
Statistics Surveys
Vol. 18 (2024) 299–340
ISSN: 1935-7516
https://doi.org/10.1214/24-SS150

A review of regularised estimation
methods and cross-validation in

spatiotemporal statistics
Philipp Otto1 , Alessandro Fassò2 and Paolo Maranzano3,4

1School of Mathematics and Statistics, University of Glasgow, United Kingdom,
e-mail: philipp.otto@glasgow.ac.uk, corresponding author

2University of Bergamo, Italy,
e-mail: alessandro.fasso@unibg.it

3Department of Economics, Management and Statistics (DEMS), University of
Milano-Bicocca, Italy,

e-mail: paolo.maranzano@unimib.it
4Fondazione Eni Enrico Mattei (FEEM), Italy

Abstract: This review article focuses on regularised estimation procedures
applicable to geostatistical and spatial econometric models and suitable
cross-validation techniques for spatiotemporal data. These methods are
particularly relevant in the case of big geospatial data for dimension re-
duction or model selection. To structure the review, we initially consider
the most general case of multivariate spatiotemporal processes (i.e., g > 1
dimensions of the spatial domain, a one-dimensional temporal domain, and
q ≥ 1 random variables). Then, the idea of regularised/penalised estimation
procedures and different choices of shrinkage targets are discussed. Guided
by the elements of a mixed-effects model setup, which allows for a variety
of spatiotemporal models, we show different regularisation procedures and
how they can be used for the analysis of geo-referenced data, e.g. for selec-
tion of relevant regressors, dimension reduction of the covariance matrices,
detection of conditionally independent locations, or the estimation of a full
spatial interaction matrix. The second part is dedicated to cross-validation
strategies, which are important for evaluating the model performance and
selecting regularisation parameters. We outline the three key assumptions
a cross-validation partitioning needs to fulfil and discuss how this can be
achieved for time series, spatial data and spatiotemporal data. Additionally,
software implementations for these techniques are discussed.
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1. Introduction

In the era of big geospatial data, analysing intricate spatial and spatiotemporal
processes has become increasingly vital and challenging. This is attributed to the
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growing volume and finer resolution of geo-referenced data, including remotely
sensed, crowd-sourced or LiDAR data, as well as the increasing diversity of data
types due to automated collection and processing, such as social network data
and image data. These advancements enable the examination of more intricate
relationships and allow for the detection of weaker dependencies or variations in
the data. To statistically investigate such interactions, geostatistical and spatial
econometric models offer a robust framework for comprehending the fundamen-
tal structures of these processes. Additionally, they provide insights into spatial
dependencies, temporal dynamics, and the interactions among multiple random
variables. An essential advantage of these statistical models lies in their in-
terpretability, unlike deep learning models, which are often viewed as black-box
models unless explicitly designed for interpretability. However, as the dimension
of the spatial domain increases and datasets become larger and more complex,
conventional modelling approaches frequently encounter challenges related to
computational complexity and the appropriate selection of influential variables.

This review paper focuses on regularised estimation procedures for spatiotem-
poral continuous data, mainly focusing on Gaussian geostatistical models and
spatial autoregression models, which are mostly applied for data on regular or
irregular spatial grids, e.g., areal data. The latter ones are often called spatial
econometrics models, but we will refer to them as spatial autoregression models
because (a) the response variable is typically explicitly correlated with its adja-
cent observations in an autoregressive manner, and (b) they are not only tied to
applications in economics, neither do they originate from economics/economet-
rics. These models are typically used for data defined on a discrete set of spatial
locations, e.g., regular or irregular lattices, including polygons such as munici-
palities, counties or countries, making them attractive modelling approaches in
econometrics (see, e.g., Billé and Arbia 2019; Anselin 2010; Arbia 2016), ecology
(see, e.g., Ver Hoef et al. 2018; Lichstein et al. 2002), or epidemiology (see, e.g.,
Lee 2011; Gebreab, Duncan and Kawachi 2018). Instead, in geostatistics, spatial
dependence is modelled using covariance functions depending on the distance
between two observations1. This makes the model attractive for processes on a
continuous space and data which is irregularly observed across space, such as air
pollution at ground-level measurement stations. Spatial point processes, such as
Poisson processes, will not be the focus of this review paper (see González et al.
2016 for a review on spatial point processes).

Regularised estimation procedures offer effective solutions for these challenges
from multiple perspectives. For instance, they can be used for model selection
and dimension reduction but also to reveal spatial dependence structures going
beyond geographical proximity. This article will provide a comprehensive review
of regularisation techniques, including shrinkage and penalisation methods, used
for statistical modelling of geospatial data. Thereby, our focus will be on geo-
statistical models (Section 3) and spatial autoregression/econometrics models
(Section 4). Since the degree of regularisation is typically chosen based on pre-

1Note that the distance is not necessarily measured as Euclidean distance, but different
distance measures such as great-circle distances for modelling processes on a sphere or suitable
network distances for processes on networks can be considered.
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dictive accuracy, we also review cross-validation techniques which are suitable
under spatiotemporal dependence (Section 5). Finally, Section 7 concludes the
article and discusses future research directions.

2. General framework

Assume that we are observing a continuous q-dimensional vector over space and
time. The related q-variate dataset may be formalised as

{ytj (si) ∈ R
q : i = 1, . . . , N, j = 1, . . . , T} (1)

where si are points in the spatial domain Ds, which may be a Euclidean or
non-Euclidean space. Common choices are the plain R

2, the Earth sphere S
2 or

a discrete grid of points. The time domain, say Dt � tj , is assumed discrete and,
ignoring missing values, is made by equidistant time points. For simplicity, we
use the set of integers, Dt = Z and tj = j = 1, . . . , T . In the statistical frame-
work, data yt(si) are assumed to be generated by the spatiotemporal stochastic
process {Yt(s) ∈ R

q : s ∈ Ds, t ∈ Dt}, (see Cressie and Wikle, 2015). A contin-
uous temporal domain is sometimes considered in geostatistics, see, e.g., Porcu
and White (2022), but we focus on the first case, which may be called the spatial
time series approach.

The above-mentioned spatial and temporal domains can assume several
forms, resulting in multiple data categories. In particular, following (Wikle,
Zammit-Mangion and Cressie, 2019, Section 2.1), we can distinguish among
three main classes of spatiotemporal data. By geostatistical data, we mean phe-
nomena which can be measured at continuous locations over a given spatial do-
main. Typical examples are air quality, weather and climate measurements, such
as the PM10 concentrations reported in Figure 1. By areal or lattice data, we
mean a phenomenon defined on a finite or countable subset in space over a spe-
cific time span. Examples of areal data are easily found in the socio-economic,
political or medical-epidemiological realms, where observations are often re-
ported by area (e.g., municipalities or regions). For example, in Figure 2, we
show the evolution of per capita income for the European provinces (NUTS-3
classification) between 2011 and 2020. They provide a common playground for
statisticians, econometricians, or applied social scientists, as the neighbourhood
structure among units can provide relevant insights in many empirical contexts
while preserving the interpretability of the phenomenon.

There are different sources of correlation for such geo-referenced data:

1. Temporal proximity between two observations typically causes correla-
tions. That is, the closer two observations are in the temporal domain
Dt, the higher they are correlated, e.g., the current outside temperature
will be similar to the temperature one hour earlier but less similar to the
temperature two days ago.
Also, more complex time-related structures are possible. For example,
considering periodicity, the daily and seasonal cycles often require non-
monotonic correlation structures.
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Fig 1. Illustrative example of real-world geostatistical spatiotemporal data. The plot shows the
observed PM10 concentrations in 2018 at the 101 locations in Northern Italy considered by
Fassò et al. (2023). For each panel, the observed average monthly concentrations are reported.

2. Geographical proximity in Ds induces a similar dependence, known as
spatial dependence. As claimed by Tobler’s first law of Geography, two
observations are more similar if they are close to each other. For exam-
ple, the current outside temperature in a city is similar to that in the
neighbouring cities but less similar if you move away, especially in the
North-South direction.

3. The q variables could be cross-correlated. Univariate models may be suf-
ficient when the q variables are truly independent, and applying a multi-
variate model, in this case, could introduce spurious correlations and un-
necessary complexity. On the other hand, if the variables exhibit shared
spatial or temporal structure or latent dependencies, a multivariate ap-
proach can capture these relationships and provide more efficient joint
inference. Careful consideration of the underlying data structure is neces-
sary to determine the most appropriate modelling strategy.
Moreover, network structures could describe the interrelations between
these variables. In this case, network or graphical models for spatiotem-
poral data are suitable (see, e.g., Dey, Datta and Banerjee, 2022; Zapata,
Oh and Petersen, 2022, for graphical Gaussian processes for multivari-
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Fig 2. Illustrative example of spatiotemporal areal (irregular lattice) data. The plot shows the
estimated yearly per capita gross domestic product (€ per capita) in the 1088 European Union
provinces (NUTS-3 classification) from 2011 to 2020. Data source: Eurostat.

ate spatial data). However, graphical models are beyond the scope of this
paper.

There are two alternative, complementary approaches in spatial and spa-
tiotemporal statistics to account for spatial dependence. Firstly, the dependence
can be modelled using spatially dependent processes, where a suitable covariance
function defines the entries of the covariance matrix. This approach is commonly
known as geostatistics. Secondly, the dependent/outcome variable can be explic-
itly correlated with nearby observations. Below, we will provide an overview of
regularised estimation procedures for both approaches, starting with geostatis-
tical models in Section 3 and followed by spatial autoregression in Section 4.

3. Geostatistical models and regularised estimation

A quite general frame for modelling data in (1) is given by the mixed-effects
spatiotemporal model, which is given by

Yt(s) = μt(s) + ωt(s) + εt(s), (2)

where μt(s) is the fixed-effects component, ωt(s) is the random-effects com-
ponent, and εt(s) is the stochastic error at time t and location s, which is
typically assumed to follow a (Gaussian) white noise process. The fixed-effects
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term typically models the mean behaviour and the influence of exogenous vari-
ables, potentially implying a non-stationary behaviour in the mean of Yt(s).
Furthermore, the random-effects term is a weakly stationary random process,
accounting for any additional dependence in the data, including temporal and
spatial dependence, heterogeneity, and cross-correlation between the variables.
We will follow this distinction throughout the paper and discuss regularised es-
timation procedures for the parameters of μt(s) and ωt(s). Remembering that
a weakly stationary process has a constant mean across all locations and time
points, and the covariance is only a function of the difference of time indices
and spatial location coordinates, the process Yt(s) is trend stationary.

Penalised estimation procedures can be used to shrink certain model pa-
rameters towards a pre-specified target. Generally speaking, the idea of these
estimators is to balance the in-sample model fit and the distance to the user-
defined target, called “penalty”. The former usually improves with increasing
model flexibility, whilst the latter restricts the model flexibility, usually lead-
ing to an inferior in-sample model fit. In other words, the penalty term serves
to (automatically) adjust the model structure towards a certain user-defined
target. The general form of a regularised estimation can be expressed as

θ̂ = arg min
θ

[L(θ;X,y) + P (θ,θ0,λ)] , (3)

where L(θ;X,y) represents the model fit term, e.g. the error sum of squares or
the negative log-likelihood function. Moreover, X is the spatiotemporal set of po-
tential covariates, Xt(si), i = 1, . . . , N, t = 1, . . . , T entering in the fixed-effects
component μt(s), and y is the set of all observations of Yt(si) in Equation 2.
The penalty term P (θ,θ0,λ) introduces regularisation and includes a tuning pa-
rameter λ, which could be scalar but also a vector, and the so-called shrinkage
target θ0. The form of P (θ,θ0,λ) can vary, allowing for a range of regularisa-
tion schemes. For instance, in the case of convex penalties, the LASSO (least
absolute shrinkage and selection operator) imposes an �1-norm penalty of the
differences θ−θ0. Choosing the shrinkage target θ0 equal to a vector of zeros en-
courages sparsity in the estimated parameters. In the case of graphical models,
such as the graphical LASSO, the shrinkage target may be a diagonal matrix I,
encouraging the estimated covariance matrix to have fewer off-diagonal non-zero
elements, reflecting conditional independence relationships. Non-convex penal-
ties, such as the smoothly clipped absolute deviation (SCAD, Fan and Li 2001)
or the minimax concave penalty (MCP, Zhang 2010), are also frequently em-
ployed to allow for more flexible shrinkage behaviour, with less bias introduced
for large parameter estimates.

As mentioned above, probably, the most often applied shrinkage target is
zero. In this case, the parameters are shrunk towards zero, which means that a
parameter is excluded from the model if its estimate is equal to the zero target.
Thus, these methods are suitable for model selection (simultaneous parameter
estimation and model selection). In particular, when applied to the fixed-effects
part, they can automatically select relevant regressors. Compared to standard
model selection procedures, such as step-wise selection based on cross-validation
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goodness-of-fit measures, regularised estimation procedures are typically com-
putationally more efficient2.

For the rest of the paper, we will mainly focus on Gaussian models. If the
data is continuous but non-Gaussian, a common approach in spatiotemporal
statistics is to apply suitable (non-linear) transformations of the observed pro-
cess, e.g., logarithmic, Box-Cox, or square-root transformations, such that the
transformed process follows a Gaussian distribution (see also Wallin and Bolin,
2015). Moreover, a transport map T (Yt(s)) can be used to transform a continu-
ous multivariate distribution into a specific target distribution, e.g., a Gaussian
distribution. Katzfuss and Schäfer (2024) proposed a scalable Bayesian transport
map for spatiotemporal data to handle non-Gaussian data, which also enables
regularisation of the mapping by an appropriate choice of the prior distribu-
tions to obtain sparse transport maps (see also Wiemann and Katzfuss, 2023).
Spatiotemporal models can also be explicitly designed for categorical or count
data, e.g., logistic or Poisson spatial models for epidemiological data (Paciorek,
2007) often in the fashion of generalised linear or additive models (cf. Wood
and Augustin, 2002; Aswi et al., 2019; Smart et al., 2010; Chattopadhyay and
Deb, 2024; Otto et al., 2024), giving penalised likelihood estimation procedures
in the frame of Equation 3 (but outside our mainly considered setting in (2)).

Generally, there are two main sources of increasing computational complexity:
model dimension and data dimension. The former is related to the fixed-effects
component when considering variable selection. This is developed in Section 3.1.
Moreover, the model dimension is related to the random-effects component when
modelling spatial and temporal correlations, which are considered in Section 3.2.

Considering data dimension, the observation covariance matrix of the data
set (1) is qNT × qNT dimensional, and its brute-force inversion has a cubic
computational cost. Hence, specialised modelling and computing techniques are
needed. The leading term in modern large spatial data sets is the number of spa-
tial locations N . Fortunately, the correlation often decreases with an increasing
distance between observations, allowing for a sparse covariance or precision ma-
trix representation. Regularised estimation procedures with a shrinkage target
of zero can be used to introduce zeros in the spatial covariance matrix or the pre-
cision matrix, indicating conditional independence between these observations.
This will be the subject of Section 3.2. Similarly, if the number of variables q in-
creases, we observe a corresponding cubic increase characterised by the fact that
the cross-correlation matrices for contemporaneous and colocated observations
are usually dense. On the other side, the temporal dimension is often less crit-
ical because causal time series models may leverage on the fact that only past
observations influence future observations, and the computational complexity
may be reduced to be linear in T , see e.g. Wang, Finazzi and Fassò (2021), §2.4.
These issues are also considered in Section 3.2.

2Note that only one or a few hyper-parameters, i.e., regularisation parameters, need to
be selected via cross-validation, while for other complete or stepwise selection procedures,
significantly more cross-validation iterations are required.
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3.1. Regularisation for the fixed-effects component

Linear regression models, whether referring to spatiotemporal or unstructured
data, can be estimated using various techniques, including Likelihood maximisa-
tion and least squares. However, in high-dimensional settings, traditional meth-
ods for regression models might not be directly applied (Nandy, Lim and Maiti,
2017). In order to reduce the model’s complexity due to the fixed effect compo-
nent μt(s), several methods for spatial and spatiotemporal settings have been
proposed. Specifically, we refer to the task of selecting the most relevant predic-
tors among a large set of candidates.

The state-of-the-art statistical literature inherent to variable selection pivots
around the Least Absolute Shrinkage and Selection Operator (LASSO) approach
introduced by Tibshirani (1996). LASSO is a penalised version of ordinary least
squares that uses a LASSO-type l1 penalisation to shrink irrelevant parameters
to zero. Under mild regularity conditions, including uncorrelated observations,
LASSO ensures consistent parameter estimation (see Section 2.4.2 of Bühlmann
and Van De Geer, 2011) and model selection consistency (Bickel, Ritov and
Tsybakov, 2009; Belloni and Chernozhukov, 2013), i.e., LASSO owns the oracle
property. Among others, one of the most relevant features of LASSO is that it
admits solutions to the minimisation task even when the number of parameters
is greater than the number of available observations. Also, LASSO penalty (and
extensions) can be used either considering least squares and penalised likelihood
problems (Fan and Li, 2001).

In the field of spatial and spatiotemporal regression, the number of obser-
vations can be very large, and the likelihood computation, even for Gaussian
models, can require a very high computational effort (Stein, Chi and Welty,
2004; Stein, 2014). Thus, when it comes to maximum likelihood estimation of
space-time models, a major pathway is to rely on penalised maximum likeli-
hood estimators (PMLE) of the parameters aiming at approximating the true
likelihood function (Fan and Li, 2001; Fan and Peng, 2004; Zou and Li, 2008).
However, asymptotic properties of approximate PMLEs rely on the asymptotic
distribution of the initial estimators (e.g., ML estimates) used in the optimisa-
tion algorithm (Liu, 2017). To further improve computational efficiency, Chu,
Zhu and Wang (2011) proposed a geostatistical version of PMLE in which the
penalised function is approximated using one-step sparse estimator (Zou and
Li, 2008) and covariance tapering (Furrer, Genton and Nychka, 2006a).

It is worth noting that real-world geostatistical applications are prone to
cross-correlated regressors due to their dependent (spatially and temporally)
structure. Zhao and Yu (2006) point out that the classic LASSO algorithm
does not provide selection-consistent estimates when predictors are correlated.
Furthermore, when cross-correlation is detected, also group-LASSO estimators,
which assume orthonormal data within each group, perform poorly in selecting
the relevant predictors (Simon and Tibshirani, 2012). A straightforward solution
to this issue is provided by the adaptive LASSO penalty, which leads to selection-
consistent estimators even in the presence of cross-correlated covariates (see Zou,
2006) and Zou and Li (2008).
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In addition to penalised likelihood methods, other estimation techniques have
been developed for LASSO and its extensions in the geostatistical domain. For
example, penalised least squares algorithms have been extended to the case of
linear spatial models (Wang and Zhu, 2009) (including also non-convex penalties
like SCAD), spatial autoregressive models (Cai and Maiti, 2020), spatial error
models (Al-Momani, Hussein and Ahmed, 2017), regression models with spa-
tially dependent data (Huang et al., 2010) and conditional autoregressive models
(Gonella, Bourel and Bel, 2022). Also, when considering additive spatial models
with potential non-linear effects, weighted versions of penalised least squares
can be applied (Nandy, Lim and Maiti, 2017). Cai et al. (2019) proposed a
generalised method-of-moments (GMM) LASSO, which combines LASSO with
GMM estimator, to perform variable selection for spatial error models with
spatially autoregressive errors. Huang et al. (2010) propose using LASSO to
simultaneously select relevant predictors, choose neighbourhoods, and estimate
parameters for spatial regression with GIS layers to predict responses in un-
sampled sites. Safikhani et al. (2020) considered LASSO methods for gener-
alised spatiotemporal autoregressive models. The estimators are obtained by
a modified version of the penalised least squares that accommodates hierar-
chical group LASSO-type penalties. Chernozhukov et al. (2021) combine least
squares LASSO and bootstrap procedures to get estimates and inference for
systems of high-dimensional regression equations characterised by temporal and
cross-sectional dependences in covariates and error processes. Cao et al. (2022)
proposed a penalised estimation procedure for Gaussian Processes regressions
where the likelihood and the first two derivatives are approximated by means of
a scaled Vecchia approximation (Vecchia, 1988). Eventually, several application-
oriented papers combine classic LASSO approaches and geostatistical models in
multi-step procedures (e.g., Fassò, Maranzano and Otto, 2022; Ye, Lazar and
Li, 2011; Pejović et al., 2018).

Penalised methods are also commonly applied in the context of functional
data analysis, especially involving penalised splines (see Silverman and Ram-
say, 2002). These methods usually regularise the smoothness of the estimated
functions by penalising the integrated second derivatives. In this way, many
basis functions can be used, thus avoiding the typical overfit resulting from
unpenalised estimation methods. Several authors have attempted to contribute
by proposing LASSO-like penalised methods for selecting relevant functional
(group) predictors (Pannu and Billor, 2017) or to identify regions where the
coefficient function is zero and to smoothly estimate non-zero values of the co-
efficient function (Centofanti et al., 2022). Basis expansions and low-rank repre-
sentations (Wood, 2017) are widely used tools in geostatistics for the spatiotem-
poral interpolation of environmental phenomena (see Hofierka et al., 2002; Xiao
et al., 2016; Chang, Hsu and Huang, 2010, for group-LASSO approaches in this
context). For instance, Maranzano, Otto and Fassò (2023) use a PMLE with
an adaptive LASSO penalty to select relevant functional covariates or their
statistically relevant regions using the hidden dynamic geostatistical model.
Eventually, Hsu, Chang and Huang (2012) deal with semiparametric models
for non-stationary spatiotemporal data in which a penalised least square with
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group-LASSO penalty is used to identify local spatial-temporal dependence fea-
tures deviated from the main stationary structure.

3.2. Regularisation for the random-effects component

Suppose that the random-effects component follows a stationary q-variate Gaus-
sian process, i.e.,

{ωt(s) : s ∈ Ds, t ∈ Dt} ∼ Np(0, Cθ(s− s′, t− t′)), (4)

where Cθ is a matrix covariance function that depends on the difference between
any two locations s and s′ and two arbitrary time points t and t′. It is the fun-
damental building block of the covariance matrix of the data set (1) and, for
q > 1, also provides the cross-covariances between the components of the obser-
vation vector y. In order to have a positive semidefinite observation covariance
matrix, Cθ must be a valid covariance function. See Gneiting 2002; Gneiting,
Kleiber and Schlather 2010; Stein 2005; Nychka, Wikle and Royle 2002; Porcu,
Bevilacqua and Genton 2016 or Porcu, Furrer and Nychka 2021 for a historical
review of space-time covariance functions. The covariance function in (4) usually
depends on some unknown parameters θ, which have to be estimated.

Generally, it is desirable if the covariance matrix resulting from Cθ contains
many zeros; that is, it is sparse. The traditional way to induce zeros in the co-
variance is known as covariance tapering (Furrer, Genton and Nychka, 2006b).
Loosely speaking, based on the geographical distance between the locations, a
covariance of zero is assumed for observations whose distance is larger than a
certain threshold. Theoretical results on covariance tapering can be found in
Stein 2013, and the use of tapering in the multivariate case is considered in
Bevilacqua et al. (2016). This method can also be applied in likelihood-based
estimation procedures (see Kaufman, Schervish and Nychka 2008, and Furrer,
Bachoc and Du 2016 for theoretical results). As mentioned above, regularised es-
timation procedures are tailor-made to induce zeros for certain parameters when
the shrinkage target is chosen to be zero. Typically, we can find zeros if two ob-
servations across space/time are conditionally independent (i.e., independent
when observing all other realisations). However, the conditional independence
is encoded in the inverse covariance matrix or precision matrix. Thus, penalised
methods can be applied to obtain sparse precision matrices. For univariate data
(q = 1), Krock, Kleiber and Becker (2021) introduced a graphical LASSO pro-
cedure to induce zeros in the precision matrix of a spatial process. Krock et al.
(2023) extended this approach to be used in the multivariate case (q > 1).

Moreover, since the covariance matrix is a positive definite matrix by defini-
tion, both the covariance matrix and its inverse can be decomposed as Σ = PP′,
e.g., via Cholesky decomposition. The matrix P is called Cholesky factor. Stein,
Chi and Welty (2004) proposed to approximate the likelihood for large spa-
tial data sets based on Vecchia approximations (Vecchia, 1988). The idea is
to approximate the joint likelihood as a product of the conditional likelihoods.
Now, sparse Cholesky factors have to be considered first by Schäfer, Katzfuss
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and Owhadi (2021) for spatial models. If the dimension of P is N × r with
N being the total number of observations across space/time and r � N , the
covariance matrix is low-rank. That is, the dependence structure reduces to a
lower-dimensional space. In spatial and spatiotemporal statistics, low-rank co-
variance matrices have been considered first by Banerjee et al. (2008), Cressie
and Johannesson (2008) (spatial fixed-rank kriging), and Cressie, Shi and Kang
(2010) (spatiotemporal fixed-rank filtering). Back to the subject of this review
paper, Chang, Hsu and Huang (2010) proposed a penalised estimation proce-
dure to identify the lower rank of the covariance matrix. Specifically, low-rank
approximations aim to represent a spatiotemporal process as a linear combina-
tion of local basis functions, which are weighted by uncorrelated random-effect
coefficients (see also the recent review by Cressie, Sainsbury-Dale and Zammit-
Mangion 2022). Thus, regularised estimation procedures aim to select suitable
local basis functions. From a practical perspective, many different local basis
functions (e.g., on several grids with different resolutions) can be included, and
the best basis functions are chosen automatically by estimating the model pa-
rameters. For the spatiotemporal case, Hsu, Chang and Huang (2012) suggested
penalised procedures to choose these local basis functions. Furthermore, Kang
and Katzfuss (2023) considered sparse inverse Cholesky factors that are identi-
fied based on correlations.

3.3. Bayesian estimation procedures

Along with the frequentist paradigm, the literature pioneered penalised regres-
sion extensions following a Bayesian perspective. Bayesian estimation schemes
have gained particular importance for spatiotemporal models, especially using
integrated nested Laplace approximations (INLA), which makes them appli-
cable also for large data sets (see Rue et al., 2017, for a review on INLA in
the spatiotemporal context). Moreover, we refer the readers to the review pa-
per by van Erp, Oberski and Mulder (2019) for a comprehensive overview of
the state-of-the-art literature on Bayesian penalised regression. The authors
summarise that Bayesian penalisation techniques include the penalised in three
alternative ways. The first way is called fully Bayesian or hierarchical Bayesian
(Wolpert and Strauss, 1996) approach, which treats the penalty parameter λ as
an unknown variable (i.e., a hyperparameter) whose prior distribution has to be
specified. Such models specify prior distributions for all parameters and can be
estimated in a single step. The prior distribution is called the shrinkage prior
(van Erp, Oberski and Mulder, 2019) and is usually a vague distribution, e.g.,
a half-Cauchy random variable (Polson and Scott, 2012). The prior acts on the
coefficients in order to shrink small effects to zero while maintaining true large
effects. Indeed, large values of λ result in smaller prior variation and thus more
shrinkage of the coefficients towards zero.

The second way is named empirical Bayes approach (van de Wiel, Te Beest
and Münch, 2019) and intends the parameters as unknown constants. This ap-
proach differs from the first one because it involves a two-step process: first,
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estimating the penalty parameter λ from the observed data, and second, incor-
porating this empirical estimate into the model using an empirical Bayes prior
distribution. Since the empirical approach does not specify any prior distribu-
tion for the hyperparameters, a sensitivity analysis of the results with respect
to the distributions is not necessary.

The third approach is based on cross-validation (CV). In this case, there is
no difference between the frequentist and Bayesian frameworks, as the goal is
to select λ so that the model is as accurate as possible in predicting new values
of the response variable. The topic of spatiotemporal CV will be extensively
discussed in the following Section 5.

As mentioned above, the fully Bayesian approach requires defining an a priori
distribution for the penalty term of each hyperparameter. Different distributions
were proposed depending on the penalised regression type (e.g., LASSO, ridge,
or elastic net). For example, in the case of ridge regression (Hastie, 2020), the
ridge prior corresponds to a Normal centred on the origin (Hsiang, 1975), while
in the case of LASSO, a Laplace distribution is employed (Park and Casella,
2008). For a Bayesian LASSO Gibbs sampler, the Laplace distribution can be
represented as a scale mixture of Gaussians (with an exponential mixing den-
sity). It is worth noting that the ridge regression estimator can be viewed as the
Bayesian posterior mean estimator of the coefficients when imposing a Gaussian
prior on the regression parameter (van Wieringen, 2015). Further extensions can
be found in van Erp, Oberski and Mulder (2019), in which the authors compare
several shrinkage priors from theoretical and application perspectives.

In addition to the penalised regression approach discussed above,
the Bayesian framework includes other model selection techniques, such as the
Zellner’s g-prior (Zellner, 1986), and the spike-and-slab prior (Mitchell and
Beauchamp, 1988). The former approach shrinks the regression coefficients to-
ward zero through a global shrinkage scalar called g, which equally shrinks
each coefficient (which can be reasonable if the coefficients are equivalent). The
single-g Zellner’s prior has been extended in several ways, e.g. using a mixture
of g priors (Liang et al., 2008), and multiple shrinkage factors as in Zhang et al.
(2016). However, carefully choosing the constant g must be addressed to avoid
excluding important variables (Lindley, 1957). Instead, according to the data,
the spike-and-slab method assigns the regression coefficients to the zero-centred
spike (i.e., shrinking toward zero) if they do not deviate substantially from zero.
In contrast, if they differ significantly from zero, they will be assigned to the slab
(i.e., the vague proper prior). Both methods were also adapted to spatiotem-
poral analysis. Refer, for example, to Lee et al. (2014) on the combination of
Zellner’s g prior and spatial Ising prior for selecting spatial covariates in spatial
time series data.

The literature on Bayesian modelling for spatiotemporal data addresses the
analysis through both a fully Bayesian hierarchical approach (Wikle, Berliner
and Cressie, 1998) and an empirical Bayes approach (Fahrmeir, Kneib and Lang,
2004). Fully Bayesian frameworks were extended to the case of variable selec-
tion in large spatiotemporal models in several ways. Katzfuss and Cressie (2012)
proposed a Bayesian hierarchical spatiotemporal random-effects model where
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dimension reduction is achieved by means of spatiotemporal basis functions,
whereas the prior induces sparsity and shrinkage on the first-order autoregressive
parameters describing the temporal evolution of the basis-function coefficients.
The described approach was inspired by the so-called Minnesota prior (Ingram
and Whiteman, 1994; George, Sun and Ni, 2008). Such prior was initially de-
veloped in a time series context where the aim was to drop the autoregressive
coefficients of VAR models by shrinking the posterior of the parameter matrix
towards independent random walk models (the typical behaviour of stock prices
in financial applications).

Possible alternatives to penalty methods for selecting linear predictors in
space-time models are mixture model selection methods. This category includes
Bayesian selection methods and Bayesian model averaging. The former evalu-
ates the appropriateness of a model based on the estimated weight among a
variety of models with alternative predictors; the latter, on the other hand,
averages over several alternative models to find the posterior distribution of
the parameters. Spatial dynamics is included in the algorithms by adding an
intrinsic conditional autoregressive (ICAR) (Besag, York and Mollié, 1991; Be-
sag and Green, 1993) approach (Carroll et al., 2018), while temporal dynamics
is incorporated via autoregressive processes (Lawson et al., 2017). Both meth-
ods have proven effective in disease mapping studies with spatial data (Carroll
et al., 2018), spatial small area frameworks (Carroll et al., 2016a), as well as
spatiotemporal disease mapping (Carroll et al., 2016b). Among others, relevant
advantages include getting an automatic final model fit.

4. Spatial autoregression

For spatial autoregression, the outcome variable is explicitly correlated with
adjacent observations, which also induces a certain structure in the covariance
matrix. Thereby, the local neighbourhood is defined by a suitable N ×N weight
matrix W, which is weighting all observations, such that the product of W and
the dependent variable at time t is the weighted average of the contemporaneous
adjacent observations. For instance, a common choice for areal data (e.g., eco-
nomic county-level data such as regional GDPs or housing prices) is to assume
the spatial weight matrix as a row-standardised contiguity matrix. The (i, j)-th
element of a spatial contiguity is equal to one if location i and j share a common
border and zero otherwise. After the row standardisation (i.e., all elements are
divided by the corresponding row sum), the product of W and a variable of
interest is equal to the sample average of all adjacent regions, facilitating its
interpretation. Generally speaking, the weight matrix can also be viewed as an
adjacency matrix in network modelling, giving the relation between two different
nodes/locations/entities.

Since this approach requires the explicit definition of the neighbourhood
structure via W, the prediction at unknown locations is more complicated (it
would require a distance-dependent functional relation of each weight), and the
models are usually applied to panel data. That is, the observational sites are
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typically constant across time. Suppose that there are N different locations
s1, . . . , sN and Y t = (Yt(s1), . . . , Yt(sN ))′, then we can consider a dynamic
spatiotemporal autoregressive panel model (Yu, De Jong and Lee, 2008) as a
starting point in this Section. This model is given by

Y t = Xtβ+ρWY t+δY t−1+γWY t−1+at1n+c+εt for t = 1, . . . , T , (5)

where Xt is a matrix of regressors at time t, β is the corresponding vector of
regression coefficients, at are temporal fixed effects (constant across space), c is
a vector of spatial fixed effects (constant over time), and ρ, δ, γ are the spatial,
temporal and spatiotemporal autoregressive parameters, respectively. Moreover,
εt is the vector of white noise model errors.

Assuming normal random errors with covariance matrix Σε, this approach
can also be considered as a mixed-effects spatiotemporal model with

μt = (μt(s1), . . . , μt(sn))′

= (I − ρW)−1(Xtβ + δY t−1 + γWY t−1 + at1n + c),
ωt + εt ∼ Nn(0, (I − ρW)−1Σε(I − ρW′)−1)

with ωt = (ωt(s1), . . . , ωt(sn))′ and εt = (εt(s1), . . . , εt(sn))′. That is, the (spa-
tially correlated) random effects model and the model errors are jointly modelled
as a Gaussian distribution with a specific structure of the covariance matrix im-
plied by the spatial weights. The covariance matrix of the error term is denoted
by Σε, typically diagonal and or a multiple of the identity matrix in the ho-
moscedastic case. It is worth noting that temporal dependence is implied due
to the temporal autoregressive structure in μt. Moreover, setting δ = γ = 0, we
obtain a simple spatial autoregressive model (SAR), which could also be applied
in a purely spatial setting. A popular alternative specification of the covariance
structure is implied for conditional autoregressive (CAR) models, where

μt = (μt(s1), . . . , μt(sn))′ = Xtβ + at1n + c,

ωt + εt ∼ Nn(0, (I − ρW)−1Σε).

For this approach, additional assumptions on the weight matrix are needed to
ensure a well-defined covariance matrix, e.g., symmetry and positive eigenvalues
of W. Generally, there is a relation between geostatistical and spatial autore-
gressive models, and both approaches are equivalent under certain conditions
(Ver Hoef, Hanks and Hooten, 2018, Theorem 1). Below, our focus will be mainly
on Gaussian models, but for the sake of completeness, it is worth noticing that
the logic of these models can also be transferred to other non-Gaussian cases,
e.g., modelling count data (Congdon, 2022), binary data (Calabrese and Elkink,
2014), or compositions (Thomas-Agnan et al., 2021).

4.1. Regularisation for the mean model

For spatial autoregressive (SAR) and conditional autoregressive (CAR) mod-
els, Gonella, Bourel and Bel (2022) proposed a LASSO estimation procedure
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to select the relevant covariates in the regression term. Among others, Wen,
Shen and Lu (2018) use a spatial autoregressive model with adaptive LASSO
penalty to detect relevant autoregressive parameters in genetic studies. Zhu,
Huang and Reyes (2010) implemented an iterative penalised likelihood esti-
mator with adaptive LASSO penalty to select predictors and neighbourhood
structure in conditional autoregressive and simultaneous autoregressive models
with spatially correlated error terms. Later on, Reyes, Zhu and Aukema (2012)
proposed an adaptive LASSO algorithm for the case of linear regression models
with spatiotemporal neighbourhood structures. Liu (2017) extended the pre-
vious algorithms, allowing for spatial correlation to be captured by either the
spatial lag terms or spatial errors or both through a SARAR model. Also, their
penalised estimates are obtained via least squares approximation to account for
possible non-concavity of the likelihood function. Other examples of penalised
likelihood for spatiotemporal data are in Al-Sulami et al. (2019), in which an
adaptive LASSO method is proposed to simultaneously identify and estimate
spatiotemporal lag interactions in the context of a data-driven semiparametric
nonlinear model. Similarly, Liu (2022) developed an adaptive LASSO variable
selection method for semiparametric spatial autoregressive panel models with
random effects. The estimation is performed by maximising the concentrated
profile likelihood function by means of a non-linear optimisation algorithm.
Eventually, Chang, Hsu and Huang (2010) and Hsu, Chang and Huang (2012)
additionally reduced the model’s complexity by combining covariance tapering
and PMLE for spatial and spatiotemporal settings, respectively.

An alternative spatial LASSO approach has been proposed by Samarov,
Hwang and Litorja (2015). They assume a standard linear model with spatially
varying coefficients, where spatially adjacent coefficients should have similar es-
timates. For this reason, they propose an additional spatially weighted penalty
term in the LASSO regression. More precisely, the squared distance penalty be-
tween two adjacent coefficients β(si) and β(sj) at locations si and sj , weighted
by wij , prevents abruptly varying coefficients of nearby locations. As Samarov,
Hwang and Litorja (2015) showed for the analysis of hyperspectral images, these
weights can also include spectral information of the image.

4.2. Regularisation for the spatial dependence structure

The precision matrix of such spatial autoregressive models is given by

(I − ρW)′Σ−1
ε (I − ρW) (6)

showing the relation to the above-mentioned Cholesky decomposition of geo-
statistical models. Thereby, the spatial weight matrix W implies a certain (ge-
ographical) structure of the Cholesky factors. In this general framework, Zhu
and Liu (2009) proposed a LASSO procedure to estimate the precision matrix,
exploiting the fact that geographically distant observations are likely to be con-
ditionally independent (i.e., the precision matrix is a sparse matrix). In this way,
the zero entries can be automatically identified.
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Instead of the linear relation ρW, the spatial interactions can be modelled us-
ing a series of different weight structures, e.g.,

∑k
i=1 ρiWi with k different weight

matrices Wi. For instance, each weight matrix could only contain the weights
for specific directions (northward, north-eastward, eastward dependence, etc.)
to reveal directional processes (Merk and Otto, 2021). Moreover, penalised esti-
mation procedures can be used to select the true weight matrix W from a series
of alternative weights W1, . . . ,Wk, as for the boosting procedure proposed by
Kostov (2010, 2013) or the LASSO least-squares procedure proposed by Lam and
Souza (2020). Reyes, Zhu and Aukema (2012) applied a spatiotemporal LASSO
procedure to select weight matrices from a set of candidates with increasing
spatial lag order, simultaneously with the temporal lags and spatiotemporal
weight matrices. In other words, they constructed a 2-dimensional grid of the
temporal and spatial lag orders and selected the relevant spatiotemporal inter-
actions. In the context of traffic analysis, Haworth and Cheng (2014) applied
a graphical LASSO procedure to select local neighbourhood structures analo-
gously. Together with the autoregressive coefficients, Reyes, Zhu and Aukema
(2012) also penalised the regressive parameters using a second penalty term.
Similarly, Liu, Chen and Cheng (2018) suggested a LASSO procedure for select-
ing the regressors in the mean equation while allowing for spatial autoregressive
structure in the model. Since ordinary least-squares procedures are inconsistent
in the presence of spatial autoregressive dependence, they proposed a penalised
quasi-maximum likelihood approach incorporating a LASSO penalty with a zero
shrinkage target for the regression coefficients.

In addition to these approaches, there are several attempts to fully esti-
mate the spatial weight matrix W using regularised procedures. Due to com-
plex interactions and high flexibility, the main issue is to uniquely identify each
weight (Manski 1993, and Gibbons and Overman 2012 for a critical review
of spatial econometric procedures). That is, if one weight between region A
and B, say wab, is misspecified, this can be compensated via further linkages
through other locations, e.g., via wac and wcb, and still lead to the same spa-
tial covariance matrix. The same applies to the distinction between directed
links between A and B and vice versa (i.e., wab and wba). To the best of our
knowledge, Zhu and Liu (2009) and Bhattacharjee and Jensen-Butler (2013)
first introduced the idea of estimating the full matrix W, where they implied
further structural constraints for identification. To be precise, they assumed a
triangular weight matrix or symmetric dependence structure. Another struc-
tural constraint, namely a block-diagonal structure, was considered in Lam
and Souza (2016). Further, Ahrens and Bhattacharjee (2015) proposed a two-
step LASSO procedure to estimate the spatial weight matrix in spatial au-
toregressive models. For spatial lag models, a regularised estimation procedure
was introduced by Lam and Souza (2020). Under the assumption of locally
constrained spatial dependence, Merk and Otto (2022) suggested an adaptive
LASSO procedure based on cross-sectional resampling, which makes the es-
timation scalable for large datasets. For spatiotemporal data with unknown
structural breaks in the mean, a constraint two-step LASSO procedure was in-
troduced by Otto and Steinert (2023). Their method could estimate the spatial
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weight matrix together with all structural breaks and the positions of the change
points.

5. Cross validation under spatiotemporal dependence

All regularised estimation procedures require the choice of the degree of regu-
larisation via a so-called penalty parameter, often denoted by λ. If λ = 0, the
models coincide with their unpenalised version, whereas the degree of penalisa-
tion, and thus, the shrinkage of the parameters towards the shrinkage target,
increases with an increasing value of λ.

When a strictly positive λ is used, the estimated coefficients β̂λ are biased
but are more efficient, i.e., their variability is smaller. This is known as the
bias-variance trade-off (see, for instance, Section 2.9 of Hastie, Tibshirani and
Friedman, 2009). Additionally, opting for a λ value that is too small can result
in overfitting, while selecting a value that is too large can lead to underfit-
ting (see, e.g., Boonstra, Mukherjee and Taylor, 2015). The optimal penalty
parameter is usually selected based on model fit or out-of-sample predictive
performance. Other ways to select the penalty parameter are likelihood-based
methods, where λ is interpreted as a variance component and the likelihood is
maximised with respect to the couple (σ2

ε , λ)′. Similarly, the penalty parameter
can be simultaneously estimated with all parameters in a fully Bayesian ap-
proach, where typically vague half-Cauchy prior distribution is assumed for λ
(van Erp, Oberski and Mulder, 2019). Alternatively, Otto and Steinert (2023)
proposed to select the penalty parameter based on the distance between the
sample and model spatial autocorrelation. Below, we will focus on the predom-
inantly applied goodness-of-fit (GoF) criteria.

GoF criteria aim to maximise the model fit by tuning the penalty parameter
λ. The model fit may be assessed either in-sample or, better, out-of-sample, typ-
ically using cross-validation in terms of the distance between the observed and
predicted values. The distance is typically evaluated by Root-Mean-Squared-
Error (RMSE), Mean Absolute Error (MAE), or based on information criteria,
such as Akaike’s Information Criterion (Akaike, 1973, AIC) and the Bayesian
Information Criterion (Schwarz, 1978, BIC). Most models have no closed-form
solutions to determine the optimal value of λ, necessitating grid-search algo-
rithms. Arlot and Celisse (2010) offers a thorough review of the significance of
cross-validation (CV) in regression model selection while providing guidelines
to choose the suitable cross-validation procedure according to the specificities
of the data, including some brief remarks on dependent data and the problem
at hand (e.g., model identification or model selection).

In general, a valid CV must satisfy three properties (Jiang and Wang, 2017):

1. Randomness of partition;
2. Mutual independence of test errors;
3. Independence between the training and test sets.

Regarding the first point, if a model were trained on peak points of seasonal
time series and tested on the valley points, the prediction errors would be over-
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estimated. Thus, while periodic partitioning should be avoided, a random par-
titioning strategy should always be preferred. For illustration of the other two
points, consider overlapping folds or partitions. In such a situation, training
and test sets would be mutually correlated, as well as the resulting training and
test errors. As a direct consequence, the sample variance estimator would re-
markably underestimate the actual variance of test errors. Independence among
the sets can be assured by leaving a certain distance between training and test
samples. Thus, for a given test set, all other correlated samples have to be re-
moved from the training set to avoid overfitting It means, for example, that
when considering spatial or temporal data, the nearby measurements (locations
in space or time points) should be removed from the test set when validating a
point.

Depending on the data structure (e.g., cross-sectional, clustered, spatial, tem-
poral data), as well as on modelling purposes and data-specific features (e.g.,
seasonality or non-Gaussianity), the cross-validation schemes to be adopted
may vary significantly (Arlot and Celisse, 2010; Hewamalage, Ackermann and
Bergmeir, 2023). In the case of independent data, classical CV schemes, such as
random k-fold, stratified k-fold (Zeng and Martinez, 2000; Ludwig, Meyer and
Nauss, 2016) or Generalized CV (Boonstra, Mukherjee and Taylor, 2015) can
be used. For instance, considering ridge regularisation, the GCV estimator can
be used to efficiently estimate the penalty parameter λ even when the number
of observations (thus, the degrees of freedom) is small or the number of param-
eters to be estimated exceeds the number of observations (Golub, Heath and
Wahba, 1979). For spatially and temporally dependent data, standard random
k-fold cross-validation procedures should not be applied. As shown by Schratz
et al. (2019), while performances are overestimated when no spatial information
is included in the CV step, hyperparameter tuning of machine learning models
appears to be less sensitive to the spatial structure, leading to similar results of
non-spatial and spatial CV schemes.

The problems arising from the occurrence of spatiotemporal autocorrela-
tion in model assessment are manifold. First, using random sampling in cross-
validation results in test observations being collected from areas that are spa-
tially close to the training observations (Schratz et al., 2019). Consequently, the
evaluation of prediction performance tends to be overly optimistic because the
training and test datasets become correlated, largely due to the neglected under-
lying correlation structure, whether across space or time (Brenning, 2012; Meyer
et al., 2019; Meyer and Pebesma, 2021; Ploton et al., 2020; Lezama Valdes,
Katurji and Meyer, 2021). That is, if one leaves out a set of observations and
estimates a spatiotemporal model with the remaining observations, informa-
tion from the observations used for model estimation is used to predict the
left-out observations (via the spatiotemporal interactions). Second, when the
spatiotemporal structure is neglected, the estimated residuals will not be mu-
tually independent, which is a critical assumption in many statistical models.
As a result, it is often advisable to exclude complete data blocks across time
and/or space (Roberts et al., 2017).
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5.1. Cross-validation in time

Cross-validation is usually applied for stationary time series by segmenting the
time series into contiguous subsets to preserve the temporal correlation structure
characterising the observations. Two main strategies are commonly used: (1) k-
fold blocked subsets CV, where each subset is treated as the test set in turn,
and the rest are used for training and forecasting (Bergmeir and Benítez, 2012;
Bergmeir, Costantini and Benítez, 2014; Bergmeir, Hyndman and Koo, 2018);
and (2) last-block CV or forward validation CV, where only the final block
is the test set, and previous blocks are used for training (Hjorth, 1982). The
key distinction between the two approaches lies in preserving temporal order.
Indeed, while the latter preserves the natural order of temporal observations
by forecasting future values using past observations (recall that the model is
never tested on past data relative to the training data), the former uses both
past and future values to predict the current test set. In both cases, an hv-block
method can be used to maintain independence between training and test sets,
excluding a window of h observations before and after the test set (Racine, 2000).
Moreover, both strategies allow choosing among several combinations of forecast
horizons and updating schemes for the two samples (Tashman, 2000, e.g., fixed-
origin, rolling-origin and recalibration) to compute forecasting accuracy metrics
(Bergmeir and Benítez, 2012). A graphical synthesis of the two strategies is
reported in Figure 3. Further CV strategies for temporal data can be found
in Jiang and Wang (2017) (Markov-CV and partitioned-CV), Cerqueira, Torgo
and Mozetič (2020) (prequential approach), and Cerqueira et al. (2017) (Monte
Carlo replications last-block approach).

Moreover, time series data are often characterised by non-stationarity of sev-
eral typologies (Hewamalage, Ackermann and Bergmeir, 2023). Sources of non-
stationarity are seasonality, trends (both deterministic and stochastic), struc-
tural breaks or heteroskedasticity. In the case of non-stationary time series, the
previous CV schemes can be strongly misleading, as the unknown future may
differ from the training sample, the test sample, or both. Potential meaning-
ful data splitting strategies include the use of a weighted overlapping approach
in which the whole series is used in training and testing steps (Bergmeir and
Benítez, 2012) or the use of out-of-sample repeated holdout procedures applied
in multiple testing periods (Cerqueira, Torgo and Mozetič, 2020). For an exten-
sive discussion of the role of partitioning schemes for temporal data in a fore-
casting context, see the recent paper by Hewamalage, Ackermann and Bergmeir
(2023) in which detailed guidelines on the most appropriate strategy to imple-
ment based on the problem to be addressed and the relevant characteristics of
the data at hand are provided.

5.2. Cross-validation in space

While spatial data share similar challenges related to autocorrelation with time
series, the former involves at least two-dimensional coordinates, whereas time
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Fig 3. Temporal CV schemes. For a given iteration fold, blue blocks represent time points
in the training set, and red blocks represent time points in the test set. Black blocks are the
buffer points omitted from both the training and test sets.

is one-dimensional (Roberts et al., 2017). In addition, Schratz et al. (2019)
demonstrated that hyperparameter tuning in machine learning approaches is
less sensitive to spatial structure, but they recommend spatial cross-validation to
ensure unbiased predictive performance. Moreover, Meyer and Pebesma (2021)
introduced the “area of applicability” (AOA) concept, defining the model’s valid
geographical area based on training data. That is, the maximum distance (with-
out outliers further apart than 1.5 interquartile ranges) in the covariate space
of the training data defines the AOA in the prediction space. All predictions
which are further apart than the maximum distance are marked as outside the
AOA. The AOA also accounts for the geographical distance if geographical co-
ordinates are included in the covariates. In this way, the idea prevents predicting
new geographic spaces with conditions that are very different from the training
data, where the models can dramatically fail (Meyer and Pebesma, 2022).

To address the above issues, spatial CV methods and spatial variable se-
lection techniques, like recursive and forward spatial feature selection, can be
employed (Meyer et al., 2018, 2019). The time-series block CV structure can be
easily extended to spatial data by partitioning observations into spatial blocks.
These blocks can be created either by dividing the entire space into cells for
gridded data or by establishing spatial buffers between the training and test
data (Roberts et al., 2017). In Figure 4, we represent examples of spatial buffer-
ing both using grids and point data. In the latter, when the CV is performed
by iteratively eliminating one location (and the neighbours within the buffer)
at a time, we refer to spatial leave-one-location-out (SLOO) CV (Gasch et al.,
2015; Meyer et al., 2018, 2019). As per Le Rest et al. (2014), SLOO yields a
criterion similar to the AIC but without accounting for spatial autocorrelation,
meaning it produces the same output as AIC-based model selection in this con-



Regularised estimation and cross-validation in spatiotemporal statistics 319

Fig 4. Spatial buffering for point data (left panel) and for gridded data (right panel). The red
points represent the test locations, while the blue points represent training locations. Black
points represent locations within the buffer of the test set, which are excluded from both the
training and test.

text. However, when spatially correlated variables are in the model, AIC may
not select the right covariates, whereas SLOO performs better. Additionally,
spatial blocking can be applied to point patterns by assigning each location to
its corresponding training polygon.

When multiple locations are used to build the test set, we refer to spatial k-
fold CV (Pohjankukka et al., 2017). To maintain independence between training
and test sets, blocks bordering the test set (for spatial blocking) or locations
within the buffer (for point data) are excluded from the training set (Milà et al.,
2022, b-LLO proposed by). The most relevant problem in this situation is to
determine what is the optimal buffer length that guarantees independence (Tra-
chsel and Telford, 2016).

Possible proposals include (1) fitting a prior variogram to the raw data and
using the resulting distance as block length (Bio et al., 2002); (2) estimating
the autocorrelation range fitting a variogram (Brenning, 2005; Roberts et al.,
2017; Milà et al., 2022) or a circular variogram (Telford and Birks, 2009) to the
model residuals; (3) implementing a spatial independence test to find the mini-
mum distance such that taken one point in the test set and one in the training
set they are uncorrelated (Telford and Birks, 2005). However, as pointed out
by Brenning (2022), residuals-based solutions for estimating the autocorrela-
tion range are model-dependent. Thus, the necessity arises for model-agnostic
validation tools to assess how predictive performance degrades with increas-
ing prediction distances. The author introduces spatial prediction error profiles
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(SPEPs), which link the median prediction distances to the spatial prediction
errors on the test set. This method can be used to understand (1) how the CV
performance of the model decays for increasing distances from the training set
and (2) how competing models perform in predicting values at large and small
distances.

Alternative approaches to spatial blocking have been proposed in recent geo-
statistics literature. For instance, geographical partitioning provides a valid al-
ternative via k-means algorithm (Brenning, 2012). Provided a fixed number
of partitions k, the clustering algorithm partitions the spatial locations into
non-overlapping clusters based on geodesic distance. Unfortunately, the sim-
ple k-means algorithm does not permit controlling the number of points in
each partition, leading to potential heterogeneous partitions. To overcome this
problem, Wang, Finazzi and Fassò (2021) proposed a heuristically modified k-
means algorithm favouring partitions with a similar number of elements. One
may also consider the inverse sampling-intensity weighting system proposed by
de Bruin et al. (2022), in which one can assign more weight to observations
in sparsely sampled areas and less weight to observations in densely sampled
areas to correct for estimation bias. Even if not explicitly built for treating spa-
tial and temporal CV tasks, potential extensions of the above-cited clustering
approaches include the hierarchical spatiotemporal clustering with spatial con-
straints (Chavent et al., 2018) and spatially-clustered regression (Sugasawa and
Murakami, 2021).

5.3. Cross-validation in both space and time

When spatiotemporal data are considered, block-based CV schemes are ob-
tained as a combination of the previously cited spatial and temporal blocking
strategies. Following Meyer et al. (2018), we refer to time-block partitioning
as Leave-Time-Out (LTO), point-in-space partitioning as Leave-Location-Out
(LLO), and space-time partitioning as Leave-Location-and-Time-Out (LLTO).
The three strategies are also called target-oriented to contrast the classical ran-
dom approach. Specifically, the LTO partitions the spatiotemporal observations
along the time axis into blocks of time series common to all locations (i.e., it
performs training by eliminating all time instants assigned to the test block for
all spatial locations and iterates over the time blocks). LLO does the same but
iterates with respect to the spatial blocks and considers the whole time series
of each location. LLTO iterates over both temporal and spatial blocks (i.e., at
a given iteration, the algorithm eliminates all observations of a certain spatial
block and, for all other blocks, eliminates a common temporal block). Note that
LLO coincides with the spatial blocking presented above, whereas LTO coincides
with the temporal k-fold block strategy.

In Figure 5, we show a schematic example of the three above-mentioned
target-oriented CV schemes for spatiotemporal data. Time stamps are reported
on the rows for each panel, while spatial locations are on the columns. Re-
garding the latter, assume that each column represents a pair of longitude and
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Fig 5. Schematic matrix representation of the spatiotemporal target-oriented CV schemes.
In the first row, the LLO algorithm iterates over the columns; in the second row, the LTO
algorithm iterates over rows; in the third row, the LLTO algorithm iterates over spatiotemporal
cells. Blue cells represent values used for training the model, while red cells represent points in
the test set. Black blocks are observations lying within the spatiotemporal buffer that separate
the test set from the training set.

latitude values and that stations are ordered according to some distance crite-
rion. Cells marked in red represent values used in the test set, blue cells are the
values used to train the model, and black cells are the buffering values used to
separate training and test sets. According to the chosen scheme, the algorithm
iterates over the rows (LTO), over the columns (LLO) or over the cells (LLTO).
A geographical representation of the three algorithms is depicted in Figure 6,
in which longitude and latitude are on the x-axis and y-axis, respectively, while
each time stamp defines a specific panel.

A further extension of the LLO approach is the Nearest Neighbour Distance
Matching (NNDM) LOO CV introduced by Milà et al. (2022). This variant com-
pares the nearest neighbour distance distribution function between the test and
training data in the CV process to the nearest neighbour distance distribution
function between the target prediction and training points. In practice, this is
an alternative method to b-LLO in which the neighbours to be excluded are
defined not by distance from the point but by the mismatch between the two
Nearest Neighbour Distance distributions. However, as the NNDM algorithm
uses an LLO strategy, it is computationally intensive and cannot be used with
large datasets. To overcome this issue, Linnenbrink et al. (2023) suggested a
k-fold variant called the kNNDM algorithm.
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Fig 6. Schematic spatial representation of the spatiotemporal CV schemes. In LTO, the al-
gorithm iterates over rows; in LLO, it iterates over columns; in LLTO, it iterates over cells.
Blue cells represent values used for training the model, while red cells represent points in the
test set. Black blocks are observations within the spatiotemporal buffer that separate the test
set from the training set.

6. Software

In this section, we provide a concise yet comprehensive overview of available
software and code for implementing penalised regression models, along with the
cross-validation strategies discussed above. We primarily focus on two major
programming languages for statistical data analysis, that is, R (R Core Team,
2023) and Matlab (Inc., 2022) while also including references to other frame-
works where relevant. The following section encompasses not only geostatistical
modelling packages but also those for generalised linear models (GLMs) and
spatial regression.

6.1. Software for penalised spatiotemporal estimation

At first glance, the implementation of penalised regression algorithms presents
a highly fragmented landscape. Numerous well-documented and structured li-
braries are available for regularised estimation across the most common pro-
gramming languages for cross-sectional or panel data. In contrast, code is typ-
ically provided in an unstructured manner for penalised geostatistical mod-
els. Authors often release it in publicly accessible folders without integrating it
into formal libraries, partially with minimal documentation. Nevertheless, some
spatiotemporal applications can directly be implemented in available software
packages for panel or cross-sectional data.
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In the R programming language, the state-of-the-art library for penalised re-
gression is glmnet (Friedman, Hastie and Tibshirani, 2010; Simon et al., 2011)3.
glmnet supports a broad range of regression models with various LASSO-like
penalised terms for dimension reduction and prediction in GLMs, and it includes
native cross-validation functions for all supported models. For multivariate and
group-structured settings, extensions such as graphical LASSO and (sparse)
group LASSO are available in the glasso (Friedman, Hastie and Tibshirani,
2019), cglasso (Augugliaro et al., 2023), and sparsegl (Liang et al., 2024)
packages. For a comprehensive review of other R packages related to penalised
regression, we refer readers to Tay, Narasimhan and Hastie (2023).

For time-series analysis, several libraries stand out, including LasForecast
(Lee, Shi and Gao, 2022), midasml (Babii, Ghysels and Striaukas, 2022), and
BigVAR (Nicholson, Matteson and Bien, 2017a,b). LasForecast provides
a framework for high-dimensional time series forecasting, with a focus on lin-
ear models, automatic parameter tuning, and cross-validation via rolling win-
dow forecasting. midasml implements sparse group LASSO penalisation for esti-
mating and forecasting high-dimensional mixed-frequency time-series and panel
data regression models. Finally, BigVAR handles high-dimensional multivariate
time series by applying structured penalties to vector autoregressive models,
making it particularly useful for economic and environmental forecasting.

For spatiotemporal data, a notable contribution comes from the SpTe2M li-
brary (Yang and Qiu, 2024). This software applies an exponentially weighted
spatial LASSO penalisation (Samarov, Hwang and Litorja, 2015) to implement
spatiotemporal process monitoring and detect potential change points over time.
Additionally, several libraries support other regularisation techniques, such as
penalised splines, which are frequently adapted for spatial and spatiotemporal
frameworks. For example, the R package pspatreg (Basile et al., 2014; Mínguez,
Basile and Durbán, 2020) employs penalised splines to estimate static and dy-
namic geoadditive semiparametric spatial regression models with spatial lags
(e.g., SAR or spatial error models). Similarly, the mgcv package (Wood, 2017)
implements generalised ridge regression with multiple smoothing parameters,
making it suitable for fitting generalised additive mixed models with extensions
to spatiotemporal, panel, and grouped data.

Similar to R, the Matlab language also provides several functions for pe-
nalised regression in both frequentist (McIlhagga, 2016, see, for example, the
penalized toolbox for penalised GLMs with customisable optimisation set-
tings) and Bayesian frameworks (Makalic and Schmidt, 2016, for instance, the
BayesReg toolbox). A notable example of a spatiotemporal modelling toolbox is
DSTEM (Finazzi and Fassò, 2015; Wang, Finazzi and Fassò, 2021), which supports
the fitting, mapping, and validation of mixed models for univariate, multivari-
ate, and functional spatiotemporal data using an efficient state space represen-
tation. In terms of dimension reduction through penalised maximum likelihood
estimation, as discussed in Section 3.1, Fassò, Maranzano and Otto (2022) and

3As of October 2024, using the dlstats library (Yu, 2023), glmnet has been downloaded
nearly 6 million times since January 2019, with a steady increase over time.
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Maranzano, Otto and Fassò (2023) introduced new regularisation frameworks
for multivariate and functional data within the DSTEM environment.

6.2. Software for spatiotemporal cross-validation

Regarding the task of model validation and selection through cross-validation,
several solutions for spatial and spatiotemporal CV methods are implemented
in the two considered statistical software.

Within the R programming language, the following libraries are available:
1. sperrorest (Brenning, 2012) implements distance-based K-means spatial

partitioning,
2. blockCV (Valavi et al., 2019) implements block partitions and buffering

for spatial data, as well as providing geostatistical tools for measuring spa-
tial autocorrelation ranges in candidate covariates for model training and
simplifying the choice of block and buffer sizes. It also offers an interactive
tool for visualising spatial blocks as a function of folds and block/buffer
sizes,

3. CAST (Meyer, Milà and Ludwig, 2022; Meyer et al., 2024) implements sev-
eral spatiotemporal partitioning strategies, including NNDM, kNNDMCV,
LLO, LTO and LLTO schemes, as well as allows performing spatial vari-
able selection to select suitable predictor variables according to their con-
tribution to the spatial model performance,

4. mlr3spatiotempcv (Schratz et al., 2021) is a package being part of the
mlr3 ecosystem (Lang et al., 2019) which provides a unified implementa-
tion of a wide range of statistical learning models with feature and model
selection tools and model evaluation capabilities. Specifically,
mlr3spatiotempcv implements k-fold temporal and spatial blocking par-
titioning with and without buffering described in Meyer et al. (2018), and
resumes the other partitioning techniques used in sperrorest, blockCV,
skmeans (Zhao and Karypis, 2002, hierarchical agglomerative clustering
algorithms by), and CAST.

Moving to the Matlab environment, available software for spatiotemporal
data partitioning includes the two-fold spatial CV strategy implemented in the
DSTEM package (Wang, Finazzi and Fassò, 2021) for the so-called hidden dy-
namic geostatistical model. Furthermore, spatiotemporal application of target-
oriented CV schemes can be found in Otto et al. (2024) and Maranzano, Otto
and Fassò (2023).

7. Summary and conclusion

In the field of spatiotemporal statistics and econometrics, this review has demon-
strated the vital role of penalised methods in coping with the growing com-
plexity of modern spatiotemporal data. With the increasing availability of geo-
referenced data in various formats and types, the demand for adaptable, inter-
pretable, and efficient modelling approaches becomes increasingly evident. This
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is where regularisation techniques step in, emerging as versatile tools for model
selection, dimension reduction, and exploring spatial dependencies for classic
statistical models. The advantage of interpretability sets them apart from the
often enigmatic nature of deep learning models.

In our review paper, we have presented a landscape of different regularisa-
tion methods, from the nuances of shrinkage to the mechanisms of penalisation
strategies. We have underlined their practicality and effectiveness in the statis-
tical modelling of geospatial data. We also briefly looked at Bayesian regularised
estimation methods. Since the regularised estimation methods require the choice
of a penalty term, which is usually done by cross-validation, we have also sum-
marised cross-validation methods that can be used in the case of spatiotemporal
dependence.

Despite the already substantial literature, integrating and extending regu-
larisation techniques into geostatistical modelling is a promising approach for
the future. One notable avenue is the application of regularisation methods for
estimating spatial covariance functions, offering novel insights into spatial rela-
tionships. A promising approach is estimating spatial covariance functions using
regularised splines, which allow an automated choice of basis functions by reg-
ularising the smoothness of the estimated function. However, the difficulty lies
in ensuring that the covariance function is valid, i.e. that it generates positive-
definite covariance matrices. Whereas the literature on regularised estimation
for spatiotemporal models is dominated by Gaussian models, there are some
attempts explicitly designed for non-Gaussian data, which warrants a further
notable avenue for future research.

There is a need for a more extensive exploration of regularised methods in
spatial autoregression/econometrics, particularly in estimating weighting ma-
trices. This matrix is usually assumed to be known, which is rarely the case in
practice, but allows the results to be interpreted in a geographical sense. To en-
hance the interpretability of these estimated matrices, one avenue to consider is
using traditional distance-based weighting matrices as shrinkage targets, thereby
enabling a geographical interpretation. Generally, the quest for enhanced com-
putational efficiency in the application of regularisation methods for large-scale
spatiotemporal applications remains a pertinent concern in both fields.

In summary, in a world where the diversity and volume of geospatial data
continue to increase, this review paper is intended to provide guidance for un-
derstanding regularised methods in spatial and spatiotemporal statistics to ad-
vocate their use for geospatial analyses.
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