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Abstract
An interesting thread in the research of Boolean functions for cryptography and coding theory is the study of secondary

constructions: given a known function with a good cryptographic profile, the aim is to extend it to a (usually larger)

function possessing analogous properties. In this work, we continue the investigation of a secondary construction based on

cellular automata (CA), focusing on the classes of bent and semi-bent functions. We prove that our construction preserves

the algebraic degree of the local rule, and we narrow our attention to the subclass of quadratic functions, performing several

experiments based on exhaustive combinatorial search and heuristic optimization through Evolutionary Strategies (ES).

Finally, we classify the obtained results up to permutation equivalence, remarking that the number of equivalence classes

that our CA-XOR construction can successfully extend grows very quickly with respect to the CA diameter.

Keywords Cellular automata � Symmetric cryptography � Bent functions � Nonlinearity � Combinatorial search �
Evolutionary strategies

Mathematics Subject Classification 94A60 � 06E30 � 68Q80

1 Introduction

The design of symmetric ciphers traditionally revolves

around the concepts of confusion and diffusion, introduced

by Shannon (1949) as a general guideline to develop

encryption functions that are able to frustrate statistical

attacks. Specifically, confusion prescribes that the rela-

tionship between the ciphertext and the encryption key

should be as complicated as possible, while the aim of

diffusion is to spread the statistical structure of the plaintext

over the ciphertext—or equivalently, to make the value of

every ciphertext bit depend on many plaintext bits (ideally

all of them).

The study of diffusion layers in block ciphers mainly

leverage on the theory of error-correcting codes to come up

with transformations that propagate the differences of very

similar plaintexts in an optimal way (see e.g. the MIX-

COLUMNS operation in AES Daemen and Rijmen 2020,

which relies on an MDS matrix). On the other hand,

Boolean functions (i.e., mappings of the type

f : f0; 1gn ! f0; 1g) with specific properties are usually

sought to design confusion layers, for instance in the form

of combining or filtering functions in stream ciphers (Carlet

2021). In block ciphers, S-boxes (i.e., the vectorial gener-

alization of Boolean functions) are used to design the

confusion layer instead, as in the Substitution-Permutation

Network paradigm (Stinson and Paterson 2018). The

rationale behind choosing a particular Boolean function

when designing a symmetric cipher usually boils down to

check several cryptographic properties, which are aimed at

countering specific attacks.

For the above reason, research in the past decades

focused on methods for the construction of Boolean
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functions with good cryptographic properties, about which

the reader can find an excellent account in Carlet’s recent

book (2021). These methods are usually classified in two

approaches. In primary constructions, one seeks to con-

struct Boolean functions with certain properties starting

‘‘from scratch’’, i.e., by leveraging on other combinatorial

objects such as permutations (see the Maiorana–McFar-

land construction McFarland 1973) or finite vector spaces

(as in Dillon’s partial spread construction 1974). On the

other hand, a secondary construction starts from an exist-

ing Boolean function with a certain cryptographic profile,

and constructs a new one (usually over a larger number of

variables) possessing similar properties. The best known

example in this respect is Rothaus’s construction (1976).

Cellular automata (CA) have been extensively investi-

gated as a computational building block for designing

several cryptographic primitives. The most famous exam-

ples include Wolfram’s pseudorandom number generator

for Vernam-like stream ciphers (Wolfram 1986), which

was based on the chaotic dynamics of the elementary local

rule 30 (later shown to be vulnerable to correlation and

approximation attacks Meier and Staffelbach 1991; Koc

and Apohan 1997), and the v nonlinear transformation by

Daemen et al. (1994), used as an S-box in KECCAK (Bertoni

et al. 2011) and other symmetric ciphers. As far as we

know, most of these works focused on the study of certain

local rules that, when plugged into a CA, would yield good

cryptographic functions. Such studies, however, usually

rely on ad hoc arguments that mostly depend on the

specificities of the single rules, and are hardly generaliz-

able. To the best of our knowledge, there have been no

significant attempts to use CA as a general method to

define primary or secondary constructions of Boolean

functions with good cryptographic properties. The only

exception we are aware of is the use of linear bipermutive

CA as a primary construction for bent Boolean functions

belonging to the partial spreads class (Gadouleau et al.

2020), recently proposed by the first author of this paper

together with M. Gadouleau and S. Picek.

In this paper, we continue the investigation of a sec-

ondary construction of Boolean functions set forth in the

paper ‘‘Exploring Semi-bent Boolean Functions Arising

from Cellular Automata’’ (Mariot et al. 2020b), presented

at ACRI 2020. The idea underlying the construction, which

we name the CA-XOR construction, is quite simple: a CA

of n cells is evolved for a single time step, and the XOR of

the output cells is taken as the value of a Boolean function

of n variables, where the CA initial configuration consti-

tutes the input vector. The properties of the resulting

function depend on the underlying local rule used to evolve

the CA, which is itself a Boolean function of d� n vari-

ables. The goal is thus to start from a Boolean function

with good cryptographic properties such that, when used as

a local rule in the CA-XOR construction, results in a larger

function with similar good properties. Hence, we actually

obtain a recursive secondary construction with our method:

indeed, one can define an infinite family of functions by

just adding enough cells to the CA. In particular, given a

starting function of d variables, it is possible to define a

new function for each n[ d.

The present manuscript extends the work in Mariot et al.

(2020b) along several directions:

• We enlarge the scope of our investigation by consid-

ering also bent functions, instead of only semi-bent

ones as in the original paper. Since bent functions exist

only when the number of variables n is even, we focus

our attention on those (semi-)bent functions that, when

used as a starting point in our CA-XOR construction,

always yield bent functions when the number of CA

cells n is even, and semi-bent functions when n is odd.

• We refine the computational search approach laid down

in Mariot et al. (2020b). By leveraging on some known

results on quadratic bent functions, we simplify the

combinatorial algorithm by enumerating only the set of

homogeneous algebraic normal forms (ANFs) of degree

2, i.e., those without linear terms. This allows us to

extend our exhaustive search experiments up to diam-

eter d ¼ 7.

• For higher diameters where exhaustive search becomes

unfeasible, we devise an Evolutionary Strategies (ES)

optimization algorithm. Exploiting the fact that there

exists only one (semi-)bent Boolean function of d

variables up to Extended Affine (EA)-equivalence, we

use ES to evolve affine transformations applied to this

function. The optimization objective thus becomes to

find a suitable affine transformation such that the

resulting quadratic function can be extended by the CA-

XOR construction up to n ¼ 16 cells.

• Finally, we gather all the functions obtained through the

exhaustive search and ES optimization experiments,

and classify them up to permutation equivalence (Carlet

2021). We report the numbers of the obtained equiv-

alence classes, observing that they grow very quickly

with respect to the diameter of the CA.

The remainder of this paper is structured as follows. Sec-

tion 2 recalls the basic definitions and results concerning

Boolean functions and CA used throughout the paper.

Section 3 gives a general overview of the literature con-

cerning the use of CA in symmetric cryptography, and

covers the main works related to the algebraic and heuristic

constructions of Boolean functions with good crypto-

graphic properties. Section 4 introduces the CA model

considered in this work and defines the CA-XOR con-

struction of Boolean functions, proving some basic theo-

retical facts about it. Section 5 describes the search
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algorithm used to exhaustively enumerate quadratic func-

tions with a homogeneous ANF, while Sect. 6 is devoted to

the ES optimization algorithms used to evolve quadratic

functions on larger diameters. Section 7 presents the results

of our experiments, providing a classification of the

obtained functions up to permutation equivalence. Sec-

tion 8 summarizes the key contributions of the paper, and

discusses several open problems for future research on the

subject.

2 Preliminary definitions

In this section, we gather all background definitions related

to Boolean functions and CA used in the following. As a

general notation, let F2 ¼ f0; 1g be the finite field of two

elements, where the sum operation is the XOR (denoted by

�) while multiplication is the logical AND (denoted by

simple concatenation). The n-dimensional vector space

over F2 (i.e., the set of all n-bit vectors) is denoted Fn2. The

support of x 2 Fn2 is defined as suppðxÞ ¼ fi : xi 6¼ 0g,
while the Hamming weight of x is wHðxÞ ¼ jsuppðxÞj, i.e.,
the number of 1s in x. The vector space Fn2 is usually

equipped with the scalar product defined as a � x ¼
a

n

i¼1
aixi for all a; x 2 Fn2. Further, for all n 2 N we denote

by ½n� ¼ f1; . . .; ng the set of the first n positive integer

numbers.

2.1 Boolean functions

The body of literature devoted to Boolean functions for

cryptography and coding theory is quite extensive. In this

section, we only recall the essential notions related to the

main cryptographic properties of Boolean functions that we

will use in the rest of the paper, referring the reader to

Carlet (2021) for a more thorough treatment of the topic.

A Boolean function of n 2 N variables is a mapping

f : Fn2 ! F2, i.e., a function from the set of n-bit vectors to

a single bit. There exist several ways to represent Boolean

functions, the simplest one being the truth table. Assuming

that Fn2 is endowed with a certain total order (e.g., the

lexicographic order), the truth table of a function f : Fn2 !
F2 is the 2n-bit vector Xf 2 F2

n

2 that specifies the output

value of f for each of the vectors in Fn2. The weight of f is

defined as the Hamming weight of its truth table Xf . Fur-

ther, function f is called balanced if wHðXf Þ ¼ 2n�2, that is,

if its truth table is composed of an equal number of 0s and

1s. Balancedness is a fundamental cryptographic property

for Boolean functions used in stream and block ciphers.

Although being the simplest representation, most of the

cryptographic properties of a Boolean function are difficult

to define in terms of its truth table. To this end, another

more useful unique representation is the Algebraic Normal

Form (ANF). Remarking that x2 ¼ x for all x 2 F2, the

ANF of a Boolean function f : Fn2 ! F2 is defined as the

following multivariate polynomial over the quotient ring

F2½x1; . . .; xn�=ðx21 � x1; . . .; x
2
n � xnÞ:

Pf ðxÞ ¼ a
I22½n�aI

Y

i2I
xi

 !
; ð1Þ

where 2½n� is the power set of ½n� ¼ f1; . . .; ng. The alge-

braic degree of f is the cardinality of the largest subset

I 2 2½n� in its ANF such that aI 6¼ 0, or equivalently the size

of its largest nonzero monomial. As a cryptographic cri-

terion, the algebraic degree should be as high as possible.

Affine functions are defined as those Boolean functions

with degree at most 1. In particular, the ANF of an affine

function is defined as a scalar product between a fixed

vector a 2 Fn2 and the input vector x 2 Fn2, plus a constant

b 2 F2, i.e., Aa;bðxÞ ¼ a � x� b. If b ¼ 0, then the function

is called linear. Thus, there exist 2n linear functions of

n variables. In a similar way, quadratic functions are the

Boolean functions of degree at most 2. The fact that ‘‘at

most’’ is used instead of ‘‘exactly’’ is for simplicity of

language when talking about the derivatives of Boolean

functions (see Carlet 2021, p. 53 for further explanations).

Further, the set of all Boolean functions of degree at most

d has a vector space structure, since it is closed under sum.

The vector of the ANF coefficients aI and the truth

table of f are related through the Möbius transform:

f ðxÞ ¼ a
I22½n�:I�suppðxÞaI : ð2Þ

In particular, the Möbius transform is an involution,

meaning that one can apply the same formula in Eq. (2) to

recover the vector of ANF coefficients from the truth

table of a function.

A third way to uniquely represent Boolean functions is

the Walsh transform, which captures several cryptographic

properties. Formally, the Walsh transform of a Boolean

function f : Fn2 ! F2 is defined for all a 2 Fn2 as:

Wf ðaÞ ¼
X

x2Fn2

ð�1Þf ðxÞ�a�x: ð3Þ

A function f is balanced if and only if the Walsh coefficient

over the null vector is zero, i.e., Wf ð0Þ ¼ 0. More in gen-

eral, the coefficient Wf ðaÞ measures the correlation

between f and the linear function a � x. Thus, the Walsh

transform can be used to compute the nonlinearity of a

Boolean function f, which is defined as the minimum

Hamming distance of (the truth table of) f from the set of

all affine functions. More precisely, the nonlinearity of f

equals
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Nf ¼ 2n�1 � 1

2
�max
a2Fn2

fjWf ðaÞjg: ð4Þ

The nonlinearity of Boolean functions used in the combiner

and filter model of stream ciphers should be as high as

possible (Carlet 2021). From Eq. (4), this means that the

maximum absolute value of the Walsh transform should be

as low as possible. By Parseval relation, this can happen

only when all Walsh coefficients have the same absolute

value 2
n
2, yielding the covering radius bound:

Nf � 2n�1 � 2
n
2
�1. Functions satisfying this bound are

called bent, and they exist only when n is even (since the

Walsh transform can yield only integer numbers). Such

functions are not balanced, since Wf ð0Þ ¼ �2
n
2, and thus

they cannot be used directly in the design of stream and

block ciphers. However, there exist several ways to con-

struct highly nonlinear balanced functions from bent ones

(such as, for example, XORing the value of the function

with an independent additional variable). For n odd, the

quadratic bound is given by Nf � 2n�1 � 2
nþ1
2
�1. The name

of this bound comes from the fact that it can be always

achieved by functions of algebraic degree 2. In general,

finding the highest possible nonlinearity between the

quadratic and the covering radius bound is an open prob-

lem for n[ 7 odd.

Plateaued functions represent an interesting general-

ization of bent functions, since they can also be balanced

while still retaining high nonlinearity. Formally, a Boolean

function f : Fn2 ! F2 is plateaued if its Walsh transform

takes only three values, i.e., if Wf ðaÞ 2 f�k; 0;þkg for all

a 2 Fn2. In particular, a plateaued function is semi-bent if

k ¼ 2
nþ1
2 for n odd and k ¼ 2

nþ2
2 for n even. This means that

the nonlinearity of a semi-bent function equals 2n�1 � 2
n�1
2

when n is odd and 2n�1 � 2
n
2 when n is even. Hence, semi-

bent functions reach the quadratic bound for nonlinearity

when n is odd.

We conclude this section by giving a short overview of

the equivalence relations studied in the context of Boolean

functions. The size of the space of n-variable Boolean

functions is 22
n

, i.e., it is superexponential in n. Therefore,

one cannot perform an exhaustive search of all Boolean

functions to find those with the desired cryptographic

properties for a specific application already for n[ 5.

Using equivalence relations that preserve these properties

helps in reducing the search space size, by looking only at

the set of equivalence classes. The coarsest equivalence

relation used for Boolean functions is permutation equiv-

alence. Namely, two functions f ; g : Fn2 ! F2 are called

permutation equivalent if there exists a permutation p :
½n� ! ½n� such that

f ðx1; x2; . . .; xnÞ ¼ gðxpð1Þ; xpð2Þ; . . .; xpðnÞÞ ð5Þ

for all x 2 Fn2. In simpler terms, f and g are permutation

equivalent if it is possible to reorder the input variables of g

to match the output of f. A more general relation, which we

will use extensively in this paper, is affine equivalence. In

this case, we say that f and g are affinely equivalent if there

exist an invertible n	 n binary matrix M and a vector v 2
Fn2 such that

f ðxÞ ¼ gðMx> � vÞ ð6Þ

for all x 2 Fn2. In this case, the two functions are equivalent

if by applying the affine transformation Mx> � v to the

input vector x and then evaluating g on the result, one gets

the output of f computed directly on x. When v ¼ 0 is the

null vector we say that the two functions are linearly

equivalent. Remark that permutation equivalence is a

special case of linear equivalence, since one can define a

permutation of the input variables in terms of a permuta-

tion matrix. Concerning the cryptographic properties, affine

equivalence (and therefore, linear and permutation equiv-

alence which are special cases) preserves the algebraic

degree and the nonlinearity.

Two further equivalence relations are usually studied in

the context of Boolean functions, namely Extended Affine

(EA) equivalence and Carlet–Charpin–Zinoviev (CCZ)

equivalence. However, we will not cover them here, since

CCZ equivalence coincides with EA equivalence for sin-

gle-output Boolean functions (i.e., it is relevant only for

vectorial Boolean functions, or S-boxes), while EA-

equivalence does not preserve the algebraic degree. In

particular, we are interested in the theorem below, whose

proof can be found in Carlet (2021):

Theorem 1 The following results hold:

• If n is even, every bent quadratic function of n variables

is affinely equivalent to the function

bðxÞ ¼ x1x2 � x2x3 � � � � � xn�1xn: ð7Þ

• If n is odd, every semi-bent quadratic function of n

variables is affinely equivalent to the function

sðxÞ ¼ x1x2 � x2x3 � � � � � xn�2xn�1 � xn: ð8Þ

Therefore, there exists only one (semi-)bent function of

n variables up to affine equivalence, whose ANF is the sum

of all separate binomials in increasing order (excluding the

last variable which is summed independently for semi-bent

functions on an odd number of variables).

380 L. Mariot et al.

123



2.2 Cellular automata

CA are one of the oldest nature-inspired computational

models studied in the literature. Indeed, they were initially

considered by Ulam (1952) and Von Neumann (1966) in

the 1950–1960s to investigate self-replication phenomena.

Nowadays, CA are applied both as a simulation tool for

complex systems and as a computing device in the most

disparate domains, ranging from physics to ecology. In

essence, a CA is characterized by a regular lattice of cells

which can be in a discrete set of values. The global state of

the system is updated by the synchronous application of a

shift-invariant transformation. In other words, each cell

applies the same local rule in parallel to decide its next

state. Such rule is evaluated on the configuration of states

formed by the cell itself and its neighboring cells. The size

of the neighborhood is determined by the diameter of the

CA.

Usually, research on CA focuses on the study of their

long-term dynamic behavior, which emerges from repeat-

edly applying the local rule on each cell for multiple time

steps. On the contrary, in this work we adopt a different

viewpoint: since we are mainly interested in CA as a layer

to implement meaningful cryptographic primitives, we

focus only on their short-term behavior. This implies, in

particular, analyzing the algebraic properties of the func-

tions induced by the application of the CA local rule over a

single time step. Although there are approaches in the lit-

erature that consider the synthesis of Boolean circuits by

evolving the CA for multiple steps (see e.g. Hazari et al.

2018), we decided to employ this setting for two reasons:

first, it greatly simplifies the theoretical analysis of the

cryptographic primitives defined by CA. Second, several

examples of symmetric ciphers that exploits CA adopt this

design direction. In particular, past experience seems to

indicate that the best way to employ CA in a symmetric

cipher is as nonlinear transformations applied for a single

time step, and combining their output with that of other

non-CA components to improve diffusion. The best known

example of this design pattern is the v transformation used

in KECCAK (Bertoni et al. 2011), which is now part of the

SHA-3 standard for cryptographic hash functions.

We now introduce the basic CA model considered in the

rest of this work.

Definition 1 A No-Boundary Cellular Automaton (NBCA)

of length n and diameter d� n is a vectorial Boolean

function F : Fn2 ! Fn�dþ1
2 defined for all x ¼

ðx1; x2; . . .; xnÞ 2 Fn2 as:

Fðx1; x2; . . .; xnÞ ¼ ðf ðx1; . . .; xdÞ; . . .; f ðxn�dþ1; . . .; xnÞÞ;
ð9Þ

where f : Fd2 ! F2 is a Boolean function of d variables

called the CA local rule.

Hence, a NBCA can be seen as a lattice of n cells

arranged over a line, where each cell i 2 ½n� d þ 1�
computes its output state by applying the local rule f on

itself and the d � 1 right neighbors fiþ 1; . . .; iþ d � 1g.
The rightmost d � 1 cells are effectively lost after the

application of the global rule F, since they do not have

enough right neighbors to compute their next state.

Although there are methods in the literature to address this

issue (e.g. with null or periodic boundary conditions), in

this work we are not interested in keeping the number of

cells constant, since as we argued above we only consider a

single application of the CA global rule F. Remark that the

NBCA model as stated in Definition 1 has also been

studied for other cryptographic applications, namely in

Mariot et al. (2019) for CA-based S-boxes, and in Mariot

et al. (2020a) for mutually orthogonal Latin squares.

Since the local rule f : Fd2 ! F2 is a Boolean function, it

can be defined by a truth table Xf of 2d bits. In the CA

literature, the truth table of a local rule is usually repre-

sented by its Wolfram code (1983), which corresponds to

the decimal encoding of Xf . Figure 1 reports an example of

CA of length 8 and diameter d. The local rule, defined as

f ðxi; xiþ1; xiþ2Þ ¼ xi � xiþ2, has Wolfram code 90.

3 Related works

As we mentioned in the Introduction of this paper, CA have

a long history of being investigated for cryptographic

applications. The reason for this interest is grounded in two

main observations. First, the shift-invariance property that

characterizes CA allows for uniform and efficient hardware

implementations: as we recalled in Sect. 2.2 the global rule

of a CA is completely determined by the parallel applica-

tion of the same local rule at all sites of the cellular array.

Second, depending on the underlying local rule, the

dynamic evolution of a CA can be quite complex and

unpredictable. To a first approximation, it seems interesting

to exploit the dynamics of certain CA when designing a

symmetric cipher that follows the confusion and diffusion

principles.

However, relying only on the dynamical properties of

CA is usually not sufficient to realize a sound crypto-

graphic primitive, since reasonable levels of security often

require much more stringent criteria than those studied in

the field of dynamical systems, such as sensitivity to initial

conditions (Kurka 2003). This has been the case with the

first proposal to employ CA for cryptographic applications,

namely Wolfram’s pseudorandom generator (1986).
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Pseudorandom numbers and sequences are crucial in many

cryptographic applications, particularly in the case of

Vernam-like stream ciphers (Stinson and Paterson 2018). In

this type of cipher, a short secret key is stretched through a

pseudorandom generator, which produces a keystream of

the same length as the plaintext. Then, the encryption

simply amounts to the bitwise XOR of the plaintext and the

keystream. Decryption works symmetrically by computing

the XOR between the ciphertext and the keystream, which

the receiver can re-create by running again the pseudo-

random generator using the same secret key as a seed.

Clearly, the security of this system entirely relies on the

properties of the pseudorandom generator, with the

assumption that it cannot be efficiently predicted by an

attacker. Wolfram proposed to use a periodic-boundary CA

equipped with the local rule 30 of diameter d ¼ 3 to

implement such pseudorandom generator. Specifically, the

idea was to set the secret key as the initial configuration of

the CA, and then to evolve it for several iterations. The

trace of the central cell (that is, the sequence of states

assumed by the cells through different time steps) was then

used as a keystream to be XORed with the plaintext.

Wolfram argued the security of this generator on the

basis of several system-theoretic and statistical criteria.

Indeed, rule 30 belongs to the so-called ‘‘class 3’’ of local

rules in Wolfram’s taxonomy, which induce CA with a

chaotic dynamics. Moreover, CA equipped with rule 30 are

also known to satisfy Devaney’s definition of topological

chaos (Leporati and Mariot 2014). Still, Wolfram’s pseu-

dorandom generator was later found to be vulnerable

against two serious attacks. The first one was demonstrated

by Meier and Staffelbach (1991), who showed that one can

mount a correlation attack that is able to efficiently recover

the CA initial configuration. Koc and Apohan (1997) fur-

ther showed that rule 30 can be easily approximated by

affine functions, and this allows to efficiently invert the CA

iteration (and thus again, to easily recover the initial con-

figuration). Martin (2008) later showed that the vulnera-

bilities of Wolfram’s generator can be explained in terms

of the cryptographic properties of rule 30, when interpreted

as a Boolean function of three variables. Specifically,

Meier and Staffelbach’s attack succeeds because rule 30 is

not first-order correlation immune, while Koc and Apo-

han’s attack is related to the low nonlinearity of rule 30.

For the reasons above, more recent works focused on

improving Wolfram’s generator by searching for rules with

a larger diameter and a better trade-off of cryptographic

properties. Formenti et al. (2014) used the DIEHARD

statistical test suite (Marsaglia 1996) to investigate the

quality of pseudorandom sequences produced by CA with

local rules of diameter 5 of the best nonlinearity and cor-

relation immunity. Leporati and Mariot (2014) focused on

the class of bipermutive rules (which are known to induce

chaotic CA) and performed a combinatorial search of

highly nonlinear correlation-immune rules of diameter 5

and 7. The three best rules of diameter 5 that passed all

tests of the NIST suite (Bassham et al. 2010) in that work

were later selected to design the nonlinear components of

the CARPENTER (Lakra et al. 2018) and PENTAVIUM (John

et al. 2020) CA-based stream ciphers.

Other works considered different directions to design

pseudorandom generators based on CA. Sipper and

Tomassini (1996) were the first to propose the use of non-

uniform CA to generate pseudorandom sequences, i.e., CA

where each cell may use a different local rule to update its

state. In particular, they proposed a cellular programming

technique where a co-evolutionary algorithm is used to

evolve the set of rules to be used in the CA. Tomassini and

Perrenoud (2001) and Seredynski et al. (2004) subse-

quently applied the cellular programming approach also to

the case of two-dimensional CA for designing strong

pseudorandom generators.

A further research direction examined CA-based pseu-

dorandom number generators where the cells have non-

binary states. The main motivation underlying this

approach is of combinatorial nature: for a given diameter,

there are many more local rules on a non-binary alphabet

than in the classic Boolean case, which gives more possi-

bilities to find interesting local rules for pseudorandom

generation. Clearly, this also brings the problem of actually

1 1 1 0 0 1

f(0, 0, 1) = 1

00 1 1 0 1 0 0

(a) CA 90 evaluated over 00110100.

xi, xi+1, xi+2 f(xi, xi+1, xi+2)

000 0
100 1
010 0
110 1
001 1
101 0
011 1
111 0

(b) Truth table of rule 90.

Fig. 1 Example of CA of n ¼ 8

cells equipped with rule 90 of

diameter d ¼ 3, defined as

f ðxi; xiþ1; xiþ2Þ ¼ xi � xiþ2
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implementing multi-states CA in hardware, an issue which

can be easily addressed in the binary case. Bhattacharjee

et al. (2017) considered CA rules on a ternary alphabet

with diameter d ¼ 3, finding one rule that was able to pass

several statistical and empirical tests for randomness.

Later, Bhattacharjee and Das (2019) extended the scope of

this investigation to CA with a decimal alphabet, finding a

few rules whose randomness can compete with some of the

best pseudorandom generators proposed in the literature,

both based on CA and not.

Finally, a few recent works contemplated additional CA

models for pseudorandom generation. For instance, Man-

zoni and Mariot (2018) performed a statistical investigation

through the NIST test suite of a Wolfram-like generator

based on asynchronous CA, where the cells do not update

all at the same time. Interestingly, the authors of that work

noticed that the quality of the pseudorandom sequences

generated by some local rules actually improves by adding

a certain amount of asynchrony. Further, the first author of

this manuscript investigated a new model of pseudorandom

number generators grounded on the use of orthogonal CA

(OCA; Mariot 2021). OCA have been recently introduced

in the literature as a method to generate orthogonal Latin

squares, with the original purpose of designing secret

sharing schemes (Mariot and Leporati 2018; Mariot et al.

2020a). The rationale for considering OCA also for pseu-

dorandom number generation is that they guarantee a

minimum amount of diffusion, since orthogonal Latin

squares are related to MDS codes. Moreover, since

orthogonal Latin squares represent a permutation over the

Cartesian product of their support set, the dynamics of the

resulting generator is also reversible. In particular, Mariot

(2021) describes a combinatorial search algorithm to enu-

merate all linear OCA pairs that can generate sequences

with maximum period, a property which is usually sought

in good pseudorandom generators.

4 The CA-XOR construction

Almost all works discussed in the previous section have

one aspect in common: the preeminence of the statistical

approach to assess the quality of pseudorandom generators

designed by CA. However, it is widely known that the

suitability of a pseudorandom generator for cryptographic

applications cannot be established only by means of sta-

tistical tests (Carlet 2021; Stinson and Paterson 2018). In

particular, statistical tests are useful to discard bad gener-

ators, but are in general not sufficient to conclude that

certain specific attacks will not break them. Few papers

such as Formenti et al. (2014), Leporati and Mariot (2014)

and Mariot (2021) partially address this issue by consid-

ering also the cryptographic properties of the CA local

rules, in combination with the statistical quality of the

pseudorandom sequences that they produce. Nevertheless,

such works are a minority in this research field. Moreover,

cryptographic criteria of Boolean functions like balanced-

ness, algebraic degree and nonlinearity were introduced for

pseudorandom generators models that are different from

those based on CA. Except for correlation-immunity and

nonlinearity, which have been shown to be linked respec-

tively to the Meier–Staffelbach and the Koc–Apohan

attacks (Martin 2008; Leporati and Mariot 2014), there is

no systematic way to translate the relevance of a crypto-

graphic property for Boolean functions in a CA-based

pseudorandom generator model.

In this paper we follow the opposite direction: instead of

searching for Boolean functions that are embedded in a

CA-based pseudorandom generator, here we use CA to

synthesize Boolean functions with good cryptographic

properties. The rationale is that such Boolean functions

defined by CA can then be used in more established

designs of pseudorandom generators (such as the combiner

or the filter model), and whose security is better under-

stood. In particular, we focus on defining a secondary

construction of Boolean functions, where a CA is used to

expand a known function f of d variables used as a CA

local rule, and to generate a new function f 
 of n� d

variables.

We now give the formal definition of our CA-XOR

construction for Boolean functions, using the no-boundary

CA model introduced in Sect. 2.2.

Definition 2 Let F : Fn2 ! Fn�dþ1
2 be a CA of length n� d

equipped with the local rule f : Fd2 ! F2 of diameter

d 2 N. Then, the Boolean function generated by f through

the CA F is the n-variable function f 
 : Fn2 ! F2 defined

for all x 2 Fn2 as:

f 
ðxÞ ¼a
n�dþ1

i¼1
f ðxi; . . .; xiþd�1Þ ¼ f ðx1; . . .; xdÞ � � � �

� f ðxn�dþ1; . . .; xnÞ:
ð10Þ

In other words, the CA-XOR construction works by first

applying the CA vectorial function F induced by the local

rule f to the input vector x 2 Fn2 of n variables; then, the

value of the resulting function f 
 is obtained by computing

the XOR of all the n� d þ 1 output cells of the CA. To

illustrate this idea, Fig. 2 gives a schematic depiction of

how the CA-XOR construction.

Secondary constructions are mainly employed to gen-

erate new Boolean functions from old ones with analogous

cryptographic properties. For example, Rothaus’s con-

struction (1976) starts from three bent functions of n

variables, whose sum is also bent, and produces a new bent
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function of nþ 2 variables. We thus need to analyze which

properties are preserved by our construction. The next

lemma shows that the algebraic degree is one such

property:

Lemma 1 Let f : Fd2 ! F2 be a Boolean function of d

variables. For any n� d; the function f 
 defined by the CA

construction of Eq. (10) has the same algebraic degree of f.

Proof The result is clearly true when n ¼ d, since in that

case f � f 
. We thus only consider the case where n[ d.

Let t be the algebraic degree of f. Each summand in

Eq. (10) has degree t, since it always corresponds to the

local rule f applied on a different neighborhood. We thus

have to show that not all terms of degree t cancel each

other out. Consider the first summand f ðx1; . . .; xdÞ, and let

St ¼ fI � 2½d� : jIj ¼ t; aI 6¼ 0g be the set of monomials of

degree t in the ANF of f. Further, denote by Imin 2 St the

minimum element of St with respect to the lexicographic

order, that is, if Imin ¼ fi1; . . .; itg and J ¼ fj1; . . .; jtg is

any other set of St, it holds ik\jk for some k 2 ½t� and
ih ¼ jh for all h 2 ½k � 1�. This monomial cannot be

cancelled by any other monomial in the ANF of the

subsequent summands, since by Eq. (10) their neighbor-

hoods are shifted by at least one coordinate with respect to

that of the first summand. Indeed, if we take the lth

summand f ðxl; . . .; xlþd�1Þ for l 2 f2; . . .; n� d þ 1g, and
we denote by Ilmin its minimum monomial of degree t in

lexicographic order, we have that Ilmin ¼ ði1 þ l; . . .; it þ lÞ,
which is distinct from ði1; . . .; itÞ ¼ Imin. Hence, the vari-

ables in the monomial Ilmin cannot overlap completely those

of Imin, which means that the two terms do not cancel each

other out. Similarly, the monomial Imin cannot be canceled

by any non-minimal monomial of degree d in the lth

summand. Hence, the monomial corresponding to Imin
appears in the ANF of (10), which proves that the algebraic

degree of f 
 is also t.

Remark that the result above does not hold if one con-

siders our construction with periodic boundary CA, where

no cells are lost upon application of the local rule. Indeed,

the proof of Lemma 1 relies on the presence of non-over-

lapping neighborhoods, that do not cancel each other out in

the ANF of the function f 
. On the contrary, with periodic

boundary conditions one can find several examples where

this property is not verified, and where the algebraic degree

of the function generated by the CA-XOR construction is

strictly less than the degree of the original local rule. This

is an additional reason why we sticked to the NBCA model

in this paper, and we did not consider evolving the CA for

multiple time steps. This not a huge limitation however,

since our CA-XOR construction is actually recursive and

gives rise to an infinite family of Boolean functions: f 
 can
be defined over any number of variables n� d by simply

adding n cells to the CA.

Fig. 2 Representation of our

CA-based construction for

Boolean functions

384 L. Mariot et al.

123



5 Exhaustive search

We now investigate the effectiveness of the CA-XOR

construction in building Boolean functions with interesting

properties from a cryptographic standpoint. In particular,

we are interested in finding, and possibly characterising, a

family of Boolean functions from which it is possible to

build, by means of our construction, other functions with

similar cryptographic properties but with an arbitrary

number of variables.

As remarked in Sect. 2.1, there are many properties that

need to be taken into account when choosing Boolean

functions to be used in the combiner or the filter model.

Referring to nonlinearity, bent functions are of particular

interest, since they reach the covering radius bound.

Nonetheless, given that bent functions in n variables exist

only if n is even, and that they are not balanced, in this

study we also consider semi-bent functions, since they exist

also for odd number of variables, they reach the quadratic

bound of nonlinearity, and they can also be balanced. More

precisely, in the rest of this paper we focus on the search of

(semi-)bent Boolean functions that, when plugged into our

CA-XOR construction, result in a bent function f 
 when

the number n of CA cells is even, and in a semi-bent

function when n is odd. In this section we present a com-

binatorial algorithm to exhaustively search for such func-

tions up to diameter 7, while in the next one we will use

evolutionary algorithms to search them for larger

diameters.

Lemma 1 states that the functions yielded by the CA-

XOR construction in Eq. 10 have the same algebraic

degree of the initial function. This remark is especially

interesting when considering the case of quadratic func-

tions. Indeed, quadratic functions are a proper subset of

plateaued functions (Carlet 2021), which in turn include

both bend and semi-bent functions, as mentioned in

Sect. 2.1.

Moreover, Theorem 1 shows that there exists only a

single (semi-)bent quadratic function up to affine equiva-

lence. Therefore, it is of interest to classify which quadratic

functions can be successfully extended by the CA-XOR

construction under coarser equivalence relations.

On account of Lemma 1, in Mariot et al. (2020b) we

devised an algorithm that exhaustively visits all ANFs of

degree d, retrieve their truth tables via the M€obius trans-

form, and then apply our construction to see which of these

functions always produce semi-bent functions up to n ¼ 20

cells. Considering the case of quadratic functions, the

resulting search space explored by the SEARCH-ANF algo-

rithm had the following size with respect to the diameter of

the starting local rule:

Sd;2 ¼ 2

d

2

� �

� 1

0
BB@

1
CCA � 2

d

1

� �

¼ 2
dðd�1Þ

2 � 1
� �

� 2d:

ð11Þ

In our previous work (Mariot et al. 2020b), we applied this

algorithm up to diameter d ¼ 6, where there are approxi-

mately 2 million quadratic functions to explore. Here, we

refine our search approach by leveraging on Theorem 1. As

one can see from Eqs. (7) and (8), the unique (semi-)bent

quadratic function that exists up to affine equivalence is

homogeneous, meaning that its ANF does not have any

linear term. Thus, it makes sense to limit our exhaustive

search only to homogeneous quadratic ANFs, since this

reduces the search space size. Clearly, linear terms do not

influence the nonlinearity of the functions resulting from

our CA-XOR construction, which is the main property one

aims to preserve when considering (semi-)bent functions.

In particular, the nonlinearity of a quadratic function is

determined only by the monomials of degree 2 in its ANF.

Our search algorithm is based on the ANF representa-

tion. In general, given a target algebraic degree t, the 2d-bit

vector of the ANF coefficients can be easily constrained to

yield only Boolean functions of degree t: it suffices to set at

least one of the coefficients aI such that jIj ¼ t to 1, while

all coefficients aJ with jJj[ t must be set to 0. Moreover,

since we consider only homogeneous functions, also the

coefficients related to monomials of degree lower degree

than t can be set to 0. Then, by using the Möbius Transform

recalled in Eq. (2), one can recover the truth table starting

from its ANF coefficients, and check if the corresponding

function is bent or semi-bent by computing its Walsh

spectrum. In this case, we can finally test if our construc-

tion generates quadratic bent or semi-bent functions (de-

pending on whether the number of variables n is even or

odd) up to a specified number of variables.

Algorithm 1 reports the pseudocode of the simplified

search procedure, adapted to the enumeration of quadratic

homogeneous ANFs.

Heuristic search of (semi-)bent functions based on CA 385

123



Algorithm 1 Pseudocode of the simplified exhaustive search algorithm.
Search-Quad-ANF(d, n)
Initialization:

1. Build the family I2 = {I ⊆ [d] : #I = 2} of monomials of degree 2
2. Set all 2d ANF coefficients of f to 0

Loop: For all subsets T ⊆ I2 (except the empty set), do:

1. Reset all 2-degree terms in the ANF to 0
2. For all T ∈ T , set the ANF coefficient aT to 1
3. Set f (noitauqE(mrofsnarTsuiböMehtot 2)) of the ANF
4. Compute the Walsh transform (Equation (3)) of f
5. If f is (semi-)bent, then apply the CA-XOR construction up to n cells
6. If f satisfies the target, print it

The SEARCH-QUAD-ANF algorithm takes as input only

the diameter d of the starting local rule and the number of

cells n up to which to test the CA-XOR construction. The

initialization step consists in constructing the family of all

subsets of 2 variables out of d, and then set all coefficients

in the ANF vector to zero. Next, the main loop performs

the enumeration of all 2

d
2

� �

� 1 non-empty subsets of of

two variables. For each of them, the algorithm set the

corresponding ANF coefficients to 1, then recover the truth

table of the function via the Möbius Transform and checks

whether the function is bent or semi-bent, depending on the

parity of d. If d is even, then the target is to check that f is a

bent function, and that by applying the CA-XOR con-

struction for all d\i� n the resulting function is bent when

i is even, and semi-bent when i is odd. If this is the case,

then the starting function f is printed.

Remark that SEARCH-QUAD-ANF is simpler than the

SEARCH-ANF algorithm described in Mariot et al. (2020b),

since only quadratic monomials are considered. More

precisely, SEARCH-ANF takes as input the number of vari-

ables d and the target degree t, and then performs two

nested loops over all possible sets of monomials having

degree at most t � 1 (inner loop), and all possible non-

empty sets of monomials of degree exactly t (outer loop).

Dealing with homogeneous functions, only the outer loop

is needed for our purposes. Since functions in d variables

have at most
d
2

� �
terms of degree 2 in their ANFs, such

loop is executed 2

d
2

� �

� 1 times, and thus it is feasible

for functions up to 7 variables. For comparison, Table 1

displays the size of the spaces Qd and Hd, respectively

visited by the SEARCH-ANF and the SEARCH-QUAD-ANF

algorithms.

6 Evolutionary search

As it can be seen from Table 1, the size of the search space

for the set of quadratic functions quickly grows for small

sizes already, even by considering only the subset of

homogeneous ANFs. For this reason, we enlarged our

empirical search of quadratic (semi-)bent functions that our

CA-XOR construction can extend by using Evolutionary

Algorithms (EA).

EA and other nature-inspired optimization heuristics

such as swarm intelligence algorithms have been exten-

sively used to optimize the cryptographic properties of

Boolean functions. Examples include Genetic Algorithms

(GA; Millan et al. 1998; Mariot and Leporati 2015a;

Manzoni et al. 2020), Genetic Programming (GP; Castro

et al. 2003; Hrbacek and Dvorak 2014; Picek et al. 2015)

and Particle Swarm Optimization (PSO; Saber et al. 2006;

Mariot and Leporati 2015b). Most of these works usually

focus on the use of EA and swarm intelligence algorithms

as alternative constructions of Boolean functions with good

cryptographic properties. In particular, such methods do

not work like primary or secondary constructions, since

they blindly search only on the basis of a fitness function to

Table 1 Search space sizes for the set of all quadratic functions Qd

and the set of all homogeneous quadratic functions Hd of d variables

d Qd Hd

3 56 7

4 1008 63

5 32,736 1023

6 2,097,088 32,767

7 268,435,328 2,097,151

8 68,719,476,480 268,435,455
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be optimized, which measures a combination of some

properties of interest. Consequently, it is difficult to com-

pare the functions obtained with these methods with those

produced by a primary or secondary construction. More-

over, directly employing EA to find quadratic functions of

diameter d[ 7 that our CA-XOR construction can extend

presents another practical problem: namely, one should

adopt a two-stage optimization strategy where first EA are

used to evolve (semi-)bent functions. Then, in the second

phase the EA should tweak the evolved functions (without

decreasing their nonlinearity) so that when plugged into a

no-boundary CA, the CA-XOR construction can success-

fully extend them up to a large number of variables.

6.1 Candidate solutions encoding

Consequently, it would be useful to find a representation of

candidate solutions such that the EA is constrained to

explore only (semi-)bent quadratic functions, in order to

focus the optimization effort only on maximizing the

number of cells in the CA-XOR construction. To this end,

recall from Theorem 1 that there exists only one bent (re-

spectively, semi-bent) quadratic function of d variables for

all d 2 N, which we defined as b(x) in Eq. (7) (respec-

tively, s(x) in Eq. (8)). Since each bent quadratic function

can be obtained by applying a suitable affine map to

b(x) (or s(x) if we consider the semi-bent case), our basic

idea to apply EA to this problem is to evolve a population

of affine transformations, rather than evolving a population

of specific Boolean functions as done in the majority of the

works in this area.

Given the number of variables d of the starting Boolean

function, the genotype of an individual in the EA popula-

tion is thus a pair c ¼ ðM; vÞ, where M is a d 	 d invertible

Boolean matrix, while v 2 Fd2 is a vector of d bits. Then, the

phenotype corresponding to c is the function f : Fd2 ! F2
defined as follows:

f ðxÞ ¼ bðMx> � vÞ; if d is even;

sðMx> � vÞ; if d is odd;

�
ð12Þ

where the parity of d is used to understand whether we

need to start from a bent function or semi-bent function

when d is even or odd, respectively.

6.2 Mutation operator

Beside the encoding of the candidate solutions, an EA

needs also to specify a set of variation operators that are

used to create new solutions from the current populations.

In this case, we chose to employ Evolutionary Strategies

(ES), since they only need to define a mutation operator.

As a matter of fact, other EA such as genetic algorithms

also define crossover operators, which take in input two

individuals in the population and output one or more off-

spring solutions. However, defining a crossover operator

that preserves our encoding for the candidate solutions is

not straightforward. Indeed, while the vectors v defining

the translation of an affine map is easy to handle with

classic operators (such as one-point crossover), the same

cannot be said for the linear transformation part. In fact, to

define a crossover operator between two parents p1 ¼
ðM; vÞ and p2 ¼ ðM0; v0Þ, one would need to devise a

method to combine the matrices M;M0 such that the result

is still an invertible matrix. For this reason, we decided to

focus only on mutation, which applies a random small

tweak to the genotype of a single individual, rather than

combining those of two parents.

Mutation of the translation vector v is easy to perform:

one can apply the classic mutation operators developed in

the EA literature for bitstring-based encodings. In partic-

ular, we adopted a simple bit-flip operator which, for all

positions i 2 ½d�, complements the bit vi with mutation

probability ppl 2 ð0; 1Þ. The mutation of the linear map

part of an individual, namely the invertible matrix M, starts

from the following observation. Let Mi be the d 	 d � 1

matrix obtained by removing column i 2 ½d� from an

invertible d 	 d Boolean matrix M. Since M is invertible,

Mi must have rank d � 1. Hence, the linear transformation

L : x7!Mx> generates the whole vector space Fd2, while the

map L0 : x 7!Mix
> spans a subspace Si � Fd2 of dimension

d � 1. Let Ci ¼ Fd2 n Si be the complementary set of the

subspace Ci. By definition of subspace spanned by the

matrix Mi, each vector in Ci will be linearly independent

with each vector in Si. Therefore, if we take any vector

c 2 Ci and add it to Mi, we obtain an invertible d 	 d

matrix.

In other words, our mutation operator works by

replacing with probability pl each column of a matrix with

a random vector chosen from the complementary set of the

span generated by the remaining columns. In this way, the

rank (and thus the invertibility) of the matrix is preserved.

Algorithm 2 summarizes our operator as high-level

pseudocode.
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Algorithm 2 Pseudocode of the mutation operator used in our ES algorithm.
Mutation-Affine(M, v, d, pµ)
Vector part:

Loop: for all i ∈ [d] do:

1. Draw a random number r ∈ (0, 1)
2. If r < pµ, then flip the bit vi

Matrix part:
Loop: for all i ∈ [d] do:

1. Draw a random number r ∈ (0, 1)
2. If r < pµ, then:

(a) Remove the i-th column of M
(b) Generate the span Si of the remaining columns
(c) Pick a random vector c from Ci = F

d
2 \ Si and add it to M

6.3 Overall ES algorithm structure

There exist two main types of ES (Luke 2015): in ðl; kÞ
ES, a population of k initial individuals is first generated at

random, and then their fitness is assessed. The l best

individuals are selected for reproduction. In particular,

each of the l selected individuals will generate k=l new

individuals through mutation, thereby producing a new

population of size k. The ES process is then iterated by

assessing the fitness of the new k individuals, selecting the

l best ones, and applying the mutation operators on them,

and so on. The ðlþ kÞ ES differs only in the fact that the l
best individuals from the old population are added to the

new population of k individuals generated through muta-

tion. Therefore, in this case the parents directly compete

also with their children.

For our experiments, we employed both ðl; kÞ and ðlþ
kÞ ES. Since the encoding of the candidate solutions

described in Sect. 6.1 guarantees that the phenotypes of the

individuals are all (semi-)bent quadratic functions, the fit-

ness function used in our ES optimizes another criterion. In

particular, each function f in the population is used as a

local rule of diameter d of a no-boundary CA. Given a

target number of cells N 2 N, the fitness function applies

the CA-XOR construction for all CA lengths d\n�N 0,
where N 0 �N is the maximum number of cells up to which

the construction always yields bent functions when n is

even, and semi-bent functions when n is odd. The fitness

value of f is then N 0 � d, i.e., the number of cells over

which the CA-XOR construction successfully works when

using f as a local rule.

7 Experiments

We applied the exhaustive search algorithm described in

Sect. 5 on quadratic functions of 3� d� 7 variables, while

we applied the ES approach for functions of 8� d� 12

variables. In the case of exhaustive search, we tested our

CA-based construction up to N ¼ 20 cells. On the other

hand, with ES the fitness function applied the CA-XOR

construction to a maximum of N ¼ 16 cells. This is due to

the fact that testing the construction up to 20 cells for a

single starting function of more than seven variables takes

approximately 20 s on the server that we used to perform

our experiments, which is equipped with a Core i7 pro-

cessor running at 2.8 GHz. Since the ES algorithm needs to

test several thousands of these functions during the evo-

lution process, the amount of time required to finish a

single optimization run would have been to large. For the

other parameters related to the ES, we set k ¼ d and

l ¼ dk=3e. Therefore, the diameter of the local rules

determines the number of individuals generated at each

iteration. The mutation probability was set to pl ¼ 1=k, a
common choice in the field of GA and ES (Luke 2015).

Further, for each considered diameter 8� d� 12 we per-

formed 100 independent runs of ðl; kÞ and ðlþ kÞ ES,

giving a budget of 1000 generations for each run.

To investigate the results of our exhaustive search and

ES experiments, we classified the obtained functions up to

permutation equivalence. As a matter of fact, we already

know by Theorem 1 that there exists only a single (semi-

)bent quadratic function up to affine equivalence, hence a

classification based on this equivalence relation would not

give us any insight into the functions found in our search

experiments. Consequently, we needed to a coarser relation

to discriminate different groups of functions that our CA-

XOR construction can successfully extend.
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7.1 Exhaustive Search Results

The results for the exhaustive enumeration algorithm

SEARCH-QUAD-ANF are summarized in Table 2. In partic-

ular, for each considered diameter d, we report in column

Hd the total number of homogeneous quadratic functions

in d variables, that is 2

d
2

� �

� 1. Columns C16 and C20

show the total number of functions over which our con-

struction works up to 16 and 20 cells respectively, namely:

• bent functions in an even number of variables that

always produces bent functions when an even number

of variables is added to the CA and semi-bent functions

when an odd number of variables is added to the CA;

• semi-bent functions in an odd number of variables that

always produces semi-bent functions when an even

number of variables is added to the CA and bent

functions when an odd number of variables is added to

the CA.

In other words, we are looking for Boolean functions that

always yield bent functions when n is even and semi-bent

functions when n is odd. The last column reports the

number of distinct classes represented among the functions

for which the construction works up to n ¼ 20 cells, up to

permutation equivalence.

One can see from the table that the number of distinct

permutation classes grows at increasing diameter. Namely,

one starts from the smallest instance d ¼ 3 where no

quadratic semi-bent functions can be extended by the CA-

XOR construction up to n ¼ 16 cells (let alone n ¼ 20

cells), while for diameter d ¼ 7 one already obtains 797

distinct classes. It is also of interest to notice that for d ¼ 7

the number of functions for which the construction works

up to 20 cells is lower than for 16 cells, while for lower

diameters it is always equal. This might indicate that, as the

diameter grows, there are more (semi-)bent quadratic

functions for which the CA-XOR construction works up to

a certain point, but then fails for all larger CA lengths.

7.2 Evolutionary strategies results

The results obtained by our ðl; kÞ and ðlþ kÞ ES are

somehow surprising. The first remarkable finding is that,

for all considered diameters 8� d� 12, both ES algorithms

always managed to converge to an optimal solution in all

100 experimental runs. In other words, the two algorithms

always find (semi-bent) quadratic functions that the CA-

XOR construction can successfully extend up to N ¼ 16

cells. This is especially interesting considering the limited

computational budget of 1000 generations given to both

algorithms.

Consequently, for each diameter we obtained a set of

200 functions that can be extended up to 16 cells. We

filtered these solutions by checking which among them

could also be extended to 20 cells under the CA-XOR

construction. For each diameter, this step always resulted

in an average of 30 functions, which is in line with the

observation done for diameter d ¼ 7 in the previous sec-

tion: for larger diameters, there exist many (semi-)bent

quadratic functions that can be extended up to a certain

point, after which our construction always fails.

Finally, we classified the filtered functions of diameter

d ¼ 8 and 9 up to permutation equivalence. As a matter of

fact, to check if two functions of d variables are permu-

tation equivalent one needs to find a suitable permutation

among all the d! possible ones. Considering that we had an

average of 30 functions to classify, this task was feasible

only up to d ¼ 9 variables. After the classification step, we

observed the remarkable fact that each function belongs to

a different equivalence class. This remark seems to confirm

what we already observed in the previous section with the

exhaustive search results, namely that the number of per-

mutation classes grows quickly with respect to the CA

diameter. Moreover, our ES algorithms seem to be able to

uniformly sample among the distribution of such classes,

instead of getting stuck in the same local optima. This is a

reasonable question, since having an evolutionary algo-

rithm that always converges over all experimental runs

could indicate that it always finds the same solution.

However, this doubt is cleared by the fact that we obtained

as many permutation equivalence classes as many func-

tions in our classification.

8 Conclusions

In this paper, we continued the investigation of a secondary

construction of Boolean functions based on CA that was

initially introduced in Mariot et al. (2020b). The CA-XOR

Table 2 Results obtained with the exhaustive search experiments

d Hd C16 C20 classes

3 7 0 0 0

4 63 3 3 1

5 1023 22 22 7

6 32,767 318 318 44

7 2,097,151 15,656 10,974 797

We denote with Hd the total number of homogeneous quadratic

functions in d variables, and with Cn the number of functions for

which the construction applied up to n cells always produces bent or

semi-bent functions (for n even or odd, respectively)
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construction uses a Boolean function f : Fd2 ! F2 as a local

rule of diameter d in a no-boundary CA of n� d cells, and

defines a new function f 
 : Fn2 ! F2 of n variables by

computing the XOR of the CA output cells once the local

rule f has been evaluated over the input vector. A prelim-

inary theoretical investigation shows that such construction

preserves the algebraic degree of the starting function used

as a local rule, which motivates the focus on quadratic

functions. Indeed, quadratic functions have a well-known

structure, and it is known that there exist only one (semi-

)bent quadratic function up to affine equivalence. There-

fore, it is interesting to find which quadratic functions can

be successfully extended by the CA-XOR construction,

using coarser equivalence relations such as permutation

equivalence. To this end, we refined the combinatorial

algorithm proposed in Mariot et al. (2020b) to enumerate

only homogeneous quadratic ANFs, which allowed us to

exhaustively search all (semi-)bent quadratic functions that

our construction can extend up to diameter d ¼ 7. Further,

we devised a ðl; kÞ and ðlþ kÞ ES algorithm to evolve

functions that can be extended by the CA-XOR construc-

tion for diameters 8\d� 12. The results of our search

experiments show that the number of permutation equiva-

lence classes quickly grows with respect to the diameter of

the CA local rule. In particular, beside observing a growing

number of distinct classes in the exhaustive search exper-

iments, this observation is also corroborated by the fact that

the functions found by our ES algorithms all belong to

different classes.

The present work is far from exhausting all aspects

related to the CA-XOR construction, and there are several

avenues for further research on the topic. The first direction

worth exploring is a deeper investigation of the equiva-

lence classes found in our heuristic search experiments. In

particular, it would be interesting to give a theoretical

characterization of the equivalence classes that the CA-

XOR can extend recursively, i.e., no matter the CA length

one always obtain a (semi-)bent function. A possible way

to approach this problem is to use the graph representation

described in Tokareva (2015). In particular, the graph of a

quadratic bent function is defined as the graph where the

nodes are the input variables, and two nodes are connected

by an edge if and only if the multiplication of the corre-

sponding variables occurs as a quadratic monomial in the

ANF of the function. A theoretical characterization of the

functions which can be extended by the CA-XOR con-

struction might then be inferred by the properties of such

graphs.

A second idea to explore concerns the generalization of

the CA-XOR construction. In particular, one could con-

sider variations where not all output cells in the CA are

XORed to define the constructed function, but only a subset

of them. Notice that this is equivalent to study the com-

ponent functions of the S-box defined by the no boundary

CA. As a matter of fact, the interest for studying the CA-

XOR construction originated from the need of character-

izing the cryptographic properties of S-boxes defined by

CA. The authors of Mariot et al. (2019) recently showed an

upper bound on the nonlinearity of such S-boxes in terms

of the nonlinearity of the underlying local rule. The CA-

XOR construction studied in this paper can be seen as a

single component of a CA-based S-box, namely the linear

combination that sums all output coordinates. Conse-

quently, studying under which conditions a generalized

CA-XOR construction yields Boolean functions with a

specific value of nonlinearity could help in deriving new

bounds for CA-based S-boxes.

Finally, a very interesting research direction would be to

investigate the CA-XOR construction with functions of

higher algebraic degree, such as cubic bent functions. In

this regard, we performed a preliminary test on the cubic

semi-bent functions of 6 variables found in Mariot and

Leporati (2015a) through a genetic algorithm. However,

none of them could be successfully extended by our CA-

XOR construction. This remark calls for a broader and

more systematic evaluation, by repeating the exhaustive

search experiments performed in this paper also for cubic

functions, up to a number of variables where this is still

feasible.
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