear partial second
order of the second order in which the highest (second) order derivatives only
appear as combinations of the minors of the Hessian matrix of the dependent
variable [55]. Equation (2.67) fits in this definition because all the second
derivatives of the dependent variable P (x, y, z) appear in a minor (the whole
matrix determinant) of the Hessian of P .

If P is regarded as the “streamfunction” and qg as the “vorticity”, equa-
tion (2.67) is a nonlinear analogue of the familiar Poisson equation found in
2D Euler flows. Also, equation (2.54) replaces the vorticity equation found in
the same context. Equations (2.67) and (2.54) can be considered as a closed
system of two equations in two unknowns P, qg provided that we can express
the material time derivative operator in (2.54) in terms of P . To this aim,
use (2.65) to write equations (2.64) in the matrix form

D∇P
Dt

= ug, (2.68)

where we have denoted

∇P := (∂xP, ∂yP, ∂zP ), ug :=

(
y − ∂yP, ∂xP − x, 0

)
. (2.69)

More explicitly, equation (2.68) reads

∂

∂t
∇P + Hess(P )u = ug, (2.70)

where Hess(P ) := ∇∇P is the Hessian matrix of P with respect to the space
variables. Assuming that Hess(P ) is invertible,

u = Hess(P )−1

(
ug −

∂∇P
∂t

)
. (2.71)
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Now use this relation in (2.54), written in the form

∂qg
∂t

+ u · ∇qg = 0, (2.72)

to obtain
∂qg
∂t

+

[
Hess(P )−1

(
ug −

∂∇P
∂t

)]
· ∇qg = 0. (2.73)

Equations (2.67) and (2.73) form a closed system in the two unknowns P and
qg. An important simplification is obtained in the special case qg = constant,
in which equation (2.54) is identically satisfied, and the semigeostrophic equa-
tions reduce to just the Monge–Ampère equation (2.67) to be solved for the
unknown P . The geopotential P may still depend on time, although (2.67)
says nothing about this dependence. Time-dependence is in fact specified
by the boundary conditions. To clarify this point, we limit our discussion to
rigid impermeable boundaries, on which u · n = 0 with n representing the
normal to the boundary. Using (2.71), we can express this condition as[

Hess(P )−1

(
ug −

∂∇P
∂t

)]
· n = 0. (2.74)

The vorticity-streamfunction formulation of the semigeostrophic equa-
tions achieves a clear distinction between the model kinematics, encoded
in (2.67), and its dynamics, encoded in (2.73). Because of this, we will
sometimes call (2.67) and (2.73) the kinematic and the dynamic equation
respectively.

2.4.1 Legendre transformations of P

The first two equations in (2.63) may be interpreted as a change of vari-
ables (x, y) 7→ (X, Y ) known as the geostrophic momentum transformation.
Hoskins [47] noted that the system (2.67)–(2.73) simplifies considerably after
the geostrophic momentum transformation is effected, i.e., treating (X, Y, z)
as the spatial coordinates. Later, Chynoweth and Sewell [16] recognised
that the geostrophic momentum transformation is a form of partial Legen-
dre transform. Indeed, they identified a quartet of Legendre transformations
of P , formally analogous to that of the internal energy found in classical
thermodynamics2. The two pairs of dual variables in the semigeostrophic

2The quartet of Legendre dual potentials of classical thermodynamics are the internal
energy ê, the enthalpy ĥ, the Gibbs free energy, and the Helmholtz free energy. The
thermodynamic potentials are connected by two pairs of “dual variables”, namely, Θ ↔ ŝ
and p ↔ ρ−1, where Θ represents the absolute temperature.
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theory are
(x, y) ↔ (X, Y ), and z ↔ Z. (2.75)

These are used to define the three dual potentials to P , namely, R(X, Y, Z),
S(X, Y, z), and T (x, y, Z).

Remark 2.4.2. In this section, we suppress the time dependence in P and
its dual potentials to highlight the duality structure. We will explicitly flag
the time dependence later in the thesis as needed.

The full Legendre transform R of P is obtained from

R = Xx+ Y y + Zz − P, (2.76)

where x, y, and z are found by inverting

X =
∂P (x, y, z)

∂x
, Y =

∂P (x, y, z)

∂y
, Z =

∂P (x, y, z)

∂z
. (2.77)

Similarly, the partial Legendre transform S of P is defined by

S = Xx+ Y y − P, (2.78)

where x and y are found by inverting

X =
∂P (x, y, z)

∂x
, Y =

∂P (x, y, z)

∂y
. (2.79)

Alternatively, the partial Legendre transform T of P is found from

T = P − Zz, (2.80)

where z is found by inverting

Z =
∂P (x, y, z)

∂z
. (2.81)

We use the terminology Legendre map to indicate either

(x, y, z) 7→ (X, Y, Z) =

(
∂P

∂x
,
∂P

∂y
,
∂P

∂z

)
, (2.82)

(x, y, z) 7→ (X, Y, z) =

(
∂P

∂x
,
∂P

∂y
, z

)
, (2.83)

or

(x, y, z) 7→ (x, y, Z) =

(
x, y,

∂P

∂z

)
, (2.84)
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depending on the particular dual potential at hand. In each case, the inverse
Legendre map is obtained by considering the differential of equations (2.82)–
(2.80). For example, the differential of (2.76) gives

∂R

∂X
dX +

∂R

∂Y
dY +

∂R

∂Z
dZ = (2.85)

= Xdx+ xdX + Y dy+ ydY +Zdz+ zdZ − ∂P

∂x
dx− ∂P

∂y
dy− ∂P

∂z
dz. (2.86)

Now, using (2.65), one obtains

∂R

∂X
dX +

∂R

∂Y
dY +

∂R

∂Z
dZ = xdX + ydY + zdZ, (2.87)

whereby,
∂R

∂X
= x,

∂R

∂Y
= y,

∂R

∂Z
= z. (2.88)

Therefore, the inverse Legendre map of (2.82) is

(X, Y, Z) 7→ (x, y, z) =

(
∂R

∂X
,
∂R

∂Y
,
∂R

∂Z

)
. (2.89)

Similarly, taking the differential of (2.78) gives

∂S

∂X
= x,

∂S

∂Y
= y,

∂S

∂z
= −∂P

∂z
≡ −Z, (2.90)

and defines the inverse Legendre map as

(X, Y, z) 7→ (x, y, z) =

(
∂S

∂X
,
∂S

∂Y
, z

)
. (2.91)

Finally, taking the differential of (2.80) gives

∂T

∂x
=
∂P

∂x
≡ X,

∂T

∂y
=
∂P

∂y
≡ Y,

∂T

∂Z
= −z, (2.92)

and

(x, y, Z) 7→ (x, y, z) =

(
x, y,−∂T

∂Z

)
. (2.93)

The local existence of the inverse maps (2.89), (2.91), and (2.93) is ensured
respectively by the conditions

∂(X, Y, Z)

∂(x, y, z)
̸= 0,

∂(X, Y )

∂(x, y)
̸= 0,

∂Z

∂z
̸= 0. (2.94)
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Each of the dual potentials (2.76)–(2.80) satisfies a different form of the
Monge–Ampère equation (2.67). In order to see this, use (2.65) to write
equation (2.67) in the form

∂(X, Y, Z)

∂(x, y, z)
= qg. (2.95)

This may be written
∂(x, y, z)

∂(X, Y, Z)
=

1

qg
, (2.96)

which, using (2.88), gives the Monge–Ampère equation satisfied by R,

det Hess(R) =
1

qg
, (2.97)

where Hess(R) represent the Hessian matrix of R with respect to (X, Y, Z).
Alternatively, multiply (2.95) by

∂(x, y, z)

∂(X, Y, z)
(2.98)

to obtain
∂Z

∂z
= qg

∂(x, y)

∂(X, Y )
. (2.99)

Next, use (2.90) allows us to obtain the Monge–Ampère equation satisfied
by S,

qg

(
∂2S

∂X2

∂2S

∂Y 2
−

(
∂2S

∂X∂Y

)2)
+
∂2S

∂z2
= 0. (2.100)

Finally, multiplying (2.95) by

∂(x, y, z)

∂(x, y, Z)
(2.101)

yields
∂(X, Y )

∂(x, y)
= qg

∂z

∂Z
, (2.102)

which, using (2.92), becomes the Monge–Ampère equation satisfied by T ,

∂2T

∂x2
∂2T

∂y2
− ∂2T

∂x∂y
+ qg

∂2T

∂Z2
= 0. (2.103)

Equations (2.100) and (2.103) are known as the Chynoweth–Sewell equations.
Unlike equations (2.67) and (2.97), the Chynoweth–Sewell equations achieve



50 CHAPTER 2. THE SEMIGEOSTROPHIC EQUATIONS

a separation between the “horizontal” and the “vertical” derivatives, which
makes easier to guess particular solutions. For example, a class of polynomial
solutions to (2.103) has been analysed in [30] for constant qg. Regarding the
vorticity-stream function problem, this takes the simplest form in R, which
has made it possible to prove its well-posedness in these variables [4]. On
the other hand, when specific configurations of the fluid domain are consid-
ered, using S makes the vorticity-streamfunction problem more tractable.
Below, we review the vorticity-streamfunction problem with impermeable
boundaries in R and S.

2.4.2 Vorticity-streamfunction system in R-variables

When (X, Y, Z) are considered as the independent variables, equation (2.54)
reads

Dqg
Dt

=
∂qg
∂t

+
DX

Dt

∂qg
∂X

+
DY

Dt

∂qg
∂Y

+
DZ

Dt

∂qg
∂Z

(2.104)

=
∂qg
∂t

+ ug
∂qg
∂X

+ vg
∂qg
∂Y

= 0, (2.105)

where (2.64) has been used. Here, the geostrophic wind is expressed in terms
of R using (2.63) and (2.88), which brings the previous equation into

∂qg
∂t

+

(
∂R

∂Y
− Y

)
∂qg
∂X

+

(
X − ∂R

∂X

)
∂qg
∂Y

= 0. (2.106)

Equations (2.97) and (2.106) form a closed system which is formally analo-
gous to (2.67) and (2.54), and represents the full Legendre transform of the
vorticity-streamfunction system. One advantage of the dual formulation is
immediately apparent: the transport of vorticity equation (2.106) is signif-
icantly simpler than its counterpart in physical variables (2.54). However,
an additional layer of difficulty now affects the treatment of boundaries. If
the physical domain has rigid impermeable boundaries, these become free
boundaries in (X, Y, Z)-variables.

To see this, assume that the boundaries are represented by the zero set
of a function,

F (x, y, z) = 0. (2.107)

Using (2.88) written in the form

x = ∇R, (2.108)

with ∇R := (∂XR, ∂YR, ∂ZR) and x := (x, y, z), the free boundaries in dual
variables are identified by

F (∇R) = 0. (2.109)
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Since R is one of the problem’s unknowns, the boundaries (2.109) are not a
priori known. The impermeability condition reads, in physical variables,

u · ∇F = 0, (2.110)

and, since ∂F/∂t = 0, it trivially implies

DF

Dt
= 0. (2.111)

This equation is clearly invariant under time-dependent changes of coordi-
nates. Therefore, after the transformation (t, x, y, z) 7→ (t,X, Y, Z) is ef-
fected, (2.111) becomes

∂F (∇R)

∂t
+ ug

∂F (∇R)

∂X
+ vg

∂F (∇R)

∂Y
= 0, (2.112)

where now ∂F/∂t is generally nonzero because it has to be taken at (X, Y, Z)
fixed. Equations (2.109) and (2.112) are the pair of boundary conditions that
must be enforced on the free boundaries to define the vorticity-streamfunction
problem in dual variables.

2.4.3 Vorticity-streamfunction system in S -variables

In particular arrangements of the fluid domain, the partial Legendre trans-
form of P becomes preferable. This is the case for the so called Eady problem
(see Chapter 5), in which the fluid domain consists of a strip 0 < z < const.
In these conditions, the partial transform (x, y, z) 7→ (X, Y, z) brings most
of the advantages of the full transform, while keeping the boundaries fixed.
The dual potential S satisfies the Chynoweth–Sewell equation (2.100). On
the other hand, the vorticity transport equation becomes

Dqg
Dt

=
∂qg
∂t

+
DX

Dt

∂qg
∂X

+
DY

Dt

∂qg
∂Y

+
Dz

Dt

∂qg
∂Z

(2.113)

=
∂qg
∂t

+ ug
∂qg
∂X

+ vg
∂qg
∂Y

+ w
∂S

∂qg
= 0, (2.114)

where now qg is understood as a function of (X, Y, z) and time. The geostrophic
wind is expressed in terms of S by (2.63) and (2.78), which brings the vor-
ticity transport equation into the form

∂qg
∂t

+

(
∂S

∂Y
− Y

)
∂qg
∂X

+

(
X − ∂S

∂X

)
∂qg
∂Y

+ w
∂qg
∂z

= 0. (2.115)
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Note that equations (2.100) and (2.115) do not form a closed system because
w still appears in (2.115). The third equation in (2.64), together with the
last in (2.90), is still needed to express w in terms of S. This gives

w = −
∂2S
∂z∂t

+
(
∂S
∂Y

− Y
)

∂2S
∂X∂z

+
(
X − ∂S

∂X

)
∂2S
∂Y ∂z

∂2S
∂z2

. (2.116)

Using the same argument that led to (2.112), we can see that the imper-
meability condition on physical boundaries implies that the dual boundaries
are transported. Boundaries of the form z = const. are not affected by the
partial Legendre transform, so the transport condition reads

0 =
Dz

Dt
≡ w. (2.117)

This constraint is combined with (2.116) to obtain a time-dependent bound-
ary condition on S on boundaries of the form z = constant,

∂2S

∂z∂t
+

(
∂S

∂Y
− Y

)
∂2S

∂X∂z
+

(
X − ∂S

∂X

)
∂2S

∂Y ∂z
= 0. (2.118)

2.5 Chynoweth–Sewell fronts

Much of the current interest in the semigeostrophic equations is motivated
by their ability to represent weather fronts. Physically speaking, a front
is a “thin” region within atmosphere characterized by large vorticity and
small acceleration where the fluid velocity and temperature vary quickly (see
[47, 16]). For the purpose of mathematical modelling, fronts may be un-
derstood as surfaces in the fluid domain across which the fluid velocity and
temperature experience a jump discontinuity. In the seminal paper [16],
Chynoweth and Sewell proposed a mathematical model for fronts based on
semigeostrophic equations and the singularities of the Legendre map in two
space dimensions (x, z). After one of the dual potentials (R, S or T ) is as-
signed, the physical potential P is recovered by the inverse Legendre trans-
form. This may be singular, and result in a multivalued P . In specific
conditions (see also [54]), it is possible to excise a single valued function
from the graph of P with discontinuous first derivatives across one or more
lines in the (x, z)-plane. These singular lines are then interpreted as fronts,
as the momentum and temperature fields experience a jump discontinuity
across them (cf. equations (2.65)).

Among all the weak solutions built this way, some are not physically
achievable. In three spatial dimensions, Cullen et al. [24] proved that a
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necessary condition for static stability of semigeostrophic flows is that the
geopotential P be a convex function of space. This convexity principle is
named after Cullen, Norbury, and Purser (CNP principle), and is a constrain
that every solution (weak or classical) must obey. Is instructive to think of the
CNP principle as the semigeostrophic analogue of the “entropy condition”
of shock theory, which is used to characterize physically consistent weak
solutions to the gas dynamics equations. The CNP principle is implemented
in the Chynoweth and Sewell construction by requiring that whatever is left
after surgery on the graph of P is a convex function of (x, z).

Using the same mathematical ideas, we introduce a notion of three-
dimensional fronts by applying Chynoweth and Sewell’s reasoning in three
spatial dimensions. We use the terminology Chynoweth–Sewell fronts to
identify both 2D and 3D fronts built this way.

2.5.1 The convex envelope algorithm

As pointed out in [16], convexity of P carries over in different ways to its
Legendre dual potentials. A convex P (x, y, z) corresponds to R(X, Y, Z)
being convex, S(X, Y, z) being saddle shaped (convex in (X, Y ) and concave
in z), and T (x, y, Z) being saddle shaped (convex in (x, y) and concave in
Z). This observation allows one to change viewpoint and perform surgery on
the dual potential rather than P . We apply these ideas to build Chynoweth–
Sewell fronts in three dimensions. Our approach reduces to the original set of
equations in [16] when a particular class of solutions is considered. In view of
the application to the Eady problem in Chapter 5, we work with the partial
Legendre transform S(X, Y, z).

Fix t in (2.100) and assume qg to be given. Let S(X, Y, z) be a given
regular solution to (2.100). For every fixed z = constant, build the convex
envelope Š( · , · , z) of S( · , · , z). Therefore, Š(X, Y, z) is convex in (X, Y )
and concave in z. Thus, the partial Legendre transform of Š with respect
to (X, Y ) yields a convex function P̌ (x, y, z). Moreover, if Š ̸= S, ∇P̌ is
discontinuous across one or more singular surfaces in R3 which are interpreted
as fronts. In other words,

Definition 2.5.1. Chynoweth–Sewell fronts are the image, under the Leg-
endre map, of the set in (X, Y, z)-space where S( · , · , z) is concave.

Remark 2.5.1. The convex envelope of a given regular function is obtained
as follows. Let S(X, Y ) be a given regular function which is everywhere
convex except in some bounded domain D ⊂ R2. Finding its convex envelope
Š(X, Y ) amounts to solving a free-boundary value problem where the Monge–
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Ampère equation

∂2σ

∂X2

∂2σ

∂Y 2
−
(

∂2σ

∂X∂Y

)2

= 0 (2.119)

holds in D, and the boundary conditions

σ = S, ∇σ = ∇S, (2.120)

hold on the unknown boundary ∂D. Once a solution s is found, the convex
envelope is obtained piecewise as

Š(X, Y ) =

{
S(X, Y ), if (X, Y ) ∋ D,

σ(X, Y ), if (X, Y ) ∈ D.
(2.121)

If the function S(X, Y ) is concave in several regions D1, ..., Dn, then one has
to solve n free-boundary value problems similar to the one just described to
find the convex envelope of S.

2.5.2 Cylindrical solutions

Finding the convex envelope of S( · , · , z) is much simpler if the function S
has a trivial dependence on the variable Y . As we will show in Chapter 5,
this precisely occurs for Eady waves travelling in the X-direction, which have
the form

S =
Y 2

2
+ CY z + S ′(X, z), C ∈ R. (2.122)

Here, S ′ solves a the 2D Chynoweth–Sewell equation,

qg
∂2S

∂X2
+
∂2S

∂z2
= 0. (2.123)

For reasons that will be clear at the end of this section (see also Section 3.4),
we call (2.122) the cylindrical solutions. When S is cylindrical, a solution to
equation (2.119) can be sought in the form

σ =
Y 2

2
+ CY z + σ′(X, z). (2.124)

In this case, equation (2.119) implies that σ is affine in X, while the second
of (2.120) yields ∂Xσ = ∂XS. Therefore, the solution to the convex enve-
lope problem reduces to the Chynoweth and Sewell algorithm [16]. Namely,
suppose that, for a fixed z, there exists a region X1(z) ≤ X ≤ X2(z) where
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S ′( · , z) is concave. The boundary points X1(z), X2(z) of this region are
found from the system

∂S ′

∂X

∣∣∣∣
X1

=
S ′|X2 − S ′|X1

X2 −X1

,
∂S ′

∂X

∣∣∣∣
X2

=
S ′|X2 − S ′|X1

X2 −X1

, (2.125)

and the convex envelope Š ′( · , z) is obtained as

Š ′(X, z) =

{
S ′(X, z), if X < X1(z) or X > X2(z),

S ′(X1, z) + ∂S′

∂X
(X1, z)(X −X1), if X1(z) < X < X2(z).

(2.126)
The domain in (X, Y, z)-space where S is concave has always the form⋃

z

[X1(z), X2(z)] × R, (2.127)

(R stands for the Y -axis). The image of this 3D domain under the inverse
Legendre map (2.91) is a 2D surface that represent a Chynoweth–Sewell
front in the physical space. A front obtained this way is always a cylindrical
surface, meaning that each section y = constant looks the same.

2.6 Summary of Chapter 2

In this chapter we introduced the semigeostrophic equations, a famous model
for numerical weather prediction at the subcontinental scale. We reviewed
their derivation in Sections 2.1 and 2.2. We then revised the rewriting of
the system of equations in the form of an advection equation for the vor-
ticity coupled with a Monge–Ampère equation for the stream function (the
geopotential), which makes a clear distinction between the dynamics and
kinematics of semigeostrophic equations (Section 2.4). Next, we have intro-
duced the so-called “geostrophic momentum transformation”, a change of
variables that facilitates the analysis of the system of equations, using the
language of the Legendre transformation. Most importantly, the geostrophic
momentum transformation allows the vorticity-streamfunction system to be
simplified as much as possible, and facilitates their analysis in a particular
case of physical interest discussed later in the thesis. Finally, we shifted at-
tention to atmospheric fronts in Section 2.5, the most important singularities
that semigeostrophic equations are capable of supporting. After a review of
Chynoweth and Sewell’s work on the topic, we introduced a class of solutions
that allows the Chynoweth and Sewell construction to be extended to three
spatial dimensions.
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Chapter 3

Monge–Ampère geometry

Because of mathematical structures such as the Legendre duality and the
Monge–Ampère equation (2.67), the semigeostrophic equations admit of treat-
ment by symplectic geometry, and more specifically, Monge–Ampère geom-
etry (see for example [55] and references therein). The geometry of Monge–
Ampère equations was explored by Lychagin and his school with the main
objective of classifying all the possible equations of this kind. The applica-
tions of this theory to fluid dynamics are now numerous, and have strength-
ened the connection between fluid dynamics and the geometry of differential
equations. Delahaies and Roulstone [27] have explored the implications of
Monge–Ampère geometry on the shallow water semigeostrophic equations,
while Roulstone et al. [78] and Banos et al. [7] have conducted similar stud-
ies for the Euler equations. This and the following chapters follow the same
line of research, and investigate the relevance of Monge–Ampère geometry to
semigeostrophic equations.

The geometric theory of differential equations provides a useful point of
view on singularities of solutions. The key is to interpret a differential equa-
tion as a pair of differential forms on a suitable ambient space, which in
all the cases considered in this manuscript consists of the cotangent bun-
dle to the space of independent variables. The (generalized) solutions are
seen as submanifolds in this bundle, while their projection onto the basis
defines the (possibly multivalued) physical fields. This projection operation
can be singular, depending on how the solution is placed with respect to
bundle structure. Because we only allow for smooth generalized solutions,
any singularity that may appear in the physical fields is due to the projec-
tion operation. This point of view paves the way for catastrophe theory,
which can be used to classify such singularities, and dates back to the work
of Vinogradov and Kupershmidt on Hamilton-Jacobi theory (§8 of [88]). We
refer to [62] for further examples of application of these ideas. In this the-
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sis, we shall only consider a special class of Monge–Ampère equations called
symplectic. The coefficients of a symplectic Monge–Ampère equation can
only depend on the independent variables and the gradient of the depen-
dent variable. Equation (2.67) is an example of symplectic Monge–Ampère
equation in three independent variables provided that qg is understood as a
function of (x, y, z), time, and possibly ∇P . In the symplectic setting, all the
generalized solutions are Lagrangian submanifolds of the cotangent bundle.
Arnold’s theory of Lagrangian singularities is therefore naturally called into
question (see [1] for reference). This viewpoint is at the core of Ishikawa and
Machida’s work on singularities of Hessian-type Monge–Ampère equations
[49, 51]. Kossowski [54] has independently proposed the same formalism for
studying singularities of general symplectic Monge–Ampère equations in two
independent variables (see ([30]) for the details).

This section is structured as follows. After recalling the basic ideas about
Monge–Ampère geometry [55], we apply these ideas to the semigeostrophic
equations and their solutions [30]. We describe a systematic way to compute
the velocity field associated with a given generalized solution, and rephrase
Chynoweth and Sewell’s construction of weather fonts in the language of
Monge–Ampère geometry.

3.1 Geometry of the phase space

For a given symplectic Monge–Ampère equation, we can identify the space of
independent variables and denote it M. Notice that for the Monge–Ampère
equation (2.67, this is the Euclidean space R3 with coordinates (x, y, z). This
particular case will be further developed in Section 3.2, and in this section
we will retain some generality and refer to an unspecified set of independent
variables M. Next, the cotangent bundle T ∗M to the space of independent
variables M is considered. The cotangent bundle to any given M is naturally
endowed with a symplectic structure, that is, a closed and non-degenerate
differential 2-form ω. The realm of Monge–Ampère geometry is entered when
T ∗M is equipped with an n-form α (n = dim(M)) called the Monge–Ampère
form, which contains the information about the Monge–Ampère equation at
hand. Borrowing terminology from classical mechanics, we shall call T ∗M
the phase space.

In order to understand how the Monge–Ampère form α encodes infor-
mation about the corresponding Monge–Ampère equation, assume that F :
M → R is a classical solution, that is, a smooth function that satisfies the
given Monge–Ampère equation (which is defined on M). Then, the image
of the differential dF : M → T ∗M can be understood as a submanifold
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L ⊂ T ∗M, and one can show that the restriction of the symplectic form ω to
this submanifold always vanish regardless of the function F that generated
it,

ω|L = 0. (3.1)

The Monge–Ampère n-form α is designed in such a way that if F is a solution
to the given Monge–Ampère equation then also the restriction of α to the
image of dF must vanish. Furthermore, when the condition α|L = 0 is ex-
pressed in local coordinates, it boils down to the original Monge–Ampère that
F satisfies. This machinery is more easily understood in a specific example,
and will be worked out in full detail in Section 3.2 for the semigeostrophic
Monge–Ampère equation (2.67).

One of the biggest advantages brought by the geometric view on Monge–
Ampère equations is that of an enlarged notion of a solution, which encom-
passes singular and multi-valued ones. In order for the conditions ω|L = 0
and α|L = 0 to hold, it is not required that the submanifold L ⊂ T ∗M is
the image of some differential dF of some function F . Therefore, one can
define a generalized solution to the Monge–Ampère equation under consid-
eration as a Lagrangian1 submanifold L ⊂ T ∗M that satisfies the additional
condition α|L = 0. This notion of a solution is more general in the sense that
it allows the submanifold L to have singular projection to the base mani-
fold M , something precluded to classical solutions. This aspect essentially
means that the coordinates of M cannot be globally taken as coordinates on
L too. Rather, different sets of coordinates are needed on different patches
of L, and the condition α|L = 0 results in a Monge–Ampère equation whose
appearance depends on the particular coordinates adopted. In all cases, the
Monge–Ampère equation obtained by expressing α|L = 0 in local coordinates
is still equivalent to the original one in the sense of Lychagin and Roubtsov
[55].

Although generalized solutions cannot be globally represented as the im-
age of the differential dF of some function F : M → T ∗M, they always admit
an alternative local representation in terms of a single function G called the
generating function. Note that the canonical symplectic form can be written

ω = dλ, (3.2)

where λ is the tautological 1-form on T ∗M. If L is a Lagrangian submanifold,
then λ|L is closed, and so there exist a function G on L such that, locally,

λ|L = dG. (3.3)

1A submanifold of a 2n-dimensional symplectic manifold is said to be Lagrangian if it
is n-dimensional and ω|L = 0
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Once a coordinate set on L is selected, (3.3) reduces to an algebraic system of
equations whose zero set in T ∗M identifies (a patch of) the submanifold L.
If L is a generalized solution, the coordinate expression of α|L = 0 ultimately
boils down to a Monge–Ampère equation that the generating function G
has to satisfy. In some cases, the equivalent equation satisfied by G is much
simpler to solve than the original one or even linear [55]. Furthermore, gener-
ating functions allow us to study generalized solutions in the neighbourhood
of a singularity.

A point p ∈ L is said to be singular if the restriction πL := π|L of the
bundle projection,

π : T ∗M → M, (3.4)

to the Lagrangian submanifold L is singular at p. We denote the subset of
such points on L by ΣL, that is,

ΣL = {p ∈ L : det(dπL)|p = 0}. (3.5)

The image of the singular set ΣL by πL is called the caustics of the map πL.
The shape and dimension of the caustics depend on how L is placed with
respect to the bundle structure π.

In the language of catastrophe theory, the singularities of πL are of La-
grangian kind. The classification of Lagrangian singularities and caustics up
to small deformations of the Lagrangian submanifold L was pioneered by
Arnold (see for example [1]). The list of generic Lagrangian singularities in
the case most relevant to us (n = 3) is

A2(“fold”), A3(“cusp”), A4(“swallowtail”), (3.6)

D+
4 (“purse”), D−

4 (“pyramid”). (3.7)

3.1.1 Anatomy of the cusp singularity

The most important type of singularity for the present work is the cusp
A3. As we will show in Section 3.4, the cusp singularity is the basis of the
modeling of weather fronts in semigeostrophic equations. We assume n = 3
throughout this section. This assumption forces any Lagrangian submanifold
L to be three-dimensional. When a cusp singularity is present, the singular
set ΣL is a (2-dimensional) regular surface in L. Within ΣL, two different
kind of singular points are found, namely, fold points (A2) and cusp points
(A3). Also, the rank of πL drops by 1 everywhere on ΣL 2. In order to
distinguish fold from cusp points we have to resort to Arnold’s theory, which

2meaning that dπL has everywhere 1D kernel.
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establishes that the (1D) kernel of dπL is transversal to ΣL at fold points and
tangent to ΣL at cusp points. Writing the singular set ΣL as the zero set
f = 0 of a smooth function f : L → R, Arnold’s condition for cusp points
may be written

ker(dπL) ⊂ ker(df), (3.8)

where we accounted for the fact that ker(dπL) is 1D and ker(df) is 2D by
using the inclusion operator. Next, let ξ a vector field on L such that ξ|ΣL

generates ker(dπL), i.e.,

dπL(ξ) = 0 on ΣL. (3.9)

Then, (3.8) may be written df(ξ) = 0, so that A3 points may be characterized
by {

f = 0,

df(ξ) = 0.
(3.10)

3.2 Semigeostrophic equations

In this section, we adapt the machinery of Monge–Ampère geometry intro-
duced above to the special case of semigeostrophic equations, and, specifi-
cally, the kinematic equation (2.67), which we rewrite here for convenience,

det Hess(P ) = qg. (3.11)

In this setting, the manifold of independent variables (excluding time) is
M = R3, and the phase space is T ∗R3. We endow the phase space with
coordinates (x, y, z,X, Y, Z) and we assume them to be canonical. Therefore,
the symplectic form takes the standard form

ω = dX ∧ dx+ dY ∧ dy + dZ ∧ dz. (3.12)

It is easy to check that the Monge–Ampère form relating to (2.67) is

α = dX ∧ dY ∧ dZ − qgdx ∧ dy ∧ dz. (3.13)

Indeed, for any smooth function P : R3 → R, we understand the differential
dP : M → T ∗M as the map

dP : (x, y, z) 7→ (x, y, z,X, Y, Z) = (x, y, z, ∂xP, ∂yP, ∂zP ), (3.14)

compatibly with (2.65) and the assumption that (x, y, z,X, Y, Z) are canon-
ical coordinates. Thus, the restriction of α to the image of the differential
dP reads

dP ∗(α) = d(∂xP ) ∧ d(∂yP ) ∧ d(∂zP ) − qgdx ∧ dy ∧ dz, (3.15)
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where ∗ represents the pull-back operator, and results in

dP ∗(α) = (det Hess(P ) − qg)dx ∧ dy ∧ dz. (3.16)

We next consider generalized solutions. Let L be a Lagrangian sub-
manifold in T ∗R3. For any point p ∈ L, there is always a 3-subset of
{x, y, z,X, Y, Z} that can be used as a set of coordinates on a suitably small
neighbourhood of p (see for example [1]). Overall, there are 23 = 8 possible
3-element subsets in {x, y, z,X, Y, Z} and, therefore, as many classes of gen-
erating functions for Lagrangian submanifolds in T ∗R3. The Legendre dual
potentials of Chynoweth and Sewell [16],

R(X, Y, Z), S(X, Y, z), T (x, y, Z), (3.17)

provide some physically relevant examples. We explicitly work out the de-
scription of a Lagrangian submanifold L in terms of S. The tautological
1-form on T ∗R3 reads

λ = Xdx+ Y dy + Zdz. (3.18)

Therefore, setting

G(X, Y, z) = Xx+ Y y − S(X, Y, z) (3.19)

in equation (3.3), we obtain,

Z dz = x dX + y dY − ∂S

∂X
dX − ∂S

∂Y
dY − ∂S

∂z
dz, (3.20)

which in turn implies

x =
∂S

∂X
(X, Y, z), y =

∂S

∂Y
(X, Y, z), Z = −∂S

∂z
(X, Y, z). (3.21)

The combined zero set of equations (3.21) in T ∗R3 identifies the Lagrangian
submanifold L generated by S. Similarly, the choices

G(X, Y, Z) = Xx+ Y y + Zz −R(X, Y, Z) (3.22)

and
G(x, y, Z) = Zz + T (x, y, Z) (3.23)

lead to a local description of as two more classes of Lagrangian submanifolds
as the zero set of, respectively,

x =
∂R

∂X
(X, Y, Z), y =

∂R

∂N
(X, Y, Z), z =

∂R

∂Z
(X, Y, Z), (3.24)

and

z = −∂T
∂Z

(x, y, Z), X =
∂T

∂x
(x, y, Z), Y =

∂T

∂y
(x, y, Z). (3.25)
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Remark 3.2.1. Notice that, in all cases (3.17), the restriction πL of the
bundle projection to L,

π : (x, y, z,X, Y, Z) 7→ (x, y, z), (3.26)

coincides, when expressed in coordinates, with the inverse Legendre map
(2.89), (2.91), or (2.93).

3.3 Reconstruction of the velocity field

Suppose that a particular generalized solution to (2.67) is known. In order
to visualize the physical content of the solution it is crucial to be able to re-
construct the fluid velocity it induces on R3. Unlike elsewhere above, where
we could ignore the time dependence, this will be crucial here to take into
account the motion of the generalized solution in phase space. To emphasize
this aspect, we will denote the time-dependent solution by Lt. We will per-
form all calculations explicitly in the case of most interest for us, i.e. when Lt

is generated by a generating function S(t,X, Y, z). By definition, the velocity
field on R3 is

u =
Dx

Dt
, v =

Dy

Dt
, w =

Dz

Dt
. (3.27)

As already noted, the projection map πL : L→ R3 coincides with the inverse
Legendre map (2.91). Therefore, using (2.91), we may write

u =
D(∂XS)

Dt
=

∂2S

∂t∂X
+ ug

∂2S

∂X2
+ vg

∂2S

∂X∂Y
+ w

∂2S

∂X∂z
, (3.28)

v =
D(∂Y S)

Dt
=

∂2S

∂t∂Y
+ ug

∂2S

∂X∂Y
+ vg

∂2S

∂Y 2
+ w

∂2S

∂Y ∂z
. (3.29)

Also, w is directly provided by (2.116),

w = −
∂2S
∂z∂t

+
(
∂S
∂Y

− Y
)

∂2S
∂X∂z

+
(
X − ∂S

∂X

)
∂2S
∂Y ∂z

∂2S
∂z2

. (3.30)

Finally, the geostrophic wind (ug, vg) is expressed in terms of S by

ug =
∂S

∂Y
− Y, vg = X − ∂S

∂X
, (3.31)

which descend from (2.63) and (2.90). Equations (3.28), (3.29), and (2.116),
together with (3.31), provide a parametric representation of the velocity field
induced on R3 by the generalized solution L.
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We remark that the velocity u obtained by this algorithm is generally
multivalued. Single valuedness is only guaranteed when Lt is a classical
solution. If Lt contains a cusp A3, then u will be three-valued somewhere in
its domain. Single-valuedness may be restored by introducing a Chynoweth–
Sewell front, as we clarify in the next section.

3.4 Monge–Ampère geometry and fronts

In Section (2.5), we introduced the notion of a Chynoweth–Sewell front and
presented the convex envelope algorithm for its construction. In this section,
we give a geometrical interpretation of this algorithm. Our goal is to highlight
a similarity between Chynoweth–Sewell fronts and gas dynamical shocks,
and in particular in the way these structures are constructed. We limit our
discussion to the class of cylindrical solutions (2.122). The reason for this
terminology should now be clear: the Lagrangian submanifold generated by
(5.40) is cylindrical, meaning that all the sections Y + Cz = constant are
identical. This immediately follows from the definition (3.21) of L, which for
(2.122) becomes

L = {(X, Y, z) : x =
∂S ′(X, z)

∂X
, y = Y + Cz, Z = −∂S

′(X, z)

∂z
}. (3.32)

We start by considering a Lagrangian submanifold L with generating function
(2.122), and we assume that L contains a cusp point. The singular set ΣL
is given by

f =
∂2S ′

∂X2
= 0. (3.33)

A vector field ξ that generates ker(dπL) on ΣL is found to be

ξ =
∂

∂X
. (3.34)

Therefore, the second condition in (3.10) becomes

∂f

∂X
=
∂3S ′

∂X3
= 0. (3.35)

Equations (3.33) and (3.35) identify A3 points on L. Because S ′ is indepen-
dent of Y , the singular set (3.33) is a cylindrical surface, and all its sections
Y = const. look the same. We can therefore restrict our analysis to a single
slice Y = const. of L.

In the geometrical view, Chynoweth and Sewell’s construction of fronts
boils down to cutting the Lagrangian submanifold L along a suitably chosen
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surface and discarding the multivalued piece. The precise geometry of the cut
is determined by Chynoweth and Sewell’s criterion. Note first that equations
(2.125) can be written as

S ′|X2 − S ′|X1 = x(X2 −X1), x =
∂S ′

∂X

∣∣∣∣
X1

=
∂S ′

∂X

∣∣∣∣
X2

. (3.36)

On the other hand, a straightforward application of the integration by parts
yields

S ′|X2 − S ′|X1 − x(X2 −X1) = −
∫
γ

Xdx, (3.37)

where γ is the contour represented in Figure 3.1. Thus, the cutting surface
is γ × R ⊂ L, where the contour γ is found from∫

γ

Xdx = 0. (3.38)

The geometrical meaning of this condition can be made more explicit by
observing that, by Stokes’ theorem,

0 =

∫
Σ+∪Σ−

dX ∧ dx =

∫
Σ+

dX ∧ dx−
∫
Σ−

dX ∧ dx, (3.39)

where Σ+,Σ− are the regions depicted in Figure 3.1. Equation (3.39) says
that, for each z = const. (and Y = const.) slice of L, the two regions Σ+,Σ−
have equal area. Figure 3.2 provides a schematic comparison between L and
Ľ.

Equation (3.39) is nothing but a statement of the classical Maxwell rule
of shock theory in the context of semigeostrophic equations. The presence
of a Maxwell rule suggests that Chynoweth–Sewell fronts, just as shocks,
must obey some conservation law. Indeed, semigeostrophic flows satisfy the
thermal wind balance, which may be expressed as

∂X

∂z
=
∂Z

∂x
,

∂Y

∂z
=
∂Z

∂y
. (3.40)

From the mathematical viewpoint, these conservation laws are just the com-
patibility condition which ensure that (X, Y, Z) = ∇P for some P . In the
language of Monge–Ampère geometry, a conservation law is a (n − 1)-form
on T ∗Rn whose pull-back to a solution is closed [62, 55]. The 2-forms corre-
sponding to (3.40) are, respectively,

β1 = (Xdx+ Zdz) ∧ dy, β2 = dx ∧ (Y dy + Zdz). (3.41)
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As long as the class of solutions (2.122) is considered, the equal area rule
(3.39) can be used to derive a Rankine-Hugoniot conditions corresponding
to the conservation law β1. First, note that for these solutions we always
have Y = y−Cz. As a consequence, (X, y, z) can be used as coordinates on
L in place of (X, Y, z). Next, consider the cylindrical surface in L given by

Γ × [0, 1], (3.42)

where Γ is a certain closed curve in the (X, z) plane and y ∈ [0, 1]. By Stokes
theorem, we have ∫

Γ×[0,1]

β1 = 0. (3.43)

This implies ∮
Γ

Xdx+ Zdz = 0. (3.44)

Next, suppose that Γ = γ∪Γ+∪Γ− as in Figure 3.2. Then, the above integral
splits into three contributions,∫

γ

(Xdx+ Zdz) +

∫
Γ+

(Xdx+ Zdz) +

∫
Γ−

(Xdx+ Zdz) = 0. (3.45)

Now, the first integral vanishes because of the equal area rule and the fact
that dz = 0 on γ. Accounting for the fact that Γ+ and Γ− have the same
projection onto the (x, z)-plane, we can write what is left of (3.45) as a single
integral using z as parameter,∫ z2

z1

(
JXK

dx

dz
+ JZK

)
dz = 0, (3.46)

where z2 represent the z-coordinate of the A3 point, and z1 represents the
plane where the curve γ lies. Finally, J·K represents the classical jump op-
erator. Since z1 can be chosen arbitrarily, the previous equation implies the
Rankine-Hugoniot condition,

dx

dz
= − JZK

JXK
. (3.47)

Note that this equation occurs in the papers [23, 25] where its origin is traced
back to the work of Margules.
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Figure 3.1: A slice through L for constant z and y. The front position x is
chosen so as to make the areas of Σ+ and Σ− coincide. The curve γ has end
points (x,X1) and (x,X2).

Figure 3.2: A slice through L for constant y. The three curves γ,Γ+,Γ−
form a closed loop. The curves Γ+,Γ− have the same projection onto the
(x, z)-plane.
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3.5 Summary of Chapter 3

After a review on the geometry of the Monge–Ampère equations and the
theory of Lagrangian singularities (Section 3.1), we applied these ideas to
study the kinematics of semigeostrophic equations which is encoded in the
Monge–Ampère equation (2.67) (Section 3.4). The key message of this chap-
ter is that singular solutions of semigeostrophic equations can be interpreted
as Lagrangian submanifolds in a suitable phase space whose projection onto
physical space is singular. Section 3.3 deals with the problem of recovering
physical information from a generalized solution, and, specifically, on the
velocity field that it induces in the fluid domain. In Section 3.4, we reinter-
preted the construction of Chynoweth–Sewell fronts in the context of Monge–
Ampère geometry as a surgery on the generalized solution. This procedure,
familiar from gas dynamics, highlights the nature of Chynoweth–Sewell fronts
as relatives of shocks in classical gas models.



Chapter 4

The Lychagin–Roubtsov metric

In [64], Lychagin and Rubtsov addressed the problem of classifying the
Monge–Ampère forms on a three-dimensional phase space up to local sym-
plectomorphisms. To this aim, they introduced a bilinear form gα on T ∗M
associated to each Monge–Ampère form α. Then, they were able to show
that the signature of gα uniquely identifies the class to which α belongs. In
some “nondegenerate” cases, the bilinear form gα is a pseudo-Riemannian
metric on T ∗M, which we call the Lychagin–Roubtsov metric. In a more
recent work [30], the pull-back metric,

hα := gα|L, (4.1)

on generalized solutions of (2.67) was studied. The signature of hα was the
main object of investigation, and it was shown that it relates in a precise way
to the symbol type of the Monge–Ampère equation at the solution L. Also
in [30] a relation between hα and the singular set ΣL was pointed out. The
bilinear form gα may be defined through

gα(ξ1, ξ2)
Ω3

3!
= ιξ1α ∧ ιξ2α ∧ ω, (4.2)

which holds for any pair of vector fields ξ1, ξ2 on T ∗M (see [7]). As long
as the kinematic equation (2.67) is concerned, gα is a pseudo-Riemannian
metric with signature (3, 3) over the phase space T ∗R3. Indeed, for α and ω
given by (3.13) and (3.12), formula (4.2) yields

gα = 2qg( dx dX + dy dY + dz dZ). (4.3)

Now, since the potential vorticity is transported by the flow (cf. equation
(2.54)), we can safely assume that

qg > 0 (4.4)

69
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everywhere. Note that this assumption is compatible with the CNP convex-
ity principle (see Section 2.5) because it is implied by the convexity of P (cf.
equation (2.67)). Therefore, (4.3) is always nondegenerate. Unlike the ambi-
ent metric gα, nothing can be said a priori about the pull-back metric (4.1)
hα, which depends on the solution L and the points on L. Generally speak-
ing, hα can be either Riemannian, pseudo-Riemannian or degenerate. We
call hα degenerate at a point p ∈ L if there exists a tangent vector ξ1 ∈ TpL
such that hα(ξ1, ξ2) = 0 for every ξ2 ∈ TpL.

This chapter closely replicates the key sections of ([30]) pertaining the
pull-back metric on solutions. We handle differently classical solutions, amenable
for treatment through linearization of the Monge–Ampère operator, and gen-
eralized solutions, treated through generating functions. We draw these ideas
together in §4.3, stating the relationship between elliptic-hyperbolic transi-
tions, projection singularities and the pull-back of the Lychagin–Roubtsov
metric.

4.1 Pull-back on classical solutions

We begin with recalling a classical definition from PDE theory (see for ex-
ample [18]):

Definition 4.1.1 (Type of a linear equation). A second order linear PDE
with principal part

n∑
i,j=1

bij(x)
∂2u

∂xi∂xj
(4.5)

is called elliptic if the eigenvalues of the symmetric matrix B = [bij] have the
same sign; hyperbolic if one eigenvalue has the opposite sign from the others;
and parabolic if there is at least one zero eigenvalue.

The notion of an equation type has been generalized to nonlinear equa-
tions by Harvey and Lawson [43] as follows (see also §2 of [33] for a geomet-
rical perspective).

Definition 4.1.2. The type of a nonlinear equation at a given solution is
the type of its linearization about the solution.

We are thus led to consider the linearization of equation (2.67) about
a fixed solution. Let P + δP be a perturbation of some exact solution P
to (2.67). Introducing this ansatz into equation (2.67) and using the Jacobi
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formula for determinants leads, to the first order in δP , to the linear equation
satisfied by the perturbation field,

Tr [adj(Hess(P ))Hess(δP )] = 0. (4.6)

Note that the coefficient matrix of this linear equation is

B = adj(Hess(P )), (4.7)

where “adj” denotes the adjugate matrix.
The assumption that qg > 0 implies that (4.6) is elliptic if P is (spatially)

convex and hyperbolic if P is saddle shaped. Definition 4.1.2 allows us to
bring this information to the nonlinear equation (2.67) as it stands. Also note
that equation (2.67) is nowhere parabolic as long as classical solutions are
considered. In fact, equation (2.67) itself prevents the eigenvalues of Hess(P )
(and thus those of B) from vanishing. We are now in a position to prove the
following

Proposition 4.1.1. Let P be a classical solution to (2.67) and let L ⊂ T ∗R3

denote the graph of dP . Then, the pull-back Lychagin–Roubtsov metric on
L,

hα := (dP )∗gα, (4.8)

has matrix representation

hα = 2adj(B) = 2qgHess(P ), (4.9)

where B is the linearization matrix (4.7). Moreover, hα has signature (3, 0)
if equation (2.67) is elliptic at the solution P and signature (1, 2) if (2.67) is
hyperbolic at P .

Proof. By direct calculation. From equation (4.3) and

dP : (x, y, z) 7→
(
x, y, z,

∂P

∂x
,
∂P

∂y
,
∂P

∂z

)
, (4.10)

it follows that

hα = (dP )∗gα = 2qg

3∑
i,j=1

∂2P

∂xi∂xj
dxi dxj, (4.11)

where xi = x, y, z. Therefore, hα has matrix representation

hα = 2qgHess(P ). (4.12)
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On the other hand, equation (4.7) plus the algebraic identity

adj(adj(M)) = det(M)n−2M, (4.13)

holding for any square matrix M ∈ Rn×n with n > 2, gives

adj(B) = adj(adj(Hess(P ))) = det(Hess(P ))Hess(P ) = qgHess(P ), (4.14)

and thus equation (4.9) follows. For the second part, we observe that the
determinant,

det(hα) = 8 det(B)2 = 8 det Hess(P )4 = 8q4g , (4.15)

is always positive, so the eigenvalues of (4.9) can only be (i) all positive or
(ii) one positive and two negative. According to (4.9), (i) occurs when P is
convex and case (ii) occurs when P is saddle shaped. Therefore, cases (i)
and (ii) correspond to (2.67) being respectively elliptic or hyperbolic.

Definition 4.1.2 is no longer directly applicable when generalized solu-
tions are considered because the linearization procedure is not applicable
on neighbourhoods of singular points. However, equation (4.9) suggests a
characterization of ellipticity based on hα, which readily applies to general-
ized solutions. Indeed, the equation type at a generalized solution is directly
traceable to the signature of hα in a definite way. In what follows, we will
prove consistency of this characterization by relying on the local description
of generalized solutions in terms of generating functions.

4.2 Pull-back on generalized solutions

We recall that any generating function G of a generalized solution L satisfies
a Monge–Ampère equation which arises from the condition α|L = 0 in local
coordinates. Moreover, as G is a classical solution to this equation, there are
no obstructions to linearization. Thus, we can give the following

Definition 4.2.1. Let L be a generalized solution to (2.67) locally generated
by G. We say that (2.67) is elliptic, parabolic or hyperbolic at some point
p ∈ L if G satisfies a Monge–Ampère equation of the same type at the point.

We remark that the symbol type of a differential equation is invariant
under a change of variables [18], and this ensures consistency of Definition
4.2.1. We are thus in a position to prove the
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Proposition 4.2.1. Let L be a generalized solution to (2.67). Then, the
pull-back metric hα = gα|L has signature (3, 0) on elliptic branches, (1, 2) on
hyperbolic branches, and degenerates along parabolic branches of L.

Proof. This proposition is proved by direct inspection of the linearized Monge–
Ampère equation satisfied by the generating function G. We explicitly carry
out the calculations for the case G = Xx + Y y − S(X, Y, z) (the remaining
cases are addressed similarly and lead to the same conclusions). Thus, let
L be some generalized solution locally described by S(X, Y, z) according to
(3.21). Introducing a perturbation S + δS of an exact solution S to (2.100)
leads to a linear equation satisfied by the perturbation field,

qg

(
∂2S

∂X2

∂2δS

∂Y 2
+
∂2S

∂Y 2

∂2δS

∂X2
− 2

∂2S

∂X∂Y

∂2δS

∂X∂Y

)
+
∂2δS

∂z2
= 0. (4.16)

Its 3 × 3 coefficient matrix is

A =

(
qgadj(H) 0

0 1

)
, H :=

(
∂2XS ∂X∂Y S
∂X∂Y S ∂2Y S

)
. (4.17)

On the other hand, the Lychagin–Roubtsov metric hα = gα|L has the local
coordinate expression

hα = 2qg

(
∂2S

∂x2
dx2 + 2

∂2S

∂x∂y
dx dy +

∂2S

∂y2
dy2 − ∂2S

∂Z2
dZ2

)
, (4.18)

and may be written in matrix form as

hα = 2

(
qgH 0

0 q2g det(H)

)
, (4.19)

where we have used (2.100). We see from (4.17) that equation (2.100) is
elliptic as long as H is positive definite, which, in light of (4.19), corresponds
to hα having signature (3, 0). Parabolic and hyperbolic cases correspond to
det(H) = 0 and det(H) < 0 respectively. Therefore, it follows from equation
(4.19) that hα is degenerate on parabolic branches and of type (1, 2) on
hyperbolic ones.

The significance of Proposition 4.2.1 is that hα encodes all the essential
information about the equation type, and may be used to give an invariant
definition of the symbol type based on its signature. This may be summarized
as follows:

Definition 4.2.2. Let L be a generalized solution to (2.67) with Lychagin–
Roubtsov metric hα. We say that (2.67) is elliptic or hyperbolic at a point
p ∈ L if hα|p is respectively of type (3, 0) or (1, 2). We say that (2.67) is
parabolic at p ∈ L if hα|p is degenerate.
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4.3 Connection with singularities

In this section we show that elliptic-hyperbolic transitions of the kinematic
equation (2.67) are tied to singularities. This relationship is reflected in the
pull-back metric hα thanks to the Proposition 4.2.1.

Proposition 4.3.1. Let L be a generalized solution to (2.67). Then the set
of parabolic points on L coincides with the singular locus ΣL.

Proof. Once again, we rely on a local description in coordinates and gener-
ating functions to prove our result. Let a solution L be locally generated by
a function G = Xx+ Y y − S(X, Y, z), that is,

L =

{
(x, y, z,X, Y, Z) ∈ T ∗R3 : x =

∂S

∂X
, y =

∂S

∂Y
, Z = −∂S

∂z

}
. (4.20)

In local coordinates (x, y, Z) on L, the projection mapping reads

πL(x, y, Z) =

(
∂S

∂X
,
∂S

∂Y
, z

)
, (4.21)

and so it is singular on points satisfying

det( dπL) =
∂2S

∂X2

∂2S

∂Y 2
−
(

∂2S

∂X∂Y

)2

= 0. (4.22)

On the other hand, we know from the proof of Proposition 4.2.1 that parabolic
points on L satisfy the same equation. To complete the proof, one should
examine in turn each of the remaining classes of generating functions. How-
ever, calculations are almost identical to those we have already exhibited,
and we omit them for conciseness.

Propositions 4.2.1 and 4.3.1 are combined into

Corollary 4.3.1. Given a generalized solution L to (2.67), the induced
Lychagin–Roubtsov metric on L degenerates on the singular locus ΣL.

Another way to state this result is that every regular branch of a mul-
tivalued solution L ⊂ T ∗R3 is either elliptic or hyperbolic, with transitions
happening at singular branches.
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4.4 Characteristics of Monge–Ampère equa-

tions

The Lychagin–Roubtsov metric provides a canonical way to define the char-
acteristics of a symplectic Monge–Ampère equation in the hyperbolic regime
[30]. In this section, we review the results presented in [30] on this sub-
ject, and present an unpublished worked-out example to explain the theory.
The building blocks of characteristic surfaces are the tangent vectors of null
length, which, borrowing terminology from relativity theory, are called light-
like. The set of light-like vectors based at a point in the phase space is called
the light cone or the characteristic variety. Drawing ideas from the work of
Kossowski [54] in two spatial dimensions, we give the following

Definition 4.4.1. Let gα be given by (4.2) and let p ∈ T ∗R3. The cotangent
characteristic variety (or simply characteristic variety) CVp ⊂ Tp(T

∗R3) is
the cone

CVp := {ξ ∈ Tp(T
∗R3) : gα(ξ, ξ) = 0}. (4.23)

Let L ⊂ T ∗R3 be a Lagrangian submanifold and let p ∈ L. We denote the
pull-back of the characteristic variety to L by

cvp := {ξ ∈ TpL : hα(ξ, ξ) = 0}, (4.24)

where hα = gα|L is the pull-back Lychagin–Roubtsov metric on L.

It easily follows from Definition 4.2.2 that the characteristic variety cvp

is a full-fledged cone if p is an hyperbolic point, a degenerate cone if p is
a parabolic point, and the zero vector, {0} ⊂ TpL, if p is an elliptic point.
The characteristic variety is the basic ingredient to build the characteristic
surfaces within a generalized solution L. We understand a characteristic
surface C ⊂ L as the enveloping surface of the characteristic varieties cvp as
p varies across C, as the following definition clarifies.

Definition 4.4.2. A surface C ⊂ L is called characteristic if at any point
p ∈ C, the tangent space TpC includes one (and only one!) light-like direction.

We remark that Definition 4.4.2 closely parallels the notion of character-
istics in general relativity, where they are identified with light-like surfaces
[35]. Definition 4.4.2 may be considered as a generalization to nonlinear
PDEs of the classical notion of characteristics for linear PDEs. To motivate
this statement, fix coordinates {q1, q2, q3} on L and consider the surface

C = {(q1, q2, q3) ∈ L : F (q1, q2, q3) = 0}. (4.25)
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Further, consider the following vector based at points on C,

dF ♯ = hij
∂F

∂qi
∂

∂qj
, (4.26)

where summation on repeated indices is implied and hij denotes the compo-
nents of the inverse metric h−1

α . It is straightforward to check equivalence
of the following statements: (i) dF ♯ is a tangent vector to C, (ii) dF ♯ is a
light-like vector, (iii) F satisfies

h−1
α (dF, dF ) = 0. (4.27)

Equation (4.27) is the analogue of the eikonal equation in the linear setting,
where the coefficient matrix is replaced by the inverse of hα. We shall further
elaborate on this analogy next. Note that equation (4.27) is only well defined
away from parabolic points, where hα is invertible, and has only nontrivial
solutions on hyperbolic branches of L. Any hyperbolic branch is regular by
virtue of Proposition 4.3.1, so it may be described as the graph of a function,
e.g. P ∗(x, y, z), to the extent a classical solution is (we may take {x, y, z}
as local coordinates on hyperbolic branches). Therefore, the linearization
of (2.67) about a hyperbolic branch of L is well defined, and, building on
equation (4.9), we may write

h−1
α =

A

2 det(A)
, (4.28)

where A = adj(Hess(P ∗)) is the coefficient matrix of the linearized equation
(2.67) about P ∗. Since det(A) ̸= 0 on hyperbolic points, we may get rid of
the denominator in equation (4.27), and write

∇F · A∇F =
3∑

i,j=1

aij(x, y, z)
∂F

∂xi

∂F

∂xj
= 0, (4.29)

where (x1, x2, x3) = (x, y, z). This is precisely the classical eikonal equation.
Equation (4.27) is a nonlinear PDE of the first order, and may be solved

by the methods of wave optics (see for example Appendix 4 of [1]). This in-
volves the computation of “light rays”, from which the characteristic surface
is constructed by foliation. We briefly recall the main steps of the solution
procedure for completeness of exposition (see for example [1, 18] for refer-
ence). Consider the cotangent bundle T ∗L with coordinates {q1, q2, q3, p1, p2, p3}
and symplectic structure

ω = dpi ∧ dqi. (4.30)
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In this setting, equation (4.27) is interpreted as the zero level set of the
Hamiltonian function H : T ∗L→ R,

H(p, q) = h(q)ijpipj, (4.31)

under the identification pi = ∂F/∂qi. Characteristic curves of (4.27) are
defined by [1] as the integral curves of the Hamiltonian vector field ξH,

−dH = ιξHΩ, (4.32)

and satisfy the Hamilton’s canonical equations of motion,

q̇i =
∂H
∂pi

= 2h(q)ijpj, ṗi = −∂H
∂qi

= −∂h
jk

∂qi
pjpk. (4.33)

Initial conditions cannot be chosen freely, but are subject to the compatibility
condition

H(p(0), q(0)) = 0. (4.34)

Integral curves of (4.33) are called bicharacteristics [62]. Once projected to
L along the cotangent bundle, π̄ : T ∗L → L, bicharacteristics foliate the
characteristic surfaces C ⊂ L.

Remark 4.4.1. Light rays are equivalently described by the Lagrangian

L = hij(q)q̇
iq̇j, (4.35)

related to the Hamiltonian (4.31) by the classical Legendre transform. The
equivalent condition to (4.34) in the present case reads

L(q(0), q̇(0)) = 0. (4.36)

The Euler-Lagrange equations associated with (4.35) plus condition (4.36)
yield the light-like geodesics of hα. Therefore, characteristic surfaces C are
foliated by light-like geodesics of hα. This offers an alternative route for
computing the characteristic surfaces.

An example of application of these ideas, consisting of a generalized so-
lution to (2.67) with a fold singularity, has been presented in [30]. We next
discuss a slightly more complex example, which contains a cusp singularity.

Example 4.4.1. Consider the generating function

T (x, y, Z) = −x
3

6
+
y2

2
+ xyZ +

1

2
xZ2 +

Z4

12
. (4.37)
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It solves (2.103), and describes a Lagrangian submanifold L ⊂ T ∗R3 as

L =

{
(x, y, z,X, Y, Z) : X = −x

2

2
+ yZ +

Z2

2
, Y = y + xZ, (4.38)

z = −xy − xZ − Z3

3

}
(4.39)

The restriction of the bundle projection π : T ∗R3 → R3 to L reads, in local
coordinates,

πL(x, y, Z) =

(
x, y,−∂T

∂Z

)
=

(
x, y,−xy − xZ − Z3

3

)
, (4.40)

and is singular at

ΣL =

{
(x, y, Z) ∈ T ∗R3 : 0 = −∂

2T

∂Z2
= −(x+ Z2)

}
. (4.41)

The parametric surface

π(ΣL) :

{
x = −Z2,

z = Z2y + 2
3
Z3.

(4.42)

represents the caustics of the projection of L in R3. Now consider the pull-
back of the Lychagin–Roubtsov metric (4.3) to this solution,

hα = 2(Txx dx2 + 2Txy dx dy + Tyy dy2 − TZZ dZ2)

= 2(−x dx2 + 2Z dx dy + dy2 − (x+ Z2) dZ2).
(4.43)

Its eigenvalues,

λ1,2 =
1

2
(1 − x±

√
(1 + x)2 + 4Z2), (4.44)

λ3 = −(x+ Z2), (4.45)

are all positive for x < −Z2 and of different sign in x > −Z2. Therefore, the
problem is elliptic in the first case and hyperbolic in the second (see Figure
4.1). Note that the characteristic variety cvp on points p ∈ ΣL degenerates
to a plane,

Z dx+ dy = 0, (4.46)

which is always transversal to the parabolic boundary ΣL. Also observe that
the intersection

cvp ∩ TpΣL (4.47)
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Figure 4.1: Elliptic domain (gray) and hyperbolic domain (white) of Example
4.4.1. The dashed line represents a section y = constant through the singular
locus ΣL.

determines a 1-dimensional distribution on ΣL whose integral lines are pre-
cisely the intersection of the characteristic surfaces with ΣL. Explicitly,
taking {y, Z} as coordinates on ΣL, the characteristic distribution on ΣL
can be written

−2Z2 dZ + dy = 0, (4.48)

and it is easily integrated to

y − 2

3
Z3 = C. (4.49)

In the hyperbolic region, characteristic surfaces are foliated by the light-
like geodesics of hα which satisfy

ẍ = −ẋ2+2ZẋŻ−Ż(2ẏ+Ż))
2(x+Z2)

,

ÿ = −2xẋŻ+Z(ẋ2−Ż(2ẏ+Ż))
2(x+Z2)

,

Z̈ = −ZŻ2+ẋ(ẏ+Ż)
x+Z2 .

(4.50)

We are not able to explicitly solve these equations, so we look for light rays
following the Hamiltonian approach described above. The inverse LR metric
reads

h−1
α =

1

2(x+ Z2)

−1 Z 0
Z x 0
0 0 −1

 . (4.51)

In equation (4.31), we have defined the Hamiltonian as H = h−1
α (p, p), where

now p = (X, Y,−z). However, since H = 0 along the desired solution curves,
we can equivalently use

H = X2 − xY 2 + z2 − 2XY Z. (4.52)
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Then, the Hamilton’s equations of motion may be written

dx

ds
= 2X − 2Y Z,

dy

ds
= −2xY − 2XZ,

dZ

ds
= −2z, (4.53)

dX

ds
= Y 2,

dY

ds
= 0,

dz

ds
= −2XY. (4.54)

Initial conditions are assigned on ΣL, that is,

x0 = −Z2
0 , (4.55)

and are subject to H(p0, p0) = 0, which implies both of

z0 = 0, and X0 = Y0Z0. (4.56)

Moreover, the condition that the initial point belongs to L implies

Y0 =
∂T

∂y
(−Z2

0 , y0, Z0) = y0 − Z3
0 . (4.57)

Thus, the light rays originating from ΣL are labelled by two parameters
(y0, Z0), which also form a set of coordinates on ΣL. To identify a particular
characteristic surface, we fix the parameter C in (4.49), say C = 0, which
gives

y0 =
2

3
Z3

0 , (4.58)

and leave us with just one free parameter, namely, Z0. A characteristic
surface built by this procedure is naturally parametrized by Z0 and the ar-
clength s along the rays of which it is foliated. It turns out that such a
parametrization is not suitable for plotting purposes, so we replace s by

δ =
3

Z3
0s
. (4.59)

Then, the characteristic surface C = 0 is given parametrically by
x(Z0, δ) =

−1+4Z0δ+3δ3−3Z2
0δ

4

3δ4
,

y(Z0, δ) =
2+10δ2+20Z2

0δ
2+10Z3

0δ
5−5Z0δ(2+3δ2)

15δ5
,

Z(Z0, δ) = Z0 − 2
3δ3

+ 2Z0

δ2
.

(4.60)

and depicted in Figure 4.2. Interestingly, the characteristic surface C = 0
has a cusped ridge at the intersection with the parabolic locus ΣL. It is
possible to show, resorting to an adapted coordinate system on L, that these
are semicubical cusps.
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Figure 4.2: The characteristic surface C = 0 (orange) intersecting the singu-
lar locus ΣL (gray) along the parabolic characteristic curve y = 2

3
Z3,

4.5 Summary of Chapter 4

After a brief introduction on the Lychagin–Roubtsov tensor, we turned our
attention to its pull-back on the generalized solutions of the kinematic equa-
tion (2.67). The first key message of this chapter is that the geometry of gen-
eralized solutions is strongly dependent on the type of the Monge–Ampère
equation (2.67) at such solutions. In the hyperbolic regime, a generalized
solution locally resembles a Minkowski space, while, in the elliptic regime,
it locally resembles a Euclidean space. This result is proven first on classi-
cal solutions of (2.67) in Section 4.1, and secondly on generalized solutions
in Section 4.2. The second key message of this chapter is that hyperbolic-
elliptic transitions of the equation (2.67) are possible, although they are
always associated with a singularity. This result is established in Section
4.3 using the pseudo-Riemannian geometry language introduced previously.
The concluding paragraph is devoted to a peculiar application of the pull-
back metric, which enables a definition of the characteristic surfaces for the
Monge–Ampère equation (2.67) in the hyperbolic context.
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Chapter 5

The Eady problem

In this chapter, we revisit the classic Eady problem in light of the geometry
of the Monge–Ampère equations presented in the previous chapters. The
Eady problem concerns the simplest initial setting for the semigeostrophic
equations that leads to the formation of atmospheric fronts. The physical
mechanism underlying frontogenesis is the so-called “baroclinic instability”,
and it typically manifests itself when a north-south temperature gradient is
combined with a zonal wind varying with height.

The semigeostrophic equations are known to be able to represent frontoge-
nesis [46, 47]. The simplest setting in which baroclinic instability manifests
is the Eady model [34], in which the troposphere is represented as a strip
0 < z < H with rigid and impermeable lids at the Earth’s surface (z = 0)
and the tropopause (z = H). Within this domain, the basic (stationary)
flow consists of a linear zonal velocity profile which is sustained by a linear
temperature gradient in the meridional direction. In formulas,

ug =
U

H
z, vg = 0, θ = θ0 +

N2θ0
g

z − fθ0
g

U

H
y, (5.1)

where U represents the top-lid value for the zonal wind and N is the constant
buoyancy frequency.

The material contained in this chapter is entirely unpublished, and is
organized as follows. We begin with the introduction of dimensionless vari-
ables [85], and the formalization and solution of the Eady problem provided
by Hoskins [47] using the Legendre transform language. Next, we analyze
Hoskins’ solution in light of the geometric theory of Monge–Ampère equa-
tions discussed in Chapters 3 and 4. We show that the geometry of an Eady
wave is essentially two-dimensional also from a metric point of view, and this
is reflected in the curvature of such solutions. We close the chapter by apply-
ing what was discussed in Sections 3.3 and 3.4 about the reconstruction of

83
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the physical information contained in a generalized solution in the particular
case of Eady waves.

5.1 Dimensionless numbers

Using the dimensionless variables introduced in (2.3), we can write Eady’s
basic state in the form

ug = Fr z, vg = 0, θ = 1 + z − Fr y, (5.2)

where

Fr :=
U

NH
(5.3)

is the Froude number [45], and we have set

N =
g

fL
, (5.4)

consistently with the usual definition of the buoyancy frequency (see for
example [47]). Note that, in dimensionless variables, the atmosphere domain
becomes

0 < z <
gH

f 2L2
= Bu, (5.5)

where

Bu :=
NH

fL
=

gH

f 2L2
(5.6)

is the Burger number [45]. Thus, the top-lid value of the zonal velocity equals

ug
∣∣
z=Bu

= Fr Bu ≡ Ro, (5.7)

where the parameter

Ro :=
U

fL
(5.8)

represents the Rossby number [45]. The geopotential function corresponding
to the unperturbed state is

P0 =
x2

2
+
y2

2
+
z2

2
− Fr yz + z. (5.9)

The basic state potential vorticity is found from (2.67), and turns out to be
constant,

qg = 1 − Fr2. (5.10)

If we assume that qg > 0, equation (5.10) implies that Fr < 1, i.e., the wind
is slower than gravity waves.
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5.2 The mathematical problem and solution

The basic state specified by (5.9) solves a constant coefficients Monge–Ampère
equation (2.67) with qg given by (5.10). The linear stability analysis of this
solution can be tackled by introducing perturbations of the geopotential field

P = P0 + εP1, ε≪ 1, (5.11)

that leave qg constant (and equal to (5.10)). The perturbations are subject
to the impermeable boundary condition,

w = 0 on z = 0, Bu. (5.12)

Looking for a function P1 which satisfies the Monge–Ampère equation (2.67)
and the boundary conditions (5.12) to the first order in ε is called the Eady
problem. As it stands, the Eady problem is fraught with technical difficulties
due to the implicit dependence of the boundary conditions on P . Indeed,
(5.12) has to be used in conjunction with (2.71) in order to obtain a (time-
dependent) boundary condition in which P appear explicitly. This issue was
solved in [47] using the geostrophic momentum transformation, which also
achieves a simplification of the Monge–Ampère equation itself. We review
the solution procedure below using the formalism of the (partial) Legendre
transform introduced in Section 2.4.

5.2.1 Partial Legendre transform

The Eady basic state may equivalently be represented by the partial Legendre
transform of (5.9),

S0 =
X2

2
+
Y 2

2
− qg

z2

2
+ Fr Y z − z. (5.13)

This function may be regarded as a stationary solution to the vorticity-
streamfunction problem described in Section 2.4.3. In these variables, the
Eady problem amounts to looking for an approximate solution,

S = S0 + εS1, ε≪ 1, (5.14)

that satisfies (2.100) and (2.118) to the first order in ε, with qg given by
(5.10). Following Hoskins [47], we introduce a shifted set of variables,

X̃ = X − Ro

2
t, z̃ = z − Bu

2
, (5.15)
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which compensate for the lack of symmetry in the basic flow and the domain.
Observe that this change of variable does not affect the Chynoweth–Sewell
equation (2.100). Now, look for a solution of the form

S = S0 + εS1(X̃, Y, z̃, t), ε≪ 1. (5.16)

This ansatz satisfies the Chynoweth–Sewell equation (2.100) to the first order
in ε if

qg

(
∂2S1

∂X̃2
+
∂2S1

∂Y 2

)
+
∂2S1

∂z̃2
= 0. (5.17)

Next, we examine the boundary conditions (2.118), which we rewrite here in
a more compact form,(

∂

∂t
+ ug

∂

∂X
+ vg

∂

∂Y

)
∂S

∂z
= 0. (5.18)

Observe that the geostrophic wind may be expressed as an ε-expansion,

ug = ug0 + εug1, vg = vg0 + εvg1, (5.19)

where

ug0 :=
∂S0

∂Y
− Y = Fr z, ug1 :=

∂S1

∂Y
, (5.20)

vg0 := X − ∂S0

∂X
= 0, vg1 := −∂S1

∂X
= −∂S1

∂X̃
. (5.21)

Therefore, (5.16) solves the boundary condition (5.18) to the order O(ε) if

∂2S1

∂t∂z
+ ug0

∂2S1

∂X∂z
+ ug1

∂2S0

∂X∂z
+ vg0

∂2S1

∂Y ∂z
+ vg1

∂2S0

∂Y ∂z
= 0, (5.22)

which, using (5.15), becomes

∂2S1

∂t∂z̃
+ (ug0 −

Ro

2
)
∂2S1

∂X̃∂z̃
+ ug1

∂2S0

∂X∂z
+ vg0

∂2S1

∂Y ∂z̃
+ vg1

∂2S0

∂Y ∂z
= 0, (5.23)

and, using (5.13) and (5.20)–(5.21), boils down to

∂2S1

∂t∂z̃
+ (Fr z − Ro

2
)
∂2S1

∂X̃∂z̃
− Fr

∂S1

∂X
= 0. (5.24)

This condition holds at z = 0 and z = Bu. Recalling that FrBu = Ro, it
becomes

∂2S1

∂z̃∂t
+ Fr

∂S1

∂X̃
+
Ro

2

∂2S1

∂X̃∂z̃
= 0 at z̃ =

Bu

2
, (5.25)
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and
∂2S1

∂z̃∂t
+ Fr

∂S1

∂X̃
− Ro

2

∂2S1

∂X̃∂z̃
= 0 at z̃ = −Bu

2
. (5.26)

Next, assume that S1 is a monochromatic wave in X̃ and Y , with z̃-dependent
amplitude, namely,

S1 = ψ(z̃)ei(kX̃+lY−ωt). (5.27)

This perturbation field solves (5.17) if

ψ′′ = m2qgψ, m :=
√
k2 + l2, (5.28)

that is,
ψ(z̃) = C1e

m
√
qg z̃ + C2e

−m
√
qg z̃. (5.29)

The constants of integration in (5.29) are fixed by the boundary conditions.
Equation (5.24) evaluated at z = Bu gives

e
1
2
Bum

√
qg(2Fr k +m

√
qg(−kRo+ 2ω))C1+

e−
1
2
Bum

√
qg(2Fr k +m

√
qg(kRo− 2ω))C2 = 0,

and the same equation evaluated at z = 0 gives

e−
1
2
Bum

√
qg(2Fr k +m

√
qg(kRo+ 2ω))C1+

e
1
2
Bum

√
qg(2Fr k −m

√
qg(kRo+ 2ω))C2 = 0.

This system admits nontrivial solutions (C1, C2) if the following dispersion
relation holds,

− m2qg
Fr2k2

ω2 =

(
1−

Bum
√
qg

2
coth

Bum
√
qg

2

)(
Bum

√
qg

2
tanh

Bum
√
qg

2
−1

)
.

(5.30)
If (5.30) is satisfied, infinite solutions (C1, C2) for the pair of contants of
integration in (5.29) are possible. A particular choice is

C1 = e
1
2
Bum

√
qg(2Fr k −m

√
qg(kRo+ 2ω)), (5.31)

C2 = −e−
1
2
Bum

√
qg(2Fr k +m

√
qg(kRo+ 2ω)). (5.32)

Remark 5.2.1. Despite being obtained as an approximate solution to the
Eady problem, (5.16) together with (5.27) and (5.29), is in fact an exact
solution. Higher order terms in ε happen to cancel out in both equation
(2.100) and the boundary conditions (2.118).

The dispersion relation (5.30) produces both stable and unstable waves,
with instability occurring for sufficiently long waves. In the next section
we analyse further Hoskins solution to the Eady problem, and provide an
in-depth view on the frontogenesis mechanism associated with an unstable
Eady wave.
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5.2.2 Unidirectional waves

We regard the dispersion relation (5.30) as a surface KFr,Bu(k, l, ω) = 0 in
the (k, l, ω)-space (depending on two parameters (Fr,Bu)). Unstable wave
numbers are those pairs (k, l) for which is impossible to find a frequency ω
satisfying the dispersion relation. Introducing polar coordinates in the wave
number plane,

m :=
√
k2 + l2, ν := arctan(l/k), (5.33)

the dispersion relation may alternatively be written

KFr,Bu(m, ν, ω) = cos(ν)2φ(m;F,B) + ω2 = 0, (5.34)

where

φ(m;Fr,Bu) :=

Fr2

qg

(
1 −

Bum
√
qg

2
coth

Bum
√
qg

2

)(
Bum

√
qg

2
tanh

Bum
√
qg

2
− 1

)
.

The set of marginally stable wave numbers is defined as the caustics of the
projection of the surface KFr,Bu(k, l, ω) = 0 onto the (k, l)-plane, and can be
found using the implicit function theorem on (5.34). This yields the condition

∂KFr,Bu

∂ω
= 0, (5.35)

which implies that either ν = 0, or

φ(m;Fr,Bu) = 0. (5.36)

Therefore, the stability of generically directed waves (ν ̸= 0) only depends
on the magnitude of their wave number, i.e., their wavelength. A particular
choice for these coefficients is

Fr =
1√
2
, Bu =

√
2 ⇒ Ro = 1, qg =

1

2
, (5.37)

whereby,

φ(m; 1/
√

2,
√

2) =

(
1 − m

2
coth

m

2

)(
m

2
tanh

m

2
− 1

)
. (5.38)

The corresponding dispersion relation (5.34) is depicted in Figure 5.1 for
different values of ν. In order to discuss the qualitative properties of an
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unstable Eady wave, we fixm = 2, which corresponds to the purely imaginary
frequency

ω =
2i cos(ν)√
e4 − 1

. (5.39)

The simplest solution having m = 2 is obtained by setting k = 2, l = 0
(which implies ν = 0) and represents an X-travelling wave,

S =
X2

2
+
Y 2

2
− z2

4
+
Y z√

2
− z − 2

√
2eωit

[
2e−

√
2z cos(t− 2X)+

+ωi(e
√
2z + e−

√
2z) sin(t− 2X)

]
ε,

(5.40)

where

ωi =
2√
e4 − 1

. (5.41)

5.3 Geometric picture

Equation (5.40) may be seen as a 1-parameter family of generating functions
describing a family of Lagrangian submanifolds Lt indicized by time. Specif-
ically, (5.40) provides an example of a cylindrical solution in the sense of
(2.122) for each fixed t with

C =
1√
2
, (5.42)

and

S ′(X, z, t) =
X2

2
− z2

4
− z − 2

√
2eωit

[
2e−

√
2z cos(t− 2X)+

+ωi(e
√
2z + e−

√
2z) sin(t− 2X)

]
ε.

(5.43)

Not every member of this family has a nice projection to the physical space,
i.e., singularities may appear in Lt as t varies. The singular locus of Lt is

ΣLt =

{
(X, Y, z) ∈ Lt : f(X, z, t) = 0 , 0 < z <

√
2

}
, (5.44)

where

f(X, z, t) ≡ ∂2S

∂X2
, (5.45)

and is independent on Y . The time evolution of a slice Y = constant through
ΣLt within one solution period is depicted in Figure 5.2. Two topological
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changes of ΣLt occur as time evolves: (i) the singular set is empty for t < t′;
(ii) at t = t′, the singular set consists of two A3 points at z = 0 and z =

√
2

respectively; (iii) for t′ < t < t′′, the singular locus is a disconnected set made
of two surfaces (curves in the (X, z)-plane) which originate and terminate on
either z = 0 or z =

√
2, each one comprising a cusp point A3 and a continuous

set of fold points A2; (iv) these two curves collide at t = t′′, when the two
A3 points coalesce and a higher order singularity is produced; (v) the A3

points are absent for t > t′′, and the singular set consists of two disconnected
components each of which comprises fold points (A2) only.

The two singular times t′, t′′ may be determined by tracking the motion
of the A3 points using (3.8). Note that the projection mapping now reads

π|Lt(X, Y, z) =

(
∂S ′

∂X
, Y + z/

√
2, z

)
, (5.46)

and its differential is

dπ|Lt =

∂2S ′ ∂X∂Y S
′ ∂X∂zS

′

0 1 1/
√

2
0 0 1

 . (5.47)

Therefore, a vector field ξ that generates the kernel of dπ|Lt is ξ = ∂X , and
equations (3.8) together with (5.45) yield

A3 points:

{
∂2XS

′ = 0,

∂3XS
′ = 0.

(5.48)

If we set z = 0 or z =
√

2, we obtain the time of the first topological change
of ΣLt, i.e., when singularities first appear,

t′ ≈ 5.3, (5.49)

which occur at the positions

X ≈ 4.1 + kπ, k ∈ Z. (5.50)

Setting z =
√

2/2 yields the time of the second topological change,

t′′ ≈ 7.6, (5.51)

and the positions at which the pairs of A3 points are annihilated through the
production of higher order singularities,

X ≈ 4.9 + kπ. (5.52)
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Figure 5.1: Dispersion relation (5.34) with Bu =
√

2, Fr = 1/
√

2 for different
values of the angle ν that the wave direction forms with the X-axis.
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Figure 5.2: A slice through the singular locus ΣLt for constant Y at different
times.
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5.4 Curvature of Eady solutions

This section collects unpublished material regarding the curvature of the pull-
back metric hα (cf. equation (4.1)) on Eady solutions. As we show below,
the sign of the scalar curvature of an Eady solution Lt is directly connected
to the signature of the pull-back metric, a feature that reveals the essential 2-
dimensional nature of these solutions. We prove this statement with regards
to X-travelling waves, and then extend our conclusions to general Eady waves
by means of an adapted coordinate system.

Waves travelling in the X-direction are specified by a generating function
of the form

S =
Y 2

2
+ Fr Y z + S ′(X, z, t), (5.53)

where S0 is the Eady basic state (5.13), and S1 is the perturbation field
(5.27). The pull-back metric (4.18) thus reads

hα = 2qg

(
∂2S ′

∂X2
dX2 + dY 2 − ∂2S ′

∂z2
dz2

)
, (5.54)

and, since S ′ satisfies (2.123), may be simplified to

hα = 2qg

(
∂2S

∂X2
(dX2 + qgdz

2) + dY 2

)
. (5.55)

Because qg is a constant, it follows from (5.55) that the geometry of a La-
grangian submanifold Lt representing an X-wave locally decomposes into the
Cartesian product of the Y -axis and a slice Y = const. The scalar curvature
of the constant-Y slices (which coincides with the scalar curvature of the
whole Lt) is1

Sc =

(
∂f
∂z

)2
+ qg

(
∂f
∂X

)2 − f
(
∂2f
∂z2

+ qg
∂2f
∂X2

)
qgf 3

, (5.56)

where f ≡ ∂2XS is defined in (5.45), and, with the choice of coefficients (5.37),
reads

f = 1−8
√

2eωit

[
2e−

√
2z cos(t−2X)+ωi(e

√
2z +e−

√
2z) sin(t−2X)

]
ε. (5.57)

Now observe that the second addendum in the numerator of (5.56) is identi-
cally zero. Indeed,

∂2f

∂z2
+ qg

∂2f

∂X2
=

∂3S ′

∂X∂z2
+ qg

∂3S ′

∂X3
=

∂

∂X

(
∂2S ′

∂z2
+ qg

∂2S ′

∂X2

)
= 0, (5.58)

1Curvature calculations were performed using Professor Leonard Parker’s Mathematica
notebook “Curvature and the Einstein Equation,” available online here.

https://web.physics.ucsb.edu/~gravitybook/math/curvature.pdf
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where we have used qg = constant and (2.123). We are thus allowed to write
(5.56) in the form

Sc =

(
∂f
∂z

)2
+ qg

(
∂f
∂X

)2
qgf 3

. (5.59)

Formula (5.59) brings up some basic facts about the curvature of X-travelling
waves:

• Using (2.100) and the last of (2.90) in (5.45), we may write f as

f =
∂θ/∂z

qg
=
N2

qg
. (5.60)

The last equality follows from the definition of the Brunt–Vaisala fre-
quency (see [47]) using the dimensional variables discussed in Section
5.1. The numerator in this expression represents a measure of the at-
mosphere stratification, and is directly related to the static stability of
the atmosphere. For constant qg and positive N2, (5.59) represents a
norm of the gradient (∂XN, ∂zN).

• As the numerator in (5.59) is always non-negative, the sign of Sc
is inherited from f . This puts Sc in relation with the signature of
hα: the Riemannian branches of L are positively curved, whereas the
psuedo-Riemannian branches of L are negatively curved (see Figure
5.3). This can also be stated in terms of ellipticity/hyperbolicity of
the Monge–Ampère operator: the elliptic branches of L are positively
curved whereas the hyperbolic branches of L are negatively curved [30].

• The numerator in (5.59) is a strictly positive quantity at generic points
on ΣL = {f = 0}, which implies that Sc blows up at generic singular
points (including A3 points). This statement fails at t = t′′, when
the topology of the singular locus changes. At such time, higher order
singularities are produced (see Figure 5.3) and the numerator in (5.59)
vanishes. It can be verified that the numerator in (5.59) goes to zero
faster than f 3 as one of these points is approached, which means that
Sc→ 0 as well.

• The scalar curvature blows up at A3 points (as f−3). Thanks to this,
Sc may be interpreted as a diagnostic tool which reveals the impending
development of a front. Figure 5.4 shows a section through the graph
of Sc(X, z, t) for fixed z at different times before the catastrophe time.
The maxima appear much earlier than the swallowtail singularities do,
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and grow unbounded quickly. Tracing them can give an estimate of the
position where the fronts will appear.

We conclude this section with a discussion on Eady waves propagating in
a general direction. If l ̸= 0, then S1 depends also on Y , and neither (5.55)
nor (5.59) are valid anymore. However, it is always possible to introduce a
rotated coordinate system on Lt which allows us to write the pull-back metric
and the scalar curvature in a form analogous to (5.55) and (5.59). Namely,
we introduce a change of coordinates on T ∗R3,

(x, y, z,X, Y, Z) 7→ (x, y, z,X ′, Y ′, Z), (5.61)

by

X ′ =
kX + lY

m
, Y ′ =

kY − lX

m
, (5.62)

with inverse

X =
kX ′ − lY ′

m
, Y =

lX ′ + kY ′

m
. (5.63)

Observe that

dX ∧ dY =

(
k

m
dX ′ − l

m
dY ′

)
∧
(
l

m
dX ′ +

k

m
dY ′

)
= (5.64)

=
k2

m2
dX ′ ∧ dY ′ − l2

m2
dY ′ ∧ dX ′ =

k2 + l2

m2
dX ′ ∧ dY ′ = dX ′ ∧ dY ′. (5.65)

Therefore, the Monge–Ampère form (3.13) becomes

α = dX ′ ∧ dY ′ ∧ dZ − qgdx ∧ dy ∧ dz. (5.66)

The equations defining Lt (see (3.21) become

x =
∂S

∂X
=

k

m

∂S

∂X ′ −
l

m

∂S

∂Y ′ , y =
∂S

∂Y
=

l

m

∂S

∂X ′ +
k

m

∂S

∂Y ′ , (5.67)

and

Z = −∂S
∂z
. (5.68)

Using these equations in α|Lt = 0 yields

qg

(
∂2S

∂X ′2
∂2S

∂Y ′2 −
(

∂2S

∂X ′∂Y ′

)2)
+
∂2S

∂z2
= 0. (5.69)
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This result says that the Chynoweth–Sewell equation (2.100) is invariant
under rotations of the (X, Y )-plane. Next, consider the Lychagin–Roubtsov
metric (4.3). The ambient metric becomes

gα
2qg

= dx

(
k

m
dX ′ − l

m
dY ′

)
+ dy

(
l

m
dX ′ +

k

m
dY ′

)
+ dzdZ. (5.70)

Using (5.67), a lengthy but straightforward calculation shows that the pull-
back metric hα = gα|Lt becomes

hα = 2qg

(
∂2S

∂X ′2dX
′2 + 2

∂2S

∂X ′∂Y ′dX
′dY ′ +

∂2S

∂Y ′2dY
′2 − ∂2S

∂z2
dz2

)
. (5.71)

Next, note that the general Eady solution may be written in the new coor-
dinates as

S = S0 + εℜ(S1), (5.72)

where,

S0 =
X ′2

2
+
Y ′2

2
− qg

z2

2
− z + Fr z(Y ′ cos(ν) +X ′ sin(ν)), (5.73)

S1 = ψ(z̃)ei(mX̃′−ωt), (5.74)

and

X̃ ′ := X ′ − k

m

Ro

2
t. (5.75)

Therefore, the structure of a general Eady wave is the same of an X-travelling
wave except for the additional term

FrX ′z sin(ν) (5.76)

in S0. Accordingly, the pull-back metric on Lt reads

hα = 2qg

(
∂2S

∂X ′2 (dX ′2 + qgdz
2) + dY ′2

)
, (5.77)

and the scalar curvature becomes

Sc =

(
∂f ′

∂z

)2
+ qg

(
∂f ′

∂X′

)2
qgf ′3

, f ′ :=
∂2S

∂X ′2 . (5.78)

Equation (5.77) says that the geometry of Lt is naturally decomposed into
the Cartesian product of constant-Y ′ slices and the Y ′-axis. Since the cur-
vature (5.78) has the same form as (5.59), all the considerations about the
X-travelling waves apply to general Eady waves as well.
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Figure 5.3: The regions of positive scalar curvature (gray) within a constant-
Y slice of Lt at different times. The black boundaries represent (a slice
through) the singular locus ΣLt.
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Figure 5.4: Slice at z = 0 through the graph of Sc for three times preceding
t′ ≈ 5.3. Curvature maxima are already visible at t = 3 and grow unbounded
quickly as t→ t′.

Figure 5.5: The slice y = 0 trough the graph of the multivalued P obtained by
Legendre transforming (5.40). The snapshots refer to times t = t′, 6.5, t′′, 8.5.
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5.5 Reconstruction of the physical fields

We devote this last section on the Eady model to describe the physical picture
associated with an unstable baroclinic wave. We start by making more precise
the features of the domain under consideration. As (5.40) is a periodic wave
translating with constant speed, it is convenient to fix the attention on just
one particular period. To this aim, we consider a moving observation window,
linearly translating in time, of constant width π,

Xc(t) − π/2 < X < Xc(t) + π/2, (5.79)

where

Xc(t) := X0 +
t− t0

2
. (5.80)

The parameters (X0, t0), which we pick as

X0 ≈ 1.0, t0 = 6, (5.81)

are chosen so as to center the observation window upon a developing singu-
larity.

The geopotential P is obtained through the inverse Legendre transform
of (5.40), and its graph is depicted in Figure 5.5. The loss of convexity which
occurs in S( · , · , z, t) at t = t′ results in the appearance of two swallowtail
points in the graph of P at z = 0, Bu. As the time increases, the two
swallowtails grow against each other, and ultimately coalesce at t = t′′. The
two swallowtail points annihilate at this time, and, for t > t′′, two cusped
edges continuously running from z = 0 to z = Bu are left. Self intersection
in the multivalued graph of P is present for any time t > t′, and represent a
Chynoweth–Sewell front.

The velocity field corresponding to (5.40) is obtained from (3.28), (3.29),
and (2.116), and, like P , it is multivalued for t > t′. In order to produce a
meaningful picture of the velocity field, we need to amend multivaluedness
and introduce fronts in the picture. To do so, we use the Chynoweth and
Sewell algorithm described Section 2.5. Namely, we look for the convex
envelope Š( · , · , z, t) of the function (5.40) within the domain (5.79) for every
fixed 0 < z <

√
2 and t > t′. Due to the algebraic complexity of the solution

(5.40) we are unable to solve the convex envelope problem analytically, so
we resort to numerics. The algorithm we use is roughly summarised by:

1. Fix a time tk > t′;

2. Take a partition {zi} of the interval (0,
√

2);
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3. For each i, set z = zi and solve (2.125) with any root-finding algorithm
using the solution to f(X, zi, tk) = 0 as the initial guess. This provides
a pair of points (X1(zi, tk), X2(zi, tk));

4. If the points (X1(zi, tk), X2(zi, tk)) are distinct, they are stored in mem-
ory. Otherwise they are discarded.

5. Interpolate the points {X1(zi, tk)}i to build the curve Γ−(tk) and inter-
polate the points {X2(zi, tk)}i to build the curve Γ+(tk).

Iterating the above algorithm for a few tk provides an approximation of
the physical region boundary Γ+(tk) ∪ Γ−(tk) for different times (see again
figure Figure 5.6). The image of the curve Γ+(tk)∪ Γ−(tk) under the inverse
Legendre map (2.91) represents a Chynoweth–Sewell front in the physical
plane (x, z) at t = tk. To plot of the velocity field associated to (5.40) we
proceed as follows:

1. Fix a time tk > t′;

2. Discretize the physical region (the region bounded by Γ+(tk) ∪ Γ−(tk)
in Figure 5.6) using any triangulation algorithm;

3. Map each vertex (Xj, zj) of this triangulation to the physical plane
(x, z) using the inverse Legendre map (2.91);

4. Apply to each point a vector (uj, wj) whose components are determined
by (3.28) and (2.116) evaluated on (Xj, zj).

Remark 5.5.1. Note that neither Γ−(tk)∪Γ+(tk) nor the velocity field depend
on Y .

Both the algorithms described above are implemented in Wolfram Math-
ematica, and a description of the code used can be found in Appendix B.
Figure 5.6 shows the region of physical interest at a particular time and its
relationship with the singular set. Geometrically, the physical region of Fig-
ure 5.6 corresponds to the modified Lagrangian submanifold Ľt (see Section
3.4). It is worth noting that all the A2 points of ΣLt fall outside the physical
region (i.e., Ľt) while the A3 points are found on its boundary (i.e., on ∂Ľt).
This has implications on the velocity field, as we discuss next.

Figure 5.7 provides a view of the physical picture associated with Ľt.
The physical velocity field (u,w) on a slice y = constant is shown along
with the corresponding geopotential ϕ for several times. At t ≈ 5.29 < t′,
the solution is still regular – the geopotential contours and the velocity field



5.6. SUMMARY OF CHAPTER 5 99

Figure 5.6: Region of physical interest in the (x, z)-plane for t ≈ 7.14. The
singular locus ΣL and the boundaries Γ− and Γ+ are shown as a bold, dashed,
and dash-dotted curve respectively. All the fold points A2 are found outside
the physical region, whereas the cusp points A3 are found on its boundary.

are smooth – but the singularity is about to occur. For t ≥ t′, the solution
contains frontal surfaces, where both the velocity field and the slope of the
geopotential contours experience a jump discontinuity. As a consequence of
the fact that (the closure of) Ľt shares the A3 points with ΣL, the velocity
field blows up at the projection of these points, which represent the fronts
tip. The fronts keep growing over time until t = t′′, when they meet and
become a single front running continuously from z = 0 to z =

√
2. The

velocity field is everywhere discontinuous but bounded for t > t′′.

5.6 Summary of Chapter 5

In this chapter, we have presented the classical Eady problem in the contem-
porary language of Monge–Ampère geometry. We have reviewed Hoskins’ so-
lution to the Eady problem in Section 5.2 using the formalism of the Legendre
transform. Next, we considered a subclass of Hoskins’ solutions represent-
ing baroclinic waves traveling in the X-direction. In Section 5.3 we studied
these solutions in light of the theory of Chynoweth–Sewell fronts presented
in Section 2.5 and in Section 3.4. In Section 5.4, we studied these solutions
from the point of view of the pseudo-Riemannian geometry introduced in
Chapter 4. The geometry of such solutions is effectively two-dimensional
also from the metric point of view, and, for this reason, the sign of the scalar
curvature of the Y = constant sections is directly dependent on the signa-
ture of the pull-back metric. We then extended this result to a baroclinic
wave traveling in an arbitrary direction using a coordinate system adapted
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Figure 5.7: Left: contours of the geopotential ϕ on the plane y = constant
for different times. The observation window is deformed by the Legendre
transform and its boundaries are indicated by dashed lines. The (section of
the) frontal surfaces are represented by thin solid curves transverse to the
geopotential contours. Right: the corresponding velocity field (u,w). The
front corresponds to the region where the density of plotted points is higher.
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to the vector wavenumber. The last section of this chapter is dedicated to
the recovery of the physical information contained in a Hoskins solution. We
have shown that, in physical space, the Hoskins solution precisely produces
Chynoweth–Sewell fronts. Finally, we have detailed an algorithm that can
be easily implemented on the computer for calculating the position of the
Chynoweth–Sewell fronts and the velocity field within a period of the solu-
tion.
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Chapter 6

Conclusions and future
directions

In this thesis we studied two classical models of fluid dynamics, paying par-
ticular attention to the relationship between singularities and the parabolic
regime.

In Chapter 1, we considered shallow water equations, and were interested
in the time evolution of a class of initial conditions containing a singularity.
Specifically, we investigated the behavior of first-order or higher-order singu-
larities, and showed that this strongly depends on whether the singular point
is hyperbolic (located within the fluid-filled region) or parabolic (located on
a dry boundary). The main method used in these studies is the so-called
wavefront expansion which allows to locally analyze the SWE solution near
the singular point.

Chapters from the second onwards concern the semi-geostrophic equa-
tions. We have dedicated Chapter 2 to reviewing the derivation of the equa-
tions and classical methods for their manipulation, such as the vorticity-
streamfunction formulation and the Legendre transform.

In Chapter 3, we introduced the rudiments of Monge–Ampère geome-
try, and applied its main results to singular solutions of semigeostrophic
equations. We characterized the construction of Chynoweth–Sewell fronts in
geometric terms and this allowed us to draw a parallel with the theory of
unsteady shocks in one-dimensional gas flows.

In Chapter 4, we introduced and studied the Lychagin–Roubtsov metric
in the context of semigeostrophic equations. We have shown that the metric
geometry of generalized solutions is strongly dependent on the character of
the Monge–Ampère equation for the solution considered: hyperbolic charac-
ter corresponds to Lorentzian geometry while elliptic character corresponds
to Riemannian geometry. We finally showed that the pull-back metric degen-
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erates on the singular set, and that this, consequently, necessarily corresponds
to a hyperbolic-elliptic transition of the system.

The final chapter deals with the Eady problem, a benchmark example
to demonstrate the results of the previous chapters. The main result of this
chapter is that the essentially two-dimensional character of the baroclinic
waves is reflected in the geometry of the solutions, whose curvature is directly
dependent on the signature of the pull-back metric.

Our investigations have given rise to questions which, due to the limited
time, are not yet answered.

In the context of SWEs, the study of class C1 singular points in two spatial
dimensions is particularly intriguing. In this setting, in fact, preliminary
numerical studies have suggested that a notion of shoulder does not exist,
and that the dynamics of C1 singularities is subject to laws entirely different
from those described in Chapter 1.

Aside, we observe that the SWE system in one spatial dimension can
be understood as a Jacobi system [55]. This makes available all the tools
of Monge–Ampère geometry and catastrophe theory that we reviewed in
Chapter 3 for the SWE (see also [63]). More importantly, it allows us to
define a Lychagin–Roubtsov metric associated with SWEs, and study its
behavior on generalized solutions and singularities.

On the side of semigeostrophic equations, further work is needed to under-
stand the parallelism between Chynoweth–Sewell fronts and gas dynamical
shocks. Indeed, some of the properties pointed out in the Section 5.5 are in
apparent contrast with the classical literature on weather fronts. For exam-
ple, Cullen [19] establishes that atmospheric fronts are advected by the fluid
flow, and that a front continuously running from sea level to the tropopause
cannot exist, but the solution to the Eady problem of Section 5.5 violates
both of these statements.

There are a few side questions concerning the geometry of semigeostrophic
equations. The physical and geometric meaning of the curvature of general-
ized solutions is not yet clear, and we have partially addressed the question in
the context of Eady waves. As we showed in the Section 5.4, the curvature of
baroclinic wave-type solutions does not add any essential information to that
already encoded by the Lychagin–Roubtsov metric. This is due to the essen-
tially two-dimensional nature of such solutions, and richer behavior may be
expected in fully three-dimensional solutions. A further fascinating question
concerns the possibility of describing the dynamics of semigeostrophic equa-
tions in terms of a geometric flow on Lagrangian submanifolds. This would be
a result of great theoretical value because it would provide a unified view on
the kinematics and dynamics of singularities. However, the attempts made
so far have been inconclusive, and, to date, it does not seem that an entirely
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geometric formulation of the dynamics of the system is possible.
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Appendix A

Curvature of the phase space

This is a collection of partial results regarding the curvature of the phase
space in the semigeostrophic setting. From a mathematical perspective, the
most general situation in which (4.3) gives a well defined metric on T ∗R3 is
when qg depends on all the coordinates on T ∗R3,

qg = qg(x, y, z,X, Y, Z). (A.1)

The following statements are easy to check

1. The scalar curvature of the phase space is

Sc = −5
∂x∂Xqg + ∂y∂Y qg + ∂z∂Zqg

q2g
. (A.2)

2. Introducing the change of variables

ξ1 = x+X, ξ2 = x−X = −vg, (A.3)

η1 = y + Y, η2 = y − Y = ug, (A.4)

ζ1 = z + Z, ζ2 = z − Z, (A.5)

it is possible to write the scalar curvature (A.2) in the form

Sc = −5
∆1qg − ∆2qg

q2g
, (A.6)

where
∆1 := ∂2ξ1 + ∂2η1 + ∂2ζ1 , ∆2 := ∂2ξ2 + ∂2η2 + ∂2ζ2 . (A.7)

In particular, qg locally solves the ultrahyperbolic equation,

∆1qg = ∆2qg. (A.8)

on points of zero scalar curvature.
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3. If qg only depends on (x, y, z), the scalar curvature of the phase space
vanishes. Moreover, the Ricci curvature tensor takes the form

Ricij =

{
3∂iqg∂jqg−2qg∂i∂jqg

q2g
, for i ≤ 3, j ≤ 3

0, otherwise.
(A.9)

4. Under the same hypothesis, the Ricci tensor takes the following form
at critical points of qg,

Ricij =

{
−2

∂i∂jqg
qg

, for i ≤ 3, j ≤ 3

0, otherwise.
(A.10)

This shows that the signature Ric is related to maxima and minima of
the potential vorticity in a definite way. A similar result is obtained in
[72], where the sign of the scalar curvature of the phase space is put in
relation with the local accumulation of vorticity in 2-dimensional Euler
flows.
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Wolfram Mathematica codes

In this section, we collect the Mathematica codes that implement the al-
gorithms described in the Section 5.5. We start with the definition of the
generalized solution (5.40):

In[ ]:= S :=
X2

2
+
Y2

2
- z +

Y z

2
-
z2

4
- 2 2 η 

ωi t
2 

- 2 z Cos[2 X - t] - ωi 
2 z

+ 
- 2 z

 Sin[2 X - t]

In[ ]:= ωi :=
2

-1 + 
4

In[ ]:= η := 1 / 100

Our algorithm for the computation of the fronts and the velocity field is
dependent on whether t < t′, t′ < t < t′′, or t > t′′. We assume t′ < t < t′′,
and discretize this time interval into

In[ ]:= times = Table[5.5 + 0.205 j, {j, 0, 10}]

Out[ ]= {5.5, 5.705, 5.91, 6.115, 6.32, 6.525, 6.73, 6.935, 7.14, 7.345, 7.55}

In[ ]:= Length[times]

Out[ ]= 11

Next, we define the moving observation window (5.79) with Xc(t) given by

In[ ]:= Xc[t_] := 1.0025666287101322` +
1

2
(-6 + t)

In[ ]:= Iconize[Map[Xc, times], "ListXc"]

Out[ ]= ListXc

In the time interval considered, the solution features two A3 (cusp) points
in the observation window. To locate them, we define
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In[ ]:= Iconize[D[S, X, X], "f"]

Out[ ]= f

In[ ]:= Iconize[D[S, X, X, X], "fx"]

Out[ ]= fx

These expressions are then used to define the (X, z)-coordinates of the
two A3 points as

In[ ]:= IconizeTableExtractFindRoot f  0, fx  0, {X, Xc[t]}, z, 2  /. Rule  List, {1, 2}, {t, times}, "Xtop(t)"

Out[ ]= Xtop(t)

In[ ]:= IconizeTableExtractFindRoot f  0, fx  0, {X, Xc[t]}, z, 2  /. Rule  List, {2, 2}, {t, times}, "ztop(t)"

Out[ ]= ztop(t)

In[ ]:= IconizeTableExtractFindRoot f  0, fx  0, {X, Xc[t]}, {z, 0} /. Rule  List, {1, 2}, {t, times}, "Xbot(t)"

Out[ ]= Xbot(t)

In[ ]:= IconizeTableExtractFindRoot f  0, fx  0, {X, Xc[t]}, {z, 0} /. Rule  List, {2, 2}, {t, times}, "zbot(t)"

Out[ ]= zbot(t)

Next, we define the system of equations (2.125) to be solved for the un-
knowns points X1(z, t) and X2(z, t) delimiting the physical region,

In[ ]:= Iconize[S /. X  X1, "S1"]

Out[ ]= S1

In[ ]:= Iconize[S /. X  X2, "S2"]

Out[ ]= S2

In[ ]:= Iconize[D[S, X] /. X  X1, "dS1"]

Out[ ]= dS1

Iconize[D[S, X] /. X  X2, "dS2"]

Out[ ]= dS2

In[ ]:= Iconize S2 - S1  dS1 (X2 - X1), S2 - S1  dS2 (X2 - X1), "equations"

Out[ ]= equations

These equations are solved for several values of 0 < z < zbot(t) and
ztop(t) < z <

√
2 and the resulting points are interpolated to get the bound-

aries of the upper and lower fronts within the observation window at a given
time:
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In[ ]:= upperfront[k_] := InterpolationFlatten

Reverse

Table

ExtractFindRoot equations /. t  times〚k〛, X1, Extract ListXc , k - 1.2,

X2, Extract ListXc , k + 1.2 /. Rule  List, {1, 2}, z,

z, Tablei, i, Extract ztop(t) , k + 0.001, 2 ,  2 - Extract ztop(t) , k  (5 k), 1,

Extract Xtop(t) , k, Extract ztop(t) , k,

Table

ExtractFindRoot equations /. t  times〚k〛, X1, Extract ListXc , k - 1.2,

X2, Extract ListXc , k + 1.2 /. Rule  List, {2, 2}, z,

z, Tablei, i, Extract ztop(t) , k + 0.001, 2 ,  2 - Extract ztop(t) , k  (5 k)

, 1

In[ ]:= lowerfront[k_] :=

Interpolation

Flatten

Table

ExtractFindRoot equations /. t  times〚k〛, X1, Extract ListXc , k - 1.2,

X2, Extract ListXc , k + 1.2 /. Rule  List, {2, 2}, z,

z, Tablei, i, 0.001, Extract zbot(t) , k, Extract zbot(t) , k  (5 k),

Extract Xbot(t) , k, Extract zbot(t) , k,

Reverse

Table

ExtractFindRoot equations /. t  times〚k〛, X1, Extract ListXc , k - 1.2,

X2, Extract ListXc , k + 1.2 /. Rule  List, {1, 2}, z,

z, Tablei, i, 0.001, Extract zbot(t) , k, Extract zbot(t) , k  (5 k), 1, 1

The upper and lower boundaries of the physical region within the obser-
vation window are found by

In[ ]:= upperboundary[k_, X_] :=

Piecewise

{{upperfront[k][X], Extract[upperfront[k]["Domain"], {1, 1}] < X < Extract[upperfront[k]["Domain"], {1, 2}]}},

2 

In[ ]:= lowerboundary[k_, X_] :=

Piecewise[

{{lowerfront[k][X], Extract[lowerfront[k]["Domain"], {1, 1}] < X < Extract[lowerfront[k]["Domain"], {1, 2}]}},

0]

Thus, the (triangulated) physical region is provided by
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meshregion[k_] :=

DiscretizeRegion

ImplicitRegionExtract ListXc , k - π / 2 < X < Extract ListXc , k + π / 2,

lowerboundary[k, X] < z < upperboundary[k, X], {X, z}, MaxCellMeasure  0.002, PlotTheme  "Scientific",

MeshCellStyle  {{2, All}  LightGray, {1, All}  Gray, {0, All}  Black}, FrameLabel  {X, z},

GridLines  {}, 0, 2 , LabelStyle  Directive[ FontFamily  "Times New Roman"],

PlotLabel  Row[{t, " = ", times〚k〛}]

Once we have the triangulation for the physical region, we can extract
the coordinates of the vertices and map them into the physical plane using
the inverse Legendre map (2.91). Then, to each mapped point is attached a
vector with components (3.28) and(2.116), that is,

In[ ]:= Iconize[D[S, Y] - Y, "ug"]

Out[ ]= ug

In[ ]:= Iconize[Simplify[X - D[S, X]], "vg"]

Out[ ]= vg

In[ ]:= IconizeD[S, t, X] + ug D[S, X, X] + vg D[S, X, Y] + w D[S, X, z], "u"

Out[ ]= u

In[ ]:= IconizeSimplify-D[S, t, z] + ug D[S, X, z] + vg D[S, Y, z]  D[S, z, z], "w"

Out[ ]= w

The plot of the velocity field (u,w) is done by the following piece of code

In[ ]:= velocityplot[k_] := ListVectorPlot

Map

FunctionA,  x /. X  A〚1〛 /. z  A〚2〛 /. t  times〚k〛, A〚2〛,

 u /. X  A〚1〛 /. z  A〚2〛 /. t  times〚k〛, w /. X  A〚1〛 /. z  A〚2〛 /. t  times〚k〛,

MeshCoordinates[meshregion[k]]



, VectorPoints  All, ImageSize  Medium, AspectRatio  1 / 2, PlotTheme  "Scientific", VectorStyle  Black,

VectorColorFunction  None, VectorScaling  "Linear", VectorMarkers  Placed["Pointer", "Middle"],

FrameLabel  {x, z}, PlotLabel  Row[{t, " = ", times〚k〛}], GridLines  {}, 0, 2 , VectorSizes  Tiny

The plot of the velocity field in the intervals t < t′ and t > t′′ is handled
similarly, except that it is easier. Indeed, for t < t′, the fronts have not
formed yet, and the physical region is the whole observation window. For
t > t′′, the physical region is disconnected, and there are two curves X1(z, t)
and X2(z, t) continuously running from z = 0 to z =

√
2. Thus, the piece

of code that computes the front boundaries within the physical region is re-
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placed by

In[ ]:= leftpoints[k_] :=

Table

z,

Extract

FindRoot equations /. t  times〚k〛, X1, Extract ListXc , k - 1.2, X2, Extract ListXc , k + 1.2 /.

Rule  List, {1, 2}, z, -.2, 2 + .2, 0.02

In[ ]:= rightpoints[k_] :=

Table

z,

Extract

FindRoot equations /. t  times〚k〛, X1, Extract ListXc , k - 1.2, X2, Extract ListXc , k + 1.2 /.

Rule  List, {2, 2}, z, -.2, 2 + .2, 0.02

In[ ]:= frontleft[k_] := Interpolation[leftpoints[k]]

In[ ]:= frontright[k_] := Interpolation[rightpoints[k]]

In[ ]:= meshregion[k_] :=

DiscretizeRegion

ImplicitRegion

Extract ListXc , k - π / 2 < X < frontleft[k][z] || frontright[k][z] < X < Extract ListXc , k + π / 2,

0 < z < 2 , {X, z}, MaxCellMeasure  0.0015, PlotTheme  "Scientific",

MeshCellStyle  {{2, All}  LightGray, {1, All}  Gray, {0, All}  Black}, FrameLabel  {X, z},

GridLines  {}, 0, 2 , LabelStyle  Directive[ FontFamily  "Times New Roman"],

PlotLabel  Row[{t, " = ", times〚k〛}]
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