
Spiking neural P systems: main ideas and results

Alberto Leporati1 • Giancarlo Mauri1 • Claudio Zandron1

Accepted: 13 July 2022 / Published online: 18 August 2022
� The Author(s) 2022

Abstract
Spiking neural P systems are parallel and distributed computation devices which are inspired by the neuro-physiological

behavior of biological neurons. In this paper we will present, with a tutorial approach, the main underlying ideas and the

most interesting variants that have been proposed in the literature. In particular, we will discuss the results on the

computational power of these models, both in terms of Turing completeness and of efficiency in solving hard problems,

under different assumptions for information encoding, form and application of rules, and bounds on the main parameters

defining the systems.

1 Introduction

Membrane systems, also called P systems, introduced by

Gh. Păun in Păun (2000) are a branch of the wide area of

natural computing, or bioinspired computing, that has

developed considerably over the past 20 years, with deep

theoretical results and significant applications. Motivations,

basic definitions and main results can be found in Păun

(2002), in the Oxford Handbook of Membrane Computing

(Păun et al. 2009) and in the Web site of membrane

computing (Systems 2008).

In its original definition (Păun 2000), a P system consists

of a membrane structure composed by several cell-mem-

branes, hierarchically embedded in a main membrane

called the skin membrane. The membranes delimit regions

and can contain objects, which evolve according to given

evolution rules associated with the regions.

Variants of this model were soon developed, taking into

account different aspects of the cells physiology and of

cells arrangement and interactions. In particular, (Martin-

Vide et al. 2003) introduced tissue P systems, substituting

the tree-like hierarchical organization of membranes with a

structure where cells with a single membrane are arranged

in the nodes of an undirected graph. A further evolution led

to the definition of Spiking Neural P systems (in short, SN

P systems), with cells/neurons arranged in the nodes of a

directed graph, whose arcs mimic the synapses of animal

neural systems, and communicating through electrical

impulses of identical form, called spikes (Ionescu et al.

2006).

In this paper we will present, with a tutorial approach,

the main ideas underlying the definition of SN P systems

and the most interesting variants that have been proposed

in the literature. In particular, we will discuss the results

concerning the computational power of these models, both

in terms of Turing completeness and of efficiency in

solving hard problems.

The paper is organized as follows. In the next section we

will discuss the biological inspiration behind the intro-

duction of SN P systems, illustrating in an informal way

their main characteristics and features. The formal defini-

tion in its original (standard) form (Ionescu et al. 2006) and

the corresponding notion of computation in SN P systems

will follow in Sect. 3. In particular, we will consider the

different modes in which the systems can compute, rec-

ognizing or accepting numbers or languages on a binary

alphabet, or computing functions, and the different ways to

provide input information, if any, and to read output

results.

In the seminal paper (Ionescu et al. 2006) the compu-

tational power of the basic model of SN P systems has been

analyzed, giving interesting results concerning the univer-

sality, or Turing completeness, of SN P systems, that are

& Giancarlo Mauri

giancarlo.mauri@unimib.it

Alberto Leporati

alberto.leporati@unimib.it

Claudio Zandron

claudio.zandron@unimib.it

1 Dipartimento di Informatica, Sistemistica e Comunicazione,

Università degli Studi di Milano-Bicocca, Viale Sarca

336/14, 20126 Milan, Italy

123

Natural Computing (2022) 21:629–649
https://doi.org/10.1007/s11047-022-09917-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11047-022-09917-y&domain=pdf
https://doi.org/10.1007/s11047-022-09917-y

presented in Sect. 4. The main proof technique, based on

the construction of SN P systems able to simulate register

machines, which are known to be Turing complete, is

illustrated.

Starting from these initial definitions and results, the

world of SN P systems has been populated by a remarkable

variety of different specimens, with different features (in

general motivated by biology) and different power that

have been deeply analyzed. In the next sections, the main

variants will be presented: different kinds of rules, in

particular extended rules (Sect. 5); different ways or

strategies to select the rules to be fired (Sect. 6); use of

weights, thresholds, or rules on synapses (Sect. 7); use of

astrocytes (Sect. 8); systems with structural plasticity

(Sect. 9). In Sect. 10 we will consider the computational

power of SN P systems not from the point of view of

universality, or of the families of sets of numbers or of

languages they can generate/accept under specific bounds

on the main parameters of the system, but looking at how

they can be used to efficiently solve hard problems. We end

the paper with some concluding remarks and open prob-

lems in Sect. 11.

We assume the reader to have some familiarity with

formal languages and automata theory, for which we refer

to Rozenberg and Salomaa (1997). We just list a few

notions and notations. An alphabet V is a finite set of

symbols, and V� denotes the free monoid generated by V,

that is the set Vþ of all finite sequences of symbols from V,

called words, equipped with the operation of concatena-

tion, that associates with the words v ¼ v1. . .vn and w ¼
w1. . .wm their concatenation vw ¼ v1. . .vnw1. . .wm, with

the empty string, denoted by k, as unit element. A regular

expression over an alphabet V is defined as follows: (i) k
and each a 2 V is a regular expression; (ii) if E1;E2 are

regular expressions over V, then ðE1ÞðE2Þ; ðE1Þ [ðE2Þ, and
ðE1Þþ are regular expressions over V; and (iii) nothing else

is a regular expression over V. Notice that the parentheses

are not in V. They are used to make explicit the order of

application of the operators in a regular expression; in case

they are not necessary, they can be omitted. Also, Eþ
1 [k

can be written as E�
1. With each regular expression E

we associate the regular language L(E) as follows:

(i) LðkÞ ¼ fkg, LðaÞ ¼ fag, for a 2 V; (ii)

LððE1ÞðE2ÞÞ ¼ LðE1ÞLðE2Þ, LððE1Þ [ðE2ÞÞ ¼ LðE1Þ
[LðE2Þ, and LððE1ÞþÞ ¼ LðE1Þþ, for all regular expres-

sions E1;E2.

2 From P systems to spiking neural P
systems

The complexity of a human brain is amazing: billions of

neurons are interconnected by means of trillions of

synapses, allowing to exchange information in the form of

short electrical impulses of identical form (usually called

spikes), and to create a structured system able to solve an

enormous amount of different problems.

Various attempts to mimic the way a human brain works

have been carried out, mainly based on various types of

Artificial Neural Networks (ANNs) (Gurney 1997). In an

Artificial Neural Network, simple computing elements,

called neurons, receive input signals from other neurons

through connections, called synapses, process them using a

non-linear function of the weighted sum of inputs, and

communicate the result as an output signal sent to con-

nected neurons, following a global discrete clock. Synapses

have some weights associated, that are used to increase or

decrease the strength of signals crossing them. An ANN

can learn by examples, modifying the weights on synapses

so as to minimize the error rate on the output. In the last

few decades, ANNs assumed a central role in supervised

machine learning, and became a fundamental tool in many

application areas.

An important aspect not considered in this basic model

of ANNs concerns the complex temporal dynamics of

biological neurons. For this reason, in Maass (1997), Maass

and Bishop (1999), Maass (2002) an abstract discrete

model of computation in Artificial Neural Networks based

on spikes, called Spiking Neural Networks (SNNs), has

been introduced.

SNNs are Artificial Neural Networks trying to mimic

more closely the functioning of natural neurons, in par-

ticular by considering the use of time steps. In fact, in a

SNN the signals are represented as discrete events with a

uniform intensity (the spikes), transferring a unit of infor-

mation, and are not transmitted at each propagation cycle

(as usually done with ANNs), but instead a signal is sent

out only when a membrane potential becomes greater than

a defined threshold. In other words, when the membrane

potential (resulting from the input signals) reaches the

threshold, the neuron fires, thus producing a spike that is

communicated to adjacent neurons, changing in this way

their potential. The time when a signal is emitted becomes,

as a consequence, crucial for the result of the computation.

Ideas from both ANNs and SNNs have been incorpo-

rated in the area of P systems quite early. In particular, in

Martin-Vide et al. (2003), inspired by the standard

knowledge about neuron functioning and the way the inter-

cellular communication takes place, tissue-like P systems

were introduced, where the cells-membranes are organized

630 A. Leporati et al.

123

as nodes of a graph instead than of a hierarchical tree.

Similarly to ANNs, tissue-like P systems do not consider

time aspects related to the signal issuing, and intervals

between signals.

Spiking Neural P systems, in short SN P systems, were

thus introduced in Ionescu et al. (2006), as a new variant of

P systems where time plays a fundamental role in

computation.

Informally, an SN P system consists of a set of neurons

(that can be regarded as cells with a single membrane)

placed in the nodes of a directed graph. A neuron can hold

any number of spikes (a spike is denoted in what follows by

the symbol a) and, under some specific conditions

depending on the number of spikes within the neuron itself,

it can fire, producing one spike that will be sent, possibly

with some delay, along the arcs of the graph, representing

the synapses, to all adjacent (post-synaptic) neurons.

Starting from an initial configuration, represented by the

number of spikes contained in each neuron, and following

given rules, the system can hence evolve and possibly

output some information.

3 Computing with standard SN P systems

3.1 The standard definition

The ideas presented above were formalized in Ionescu

et al. (2006) as follows.

Definition 1 A Spiking Neural P system of degree m� 1 is

a construct of the form

P ¼ ðO; r1; . . .; rm; syn; i0Þ; where:

1. O ¼ fag is the singleton alphabet (a is called spike);

2. r1; . . .; rm are neurons, of the form ri ¼
ðni;RiÞ; 1� i�m; where:

(a) ni � 0 is the initial number of spikes contained in

ri;
(b) Ri is a finite set of rules of one of the following

two forms: (1) E=ac ! a; d, where E is a regular

expression over the alphabet fag and c� 1, d� 0

are natural numbers; (2) as ! k, where s� 1 is a

natural number, with the restriction that for each

rule E=ac ! a; d of type (1) from Ri, we have

as 62 LðEÞ, where L(E) is the regular language

defined by E;

3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg with i 6¼ j for all

ði; jÞ 2 syn, 1� i; j�m, is the set of synapses between

neurons; [4.] i0 2 f1; 2; . . .;mg indicates the output

neuron.

If for every rule E=ac ! a; d the regular language

L(E) is finite, then the SN P system is called finite.

The rules of type (1) are called spiking or also firing

rules, those of type (2) are called forgetting rules. The rules

can be applied in each neuron to consume, produce and

send spikes, at time steps marked by a global discrete

clock. The system is synchronous, in the sense that at every

time the clock clicks, all neurons having enabled rules

must fire one (and only one) of them. We also stress the

fact that synapses are oriented: a synapse (i, j) allows to

send spikes from neuron ri to neuron rj, but not the other

way round. If we need to send spikes in both directions,

then two distinct synapses must be considered: one from ri
to rj, and another from rj to ri.

The applicability of a spiking rule E=ac ! a; d of neu-

ron ri is determined by the regular expression associated

with it, against which the number of spikes that are present

in the neuron is checked. If the neuron at time t contains a

number n of spikes such that an 2 LðEÞ and n� c, then the

rule is enabled and can fire. The firing of this rule removes

c spikes from ri (thus leaving n� c spikes), and prepares

one spike to be delivered to all the neurons rj connected to

ri through synapses, that is ði; jÞ 2 syn, with a delay d

specified by the rule; spikes emitted by the output neuron

are also sent to the environment. If d ¼ 0; then the spike is

immediately emitted, otherwise the process of sending the

spike is delayed by d time units. If the rule is fired at step t

and d� 1, then at steps t; t þ 1; t þ 2; . . .; t þ d � 1 the

neuron is idle or closed, so that it is not able to receive new

spikes (if a neuron has a synapse to a closed neuron and

tries to send a spike along it, then that spike is lost), and

cannot fire new rules. This time interval is called in neu-

rophysiology refractory period. At time t þ d, the neuron

spikes and becomes open again, so that it can receive

spikes (which are added to its current content and can be

used starting from the step t þ d þ 1) and select rules to be

fired.

Analogously, a forgetting rule as ! k, can be applied

only if the neuron contains exactly s spikes, that are

removed from the neuron; furthermore, the request that

as 62 LðEÞ for any expression E controlling a spiking rule in

the same neuron implies that the forgetting rule can be

enabled only if there are no enabled spiking rules in the

neuron.

3.2 The computing process

Let us now define the configuration of the system at time t

by Ct ¼ \k1=t1; . . .; km=tm [, where, for i ¼ 1; 2; . . .;m,

ki denotes the number of spikes contained in the neuron ri
and ti � 0 indicates the number of time steps to count down

until the refractory period of the neuron ends; obviously,

Spiking neural P systems: main ideas... 631

123

ti ¼ 0 means that ri is open. The execution of a set of rules,
as defined above, changes the content of the neurons,

removing or adding spikes, and their refractory periods,

and hence the system reaches a new configuration Ctþ1 at

time t þ 1.

As usual, we can define a computation as a sequence

C0) C1) . . .) Ct) Ctþ1. . . of transitions from a

configuration Ct to the next configuration Ctþ1, starting

from the initial configuration C0 ¼ \n1=0; . . .; nm=0[,

where, for every i, neuron ri contains ni spikes, and is

open. A computation is halting if it reaches a configuration

Ct in which all the neurons are open and there are no

enabled rules.

The rules to be executed at time t are chosen following

two criteria:

1. Sequentiality at single neuron level: if an open neuron

contains two or more enabled rules (this is possible,

since two firing rules, R1 : E1=a
c1 ! a; d1 and

R2 : E2=a
c2 ! a; d2, can have LðE1Þ \ LðE2Þ 6¼ ;, and

hence the content of the neuron can be described by

both E1 and E2) it can apply only one of them, chosen

non-deterministically;

2. Maximal parallelism at system level: all neurons

evolve in parallel, and if an open neuron can use a

rule at time t, then it must do it.

Let’s note that the non-deterministic choice is only among

spiking rules, since a forgetting rule can be enabled only if

there are no spiking rules enabled in the same neuron. In

the case where for every neuron any two rules E1=a
c1 !

a; d1 and E2=a
c2 ! a; d2 in the neuron are such that

LðE1Þ \ LðE2Þ ¼ ;, then for any possible contents of the

neuron at most one rule may be enabled. If this happens,

we say that the system is deterministic.

3.3 Information encoding

While for computation models such as Turing Machines or

Random Access Machines an input is supplied to the sys-

tem in the form of symbols on a tape or numbers in a

register, and the result is read in an analogous form when

the computation halts, in standard SN P systems halting is

not relevant, and time is used as a way to encode infor-

mation. More precisely, a computation is considered suc-

cessful only if the output neuron spikes exactly twice

during the computation, and the output of the system

consists of the number of time steps elapsed between the

two spikes of the output neuron. In this way, we can

consider the system as generating the family of sets of all

natural numbers output by some (non-deterministic) suc-

cessful computation. Let us observe that non-determinism

is an essential feature of the system when working as a

number generator. In fact, deterministic systems, in which

at each time step at most one rule can be applied in each

neuron, always reproduce the same sequence of configu-

rations when starting from the same initial configuration,

and hence can generate at most one number.

The idea of using time to encode information can be

adapted to let the system work in accepting mode. In this

case, we use the neuron i0 as an input neuron, exactly two

spikes are sent from the environment to i0, and the input is

the number n of time steps separating them. This number is

accepted if, after receiving the two spikes, the system starts

a halting computation. Note that in this accepting mode the

non-determinism is no longer necessary.

A third possibility is using SN P systems in computing

mode, to compute a function f : N ! N, indicating both an

input and an ouput neuron. The input neuron receives two

spikes from the environment at time steps t and t þ n, and

the output neuron communicates to the environment the

result f(n) in the same form, that is, as the of duration of the

interval between two spikes at time u and uþ f ðnÞ. With a

more conventional approach, we can also feed the system

with a number n of spikes put in the input neuron at time t0,

and read the result (in unary form) as the number of spikes

contained in the output neuron when the computation halts.

In some papers, the result of a halting computation has

instead been defined as the total number of spikes sent into

the environment by the output neuron during the

computation.

In the literature, many other ways of using SN P systems

for the purpose of computing, and of encoding input and

output information, have been considered. In Ionescu et al.

(2006) and Păun et al. (2006) the idea of encoding input

and output information through the time (number of steps)

elapsed between two spikes has been generalized so as to

take into account the whole behavior of the system over

time. More precisely, a binary sequence, called spike train,

is associated with every computation (halting or not): the

time steps when a spike is emitted by the output neuron are

marked with 1, the other steps are marked with 0. Hence, a

spike train will have the form z ¼ 0n010n11. . .0ni10niþ1. . .,

with nj � 0 for j ¼ 0; 1; . . ., and can be finite, for halting

computations, or infinite.

Spike trains can be used to make the system P with an

input neuron compute a function f : Nk ! N. In this case,

k natural numbers n1; n2; . . .; nk will be introduced in the

system by ‘‘reading’’ from the environment a binary

sequence z ¼ 0b10n110n21. . .10nk10g, for some b; g� 0;

this means that the input neuron of P receives a spike in

each step corresponding to a digit 1 from the string z. Note

that we input exactly k þ 1 spikes, i.e., after the last spike

we assume that no further spike is fed to the input neuron.

Note also that this is a unary encoding. The result

632 A. Leporati et al.

123

f ðn1; . . .; nkÞ of the computation will be read from the spike

train of the output neuron.

Alternatively, we can consider systems which have k

input neurons. For these systems, the input values

n1; n2; . . .; nk will arrive simultaneously to the system, each

one entering through the corresponding input neuron.

Moreover, the input numbers will be sometimes encoded in

binary form, using the same number of bits in order to

synchronize the different parts of the system.

Finally, as proposed for example in Chen et al. (2006),

the spike trains themselves, which are strings over the

binary alphabet B ¼ f0; 1g, can be considered as the result

of a computation, rather than an encoding of natural

numbers. In this way, SN P systems can be seen as devices

that generate or accept languages.

3.4 An example

In order to illustrate the functioning of a Spiking Neural P

system, we consider the example in Fig. 1, that non-de-

terministically generates all natural numbers greater than

zero.

Initially, neuron 1 applies the first rule, consuming one

of its spikes, and sending a spike to neurons 2 and 3. At the

same time, neuron 2 non-deterministically applies one of

its rules; assuming that the rule applied is the first one, a

spike is sent immediately to neurons 1 and 3. In the same

step, neuron 3 consumes three spikes, fires for the first time

and sends a single spike to the environment.

After this first computation step, neuron 1 still contains

two spikes and neuron 2 a single spike, while neuron 3

contains now two spikes. It is easy to see that neurons 1

and 2 operate as previously described, while neuron 3 now

applies its third rule, simply forgetting the spikes previ-

ously received from neurons 1 and 2. The computation

proceeds in the same way, until neuron 2 non-determinis-

tically applies its second rule a ! a; 1.

When this happens, the spike of neuron 1 still enters

neuron 3, but it cannot enter neuron 2, since it is closed for

one time step. For the same reason, neuron 1 does not

receive the spike from neuron 2. Thus, the situation now is

the following: neuron 1 contains a single spike, neuron 2

does not contain spikes, and neuron 3 contains a single

spike. Hence, in the next step neuron 1 forgets its single

spike, neuron 2 fires (since one time step of delay has

passed), and neuron 3 applies its second rule a ! a; 1,

which consumes the spike and will fire in the next time

step.

Neuron 2 is now empty, neuron 1 contains the single

spike emitted from neuron 2, and neuron 3 is empty and

closed for one time step. In the next step, neuron 1 forgets

again the single spike it contains, neuron 2 does not work,

and neuron 3 emits its spike; as a consequence no rule can

be applied, and thus the computation halts.

The number of steps between the two firings of neuron 3

represents the output. It is easy to see that all possible

natural numbers strictly greater than zero can be generated.

4 Turing completeness of standard SN P
systems

4.1 Universality results

Having defined a new model of computation, we need to

explore its computational power and compare it with

existing models. First of all, we can characterize the fam-

ilies of sets of natural numbers, or of languages, it can

generate/accept, or of the functions it can compute, with

given bounds on the main parameters that characterize the

system, such as the number of neurons, the number of rules

in each neuron, the number of spikes a rule can consume or

forget, or the number of spikes any neuron can contain.

Hence, we can define the following families:

1. SpikgenPmðrulek; consp; forgqÞ denotes the family of all

sets of natural numbers generated by spiking neural P

systems with at most m� 1 neurons, using at mostFig. 1 An example of a Spiking Neural P system generating the set of

all natural numbers greater than zero

Spiking neural P systems: main ideas... 633

123

k� 1 rules in each neuron, with all spiking rules

E=ac ! a; d having c� p, and all forgetting rules as !
k having s� q;

2. SpikaccPmðrulek; consp; forgqÞ denotes the family of all

sets of natural numbers accepted by SN P systems with

bounds on the parameters defined as above;

3. DSpikaccPmðrulek; consp; forgqÞ is as above, when only

deterministic SN P systems are considered.

As usual, when one of the parameters m; k; p; q in the

above notations is not bounded, then it is replaced with �.
The main results given in Ionescu et al. (2006) prove the

existence, for given bounds on the parameters, of SN P

systems that are universal, or Turing complete, i.e. able to

compute, both in the generating mode and in the accepting

mode, all the sets belonging to the family NRE of recur-

sively enumerable sets of natural numbers, as stated in the

following theorems.

Theorem 2 SpikgenP�ðrulek; consp; forgqÞ ¼ NRE, for all

k� 2; p� 3; q� 3:

This means that universality can be obtained even lim-

iting to 2 the maximum number of rules in each neuron,

and to 3 the maximum number of spikes consumed by

spiking rules or removed by forgetting rules. Here no

bound is given on the number of neurons, but finding

‘‘small’’ (i.e. with minimum number of neurons) universal

systems is a relevant research topics, on which a lot of

results have been given, considering the different variants

of SN P systems. This topics will be discussed in Sec. 4.3.

Analogously, for the accepting mode we have:

Theorem 3 DSpikaccP�ðrulek; consp; forgqÞ ¼ NRE, for all

k� 2; p� 3; q� 2:

Hence a subset X � N of natural numbers is recursively

enumerable if and only if it can be generated or accepted

by a (standard) SN P system, with the above upper bounds

for number of rules and of spikes consumed by a rule.

All the above results hold if no bound is imposed on the

number of spikes present in any neuron at any time during

a computation, so that they can grow arbitrarily. If we

consider this further parameter, imposing an upper bound

on it, then the computational power of SN P systems is

greatly reduced. In fact, systems with this bound, as proved

in Ionescu et al. (2006), characterize the family SLIN1 of

semilinear sets of numbers, which are the length sets of

regular languages.

Theorem
4 SpikgenP�ðrulek; consp; forgq; boundsÞ ¼ SLIN1, for all

k� 3; q� 3; p� 3, and s� 3:

Here, SpikgenPmðrulek; consp; forgq; boundsÞ denotes the
family of sets of natural numbers generated by SN P

systems with at most m� 1 neurons (� is used in the case of
an unbound number of neurons), using at most k� 1 rules

in any neuron, consuming at most p and forgetting at most

q spikes in each rule, and having at most s spikes present at

any time in any neuron (if a computation reaches a con-

figuration where a neuron accumulates more than s spikes,

then it aborts, and does not provide any result).

4.2 SN P systems simulating register machines

Let us now sketch the proof of Theorem 2. Since the

inclusion SpikgenP�ðrulek; consp; forgqÞ � NRE is straight-

forward, by the Church-Turing thesis, we just have to

prove the reverse inclusion

NRE � SpikgenP�ðrulek; consp; forgqÞ. The technique used

to prove this is rather general, and it is used, opportunely

adapted, to prove not only the above theorems, but all the

universality results for the different variants of SN P sys-

tems we will see in the following. It is essentially based on

the simulation of register machines, which are known to be

Turing complete, by means of SN P systems: given any

register machine generating a (recursively enumerable) set

of natural numbers, we build an SN P system that generates

the same set, as follows.

A register machine is a tuple M ¼ ðm; L; L0; Lh; IÞ,
where m is the number of registers, L is the set of

instruction labels (one label per instruction), L0 is the label

of the first instruction, Lh is the halt label, and I is the set of

instructions. Registers contain non-negative integer values,

and the instructions in I are of the forms:

– LiðADDðrÞ; Lj; LkÞ : register r is incremented by 1, then

go to instruction Lj or Lk;

– LiðSUBðrÞ; Lj; LkÞ : if register r is non-empty, then

subtract 1 and go to instruction Lj, otherwise go to

instruction Lk;

– LhðHALTÞ : ends the computation.

Computations start by executing the first instruction of M,

and terminate when they reach the instruction Lh. The

result of a computation of a register machine is the number

contained in register 1 when the computation halts, and this

register is never decremented during the computation.

Register machines provide a simple universal computa-

tional model (Minsky 1967).

In general, a simulation of a register machine through

spiking neural P systems is based on two main modules

(ADD and SUB) simulating the first two types of instruc-

tion described above (plus some further technical details,

concerning the simulation of the halting rule and the syn-

chronization of the various modules of the system). Some

neurons are used to collect spikes corresponding to the

values contained in the various registers: 2n spikes in a

neuron labelled by r correspond to a value n in register r. In

634 A. Leporati et al.

123

order to illustrate the general design of the proofs con-

cerning the simulation of register machines by means of

spiking neural P system, we will recall here the simulation

of the two main modules, ADD and SUB; the reader is

referred to Ionescu et al. (2006) for further details.

The simulation of an ADD instruction can be executed

as follows (see Fig. 2).

Assume two spikes are present in neuron Li (and no

spike in other neurons, apart from those associated with

registers) and we need to simulate an instruction Li :

ðADDðrÞ; Lj; LkÞ: Neuron Li fires, and sends a spike to

neurons Li;1; Li;2; Li;3; and Li;4. At the following step, neu-

rons Li;3 and Li;4 send a single spike each to neuron r, thus

incrementing the corresponding register r (as previously

said, 2n spikes in neuron r corresponds to value n in reg-

ister r). Notice that, since the rules in r require an odd

number of spikes to be applied, no rule is applied here.

Neuron Li;3 sends a spike to neuron Lk; too.

At the same time, the selection of the following

instruction to be applied is made in a non-deterministic

way by neuron Li;2 : having a single spike, it can apply

either the rule a ! a; 0 or the rule a ! a; 1. In the first

case, a spike is sent immediately to both neurons Lj (which

will contain a single spike) and Lk (which will contain two

spikes, one sent from Li;3 and one from Li;2). At the next

step, Lj will forget the single spike it contains, by means of

the rule a ! k; while Lk (containing two spikes) is ready to

start the simulation of a new instruction. If, on the contrary,

neuron Li;2 applies the rule a ! a; 1, then the spike is sent

to both Lj and Lk with a delay of one computation step.

This means that Lk, at the moment containing a single

spike, will forget it by means of the rule a ! k: In the next

step, the spike from Li;2 is sent to both Lj and Lk and,

moreover, Lj also receives a spike from Li;1: Lk forgets also

this single spike, while Lj (containing two spikes) is ready

to simulate a new instruction.

The simulation of a SUB instruction can be executed as

follows (see Fig. 3).

Again, consider to have two spikes in neuron Li and no

spikes in other neurons, except neurons corresponding to

registers. Neuron Li fires, sending one spike to neurons

Li;1; Li;2; and r. At the next step, neuron Li;1 fires and sends

immediately a spike to Lj, while neuron Li;2; fires and sends

a spike to Lk with one time step delay. At the same time,

neuron r fires, since it surely contains an odd number of

spikes. If a single spike is contained in r (i.e. register r

contained the value 0), then the rule applied is a ! a; 1,

which sends a spike to both Lj and Lk with one time step of

delay. This way, Lj forgets its single spike and, at the

following step, Lk receives two spikes and it is ready to

simulate a new instruction. If, on the contrary, more than

Fig. 2 Module simulating an ADD instruction Fig. 3 Module simulating a SUB instruction

Spiking neural P systems: main ideas... 635

123

one spike is present in r, then the rule aðaaÞþjaaa ! a; 0 is

applied, which immediately sends a spike to both Lj and Lk.

This means that neuron Lj is ready to simulate a new

instruction while, in the following step, the single spike

received by Lk will be immediately forgotten.

4.3 Normal forms and small universal systems

The results cited in the previous sections were soon

extended and improved, deeply analyzing the role of the

parameters considered above, as well as of other features

such as the maximum delay in rules, the form of the regular

expressions used by rules and the outdegree of the synapse

graph, in order to get universality. In this view, it is central

to search for normal forms for SN P systems and for small

(possibly minimal) universal systems.

The question of normal forms has been firstly analyzed

in Ibarra et al. (2007), proving that the universality can be

obtained: i) without using forgetting rules; or ii) without

using the delay in the spiking rules; or iii) limiting the

regular expressions in the rules to the form E ¼ aþ or of

the form ai for some i� 1. Furthermore, it is proved that a

synapse graph of outdegree two suffices for universality.

These results were then strengthened in Garcı́a-Arnau et al.

(2007) and Pan and Păun (2010), proving that both for-

getting rules and the delays can be removed and that two

rules in each neuron suffice for universality in generating

mode. In the accepting mode, since non-determinism is not

necessary, one rule in each neuron is enough for Turing

completeness. More details on these results concerning

normal forms for standard SN P system can be found in the

survey chapter (Ibarra et al. 2009). Normal forms have

been then defined and studied for different variants of SN P

systems, as we will see in the following. A summary of

some results on normal forms for SN P systems can be

found in the recent paper (Macababayao et al. 2022).

Let us now consider the dimension of universal systems,

intended as the number of neurons they contain. The uni-

versality theorems in Sect. 4.1 refer to systems with an

unbound number of neurons. Then, it is natural to look for

universal systems with a finite number n of neurons, pos-

sibly finding the minimum n for which universality is

granted.

In Ionescu et al. (2006), it is shown that standard SN P

systems of dimension 1 or 2 characterize the family of

finite sets of numbers, NFIN.

Theorem 5 SpikgenP1ðrule�; cons1; forg0Þ ¼ SpikgenP2

ðrule�; cons�; forg�Þ ¼ NFIN

In fact, we can observe that the number of spikes in the

whole system can increase only if there are multiple

synapses starting from a given neuron that replicate the

spikes. Hence in systems with only 1 neuron (that does not

have a synapse to itself) each fired rule consumes at least

one spike, the initial number of spikes in the neuron can

only decrease, and each computation lasts at most as many

steps as the initial number of spikes. Consequently, SN P

systems with only one neuron can only generate finite sets

of natural numbers. On the other side, given a finite set

Q � N, it is not difficult to build an SN P system with a

single neuron generating it.

In systems consisting of two neurons, one of them

should be the output one, and hence, with the standard

rules, it can spike only twice. This means that this neuron

can increase the number of spikes in the system at most by

two. The other neuron does not have a synapse to itself,

hence, like in the case of single-neuron systems, it can only

consume the number of spikes initially present in it, plus

the two spikes possibly received from the output neuron, in

a finite number of computation steps. Hence the set of

numbers generated by the system is again finite.

Having established that at least three neurons are nec-

essary to get universality in standard SN P systems (in

generating mode), we should now try to build universal

systems as small as possible. First results in this direction,

for standard SN P systems that compute functions

f : Nk ! N, are given in Păun and Păun (2007).

Theorem 6 There is a universal computing SN P system

with standard rules having 84 neurons.

The number of neurons can be reduced for SN P systems

generating sets of numbers:

Theorem 7 There is a universal number generating SN P

system with standard rules having 76 neurons.

In Zhang et al. (2008), these results were improved: 67

neurons in the case of computing functions, and 63 neurons

in the case of generating sets of numbers are sufficient to

get universality.

4.4 SN P systems as language generators

If we look at SN P systems as generators of string lan-

guages, we cannot obtain analogous universality results. In

fact, as shown in Chen et al. (2006), there are strong

restrictions on their computing power: on one hand some

very simple languages cannot be generated, while on the

other hand it is possible to build systems that generate

‘‘hard’’ languages.

Let’s recall from Chen et al. (2006) that, given an SN P

system P, the language LðPÞ generated by it is the set of

binary strings describing the spike trains of all the (non-

deterministic) halting computations of P. As done for

number generating systems, we can define families of

636 A. Leporati et al.

123

languages generated by systems with given bounds on the

number of neurons, of rules, of consumed or forgotten

spikes, maximum delay, and so on. In particular, we denote

by LSNPmðrulek; consp; forgqÞ the family of languages

LðPÞ, generated by systems P with at most m neurons,

each neuron having at most k rules, each of the spiking

rules consuming at most p spikes, and each forgetting rule

removing at most q spikes. As usual, the values m, k, p, q

are replaced with � if the corresponding parameter is

unbound. If the underlying SN P systems are finite, we

denote the corresponding families of languages by

LFSNPmðrulek; consp; forgqÞ.
The restrictions on the use of rules given in the standard

definition of SN P systems lead to a very simple proof of

the following theorem (Chen et al. 2006).

Theorem 8 There are finite languages, for instance

Lk;j ¼ f0k; 10jg, for any k� 1; j� 0, which cannot be

generated by any SN P system.

Note that the very simple language L1;0 ¼ f0; 1g
belongs to this class, hence L1;0 62 LSNP�ðrule�; cons�;

forg�Þ. In Chen et al. (2006) some other examples are

given of finite languages that can be generated by SN P

systems, and the relationships with the family of regular

languages are investigated.

Theorem 9 The family of languages generated by finite SN

P systems is strictly included in the family of regular lan-

guages over the binary alphabet.

Furthermore, it is shown that some ‘‘hard’’ languages

can also be generated, and recursively enumerable lan-

guages can be characterized as projections of inverse-

morphic images of languages generated by SN P systems.

A survey on SN P systems as language generators can be

found in Ibarra et al. (2009).

5 SN P systems with extended rules

Let us now look at some of the most interesting variants of

SN P systems that have been considered.

A first generalization of the ‘‘standard’’ rules was

introduced in Ionescu et al. (2006) and Păun and Păun

(2007) as a way to reduce the dimension (number of neu-

rons) of an universal SN P system, and then more precisely

presented in Chen et al. (2008) under the name of extended

rules. The corresponding systems were defined as follows:

Definition 10 An extended spiking neural P system of

degree m� 1 is a construct of the form

P ¼ ðO; r1; . . .; rm; syn; i0Þ; where:

1. O ¼ fag is the singleton alphabet (a is called spike);

2. r1; . . .; rm are neurons, of the form ri ¼
ðni;RiÞ; 1� i�m; where:

(a) ni � 0 is the initial number of spikes contained in

ri;
(b) Ri is a finite set of rules of the form E=ac ! ap,

where E is a regular expression over a and c� 1,

p� 0 are natural numbers, with the restriction

c� p;

3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg with i 6¼ j for all

ði; jÞ 2 syn, 1� i; j�m is the set of synapses between

neurons;

4. i0 2 f1; 2; . . .;mg indicates the output neuron.

Using criteria similar to the standard ones, a rule

E=ac ! ap is enabled if the associated neuron contains

k� c spikes, and ak 2 LðEÞ. While a standard rule, when

applied, consumes c spikes and produces exactly one spike

(spiking rules) or no spikes (forgetting rules), extended

rules can produce any number p� 0 of spikes, consuming c

spikes. Being p� 0, we obtain a generalization of both

standard spiking and forgetting rules, with the additional

feature of having the forgetting rules also controlled by

regular expressions. Moreover, forgetting rules are now

allowed to compete in a non-deterministic way with spik-

ing rules. Note that with this definitions there are no delays

between firing and spiking, hence the produced spikes are

immediately delivered.

Possible ways to encode information, non-deterministic

choice among two or more enabled rules in a neuron,

configurations, transitions, computations, generation or

acceptance of numbers are defined just as in standard SN P

systems.

Spike trains can be defined in two different ways. Fol-

lowing the standard definition, if the output neuron spikes,

then we write 1, independently of the number p of spikes

emitted, otherwise we write 0. Alternatively, we can also

consider spike trains as encoding words on an arbitrary

alphabet, associating the symbol bi with a step when the

output neuron emits i� 1 spikes. Steps when no spikes are

emitted can be associated to a symbol b0 in the alphabet or

to the empty string k. In the first case we denote the lan-

guage generated by a system P by LresðPÞ (with’’ res’’

coming from ‘‘restricted’’), in the latter one we write

LkðPÞ.
The universality of extended SN P systems (SNeP sys-

tems) as number generators can be proved as usual through

simulation of register machines, in a simpler way Chen

et al. (2008):

Theorem 11 SpikgenSN
eP�ðrule4; cons5; prod2Þ ¼ NRE.

This means that the family of recursively enumerable

sets of natural numbers can be generated by extended SN P

Spiking neural P systems: main ideas... 637

123

systems with unbound number of neurons, at most 4 rules

in each neuron, at most 5 spikes consumed and at most 2

spikes produced by any rule.

If we look at the minimal number of neurons needed to

obtain universality, extended rules give some advantage

with respect to standard ones (Păun and Păun 2007).

Theorem 12 There is a universal number generating SN P

system with extended rules (without delay) having 50

neurons

In a similar way, the results on minimal universal

computing SN P systems can be improved if extended rules

are used:

Theorem 13 There is a universal computing SN P system

with extended rules (without delay) which has 49 neurons.

The proofs are based on simulating a small universal

register machine from Korec (1996), with a fine tuning of

the number of used neurons.

6 Different strategies of using rules

Let’s now focus on a second relevant feature of SN P

systems, that is the way rules to be executed in a given

computation step are selected. As described in Sect. 3, in

standard SN P systems all neurons evolve in parallel,

synchronized by a global clock, but inside each neuron

only at most one rule can be applied at each computation

step, non-deterministically selected among all enabled

rules. This type of application of rules is usually defined as

sequential, at single neuron level.

Various works have appeared that consider different

strategies, or different semantics, for the application of the

rules inside the neurons.

A first alternative strategy, that has been considered in

Leporati et al. (2007), is the maximally parallel semantics,

intended exactly as in cell-like P systems. Let us denote by

k the number of spikes contained in a neuron at time t. We

can ideally divide the computation step in two parts. We

first select, in a non-deterministic way, one rule of the

neuron to be applied. If such a rule consumes c spikes, after

(ideally) removing these spikes from the neuron, the rule

selection process is repeated, considering the remaining

k � c spikes, until no further rule can be applied. In this

way, a rule may be chosen many times to be applied, and

thus at the end of the process we will have a multiset of

rules that will be simultaneously fired. A little technical

difficulty is given by the fact that the chosen rules may

have different delays; hence, we define the delay associated

with a multiset of rules as the maximum of the delays that

appear in the rules. As we will better discuss in Sect. 10,

dedicated to the efficiency of SN P systems in solving hard

problems, this strategy has been considered in order to

enhance this efficiency. In fact, we will see that NP-com-

plete problems can be solved by SN P systems in poly-

nomial time (and exponential space), by exploiting the

intrinsic parallelism of such systems. Nonetheless, the

systems must be initialized with an exponential amount of

spikes. In particular, in Leporati et al. (2007) it was proved

that, by using maximal parallelism, any integer number in

the usual binary notation, received as an input by a SN P

system, can be translated to the unary form in polynomial

time, by producing a corresponding amount of spikes. As a

consequence, we can build a system that is able to first

generate the required amount of spikes, and then to solve

the considered NP-complete problem. In the same paper, it

was also proved that the conversion from binary to unary

notation cannot be performed in polynomial time when the

use of maximal parallelism is forbidden.

Another kind of semantics that has been considered is

the exhaustive mode (Ionescu et al. 2007), assuming

extended rules. In this case, at every step of computation

one of the enabled rules in each neuron is non-determin-

istically chosen, and then applied as many times as possi-

ble, on the basis of the amount of spikes in the neuron.

Hence, the number of spikes produced in that neuron in a

computation step can be arbitrarily large. Note that the

enabling condition is checked only on the total number of

spikes in the neuron, and not on the ‘ideal’ number of

spikes remaining at each substep of the selection phase.

Similar results as in the case of sequential application of

rules are obtained, in particular concerning computational

completeness, both for number generating mode and for

number accepting mode. Nonetheless, the systems required

to obtain such results are, in general, significantly more

complex than systems that use sequential semantics. As

stated by the authors of the paper, the main reason of this

complexity is related to the difficulty of simulating

intrinsically sequential devices such as register machines

by using a parallel application of rules. In Zhang et al.

(2010) a small universal system of this type with 125

neurons, using standard rules without delays and encoding

the output as length of the interval between two spikes of

the output neuron, was shown. One extra neuron (126 in

total) is needed if the result of the computation is given by

the total number of spikes of the output neuron. The result

has been improved in Pan and Zeng (2011), where a uni-

versal system with exhaustive use of rules, using only 36

neurons, has been obtained.

A semantics in between the sequential and the exhaus-

tive mode, called generalized use of rules, was considered

in Zhang et al. (2014): in each neuron, one of the appli-

cable rules is chosen in a non-deterministic way, and then

applied for a number of times also non-deterministically

chosen. In this case, the authors proved that the number of

638 A. Leporati et al.

123

neurons is fundamental to achieve a desired computational

power. In fact, SN P systems using rules according to this

semantics and consisting of one neuron characterize finite

sets of natural numbers. When exactly two neurons are

used, then the computational power of the systems is

improved, but limited to the possibility to generate semi-

linear sets of numbers. When three neurons can be used,

then at least a non-semilinear set of numbers can be gen-

erated. If no bound on the number of neuron is set, then SN

P systems using this semantics are computationally com-

plete. In Jiang et al. (2019) an improved universal system

of this type was obtained, where each neuron contains at

most 5 rules, each spiking rule consumes at most 4 spikes,

and each forgetting rule deletes at most 4 spikes.

Yet another possibility, based on the ideas used in tis-

sue-like P systems, is to apply rules according to a so-

called flat maximal parallelism (Pan et al. 2016): at every

computation step, the rules chosen to be executed in each

neuron form a maximal set, to which no further applicable

rule can be added; nonetheless, each rule in the set is

applied only once. In Wu and Jiang (2021) authors show

that SN P systems working in the flat maximally parallel

mode are Turing universal as number generating devices.

Moreover, it is proved that 68 neurons are sufficient to

construct a universal SN P system working in the flat

maximally parallel mode.

A more restrictive strategy that has been proposed in

Ibarra et al. (2006) extends sequentiality also at system

level: we will call this the strong sequential mode. In this

mode, at every step of the computation, if there is at least

one neuron with at least one rule that is enabled, we only

allow one such neuron and one such rule (both chosen non-

deterministically) to be fired. It was shown in Ibarra et al.

(2006) that certain classes of strongly sequential SN P

systems are equivalent to partially blind counter machines

(see Greibach (1978) for definitions), while others are

universal.

Finally, in Cavaliere et al. (2008) and Cavaliere et al.

(2009), based on the observation that our biological neural

systems are not synchronized, the synchronization between

neurons is removed, and the power of asynchronous spik-

ing neural P systems is investigated. More precisely, in

such systems, a global clock is still present, but neurons

work asynchronously in the sense that the execution of

rules in each neuron is not forced to happen at a specific

time instant. At each time step instead any neuron con-

taining enabled rules may (non-deterministically) choose

whether or not to fire (at most) one of them. If the content

of the neuron is not changed, a rule which was enabled, and

not fired, at step t can fire later. If new spikes are received,

then it is possible that the unfired rule is no more enabled,

while other rules will be enabled - and can be applied or

not. Since the asynchronicity applies also to the output

neuron, the distance in time between the first two spikes

sent out by the system has now elements of randomness,

and cannot be used as the result of the computation. Hence,

for non-synchronized SN P systems, we will assume as the

result of the computation the total number of spikes sent

out to the environment. This makes it necessary to consider

only halting computations. The synchronization is in gen-

eral a powerful feature, and removing it seems to cause a

significant reduction in computational power of asyn-

chronous standard SN P systems, whose universality has

not been proved: it remains an open problem, with a feeling

in favour of non-universality. However, it turns out that the

loss in power entailed by removing the synchronization is

compensated by the use of extended rules. In fact, in the

above papers it has been proved that a set Q � N of natural

numbers is recursively enumerable (i.e. Q 2 NRE) if and

only if it can be generated by an asynchronous SN P system

with extended rules, with or without delays, with an

unbound number of neurons. Moreover, finite languages

and recursively enumerable languages were shown to be

characterized by asynchronous SN P systems in Zhang

et al. (2009).

The asynchronous operating mode has been considered

for most of the variants we will discuss here: asynchronous

SN P systems with structural plasticity in Cabarle et al.

(2015); asynchronous extended SN P systems with astro-

cytes in Pan et al. (2012); asynchronous SN P systems with

rules on synapses in Song et al. (2015). Furthermore, the

notion of local synchronization was introduced in Song

et al. (2013), and the constructed systems were proved to

be computationally complete in the generating case.

7 SN P systems with weights or active
synapses

7.1 Weighted SN P systems

Two key features in Artificial Neural Networks are the

threshold associated with each neuron and the weight

associated with each synapse (Gurney 1997). Assuming the

simplest model, the binary threshold neuron, a neuron ri
spikes at time t þ 1 if the following holds:

P
wj;irjðtÞ� hi,

where wj;i is the weight associated with the synapse (j, i),

rjðtÞ is the state (1 for spiking, 0 otherwise) of the neuron

rj at time t, and hi is the threshold associated with neuron

ri. This means that a neuron spikes if and only if the sum of

spikes coming from its input neurons, weighted through the

synapses, at least equals the given threshold, and that

synapses are not passive crossing points in the network

topology, but have an active role in systems evolution. In

both cases, whether the total input signal reaches the

Spiking neural P systems: main ideas... 639

123

threshold or not, it vanishes. Furthermore, a fundamental

aspect in ANNs is that the weights on synapses are mod-

ified during the training phase by learning algorithms.

Hence, it was rather natural to introduce similar ele-

ments in SN P systems, as done in Wang et al. (2010),

where SN P systems with weights are defined. In the fol-

lowing definition, Rc indicates the set of computable real

numbers.

Definition 14 A Spiking Neural P system with weights

(WSN P system for brevity) of degree m� 1 is a construct

of the form

P ¼ ðr1; . . .; rm; syn; in; outÞ; where:

1. r1; . . .; rm are neurons, of the form ri ¼
ðpi;RiÞ; 1� i�m; where:

a) pi 2 Rc is the initial potential in neuron ri;
b) Ri is a finite set of spiking rules of the form

Ti=ds ! 1; s ¼ 1; 2; :::; ni for some ni � 1, where

Ti 2 Rc; Ti � 1, is the firing threshold potential of

neuron ri, and ds 2 Rc with the restriction

0\ds � Ti.

2. syn � f1; 2; . . .;mg � f1; 2; . . .;mg � Rc is the set of

synapses between neurons, with i 6¼ j, r 6¼ 0 for all

ði; j; rÞ 2 syn, and for each ði; jÞ 2 f1; 2; . . .;mg �
f1; 2; . . .;mg there is at most one synapse (i, j, r) in

syn;

3. in; out 2 f1; 2; . . .;mg indicate the input and output

neuron, respectively.

In this definition, the content of neurons is not an integer

number of spikes, but it is a potential represented by a

computable real number. At time t each neuron ri, con-
taining ni rules of the form Ti=ds ! 1, compares its current

potential p with its threshold Ti (note that the threshold is

common to all the rules in the neuron). There are three

cases: i) if p\Ti, then the neuron ri returns to the resting

potential 0; ii) if p[Ti, then the potential p remains

unchanged; iii) if p ¼ Ti, then a rule Ti=ds ! 1 2 Ri is

non-deterministically chosen and applied: the potential is

reduced to Ti � ds and a spike (unit potential) is emitted.

The spike is immediately delivered to all the neurons rj
such that ði; j; rÞ 2 syn; r is the weight of the synapse, and

neuron rj receives a quantity of potential equal to r, which

is added to its current potential and can be used at time

t þ 1. Since r can be positive or negative, the potential of

the receiving neuron is increased or decreased.

As you can see, this definition is radically different from

the standard one, from the conceptual point of view.

However, we can define computations and their results, in

generating mode, as usual:

– a global clock is assumed, marking the time for the

whole system and synchronizing the system;

– rules are executed sequentially at neuron level (each

neuron uses at most one rule in each step, non-

deterministically chosen among its rules), and in a

maximally parallel way at system level (all neurons that

have enabled rules at time t must choose and apply a

rule);

– the configuration Ct of the system at time t consists of

the distribution of potentials in neurons at time t. The

initial configuration of the system is the tuple C0 ¼
\p1; . . .; pm [;

– applying the rules as explained above, we obtain

transitions Ct) Ctþ1 among configurations;

– a computation is any sequence C0) C1) . . .Ct)
Ctþ1. . . of transitions starting from the initial configu-

ration. It is halting if it reaches a configuration where no

rule can be used;

– with any computation, halting or not, we associate a

spike train, the binary sequence with occurrences of 1

indicating time steps when the output neuron spikes;

– the number generated by a computation is the number

of steps elapsed between the first two spikes of the

output neuron.

The set of all numbers generated by the system P is

denoted by NgenðPÞ. We can consider also P working in

accepting mode: after starting the computation from the

initial configuration, we send from outside to the input

neuron two spikes at steps t1 and t2; the number n ¼ t2 � t1
is accepted if the computation eventually halts. The set of

numbers accepted by P is denoted by NaccðPÞ.

7.2 Universality results

In Wang et al. (2010) the computational power of WSN P

systems (in both generating and accepting mode) has been

investigated, considering limitations on the main parame-

ters characterizing the system: number of neurons, class of

numbers used for weights, thresholds and potentials (i.e.

natural numbers N, integers Z, rational numbers Q, real

computable numbers Rc). The family of all sets NaðPÞ; a 2
fgen; accg of natural numbers generated/accepted by WSN

P systems with at most m� 1 neurons (� is used for an

unbound number of neurons), using weights, thresholds,

and potentials in the rules taken from the set X, for

X 2 fN;Z;Q;Rcg, is denoted by NaWXSNPm.

The following theorem shows that universality, in both

generating and accepting mode, can be obtained using only

integers (both positive and negative) for weights, thresh-

olds and potentials.

Theorem 15 NaWZSNP� ¼ NRE for a 2 fgen; accg.

640 A. Leporati et al.

123

From the proof, based as usual on the characterization of

NRE by means of register machines, it is also possible to

conclude that the universality of WSN P systems in gen-

erating mode is preserved if we use only: (i) weights 1 and

�1 for synapses; (ii) at most two rules per neuron; and (iii)

all rules are of one of the following three forms: 1=1 !
1; 2=2 ! 1; and 2=1 ! 1. Obviously, in generating mode

at least two rules in at least one neuron are needed to grant

non-determinism. This is not the case for accepting mode:

in this case, one rule in each neuron is sufficient.

The further restriction that weights, thresholds and

potential are limited to be natural numbers, so excluding

negative values, limits to semilinear sets of natural num-

bers the generating power of the systems.

Theorem 16 NgenWNSNP� ¼ SLIN.

In Pan et al. (2012) weights on synapses are introduced

without radically modifying the basic idea of spikes as

units of information. Simply, multiple synapses between

neurons are allowed, and the connection between two

neurons ri and rj is endowed with an integer weight

denoting the number of synapses connecting them. Hence,

when ri spikes, the number of spikes that reach rj is a

multiple of the number of spikes emitted by ri. It is proved
that the use of weights on synapses allows to construct

small universal spiking neural P systems. Specifically, a

universal spiking neural P system with standard rules and

weights having 38 neurons is produced as device of com-

puting functions; as generator of sets of numbers, we find a

universal system with standard rules and weights having 36

neurons.

7.3 The language generation power of WSN P
systems

As done for standard SN P systems, we can now look at the

power of WSN P systems in generating languages (Zeng

et al. 2014). For a WSN P system P, the language LðPÞ
generated by P is defined as the set of spike trains asso-

ciated with any halting computation, and LWXSNPm

denotes the family of all languages generated by WSN P

systems with at most m� 1 neurons, using weights,

thresholds, and amounts of consumed potentials in the rules

taken from the set X, for X 2 fN;Z;Q;Rcg. When the

number of neurons is not bounded, the subscript m is

replaced with �.
It is immediate to prove that, with the usual encoding of

the output result, there are very simple languages that

cannot be generated.

Theorem 17 There is no WSN P system that can generate

a language of the form f0x; 1yg, where x and y are arbi-

trary strings over f0; 1g.

In fact, a string 1y can be generated only if the output

neuron can (and hence must) spike in the initial configu-

ration. But in this case it will be impossible to generate a

string of the form 0x. So, the languages of the form

f0x; 1yg do not belong to LWRc
SNP�.

In order to avoid this problem, in Zeng et al. (2014), a

slightly modified definition of strings generated by P is

given.

Definition 18 Let P be a WSN P system; a string x over

f0; 1g is generated by P if there is a computation with

spike train of the form 0b1x; b� 0.

Hence, only computations that send at least one spike to

the environment are considered, and the prefix 0b1 of the

spike train, including the first 1, is discarded. The language

generated by P under this definition is denoted by LdisðPÞ,
and the family of languages generated by WSN P systems

is denoted by LdisWXSNPm, where X and m have the same

meaning as above.

We first consider the language generation power of

WSN P systems with natural numbers as synapse weights,

thresholds, and potentials. In this case, the family of gen-

erated languages is a proper subset of regular languages.

Theorem 19 LdisWNSNP � REG.

If synapse weights, thresholds, and potentials of WSN P

systems are integers, then the language generation power of

WSN P systems strictly increases.

Theorem 20 There exists a language L 2 LdisWZSNP�
such that L 62 REG.

Finally, an indirect characterization of recursively enu-

merable languages can be given by projections of inverse-

morphic images of languages generated by WSN P

systems.

Theorem 21 For an alphabet V ¼ fe1; e2; . . .; ekg, and

any language L � V�; L 2 RE, there are a morphism

h1 : ðV [fy; zg�Þ ! f0; 1g�, and a projection h2 : ðV [
fy; zg�Þ ! V� such that there is a WSN P system P with

integer weights such that L ¼ h2ðh�1
1 ðLdisðPÞÞÞ.

7.4 ‘‘Variants of the variant’’

WSN P systems, as defined above, use weights and

thresholds in a rather different way than ANNs. In partic-

ular, the neuron spikes when the weighted sum of incoming

potentials is exactly equal to the threshold, while in ANNs

the spike is produced if the total input signal is at least

equal to the threshold. For this reason, in Zeng et al. (2014)

spiking neural P systems with thresholds (SNPT systems)

are considered such that a neuron fires when its potential is

equal or higher than the threshold. Two possible

Spiking neural P systems: main ideas... 641

123

alternatives for the use of the potential, when the neuron

fires, are considered: i) the potential is reduced by the

amount established by the fired rule; or ii) the potential

vanishes i.e., it is reset to zero. In Zeng et al. (2014) it is

proved that the systems of the former type can compute all

Turing computable sets of numbers and the systems of the

latter type characterize the family of semilinear sets of

natural numbers. The results show that the firing mecha-

nism of neurons has a crucial influence on the computation

power of the SNPT systems.

Another variant, weighted spiking neural P systems with

anti-spikes (AWSN P systems) is defined in Ren et al.

(2020), adding anti-spikes to spiking neural P systems with

weighted synapses. Anti-spikes act as inhibitors of com-

munication between neurons. Turing universality of

AWSN P systems as number generating and accepting

devices is proved. In the same paper, considering the

dimension of universal AWSN P systems using standard

rules, it is shown that 34 neurons are sufficient to generate

recursively enumerable sets of natural numbers, and 34 to

compute recursive functions.

As said before, the success of ANNs in many application

areas is based on their ability to learn from examples, by

modifying synaptic weights so as to strengthen or weaken

connections among neurons during the computation. In

Gutiérrez-Naranjo et al. (2009), a variant of WSN P sys-

tems with Hebbian learning has been considered, and more

recently in Song et al. (2019) a class of specific SN P

systems with simple Hebbian learning function has been

constructed to recognize English letters. The experimental

results are very promising, and open interesting perspec-

tives for applications of WSN P systems in pattern

recognition.

7.5 Rules on synapses

A different way to give synapses an active role is proposed

by Song et al. (2014), were a new class of SN P systems,

with extended rules (spiking or forgetting) placed on

synapses, is introduced as follows.

Definition 22 A SN P system with extended rules on

synapses and with delay (in the general form, for com-

puting functions) of degree m� 1 is a construct of the form

P ¼ ðO; r1; . . .; rm; syn; in; outÞ, where:

1. O ¼ fag is the singleton alphabet (a is called spike);

2. r1; . . .; rm are neurons, of the form ri ¼ ðniÞ; 1� i�m,

where ni � 0 is the initial number of spikes contained

in ri;
3. syn is the set of synapses; each element in syn is a pair

of the form ðði; jÞ;Rði;jÞÞ, where (i, j) indicates that

there is a synapse connecting neurons ri and rj, with
i; j 2 1; 2; :::;m, i 6¼ j, and Rði;jÞ is a finite set of rules of

one of the following two forms:

(1) E=ac ! ap; d, where E is a regular expression

over O, c� p� 1, d� 0 are natural numbers;

(2) as ! k, where s� 1 is a natural number, with the

restriction that as 62 LðEÞ for any rule E=ac !
ap; d from any Rði;jÞ, where L(E) is the regular

language defined by E;

4. in; out 2 f1; 2; . . .;mg indicate the input and output

neuron, respectively.

In SN P systems of this type, the neurons contain only

spikes, while the rules are moved on the synapses. As in the

standard case, a rule r ¼ E=ac ! ap; d 2 Rði;jÞ is enabled at

time t if ni 2 LðEÞ, where ni is the current number of spikes

in the neuron ri. If multiple rules in the set Rði;jÞ are

enabled, then one of them is non-deterministically chosen

to be fired. In fact, the system works sequentially on each

synapse (at most one rule from each set Rði;jÞ can be used),

and in parallel at the level of the system (if a synapse has at

least one rule enabled, then it has to use a rule).

Firing the rule r ¼ E=ac ! ap; d 2 Rði;jÞ means con-

suming c spikes from ri and sending (with delay d) p

spikes only to rj, and not to all the neurons connected to ri
as in the standard systems. Forgetting rules are treated in a

similar way; note that a forgetting rule can be enabled only

if there are no enabled spiking rules in any synapse. An

immediate problem arises when several synapses starting

from ri have enabled rules, each one of them requiring to

consume a certain number of spikes. In order to avoid

conflicts on the use of resources (spikes), the following

restriction is introduced: all rules consume the same

number c of spikes, and c spikes are removed from ri,
regardless of the number of fired rules (if higher than 1).

Apart from these differences, all the other notions such as

configuration, transition, computation, input and output

encoding and so on are as in the standard case.

In Song et al. (2014) it is shown that placing the rules on

synapses allows to give simpler universality proofs and to

obtain smaller universal systems in comparison with the

case when the rules are placed in the neurons.

With the usual technique of simulation of register

machines, it is possible to prove that SN P systems with

extended rules on synapses, with the result of a computa-

tion being defined as the number of spikes sent to the

environment, can generate all recursively enumerable sets

of numbers.

Theorem 23 NsSN2
�P ¼ NRE.

642 A. Leporati et al.

123

where NsSN2
�P denotes the family of sets of natural

numbers generated by SN P systems with an unbound

number of neurons and at most 2 rules associated with a

synapse.

As a further result, two small universal SN P systems

with rules on synapses for computing functions are con-

structed, using standard or extended spiking rules

Theorem 24 There is a universal SN P system with stan-

dard spiking rules (with delay) on synapses having 39

neurons for computing functions.

The use of extended rules allows to reduce the number

of neurons.

Theorem 25 There is a universal SN P system with

extended spiking rules (with delay) on synapses having 30

neurons for computing functions.

More recently, in Song et al. (2021) it is proposed to

associate delays to synapses, so that the spiking neuron

immediately sends its spike, that is delivered to different

receiving neurons at different instants, depending on the

delay time on the synapses connecting them. It is proved

that the Spiking Neural P systems with Delay on Synapses

(SNP-DS systems) are universal as number generators.

Two small universal SNP-DS systems, with standard or

extended rules, are constructed to compute functions, using

56 and 36 neurons, respectively.

8 SN P systems with astrocytes

In Binder et al. (2007) it was observed that in animal

nervous system an important role in modulating synaptic

transmission is played by astrocytes. Astrocytes are star-

shaped glial cells in the brain and spinal cord that perform

many functions, including biochemical control of

endothelial cells that form the blood-brain barrier, regula-

tion of cerebral blood flow, provision of nutrients to the

nervous tissue, maintenance of extracellular ion balance,

modulation of neuronal excitability and synaptic trans-

mission, with both an excitatory and an inhibitory action.

Hence, in Binder et al. (2007) and Păun (2007) the SN P

systems with astrocytes (SNPA systems) were proposed to

take into account the joint action of the two interacting

networks of neurons and astrocytes.

While (Binder et al. 2007) introduces two kinds of

astrocytes, excitatory and inhibitory, Păun (2007) considers

a much simplified version of SNPAs, with only inhibitory

astrocytes. The basic idea is adding to the system a set of

astrocytes, each one of them controlling a subset of

synapses. If at computation step t two or more spikes are

transmitted along the synapses controlled by the astrocyte

x, then exactly one spike is selected, non-deterministically,

to reach the destination neuron, while all others are

removed (obviously, in the case of 0 or 1 transmitted spikes

x does not intervene). Hence a new degree of non-deter-

minism is added to the functioning of the system by the

branching due to the non-deterministic choice of the sur-

viving spike. A second relevant observation is that, since

the same synapse can be controlled by several astrocytes, it

is possible that their action is contradictory, with a result-

ing deadlock of the system: in fact an astrocyte could

decide to suppress a spike on the common synapse, and

another to let it survive. A simple example of deadlock can

be found in the paper Păun (2007), that focuses on the

deadlock decidability problem, proving that it is undecid-

able whether an arbitrary SN P system with (at least three)

astrocytes reaches a deadlock. On the other side, any SN P

system with astrocytes controlling several synapses, with-

out forgetting rules, can be reduced to an equivalent system

in normal form with each astrocyte controlling only two

synapses.

In Pan et al. (2012), starting from the observation that,

in a biological nervous system, the same astrocyte can have

an excitatory or inhibitory role, depending on the spike

traffic along the supervised synapses, a slightly different

definition is given. In the following we will refer to this

definition.

Definition 26 A Spiking Neural P system with Astrocytes

(SNPA system) of degree m� 1, l� 1 is a construct of the

form P ¼ ðO; r1; . . .; rm; syn; ast1; . . .; astl; in; outÞ, where:

1. O ¼ fag is the singleton alphabet (a is called spike);

2. r1; . . .; rm are neurons, of the form ri ¼
ðni;RiÞ; 1� i�m; where: [a)] ni � 0 is the initial

number of spikes contained in ri; [b)] Ri is a finite

set of rules of one of the following two forms:

(1) E=ac ! a; d, where E is a regular expression

over the alphabet fag and c� 1, d� 0 are natural

numbers;

(2) as ! k, where s� 1 is a natural number, with the

restriction that for each rule E=ac ! a; d of type

(1) from Ri, we have as 62 LðEÞ;

3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg with i 6¼ j for all

ði; jÞ 2 syn, 1� i; j�m is the set of synapses between

neurons;

4. ast1; . . .; astl are astrocytes, of the form

asti ¼ ðsynasti ; tiÞ, where 1� i� l; synasti � syn is the

set of synapses controlled by the astrocyte ast1, ti 2 N

is the threshold of the astrocyte ast1;

5. in; out 2 f1; 2; . . .;mg indicate the input and output

neuron, respectively.

Spiking neural P systems: main ideas... 643

123

In SNPA systems, the neurons execute the rules as in

standard SN P systems at each time step, then astrocytes

intervene, exercising their function of spike traffic control.

Each astrocyte asti counts the number k of neurons that are

requesting to cross the synapses in the set synasti , then uses

its threshold ti to decide its role:

1. If k[ti, then it will have an inhibitory role, removing

all the k spikes from the system;

2. If k\ti, then it will have an excitatory role, and all the

k spikes will reach the target neurons;

3. If k ¼ ti, then it will non-deterministically choose an

inhibitory or an excitatory role.

Even with this definition the deadlock problem must be

addressed, since it is possible that two or more astrocytes

control the same synapse. In this case, if all these astrocytes

have an excitatory role, then the spike along this synapse, if

any, will pass to the destination neuron; if at least one of

these astrocytes has an inhibitory role, then the spike will

be suppressed.

8.1 Universality results

In order to prove universality of SNPA systems, in both

generating and accepting mode of sets of natural numbers,

it is sufficient to consider the class SHSNPA of simple

homogeneous SNPA system. In these systems each neuron

has only the very simple spiking rule a�=a ! a (simplic-

ity), the same for all neurons (homogeneity). Note that this

implies that the behavior of neurons is deterministic, hence

the non-determinism of the system, necessary for the uni-

versality in number generating mode, depends only on the

non-determinism of astrocytes.

Now, denoting by NgenSHSNPA the family of sets of

natural numbers generated by SHSNPA systems, with the

usual technique of building SNPA systems simulating

register machines we can prove our universality result.

Theorem 27 NgenSHSNPA ¼ NRE

This result can be easily extended to the accepting

mode, using an input neuron that will receive two spikes

from outside; the input is the length n of the time interval

between these two spikes, and it is accepted if the related

computation will halt.

Theorem 28 NaccSHSNPA ¼ NRE

As in the case of standard SN P systems, imposing a

bound on the number of spikes present in any neuron

during any computation reduces the generating power of

SNPA systems to the family of linear sets of natural

numbers.

Theorem 29 NgenSHSNPAðbound�Þ ¼ SLIN

with the obvious meaning of the notation.

Small universal SNPA systems (without delay and for-

getting rules) were investigated in Kong et al. (2014),

through simulation of the small register machine described

in Korec (1996). It is proved that that 57 neurons and 19

astrocytes are sufficient to compute any Turing com-

putable function, and that 54 neurons and 17 astrocytes are

sufficient to generate any Turing computable set of natural

numbers.

9 SN P systems with structural plasticity

9.1 The definition

Another relevant feature of the animal nervous system is its

structural plasticity, that is its capability to modify the

synapse graph through synapse creation and deletion. This

feature is added to SN P systems in Cabarle et al. (2015),

where SN P systems with structural plasticity are defined.

A slightly different definition is given in Macababayao

et al. (2022), but we will refer to the original one.

Definition 30 A Spiking Neural P system with Structural

Plasticity (SNPSP system) of degree m� 1 is a construct of

the form P ¼ ðO; r1; . . .; rm; syn; in; outÞ where:

1. O ¼ fag is the singleton alphabet (a is called spike);

2. r1; . . .; rm are neurons, of the form ri ¼
ðni;RiÞ; 1� i�m; where:

(a) ni � 0 is the initial number of spikes contained in

ri;
(b) Ri is a finite set of rules of one of the following

two forms: [(1)] Spiking rule: E=ac ! a, where

E is a regular expression over the alphabet fag
and c� 1 is a natural number; [(2)] Plasticity

rule: E=ac ! akði;NjÞ, where c� 1,

a 2 fþ;�;	;
g, k� 1, 1� j� jRij and

Nj � f1; . . .;mg;

3. syn � f1; 2; . . .;mg � f1; 2; . . .;mg with i 6¼ j for all

ði; jÞ 2 syn, 1� i; j�m is the set of synapses between

neurons;

4. in; out 2 f1; 2; . . .;mg indicate the input and output

neurons, respectively.

Hence SNPSP systems do not have delays nor forgetting

rules. In the following, given a neuron ri, presðiÞ ¼
fjjði; jÞ 2 syng denotes the set of neurons that can receive

spikes from ri. Similarly, posðiÞ ¼ fjjðj; iÞ 2 syng denotes

the set of neurons that can send spikes to ri.
Spiking rules are applied as in standard SN P systems. A

plasticity rule E=ac ! akði;NÞ 2 Ri can be applied at time

644 A. Leporati et al.

123

t if the neuron ri contains b� c spikes and ab 2 LðEÞ. Its
application consumes c spikes and has effects on the

synapses that depend on the value of the parameter a.

1. If a ¼ þ and N � presðiÞ ¼ ;, or if a ¼ � and

presðiÞ ¼ ;, then no synapse is created or removed;

2. If a ¼ þ and jN � presðiÞj � k, then a synapse (i, l) is

deterministically created for every l 2 N � presðiÞ, and
a spike is immediately sent from ri to rl;

3. If a ¼ þ and N � jpresðiÞj[k, then k neurons are

non-deterministically selected in N � presðiÞ, a

synapse (i, l) is created for every selected neuron rl
and a spike is immediately sent from ri to rl;

4. If a ¼ � and jpresðiÞj � k, then all the synapses in

pres(i) are deterministically deleted;

5. If a ¼ � and jpresðiÞj[k, then k neurons are non-

deterministically selected in pres(i) and synapses to the

selected neurons are deleted;

6. If a 2 f	;
g then create (respectively, delete)

synapses at time t and then delete (respectively, create)

synapses at time t þ 1. Only the priority of application

of synapse creation or deletion is changed, but the

application is similar to a 2 fþ;�g. The neuron is

always open from time t until t þ 1, i.e., the neuron can

continue receiving spikes. However, the neuron can

only apply another rule at time t þ 2. Furthermore,

creating a synapse (i, j) implies immediately sending a

spike from ri to rj.

Creating or deleting synapses modifies the synapse graph,

and hence the configuration of the system at time t must

include the structure of the graph, in addition to the number

of spikes contained in any neuron. Transitions, computa-

tion, generating and accepting mode are then defined as in

standard SN P systems.

9.2 Universality results

For both the accepting and generating modes of sets of

natural numbers, SNPSP systems are proved to be uni-

versal. In fact, indicating with NgenSNPSP (resp.,

NaccSNPSP) the family of sets of natural numbers gener-

ated (resp., accepted) by SNPSP systems, we have:

Theorem 31 NgenSNPSP ¼ NaccSNPSP ¼ NRE

Let us consider the generating case. The difficult part is

to prove the inclusion NRE � NgenSNPSP. As usual, given

any set Q 2 NRE, the proof is based on the construction of

a SNPSP system that simulates a register machine M that

generates Q. The construction given in Cabarle et al.

(2015) uses SNPSP systems with neurons that contain only

a spiking rule of the simple form a ! a, together with

fewer neurons that have plasticity rules. Hence in this case

the universality is granted by the non-determinism intro-

duced by plasticity rules, while spiking rules are used in a

deterministic way. In the accepting case non-determinism

is not relevant, hence the SNPSP system simulating M is

therefore simpler.

In Cabarle et al. (2015) a variant of the SNPSP systems

semantics is also introduced, called saving mode. In this

mode, when no synapses are created or removed, then no

spikes are consumed. It is proved that even in this mode

universality is maintained. However, deadlock situations

can arise, and undecidability of deadlock states is proved.

Interesting results are also given in Macababayao et al.

(2022), concerning normal forms for standard SN P sys-

tems, for SN P systems with structural plasticity and for SN

P systems with rules on synapses. In fact, it is proved that

universal standard SN P systems with only two rules per

neuron and one kind of regular expression can be built,

while in the case of SNPSP systems and of SN P systems

with rules of synapses the number of rules per neuron can

be reduced to only one.

10 Approaching computationally hard
problems

The computational power of SN P systems can also be

considered from a different point of view, their capability

to efficiently solve computationally hard problems. This

point of view has been assumed for example in Chen et al.

(2006), where a variant of spiking neural P systems which

have, in their initial configuration, an arbitrarily large

number of inactive neurons which can be activated (in an

exponential number) in polynomial time. Using this model

of P systems we can deterministically solve the satisfia-

bility problem (SAT) in constant time, so trading space for

time.

In Leporati et al. (2007), a solution for the NP-complete

problem SUBSET SUM in a constant number of computation

steps was proposed, by means of a non-deterministic SN P

system with extended rules.

The SUBSET SUM problem can be defined as follows.

Problem: SUBSET SUM.

– INSTANCE: a (multi)set V ¼ fv1; v2; . . .; vng of positive

integer numbers, and a positive integer number S.

– QUESTION: is there a sub(multi)set B � V such that
P

b2B
b ¼ S?

When we allow to non-deterministically choose the rules to

be applied within a neuron, then we are able to define an

SN P system like the one depicted in Fig. 4 that is able to

solve any given instance of SUBSET SUM in a constant

number of steps.

Spiking neural P systems: main ideas... 645

123

Consider the following instance of SUBSET SUM to be

solved: V ¼ ðfv1; v2; . . .; vng; SÞ: In the initial configura-

tion, the leftmost neurons contain (starting from the top to

bottom) v1; v2; . . .; vn spikes, while the rightmost neurons

do not contain spikes.

When the computation starts, each leftmost neuron non-

deterministically applies one of its rules, thus including or

not the corresponding value vi in the (candidate) solution

B � V . The spikes emitted by all neurons applying a firing

rule are collected in the rightmost neurons (let us denote by

N the total amount of spikes collected).

We have now three possible cases:

– N\S: in this case, no rule in the rightmost neurons can

be applied, and thus no spike is emitted to the

environment;

– N ¼ S: only the first rightmost neuron fires, emitting a

spike to the environment;

– N[S: both neurons fire; a spike is emitted immedi-

ately to the environment from the first neuron, while a

second one is emitted with a time step delay by the

second neuron.

The given instance of SUBSET SUM has a positive answer if

and only if a single spike is emitted during the

computation.

As pointed out in Leporati et al. (2007), a problem

related to the SN P system described above is that the rules

of the neurons are checking for the existence of a number

of spikes which may be of an exponential size with respect

to the usually agreed instance size of SUBSET SUM. More-

over, the system may require, to be initialized, a number of

spikes which could also be exponential.

Nonetheless, in the same paper it was shown that the

numbers occurring in the instance of SUBSET SUM in input,

namely v1; v2; . . .; vn, can be also inserted in the system in

binary form, and a Spiking Neural P sub-system is able to

convert such binary encoding in a unary encoding in

polynomial time. In this way, it was proved that the pos-

sibility to efficiently solve Subset Sum by means of an SN

P system like the one described before does not require an

exponential effort to initialize the system, but depends only

on the non-deterministic application of the rules.

A question that arises immediately concerns the possi-

bility to obtain similar results by deterministic systems,

possibly by considering added features to increase their

efficiency. In many variants of standard P systems, an

interesting feature that is commonly considered to improve

efficiency of deterministic systems is the possibility to give

an active role to membranes. In particular, P systems with

active membranes are able to create new membranes dur-

ing the computation by division, budding, or separation of

existing membranes, allowing in this way to obtain a trade

off between time and space resources that allows to attack

NP–complete (or even harder) problems in polynomial

time and exponential space (see, e.g., Păun (2001), Krishna

and Rama (1999), Sosı́k (2019), Zandron et al. (2000)).

Concerning SN P systems, it is known that their ability

to evaluate in a constant time the applicability of the rules,

according to the associated regular expressions, can be

exploited to deterministically solve computationally hard

problems in polynomial time. In fact, in Leporati et al.

(2009) it was proved that, by using regular expressions in a

succinct form over a singleton alphabet, the membership

problem is equivalent to NP-complete problems like SUB-

SET SUM. In the same paper, it was also proved that when

we consider regular expressions of a certain restricted

form, then it is possible to simulate SN P systems by a

deterministic Turing machine with a polynomial

slowdown.

As a consequence, in order to get enough computational

power to solve, in polynomial time, computationally hard

problems, we could either use complex regular expressions,

or we need to consider ideas similar to those exploited for

standard P systems, that allow to produce an exponential

space in a polynomial number of steps.

A first solution of this type for SN P systems was con-

sidered in Pan et al. (2011), where neuron division and

budding was allowed (operations inspired from recent
Fig. 4 A non-deterministic extended SN P system that solves the

SUBSET SUM problem in a constant time

646 A. Leporati et al.

123

discoveries concerning the neural stem cells). By means of

these types of rules, a parent neuron can be replaced by two

offsprings. In case of neuron division, both the new neu-

rons have the same synapses connections (both coming-in

and going-out) as the parent neuron. When a neuron bud-

ding rule is applied, instead, one of the two neurons inherits

the coming-in synapses connection of the parent neuron,

while the other inherits its going-out synapses. Moreover, a

synapse from the first to the second new neuron is created.

It was proved that uniform families of SN P systems of

this type are able to solve the NP-complete problem SAT in

polynomial time (Leporati et al. 2009). An improved

solution, obtained by also considering the possibility to

dissolve neurons when they are no more necessary to the

computation, was proposed in Zhao et al. (2016). In Wang

et al. (2010) authors proved that budding of neurons is not

strictly necessary: a uniform family of SN P systems with

neuron division only can solve the SAT problem in a

polynomial number of steps. The system proposed has

another very interesting feature: the initial size of the

system is limited to a constant number of neurons, differ-

ently from the original solution, where a number of neurons

that is linear with respect to the dimension of the input SAT

formula is required.

Another possibility that has been considered to approach

complex problems within the framework of SN P systems

was to use pre-computed resources, as proposed in Chen

et al. (2006). Instances of a decision problem were encoded

in a number of spikes, and then placed, at the beginning of

the computation, in an (arbitrarily large) pre-computed

system, that has an exponentially large workspace avail-

able, in the form of an exponentially large number of

inactive neurons, which will be activated and used in

constant time in our computation. A constant-time solution

for the problem SAT was described in Chen et al. (2006).

The assumption of pre-computed resources was used in

Ishdorj and Leporati (2008) to build uniform families of

spiking neural P systems that solve in deterministic poly-

nomial time instances of the problems SAT and 3-SAT.

Similarly, in Ishdorj et al. (2010) solutions for the

PSPACE-complete problems QSAT and Q3SAT in poly-

nomial time were proposed, showing in this way that

problems in the class PSPACE can be efficiently solved by

SN P systems.

11 Concluding remarks

In the above sections, we have presented the basic ideas

and the main theoretical results concerning Spiking Neural

P systems, and only a few of the many variants that have

been proposed since the first definition of standard SN P

systems in Ionescu et al. (2006). Other variants, trying to

incorporate in the computational model different aspects

suggested by the biological background, include: SN P

systems with anti-spikes, that have an inhibitory function,

introduced in Pan and Păun (2009), and in a slightly dif-

ferent form in Song et al. (2012); SN P systems with

polarizations (Wu et al. 2018); axon P systems (Zhang

et al. 2015), proved to be universal as both function com-

puting devices and number generator devices; SN P sys-

tems with communication on request (Pan et al. 2017); and

many other variants, variants of the variants and combi-

nations of different features.

The main theoretical issues to be investigated are the

same for all these variants. The first question concerns the

optimal combination of features and of values of different

parameters, needed to obtain computationally complete

systems, able to generate/accept recursively enumerable

sets of numbers, or to compute recursive functions. This

implies the definition of normal forms, the study of the

trade-off between different parameters, while maintaining

the same computational power, the search for minimal

universal systems, the study of relations with other stan-

dard and non-standard computing models. In the same

vein, various limits and restrictions to the definition of the

basic model have been considered, aiming at the definition

of variants that are not Turing universal. This would allow

to define specific computational classes, possibly having

some peculiar decidable properties. The computational

power of SN P systems as language generators or acceptors

has also been deeply investigated.

Another relevant research direction concerns the effi-

ciency of SN P systems in solving computationally hard

problems, such as NP-complete or PSPACE-complete

problems. In this respect, there are some intriguing points,

concerning unary representations vs binary representations,

use of pre-computed resources, uniform solutions vs non-

uniform or semi-uniform solutions, which are worthy of

further study. An interesting research topic is also to study

what restrictions can be considered to obtain systems

characterizing specific complexity classes between NP and

PSPACE.

In this paper we focussed on theoretical aspects and

results, but, of course, the use of these computation models

in solving problems related to real-life applications is a

topic of great interest: function approximation, pattern

recognition, fault diagnosis of power systems, computa-

tional biology, biochip design, vehicle routing, cryptogra-

phy, clustering, or decision making are all possible

applications of the model. A recent survey can be found in

Fan et al. (2020).

Funding Open access funding provided by Università degli Studi di

Milano - Bicocca within the CRUI-CARE Agreement.

Spiking neural P systems: main ideas... 647

123

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Binder A, Freund R, Oswald M (2007) Extended Spiking Neural P

systems with Excitatory and Inhibitory Astrocytes. In: Proc 5th

Brainstorming Week on Membrane Computing, 63-72

Cabarle FGC, Adorna HN, Pérez-Jiménez MJ, Song T (2015) Spiking

neural P systems with structural plasticity. Neural Comput Appl

26(8):1905–1917

Cabarle FGC, Adorna HN, Pérez-Jiménez MJ (2015) Asynchronous

spiking neural P systems with structural plasticity. UCNC 2015 (

Calude CS, Dinneen MJ, eds.), LNCS 9252, Springer, 132-143

Cavaliere M, Egecioglu O, Ibarra OH, Ionescu M, Păun G,

Woodworth S (2008) Asynchronous spiking neural P systems;

decidability and undecidability. In: Garzon MH, Yan H (eds)

DNA13, 13th International Meeting on DNA Computing.

Revised Selected Papers, LNCS 4848, Springer, pp 246–255

Cavaliere M, Egecioglu E, Ibarra OH, Ionescu M, Păun Gh,

Woodworth S (2009) Asynchronous spiking neural P systems.

Theor Comput Sci 410(24–25):2352–2364

Chen H, Ionescu M, Ishdorj T-O (2006) On the efficiency of spiking

neural P systems. In: Gutierrez-Naranjo MA , Păun G, Riscos-

Nuñez A, Romero-Campero FJ (Eds) Proc Fourth Brainstorming

Week on Membrane Computing, Fenix Editora, Sevilla, vol I,

195-206

Chen H, Freund R, Ionescu M, Păun Gh, Pérez-Jiménez MJ (2006)

On string languages generated by spiking neural P systems. In:

Proc Fourth Brainstorming Week on Membrane Computing

(Gutierrez-Naranjo MA, Păun Gh, Riscos-Nuñez, Romero-

Campero FJ, eds), Fenix Editora, vol I, 169-193

Chen H, Ionescu M, Ishdorj T-O, Păun A, Păun Gh, Pérez-Jiménez

MJ (2008) Spiking neural P systems with extended rules:

universality and languages. Natural Comput 7:147–166

Fan S, Paul P, Wu T, Rong H, Zhang G (2020) On Applications of

Spiking Neural P Systems. Appl Sci 10: Art. 7011

Garcı́a-Arnau M, Pérez D, Rodrı́guez-Patón A, Sosı́k P (2007)

Spiking neural P systems: Stronger normal forms. In: Proc Fifth

Brainstorming Week on Membrane Computing, Fenix Editora,

Sevilla, 157-178

Greibach SA (1978) Remarks on blind and partially blind one-way

multicounter machines. Theor Comput Sci 7:311–324

Gurney K (1997) An introduction to neural networks. CRC Press

Gutiérrez-Naranjo MA, Pérez-Jiménez MJ (2009) Hebbian learning

from spiking neural P systems view. In: Proc 9th Int Workshop

on Membrane Computing, WMC9, (Corne D et al. eds), LNCS

5391, Springer, 217-230

Ibarra OH, Woodworth S, Yu F, Păun A (2006) On spiking neural P

systems and partially blind counter machines. Proc. 5th Inter-

national Conference on Unconventional Computation, LNCS,

vol 4135, Springer, Berlin, 113-129

Ibarra OH, Păun A, Păun Gh, Rodrı́guez-Patón A, Sosik P,

Woodworth S (2007) Normal forms for spiking neural P

systems. Theor Comput Sci 372:196–217

Ibarra OH, Leporati A, Păun A, Woodworth S (2009) Spiking Neural

P Systems. In: ‘‘The Oxford Handbook of Membrane Comput-

ing’’, Oxford University Press, 337-362

Ionescu M, Păun G, Yokomori T (2006) Spiking neural P systems.

Fundam Inf 71(2–3):279–308

Ionescu M, Păun A, Păun G, Pérez-Jiménez MJ (2006) Computing

with spiking neural P systems: traces and small universal

systems. In: Mao C, Yokomori T, Zhang B-T (eds) DNA12, 12th

International Meeting on DNA Computing. Revised Selected

Papers, LNCS, vol 4287, Springer, Berlin, 1–16

Ionescu M, Păun Gh, Yokomori T (2007) Spiking neural P systems

with an exhaustive use of rules. Intern J Unconv Comput

3:135–153

Ishdorj T-O, Leporati A (2008) Uniform solutions to SAT and 3-SAT

by spiking neural P systems with pre-computed resources. Nat

Comput 7(4):519–534

Ishdorj T-O, Leporati A, Pan L, Zeng X, Zhang X (2010)

Deterministic solutions to QSAT and Q3SAT by spiking neural

P systems with pre-computed resources. Theor Comput Sci

411(25):2345–2358

Jiang Y, Su Y, Luo F (2019) An improved universal spiking neural P

system with generalized use of rules. J Membr Comput

1:270–278

Kong Y, Jiang K, Chen Z, Xu J (2014) Small universal spiking neural

P systems with astrocytes. Rom J Inf Sci Technol 17(1):19–32

Korec I (1996) Small universal register machines. Theor Comput Sci

168:267–301

Krishna SN, Rama R (1999) A variant of P-systems with active

membranes: solving NP-complete problems. Rom J Inf Sci Tech,

2(4)

Leporati A, Zandron C, Ferretti C, Mauri G (2007) Solving Numerical

NP-complete Problems with Spiking Neural P Systems. In:

Eighth International Workshop on Membrane Computing,

WMC8, Selected Invited Papers, LNCS 4860, Springer-Verlag,

Berlin, 336-352. https://doi.org/10.1007/978-3-540-77312-2-21

Leporati A, Zandron C, Ferretti C, Mauri G (2009) On the

computational power of spiking neural P systems. Int J Unconv

Comput 5(5):459–473

Leporati A, Mauri G, Zandron C, Păun Gh, Pérez-Jiménez MJ (2009)

Uniform solutions to SAT and subset sum by spiking neural P

systems. Nat Comput 8(4):681–702

Maass W (1997) Networks of spiking neurons: the third generation of

neural network models. Neural Netw 10(9):1659–1671

Maass W, Bishop C (eds) (1999) Pulsed Neural Networks. MIT Press,

Cambridge

Maass W (2002) Computing with spikes. Special Issue on Founda-

tions of Information Processing of TELEMATIK 8(1):32–36

Macababayao ICH, Cabarle FGC, de la Cruz RTA, Zeng X (2022)

Normal forms for spiking neural P systems and some of its

variants. Inf Sci 595:344–363

Martin-Vide C, Păun G, Pazos J, Rodrı́guez-Patón A (2003) Tissue P

systems. Theor Comput Sci 296(2):295–326

Minsky ML (1967) Finite and Infinite Machines. Prentice Hall,

Englewood Cliffs, New Jersey

Pan L, Păun Gh (2009) Spiking neural P systems with anti-spikes. Int

J Comput Commun Control 4(3):273–282

Pan L, Păun G (2010) Spiking neural P systems: an improved normal

form. Theor Comput Sci 411:906–918

Pan L, Zeng X (2011) Small universal spiking neural P systems

working in exhaustive mode. IEEE Trans NanoBiosci

10(2):99–105. https://doi.org/10.1109/TNB.2011.2160281

648 A. Leporati et al.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TNB.2011.2160281

Pan L, Păun G, Pérez-Jiménez MJ (2011) Spiking neural P systems

with neuron division and budding. Sci China Inf Sci

54(8):1596–1607. https://doi.org/10.1007/s11432-011-4303-y

Pan L, Zeng X, Zhang X, Jiang Y (2012) Spiking neural P systems

with weighted synapses. Neural Process Lett 35(1):13–27

Pan L, Wang J, Hoogeboom HJ (2012) Spiking neural P systems with

astrocytes. Neural Comput 24(3):805–25

Pan L, Wang J, Hoogeboom HJ (2012) Asynchronous extended

spiking neural P systems with astrocytes. In: Gheorghe V et al.

(eds) Proc 12th International Conference on Membrane Com-

puting, LNCS 7184, Springer, 243-256

Pan L, Păun Gh, Song B (2016) Flat maximal parallelism in P systems

with promoters. Theor Comput Sci 623:83–91

Pan L, Păun G, Zhang G, Neri F (2017) Spiking neural P systems with

communication on request. Int J Neural Syst 27(8):1–13

Păun G (2000) Computing with membranes. J Comput Syst Sci

61(1):108-143, and TUCS Research Report 208, 1998 (http://

www.tucs.fi)

Păun G (2001) P systems with active membranes: attacking NP-

complete problems. J Autom Lang Comb 6(1):75–90

Păun Gh (2002) Membrane Computing - An Introduction. Springer,

Berlin

Păun G, Pérez-Jiménez MJ, Rozenberg G (2006) Spike trains in

spiking neural P systems. Intern J Found. Comput Sci

17(4):975–1002

Păun A, Păun Gh (2007) Small universal spiking neural P systems.

BioSystems 90(1):48–60

Păun Gh (2007) Spiking neural P systems with astrocyte-like control.

J Univ Comput Sci 13(11):1707–1721

Păun G, Rozenberg G, Salomaa A (2009) eds. The Oxford Handbook

of Membrane Computing, Oxford University Press

Ren Q, Liu X, Sun M (2020) Turing Universality of Weighted

Spiking Neural P Systems with Anti-spikes. Computational

Intelligence and Neuroscience, 2020, 8892240

Rozenberg G, Salomaa A (eds) (1997) Handbook of Formal

Languages. Springer-Verlag, Berlin

Song T, Pan L, Wang J, Venkat I, Subramanian KG, Abdullah R

(2012) Normal forms of spiking neural P systems with anti-

spikes. IEEE Trans Nanobiosci 11(4):352–359

Song T, Pan L, Păun Gh (2013) Asynchronous spiking neural P

systems with local synchronization. Inf Sci 219:197–207

Song T, Pan L, Păun G (2014) Spiking neural P systems with rules on

synapses. Theor Comput Sci 529:888–895

Song T, Zou Q, Liu X, Zeng X (2015) Asynchronous spiking neural P

systems with rules on synapses. Neurocomputing 151:1439–

1445

Song T, Pan L, Wu T, Zheng P, Wong MLD, Rodrı́guez-Patón A

(2019) Spiking neural P systems with learning functions. IEEE

Trans Nanobiosci 18(2):176–190

Song X, Valencia-Cabrera L, Peng H, Wang J, Pérez-Jiménez MJ

(2021) Spiking neural P systems with delay on synapses. Int J

Neural Syst 31(1):2050042

Sosı́k P (2019) P systems attacking hard problems beyond NP: a

survey. J Membr Comput 1:198–208

The P Systems Web Page: http://ppage.psystems.eu

Wang J, Hoogeboom HJ, Pan L, Păun Gh, Pérez-Jiménez MJ (2010)

Spiking neural P systems with weights. Neural Comput

22(10):2615–2646

Wang J, Hoogeboom HJ, Pan L (2010) Spiking Neural P Systems

with Neuron Division. In: Gheorghe M, Hinze T, Păun Gh,

Rozenberg G, Salomaa A eds (Eds) 11th Int. Conf. on Membrane

Computing, CMC11, LNCS 6501, Springer, Berlin, Heidelberg,

361-376. https://doi.org/10.1007/978-3-642-18123-8-28

Wu T, Păun A, Zhang Z, Pan L (2018) Spiking neural P systems with

polarizations. IEEE Trans Neural Netw Learn Syst

29(8):3349–3360

Wu T, Jiang S (2021) Spiking neural P systems with a flat maximally

parallel use of rules. J Membr Comput 3:221–231

Zandron C, Ferretti C, Mauri G (2000) Solving NP-complete

problems using P systems with active membranes. In: Antoniou

I, Calude CS, Dinneen MJ (eds) Unconventional Models of

Computation. Springer-Verlag, London, pp 289–301

Zeng X, Xu L, Liu X, Pan L (2014) On languages generated by

spiking neural P systems with weights. Inf Sci 278:423–433

Zeng X, Zhang X, Song T, Pan L (2014) Spiking neural P systems

with thresholds. Neural Comput 26(7):1340–1361

Zhang X, Zeng X, Pan L (2008) Smaller universal spiking neural P

systems. Fundam Inf 87:117–136

Zhang X, Zeng X, Pan L (2009) On languages generated by

asynchronous spiking neural P systems. Theor Comput Sci

410:2478–2488

Zhang X, Jiang Y, Pan L (2010) Small universal spiking neural P

systems with exhaustive use of rule. J Comput Theor Nanos

7(5):890–899

Zhang X, Wang B, Pan L (2014) Spiking Neural P Systems with a

Generalized Use of Rules. Neural Comput 26:2925–2943

Zhang X, Pan L, Păun A (2015) On the universality of axon P

systems. IEEE Trans Neural Netw Learn Syst 26(11):2816–2829

Zhao Y, Liu X, Wang W (2016) Spiking neural P systems with neuron

division and dissolution. PLoS ONE 11(9):e0162882. https://doi.

org/10.1371/journal.pone.0162882

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Spiking neural P systems: main ideas... 649

123

https://doi.org/10.1007/s11432-011-4303-y
http://ppage.psystems.eu
https://doi.org/10.1371/journal.pone.0162882
https://doi.org/10.1371/journal.pone.0162882

	Spiking neural P systems: main ideas and results
	Abstract
	Introduction
	From P systems to spiking neural P systems
	Computing with standard SN P systems
	The standard definition
	The computing process
	Information encoding
	An example

	Turing completeness of standard SN P systems
	Universality results
	SN P systems simulating register machines
	Normal forms and small universal systems
	SN P systems as language generators

	SN P systems with extended rules
	Different strategies of using rules
	SN P systems with weights or active synapses
	Weighted SN P systems
	Universality results
	The language generation power of WSN P systems
	‘‘Variants of the variant’’
	Rules on synapses

	SN P systems with astrocytes
	Universality results

	SN P systems with structural plasticity
	The definition
	Universality results

	Approaching computationally hard problems
	Concluding remarks
	Funding
	Open Access
	References

