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Abstract
With the explosive growth of artificial intelligence (AI) and big data, it has become vitally 
important to organize and represent the enormous volume of knowledge appropriately. 
As graph data, knowledge graphs accumulate and convey knowledge of the real world. It 
has been well-recognized that knowledge graphs effectively represent complex informa-
tion; hence, they rapidly gain the attention of academia and industry in recent years. Thus 
to develop a deeper understanding of knowledge graphs, this paper presents a system-
atic overview of this field. Specifically, we focus on the opportunities and challenges of 
knowledge graphs. We first review the opportunities of knowledge graphs in terms of two 
aspects: (1) AI systems built upon knowledge graphs; (2) potential application fields of 
knowledge graphs. Then, we thoroughly discuss severe technical challenges in this field, 
such as knowledge graph embeddings, knowledge acquisition, knowledge graph comple-
tion, knowledge fusion, and knowledge reasoning. We expect that this survey will shed 
new light on future research and the development of knowledge graphs.
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1  Introduction

Knowledge plays a vital role in human existence and development. Learning and repre-
senting human knowledge are crucial tasks in artificial intelligence (AI) research. While 
humans are able to understand and analyze their surroundings, AI systems require addi-
tional knowledge to obtain the same abilities and solve complex tasks in realistic scenarios 
(Ji et al. 2021). To support these systems, we have seen the emergence of many approaches 
for representing human knowledge according to different conceptual models. In the last 
decade, knowledge graphs have become a standard solution in this space, as well as a 
research trend in academia and industry (Kong et al. 2022).

Knowledge graphs are defined as graphs of data that accumulate and convey knowledge 
of the real world. The nodes in knowledge graphs represent the entities of interest, and the 
edges represent the relations between the entities (Hogan et al. 2021; Cheng et al. 2022a). 
These representations utilize formal semantics, which allows computers to process them 
efficiently and unambiguously. For example, the entity “Bill Gates" can be linked to the 
entity “Microsoft" because Bill Gates is the founder of Microsoft; thus, they have relation-
ships in the real world.

Due to the great significance of knowledge graphs in processing heterogeneous informa-
tion within a machine-readable context, a considerable amount of research has been con-
ducted continuously on these solutions in recent years (Dai et  al. 2020a). The proposed 
knowledge graphs are widely employed in various AI systems recently (Ko et  al. 2021; 
Mohamed et al. 2021), such as recommender systems, question answering, and information 
retrieval. They are also widely applied in many fields (e.g., education and medical care) to 
benefit human life and society (Sun et al. 2020; Bounhas et al. 2020).

Therefore, knowledge graphs have seized great opportunities by improving the quality 
of AI systems and being applied to various areas. However, the research on knowledge 
graphs still faces significant technical challenges. For example, there are major limitations 
in the current technologies for acquiring knowledge from multiple sources and integrating 
them into a typical knowledge graph. Thus, knowledge graphs provide great opportunities 
in modern society. However, there are technical challenges in their development. Conse-
quently, it is necessary to analyze knowledge graphs with respect to their opportunities and 
challenges to develop a better understanding of knowledge graphs.

To deeply understand the development of knowledge graphs, this survey extensively 
analyzes knowledge graphs in terms of their opportunities and challenges. Firstly, we dis-
cuss the opportunities of knowledge graphs in terms of two aspects: AI systems whose 
performance is significantly improved by knowledge graphs and application fields that ben-
efit from knowledge graphs. Then, we analyze the challenges of knowledge graphs by con-
sidering the limitations of knowledge graph technologies. The main contributions of this 
paper are as follows:

•	 Survey on knowledge graphs: We conduct a comprehensive survey of existing knowl-
edge graph studies. In particular, this work thoroughly analyzes the advancements in 
knowledge graphs in terms of state-of-the-art technologies and applications.

•	 Knowledge graph opportunities: We investigate potential opportunities for knowledge 
graphs in terms of knowledge graph-based AI systems and application fields that utilize 
knowledge graphs. Firstly, we examine the benefits of knowledge graphs for AI sys-
tems, including recommender systems, question-answering systems, and information 
retrieval. Then, we discuss the far-reaching impacts of knowledge graphs on human 
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society by describing current and potential knowledge graph applications in various 
fields (e.g., education, scientific research, social media, and medical care).

•	 Knowledge graph challenges: We provide deep insights into significant technical chal-
lenges facing knowledge graphs. In particular, we elaborate on limitations concerning 
five representative knowledge graph technologies, including knowledge graph embed-
dings, knowledge acquisition, knowledge graph completion, knowledge fusion, and 
knowledge reasoning.

The rest of the paper is organized as follows. Section 2 provides an overview of knowledge 
graphs, including the definitions and the categorization of existing research on knowledge 
graphs. To examine the opportunities of knowledge graphs, Section 3 and Section 4 intro-
duce relevant AI systems and application fields, respectively. Section  5 details the chal-
lenges of knowledge graphs based on the technologies. Finally, we conclude this paper in 
Section 6.

2 � Overview

In this section, the definition of knowledge graphs is provided first. Then, we categorize 
significant state-of-the-art research in this area.

2.1 � What Are Knowledge Graphs?

A knowledge base is a typical data set that represents real-world facts and semantic rela-
tions in the form of triplets. When the triplets are represented as a graph with edges as rela-
tions and nodes as entities, it is considered a knowledge graph. Generally, the knowledge 
graph and knowledge base are regarded as the same concept and are used interchangeably. 
In addition, the schema for a knowledge graph can be defined as an ontology, which shows 
the properties of a specific domain and how they are related. Therefore, one essential stage 
of knowledge graph construction is ontology construction.

In 2012, Google first put forward Knowledge Graph by introducing their knowledge 
base called Google Knowledge Graph (Ehrlinger and Wöß 2016). Afterward, many knowl-
edge graphs are introduced and adopted such as:

•	 DBpedia, a knowledge graph that intends to discover semantically meaningful informa-
tion form Wikipedia and convert it into an effective well-structured ontological knowl-
edge base in DBpedia (Auer et al. 2007).

•	 Freebase, a knowledge graph which is built upon multiple sources that provides a 
structured and global resource of information (Bollacker et al. 2008).

•	 Facebook’s entity graph, a knowledge graph that converts the unstructured content of 
the user profiles into meaningful structured data (Ugander et al. 2011).

•	 Wikidata, a cross-lingual document-oriented knowledge graph which supports many 
sites and services such as Wikipedia (Vrandečić and Krötzsch 2014).

•	 Yago, a quality knowledge base that contains a huge number of entities and their cor-
responding relationships. These entities are extracted from multiple sources such as 
Wikipedia and WordNet (Rebele et al. 2016).
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•	 WordNet, a lexical knowledge base measuring the semantic similarity between words. 
The knowledge base contains a number of hierarchical concept graphs to analyse the 
semantic similarity (Pedersen et al. 2004).

A knowledge graph is a directed graph composed of nodes and edges, where one node 
indicates an entity (a real object or abstract concept), and the edge between the two 
nodes conveys the semantic relation between the two entities (Bordes et  al. 2011). 
Resource Description Framework (RDF) and Labeled Property Graphs (LPGs) are two 
typical ways to represent and manage knowledge graphs (Färber et  al. 2018; Baken 
2020). The fundamental unit of a knowledge graph is the triple (subject, predicate, 
object) (or (head, relation, tail)), i.e., (Bill Gates, founderOf, Microsoft). Since the rela-
tion is not necessarily symmetric, the direction of a link matters. Therefore, a knowl-
edge graph can also be seen as a directed graph in which the head entities point to the 
tail entities via the relation’s edge.

Fig. 1 depicts an example of a simple knowledge graph. As shown in Fig. 1, nodes e1 
and e2 darkened in color are connected by relation r1 , which goes from e1 to e2 . There-
fore, e1 , e2 , and r1 can form the triplet (e1, r1, e2) , in which e1 and e2 are the head and tail 
entities, respectively.

2.2 � Current Research on Knowledge Graphs

In recent years, knowledge graphs have gained extensive research interest. Plenty of 
studies have focused on exploring knowledge graphs. This paper conducts a compre-
hensive survey on knowledge graphs and lists seven important categories of current 
research on this topic. Fig.  2 illustrates a schema of the most popular research lines 
regarding knowledge graphs. Among them, AI systems are services that utilize knowl-
edge graphs for their foundation, and application fields are domains where knowledge 
graphs reach. These two research lines are listed for discussing the opportunities of 
knowledge graphs. Another five research lines are five main knowledge graph technol-
ogies corresponding to five tasks. In this paper, we introduce these five technologies 
and emphasize their limitations to give useful insights into the major challenges of the 
knowledge graphs.

Fig. 1   An example of a knowl-
edge graph. In this knowledge 
graph, (e1, r1, e2) is a triplet that 
indicates e1 and e2 are connected 
by relation r1
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2.2.1 � Knowledge Graph Embedding

Knowledge graph embedding is one of the central research issues. This task aims to map 
entities and relations of a knowledge graph to a low-dimensional vector space so that it cap-
tures the semantics and the structure of the knowledge graph efficiently (Dai et al. 2020b). 
Then, the obtained feature vectors can be effectively learned by machine learning models. 
Three main triplet fact-based embedding methods are as follows: (a) tensor factorization-
based, (b) translation-based, and (c) neural network-based methods (Dai et al. 2020b).

2.2.2 � Knowledge Acquisition

Knowledge acquisition, which focuses on modeling and constructing knowledge graphs, 
is another crucial research direction of knowledge graph study. Typically, the knowledge 
is imported from structured sources by employing mapping languages, such as R2RML 
(Rodriguez-Muro and Rezk 2015). Furthermore, the knowledge could be extracted from 
unstructured documents (e.g., news, research papers, and patents) by adopting relation, 
entity, or attribute extraction methods (Liu et al. 2020; Yu et al. 2020; Yao et al. 2019).

2.2.3 � Knowledge Graph Completion

Although there are many methods for constructing knowledge graphs, it is still unfeasible 
to create comprehensive representations of all the knowledge in a field. Most knowledge 
graphs still lack a good number of entities and relationships. Thereby, significant efforts 
have been made for completing knowledge graphs. Knowledge graph completion aims to 
improve the quality of knowledge graphs by predicting additional relationships and enti-
ties. The first task typically adopts link prediction techniques to generate triplets and then 
assigns the triplets plausibility scores (Ji et al. 2021). The second task employs entity pre-
diction methods for obtaining and integrating further information from external sources.

2.2.4 � Knowledge Fusion

Knowledge fusion is also an important research direction that focuses on capturing knowl-
edge from different sources and integrating it into a knowledge graph (Nguyen et  al. 
2020). The knowledge fusion approaches are useful for both generating and completing 

Fig. 2   Research on knowledge graphs
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knowledge graphs. Recently, entity alignment has been the primary method for implement-
ing knowledge fusion tasks.

2.2.5 � Knowledge Reasoning

Tremendous research efforts have focused on reasoning to enrich the knowledge graphs, 
which aims to infer new facts based on existing data (Minervini et al. 2020). In particular, 
new relations between two unconnected entities are inferred, forming new triplets. Also, 
by reasoning out the false facts, knowledge reasoning has the ability to identify erroneous 
knowledge. The main methods for knowledge reasoning include logic rule-based, distrib-
uted representation-based, and neural network-based methods (Chen et al. 2020b).

2.2.6 � AI Systems

Nowadays, knowledge graphs are widely utilized by AI systems (Liang et al. 2022), such as 
recommenders, question-answering systems, and information retrieval tools. Typically, the 
richness of information within knowledge graphs enhances the performance of these solu-
tions. Therefore, many studies have focused on taking advantage of knowledge graphs to 
improve AI systems’ performance.

2.2.7 � Application Fields

Knowledge graphs have numerous applications in various fields, including education, sci-
entific research, social media, and medical care (Li et al. 2020b). A variety of intelligent 
applications are required to improve the standard of human life.

Differing from other works, this paper focuses on surveying the opportunities and chal-
lenges of knowledge graphs. In particular, knowledge graphs meet great opportunities 
by improving the quality of AI services and being applied in various fields. On the con-
trary, this paper regards the limitations of knowledge graph technologies as the challenges. 
Therefore, we will discuss the technical limitations regarding knowledge graph embed-
dings, knowledge acquisition, knowledge graph completion, knowledge fusion, and knowl-
edge reasoning.

3 � Knowledge Graphs for AI Systems

This section explains the opportunities by analyzing the advantages that knowledge graphs 
bring for improving the functionalities of AI Systems. Specifically, there are a couple of 
systems, including recommender systems, question-answering systems, and information 
retrieval tools (Guo et al. 2020; Zou 2020), which utilize knowledge graphs for their input 
data and benefit the most from knowledge graphs. In addition to these systems, other AI 
systems, such as image recognition systems (Chen et al. 2020a), have started to consider 
the characteristic of knowledge graphs. However, the application of knowledge graphs in 
these systems is not widespread. Moreover, these systems do not directly optimize perfor-
mance by utilizing knowledge graphs as input data. Therefore, the advantages that knowl-
edge graphs bring for recommender systems, question-answering systems, and information 
retrieval tools are discussed in detail to analyze the opportunities of knowledge graphs. 
Typically, these solutions greatly benefit from adopting knowledge graphs that offer 
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high-quality representations of the domain knowledge. Table 1 presents a summary of the 
AI systems that we will discuss below.

3.1 � Recommender Systems

With the continuous development of big data, we observe the exponential growth of infor-
mation. In the age of information explosion, it becomes challenging for people to receive 
valid and reliable information (Shokeen and Rana 2020; Monti et al. 2021; Gómez et al. 
2022). Specifically, online users may feel confused when they want to select some items 
they are interested in among thousands of choices. To tackle this issue, we saw the emer-
gence of several recommender systems to provide users with more accurate information. 
Typically, recommender systems learn the preference of target users for a set of items (Wan 
et al. 2020; Zheng and Wang 2022) and produce a set of suggested items with similar char-
acteristics. Recommender systems are fruitful solutions to the information explosion prob-
lem and are employed in various fields for enhancing user experience (Quijano-Sánchez 
et al. 2020).

3.1.1 � Traditional Recommender Systems

There are two traditional methods for developing recommender systems, including con-
tent-based and collaborative filtering-based (CF-based) methods. Sun et al. (2019) and Guo 
et al. (2020) have compared and summarised these two approaches.

3.1.1.1  Content‑Based Recommender Systems  The content-based recommender systems 
first analyze the content features of items (e.g., descriptions, documents). These items are 
previously scored by the target users (Guo et  al. 2020; Xia et  al. 2014b). Then, the rec-
ommender systems learn the user interests by employing machine learning models. Thus, 
these systems are able to effectively recommend trending items to the target users according 
to their preferences. Some recommender systems utilize the content of the original query 
result to discover highly-related items for the users that may interest them (Naseriparsa et al. 
2019a). These systems employ machine learning techniques or statistical measures such as 
correlation to compute the highly-similar items to those that are visited by the users (Naseri-
parsa et al. 2019b). Another group of content-based recommender systems employs lexical 
references such as dictionaries to utilize semantic relationships of the user query results to 
recommend highly semantically-related items to the users that may directly satisfy their 
information needs (Naseriparsa et al. 2018; Sun et al. 2017).

3.1.1.2  CF‑Based Recommender Systems  CF-based recommender systems suggest items 
to the users based on the information of user-item interaction (Chen et  al. 2020c). CF-
based recommender systems infer the user preference by clustering similar users instead of 
extracting the features of the items (Wang et al. 2019a). However, we face data sparsity and 
cold start problems in traditional CF-based systems. In general, users can only rate a few 
items among a large number of items, which leads to preventing many items from receiv-
ing appropriate feedback. Therefore, the recommender systems do not effectively learn user 
preferences accurately because of data sparsity (Bai et al. 2019; Xia et al. 2014a). On the 
other hand, the cold start problem makes it even more difficult to make recommendations 
when the items or users are new because there is no historical data or ground truth. Moreo-
ver, because abundant user information is required for achieving effective recommenda-
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tions, CF-based recommender systems face privacy issues. How to achieve personalized 
recommendations while protecting the privacy of users is still an unsolved problem.

3.1.2 � Knowledge Graph‑Based Recommender Systems

To address inherent problems of traditional approaches, the community has produced sev-
eral hybrid recommender systems, which consider both item features and the distribution 
of user scores. Most of these solutions adopt knowledge graphs for representing and inter-
linking items (Palumbo et  al. 2020). Specifically, Knowledge graph-based recommender 
systems integrate knowledge graphs as auxiliary information and leverage users and items 
networks to learn the relationships of items-users, items-items, and users-users (Palumbo 
et al. 2018).

Fig 3 presents an example of knowledge graph-based movie recommendation. Here we 
can see that the movies “Once Upon A Time in Hollywood" and “Interstellar" are recom-
mended to three users according to a knowledge graph that contains the nodes of users, 
films, directors, actors, and genres. The knowledge graph is thus used to infer latent rela-
tions between the user and the recommended movies.

Recently, a great deal of research has been conducted to utilize knowledge graphs 
for recommendation tasks. For instance, Wang et  al. (2019b) introduced KPRN. KPRN 
is a recommender system that generates entity-relation paths according to the user-item 
interaction and constructs a knowledge graph that consists of the users, items, and their 
interaction. It then infers the user preference based on the entity-relation path. The user-
item interaction, which is extracted from knowledge graphs, improves the quality of the 

Table 1   AI systems using knowledge graphs

AI Systems Approaches Techniques on knowledge graphs

Recom-
mender 
systems

KPRN (Wang et al. 2019b) Entity-relation path generation based on user-item interac-
tion

RippleNet (Wang et al. 2018b) Preference propagation
MKR (Wang et al. 2019c) Laten user-item interaction
MKGAT (Sun et al. 2020) Neighbor information extraction; relation reasoning
Ripp-MKR (Wang et al. 2021) Preference propagation; laten user-item interaction
RKG (Shu and Huang 2021) User preferenfce lists-based knowledge graph construction

Question-
answering 
systems

MHPGM (Bauer et al. 2018) Multiple hop relation reasoning
PCQA (Shin et al. 2019) Predicate constraints-based relation extraction
KEQA (Huang et al. 2019) Simple question-based triplet construction
EmbedKGQA (Saxena et al. 

2020)
Knowledge graph embedding-based multi-hop question 

answering
Information 

retrieval
EQFE (Dalton et al. 2014) Query knowledge graph-based feature expansion
Knowledge graph based Infor-

mation Retrieval Technology 
(Wang et al. 2018a)

Query-document knowledge graph construction

CKG (Wise et al. 2020) Document knowledge graph construction
EDRM(Liu et al. 2018) Integration of semantics from knowledge graphs and 

entities from queries and documents representations of 
their entities
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recommendations and allows the presentation of the recommended results in a more 
explainable manner. Wang et al. (2019c) also applied multi-task knowledge graph repre-
sentation (MKR) for recommendation tasks. MKR models knowledge graphs based on the 
user-item interaction. It is worth noting that MKR focuses on the structural information of 
knowledge graphs for learning the latent user-item interaction. Sun et al. (2020) proposed a 
Multi-modal Knowledge Graph Attention Network (MKGAT) for achieving precise recom-
mendations. MKGAT constructs knowledge graphs based on two aspects: (1) it enriches 
entity information by extracting the information of the neighbor entities; (2) it scores the 
triplets to construct the reasoning relations. Finally, they applied knowledge graphs that are 
enriched with structured data to recommender systems.

Wang et  al. (2018b) presented the RippleNet model, which incorporates knowledge 
graphs into recommendation tasks by preference propagation. RippleNet firstly regards 
users’ historical records as the basis of a knowledge graph. Then, it predicts the user prefer-
ence list among candidate items based on the knowledge graph links. Based on both Rip-
pleNet and MKR models, Wang et al. (2021) applied the Ripp-MKR model. Ripp-MKR 
combines the advantages of preference propagation and user-item interaction to dig the 
potential information of knowledge graphs. Shu and Huang (2021) proposed RKG, which 
achieves recommendation by referring to the user preference-based knowledge graph. RKG 
first obtains users’ preference lists; then, it analyzes the relations between the user’s pre-
ferred items and the items which are to be recommended. Therefore, the model effectively 
learns the scores of the candidate items according to the relationships between candidate 
items and the user’s preferred items.

Many studies have utilized ontological knowledge base information to improve retriev-
ing results from various data sources (Farfán et  al. 2009). Wu et  al. (2013) adopted the 
ontological knowledge base to extract highly semantically similar sub-graphs in graph 
databases. Their method effectively recommends semantically relevant sub-graphs accord-
ing to ontological information. Farfán et al. (2009) proposed the XOntoRank, which adopts 
the ontological knowledge base to facilitate the data exploration and recommendation on 
XML medical records.

Fig. 3   An example of knowledge graph-based recommender system
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Compared with the traditional recommender systems, knowledge graph-based recom-
mender systems have the following advantages:

•	 Better Representation of Data: Generally, the traditional recommender systems suf-
fer from data sparsity issues because users usually have experience with only a small 
number of items. However, the rich representation of entities and their connections in 
knowledge graphs alleviate this issue.

•	 Alleviating Cold Start Issues: It becomes challenging for traditional recommender sys-
tems to make recommendations when there are new users or items in the data set. In 
knowledge graph-based recommender systems, information about new items and users 
can be obtained through the relations between entities within knowledge graphs. For 
example, when a new Science-Fiction movie such as “Tenet” is added to the data set of 
a movie recommender system that employs knowledge graphs, the information about 
“Tenet" can be gained by its relationship with the genre Science-Fiction (gaining triplet 
(Tenet, has genre of, Sci-Fi)).

•	 The Explainability of Recommendation: Users and the recommended items are con-
nected along with the links in knowledge graphs. Thereby, the reasoning process can be 
easily illustrated by the propagation of knowledge graphs.

3.2 � Question–Answering Systems

Question answering is one of the most central AI services, which aims to search for the 
answers to natural language questions by analyzing the semantic meanings (Dimitrakis 
et  al. 2020; Das et  al. 2022). The traditional question-answering systems match the tex-
tual questions with the answers in the unstructured text database. In the search process, 
the semantic relationship between the question and answer is analyzed; then, the system 
matches the questions and answers with the maximum semantic similarity. Finally, the sys-
tem outputs the answer. However, the answers are obtained by filtrating massive unstruc-
tured data, which deteriorates the efficiency of the traditional question-answering systems 
due to analyzing an enormous search space. To solve this issue, a lot of research focuses 
on employing structured data for question answering, particularly knowledge graph-based 
question-answering systems (Singh et al. 2020; Qiu et al. 2020).

The sophisticated representation of information in knowledge graphs is a natural fit for 
question-answering systems. Knowledge graph-based question-answering systems typi-
cally analyze the user question and retrieve the portion of knowledge graphs for answer-
ing. The answering task is facilitated either by using similarity measures or by producing 
structured queries in standard formats (e.g., SPARQL). Fig 4 presents an example of the 
knowledge graph-based question-answering system. The system answer “Shakespeare" is a 
node that is linked to the node “Romeo". The node “Romeo" is extracted from the question.

There are two main types of questions in this space: simple and multi-hop questions, 
respectively. Simple questions are answered only by referring to a single triplet, while 
multi-hop questions require combining multiple entities and relations. Focusing on simple 
questions, Huang et  al. (2019) proposed a knowledge graph embedding-based question-
answering system (KEQA). They translated the question and its corresponding answer 
into a single triplet. For instance, the question “ Which film acted by Leonardo" and one 
of its answers “Inception" can be expressed as the following triplet: (Leonard, act, Incep-
tion). Then, the head entity, relation, and tail entity of the triplet are represented by a vector 
matrix in the embedding space for learning the question-answer information. Considering 
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the semantic meanings of the questions, Shin et  al. (2019) presented a predicate con-
straint-based question-answering system (PCQA). They took advantage of the predicate 
constraints of knowledge graphs, which is a triplet contains a subject, predicate, and an 
object to capture the connection between the questions and answers. Using the triplet for 
question-answering integration, the processing of the question-answering service can be 
simplified; therefore, the result improves.

Bauer et al. (2018) focused on multi-hop questions and proposed a Multi-Hop Pointer-
Generator Model (MHPGM). They selected the relation edges that are related to the ques-
tions in a knowledge graph and injected attention to achieve multi-hop question answering. 
Because of the advantages of knowledge graphs’ structure, multi-hop question answering 
can extract coherent answers effectively. Saxena et  al. (2020) proposed EmbedKGQA to 
achieve multi-hop question answering over sparse knowledge graphs (such as knowledge 
graphs with missing edges). The main idea of EmbedKGQ is to utilize knowledge graph 
embeddings to reduce knowledge graph sparsity. It first creates embeddings of all entities 
and then selects the embedding of a given question. Lastly, it predicts the answer by com-
bining these embeddings.

Compared to the traditional question answering, the advantages of knowledge graph-
based question-answering systems can be summarized as follows:

•	 Increased Efficiency: Instead of searching for answers from massive textual data, which 
may contain a large volume of useless data items, knowledge graph-based question-
answering systems focus only on entities with relevant properties and semantics. There-
fore, they reduce the search space significantly and extract the answers effectively and 
efficiently.

•	 Multi-hop Question Answering: The answers can be more complex and sophisticated 
than the ones produced with traditional methods since facts and concepts from knowl-
edge graphs can be combined via multi-hop question answering.

Fig. 4   The illustration of 
knowledge graph based question-
anwsering systems
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3.3 � Information Retrieval

Information retrieval enables retrieval systems to match end-user queries with relevant 
documents, such as web pages (Liu et al. 2019). Traditional information retrieval systems 
index the documents according to the user queries and return the matched documents to 
the users (Hersh 2021). Nevertheless, index processing is complex and requires plenty 
of time because of the massiveness and diversity of documents. As a result, traditional 
information retrieval faces the challenge of inaccurate search results and potentially low 
efficiency. Also, since search engines have limitations with respect to text interpretation 
ability, keyword-based text search usually outputs limited results. Thus, to address these 
problems, many modern search engines take advantage of knowledge graphs (Bounhas 
et al. 2020; Zheng et al. 2020). Knowledge graph-based information retrieval introduces a 
new research direction that takes advantage of knowledge graphs for improving the perfor-
mance of search engines and the explainability of the results.

Typically, these systems rely on the advanced representation of the documents based 
on entities and relationships from knowledge graphs. These formal and machine-readable 
representations are then matched to the user query for retrieving the more pertinent docu-
ments. For instance, Wise et al. (2020) proposed a COVID-19 Knowledge Graph (CKG) 
to extract the relationships between the scientific articles about COVID-19. In particular, 
they combined the topological information of documents with the semantic meaning to 
construct document knowledge graphs. Wang et al. (2018a) proposed a knowledge graph-
based information retrieval technology that extracts entities by mining entity information 
on web pages via an open-source relation extraction method. Then, the entities with rela-
tionships are linked to construct a knowledge graph.

Knowledge graphs can also support methods for query expansion, which is able to 
enrich the user query by adding relevant concepts (e.g., synonymous). For example, Dal-
ton et al. (2014) presented an entity query feature expansion (EQFE) to enrich the queries 
based on the query knowledge graph, including structured attributes and text. Liu et  al. 
(2018) proposed the Entity-Duet Neural Ranking Model (EDRM). EDRM integrates the 
semantics extracted from knowledge graphs with the distributed representations of entities 
in queries and documents. Then, it ranks the search results using interaction-based neural 
ranking networks.

Compared to traditional information retrieval, the knowledge graph-based information 
retrieval has the following advantages:

•	 Semantic Representation of Items: Items are represented according to a formal and 
interlinked model that supports semantic similarity, reasoning, and query expansion. 
This typically allows the system to retrieve more relevant items and makes the system 
more interpretable.

•	 High Search Efficiency: Knowledge graph-based information retrieval can use the 
advanced representation of the items to reduce the search space significantly (e.g., 
discarding documents that use the same terms with different meanings), resulting in 
improved efficiency.

•	 Accurate Retrieval Results: In knowledge graph-based information retrieval, the cor-
relation between query and documents is analyzed based on the relations between enti-
ties in the knowledge graph. This is more accurate than finding the similarities between 
queries and documents.
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4 � Applications and Potentials

In this section, we discuss the applications and potentials of knowledge graphs in four 
domains: education, scientific research, social networks, and health/medical care. Although 
some researchers try to take advantage of knowledge graphs to develop beneficial applica-
tions in other domains such as finance (Cheng et al. 2022a), the knowledge graph-based 
intelligent service in these areas is relatively obscure and still needs to be explored. There-
fore, this section mainly focuses on education, scientific research, social networks, and 
medical care to summarize the opportunities of knowledge graphs. Table  2 presents sev-
eral recent applications of knowledge graphs that make contributions to these fields.

4.1 � Education

Education is of great importance to the development of human society. Many studies have 
focused on deploying intelligent applications to improve the quality of education (Bai et al. 
2021; Wang et al. 2020c). Specifically, in the age of big data, data processing becomes a 
challenging task because of the complex and unstructured educational data. Thereby, intel-
ligent educational systems tend to apply structured data, such as knowledge graphs. Several 
knowledge graph-based applications support the educational process, focusing in particular 
on data processing and knowledge dissemination (Yao et al. 2020).

In education, the quality of offline school teaching is of vital importance. Therefore, 
several knowledge graph-based applications focus on supporting teaching and learning. 
For example, considering the importance of course allocation tasks in university, Aliyu 
et al. (2020) proposed a knowledge graph-based course management approach to achieve 
automatic course allocation. They constructed a course knowledge graph in which the enti-
ties are courses, lecturers, course books, and authors in order to suggest relevant courses 
to students. Chen et al. (2018) presented KnowEdu, a system for educational knowledge 
graph construction, which automatically builds knowledge graphs for learning and teaching 
in schools. First, KnowEdu extracts the instructional concepts of the subjects and courses 
as the entity features. Then, it identifies the educational relations based on the students’ 
assessments and activities to make the teaching effect more remarkable.

The abovementioned knowledge graph-based intelligent applications are dedicated to 
improving the quality of offline school teaching. However, online learning has become 
a hot trend recently. Moreover, online study is an indispensable way of learning for stu-
dents during the COVID-19 pandemic(Saraji et al. 2022). Struggling with confusing online 
content (e.g., learning content of low quality on social media), students face major chal-
lenges in acquiring significant knowledge efficiently. Therefore, researchers have focused 
on improving online learning environments by constructing education-efficient knowledge 
graphs (d’Aquin 2016; Pereira et al. 2017). For example, to facilitate online learning and 
establish connections between formal learning and social media, Zablith (2022) proposed 
to construct a knowledge graph by integrating social media and formal educational content, 
respectively. Then, the produced knowledge graph can filter social media content, which is 
fruitful for formal learning and help students with efficient online learning to some extent.

Offline school teaching and online learning are two essential parts of education, and 
it is necessary to improve the quality of both to promote the development of education. 
Significantly, knowledge graph-based intelligent applications can deal with complicated 
educational data and make both offline and online education more convenient and efficient.
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4.2 � Scientific Research

A variety of knowledge graphs focus on supporting the scientific process and assisting 
researchers in exploring research knowledge and identifying relevant materials (Xia et al. 
2016). They typically describe documents (e.g., research articles, patents), actors (e.g., 
authors, organizations), entities (e.g., topics, tasks, technologies), and other contextual 
information (e.g., projects, funding) in an interlinked manner. For instance, Microsoft Aca-
demic Graph (MAG) (Wang et al. 2020a) is a heterogeneous knowledge graph. MAG con-
tains the metadata of more than 248M scientific publications, including citations, authors, 
institutions, journals, conferences, and fields of study. The AMiner Graph  (Zhang et  al. 
2018) is the corpus of more than 200M publications generated and used by the AMiner 
system1. The Open Academic Graph (OAG)2 is a massive knowledge graph that inte-
grates Microsoft Academic Graph and AMiner Graph. AceKG  (Wang et  al. 2018c) is a 
large-scale knowledge graph that provides 3 billion triples of academic facts about papers, 
authors, fields of study, venues, and institutes, as well as the relations among them. The 
Artificial Intelligence Knowledge Graph (AI-KG) (Dessì et al. 2020)3 describes 800K enti-
ties (e.g., tasks, methods, materials, metrics) extracted from the 330K most cited articles in 
the field of AI. The Academia/Industry Dynamics Knowledge Graph (AIDA KG) (Angioni 
et al. 2021)4 describes 21M publications and 8M patents according to the research topics 
drawn from the Computer Science Ontology (Salatino et al. 2020) and 66 industrial sectors 
(e.g., automotive, financial, energy, electronics).

In addition to constructing academic knowledge graphs, many researchers also take 
advantage of knowledge graphs to develop various applications beneficial to scientific 
research. Chi et al. (2018) proposed a scientific publication management model to help non-
researchers learn methods for sustainability from research thinking. They built a knowl-
edge graph-based academic network to manage scientific entities. The scientific entities, 
including researchers, papers, journals, and organizations, are connected regarding their 
properties. For the convenience of researchers, many scientific knowledge graph-based rec-
ommender systems, including citation recommendation, collaboration recommendation, 
and reviewer recommendation, are put forward (Shao et al. 2021). For instance, Yong et al. 
(2021) designed a knowledge graph-based reviewer assignment system to achieve precise 
matching of reviewers and papers. Particularly, they matched knowledge graphs and rec-
ommendation rules to establish a rule engine for the recommendation process.

4.3 � Social Networks

With the rapid growth of social media such as Facebook and Twitter, online social net-
works have penetrated human life and bring plenty of benefits such as social relationship 
establishment and convenient information acquisition (Li et al. 2020a; Hashemi and Hall 
2020). Various social knowledge graphs are modeled and applied to analyze the critical 
information from the social network. These knowledge graphs are usually constituted based 

1  AMiner - https://​www.​aminer.​cn/
2  Open Academic Graph - https://​www.​opena​cadem​ic.​ai/​oag/
3  AI-KG - https://​w3id.​org/​aikg/
4  AIDA - http://​w3id.​org/​aida

https://www.aminer.cn/
https://www.openacademic.ai/oag/
https://w3id.org/aikg/
http://w3id.org/aida
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on the people’s activities and their posts on social media, which are applied to numerous 
applications for different functions (Xu et al. 2020).

Remarkably, social media provides high chances for people to make friends and gain 
personalized information. Furthermore, social media raises fundamental problems, such 
as how to recommend accurate content that interests us and how to connect with persons 
interested in a common topic. To address these issues, various studies have been pro-
posed to match users with their favorite content (or friends) for recommendation (Ying 
et al. 2018). With the increase in users’ demand, a number of researchers utilize knowl-
edge graph-based approaches for more precise recommendations (Gao et al. 2020). A rep-
resentative example is GraphRec (a graph neural network framework for social recommen-
dations) proposed by Fan et  al. (2019). They considered two kinds of social knowledge 
graphs: user-user and user-item graphs. Then, they extracted information from the two 
knowledge graphs for the learning task. As a result, their model can provide accurate social 
recommendations because it aggregates the social relationships of users and the interac-
tions between users and items.

In addition, people’s activities on social media reveal social relationships. For example, 
we can learn about the relationships around a person through his photos or comments on 
Twitter. Significantly, social relationship extraction assists companies in tracking users and 
enhancing the user experience. Therefore, many works are devoted to social relationship 
extraction. Wang et al. (2018d) propose a graph reasoning model to recognize the social 
relationships of people in a picture that is posted on social media. Their model enforces 
a particular function based on the social knowledge graph and deep neural networks. In 
their method, they initialized the relation edges and entity nodes with the features that are 
extracted from the semantic objects in an image. Then, they employed GGNN to propagate 
the knowledge graph. Therefore, they explored the relations of the people in the picture.

One of the biggest problems in this space is fake news (Zhang et  al. 2019a). Online 
social media has become the principal platform for people to consume news. Therefore, a 
considerable amount of research has been done for fake news detection (Choi et al. 2020; 
Meel and Vishwakarma 2020). Most recently, Mayank et al. (2021) exploited a knowledge 
graph-based model called DEAP-FAKED to detect fake news on social media. Specifically, 
DEAP-FAKED learns news content and identifies existing entities in the news as the nodes 
of the knowledge graph. Afterward, a GNN-based technique is applied to encode the enti-
ties and detect anomalies that may be linked with fake news.

4.4 � Health/Medical Care

With medical information explosively growing, medical knowledge analysis plays an 
instrumental role in different healthcare systems. Therefore, research focuses on integrat-
ing medical information into knowledge graphs to empower intelligent systems to under-
stand and process medical knowledge quickly and correctly (Li et al. 2020b). Recently, a 
variety of biomedical knowledge graphs have become available. Therefore, many medical 
care applications exploit knowledge graphs. For instance, Zhang et al. (2020a) presented a 
Health Knowledge Graph Builder (HKGB) to build medical knowledge graphs with clini-
cians’ expertise.

Specifically, we discuss the three most common intelligent medical care applications, 
including medical recommendation, health misinformation detection, and drug discovery. 
Firstly, with the rapid development of the medical industry, medical choices have become 
more abundant. Nevertheless, in the variety of medical choices, people often feel confused 
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and unable to make the right decision to get the most suitable and personalized medical 
treatment. Therefore, medical recommender systems, especially biomedical knowledge 
graph-based recommender systems (such as doctor recommender systems and medicine 
recommender systems), have been put forward to deal with this issue (Katzman et  al. 
2018). Taking medicine recommendation as an example, Gong et  al. (2021) provided a 
medical knowledge graph embedding method by constructing a heterogeneous graph 
whose nodes are medicines, diseases, and patients to recommend accurate and safe medi-
cine prescriptions for complicated patients.

Secondly, although many healthcare platforms aim to provide accurate medical infor-
mation, health misinformation is an inevitable problem. Health misinformation is defined 
as incorrect information that contradicts authentic medical knowledge or biased informa-
tion that covers only a part of the facts (Wang et al. 2020d). Unfortunately, a great deal 
of health-related information on various healthcare platforms (e.g., medical information 
on social media) is health misinformation. What’s worse, the wrong information leads to 
consequential medical malpractice; therefore, it is urgent to detect health misinformation. 
Utilizing authoritative medical knowledge graphs to detect and filter misinformation can 
help people make correct treatment decisions and suppress the spread of misinformation 
(Cui et al. 2020). Representatively, Cui et al. (2020) presented a model called DETERREN 
to detect health misinformation. DETERREN leverages a knowledge-guided attention net-
work that incorporates an article-entity graph with a medical knowledge graph.

Lastly, drug discovery, such as drug repurposing and drug-drug interaction prediction, 
has been a research trend for intelligent healthcare in recent years. Benefiting from the rich 
entity information (e.g., the ingredients of a drug) and relationship information (e.g., the 
interaction of drugs) in medical knowledge graphs, drug discovery based on knowledge 
graphs is one of the most reliable approaches (MacLean 2021). Lin et al. (2020) presented 
an end-to-end framework called KGNN (Knowledge Graph Neural Network) for drug-drug 
interaction prediction. The main idea of KGNN is to mine the relations between drugs and 
their potential neighborhoods in medical knowledge graphs. It first exploits the topological 
information of each entity; then, it aggregates all the neighborhood information from the 
local receptive entities to extract both semantic relations and high-order structures. Wang 
et al. (2020e) developed a knowledge discovery framework called COVID-KG to generate 
COVID-19-related drug repurposing reports. They first constructed multimedia knowledge 
graphs by extracting medicine-related entities and their relations from images and texts. 
Afterward, they utilized the constructed knowledge graphs to generate drug repurposing 
reports.

5 � Technical Challenges

Although knowledge graphs offer fantastic opportunities for various services and applica-
tions, many challenges are yet to be addressed (Noy et al. 2019). Specifically, the limita-
tions of existing knowledge graph technologies are the key challenges for promoting the 
development of knowledge graphs (Hogan et al. 2021). Therefore, this section discusses the 
challenges of knowledge graphs in terms of the limitations of five topical knowledge graph 
technologies, including knowledge graph embeddings, knowledge acquisition, knowledge 
graph completion, knowledge fusion, and knowledge reasoning.
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5.1 � Knowledge Graph Embeddings

The aim of knowledge graph embeddings is to effectively represent knowledge graphs in a 
low-dimensional vector space while still preserving the semantics (Xia et al. 2021; Vash-
ishth et al. 2020). Firstly, the entities and relations are embedded into a dense dimensional 
space in a given knowledge graph, and a scoring function is defined to measure the plau-
sibility of each fact (triplet). Then, the plausibility of the facts is maximized to obtain the 
entity and relation embeddings (Chaudhri et al. 2022; Sun et al. 2022). The representation 
of knowledge graphs brings various benefits to downstream tasks. The three main types of 
triplet fact-based knowledge graph embedding approaches are tensor factorization-based, 
translation-based, and neural network-based methods (Rossi et al. 2021).

5.1.1 � Tensor Factorization‑Based Methods

The core idea of tensor factorization-based methods is transforming the triplets in the knowl-
edge graph into a 3D tensor (Balažević et al. 2019). As Fig 5 presents, the tensor X ∈ Rm×m×n , 
where m and n indicate the number of entity and relation, respectively, contains n slices, 
and each slice corresponds to one relation type. If the condition Xijk = 1 is met, the triplet 
(ei, rk, ej) , where e and r denote entity and relation, respectively, exists in the knowledge graph. 
Otherwise, if Xijk = 0 , there is no such a triplet in the knowledge graph. Then, the tensor is 
represented by the embedding matrices that consist of the vectors of entities and relations.

5.1.2 � Translation‑Based Methods

Translation-based methods exploit the scoring function, which is based on translation invari-
ance. Translation invariance interprets the distance between the vectors of the two words, 
which is represented by the vector of their semantic relationships (Mikolov et  al. 2013). 
Bordes et al. (2013) firstly utilized the translation invariance-based scoring functions to meas-
ure the embedding results. They creatively proposed the TransE model, which translates all 
the entities and relations of a knowledge graph into a continuous and low vector space. Spe-
cifically, the vectors of the head and tail entities in a triplet are connected by the vector of their 
relation. Consequently, in the vector space, the semantic meaning of every triplet is preserved. 
Formally, given a triplet (head, relation, tail), the embedding vectors of the head entity, rela-
tion, and tail entity are h , r , and t , respectively. In the vector space, the plausibility of the 
triplet (h, r, t) is computed by the translation invariance-based scoring function to ensure it 
follows the geometric principle: h + r ≈ t.

After TransE, a lot of related extensions, such as TransH (Wang et al. 2014) and TransR 
(Lin et  al. 2015), are continually proposed to improve the performance of the Translation-
based knowledge graph embeddings.

5.1.3 � Neural Network‑Based Methods

Nowadays, deep learning has become a popular tool that is utilized for knowledge graph 
embeddings, and a considerable amount of research proposes to employ neural networks to 
represent the triplets of knowledge graphs (Dai et al. 2020a). In this section, we discuss three 
representative works, including SME, ConvKB, and R-GCN, to briefly introduce neural net-
work-based knowledge graph embeddings.
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SME (Bordes et al. 2014) designs an energy function to conduct semantic matching, which 
utilizes neural networks to measure the confidence of each triplet (h, r, t) in knowledge graphs. 
The scoring function of SME is defined as follows:

The scoring function of SME (bilinear) is:

Here W ∈ ℝ
d×d denotes the weight matrix, b indicates the bias vector. h , r , and t are the 

embedding vectors of head entity, relation, and tail entity, respectively.
ConvKB (Nguyen et al. 2017) utilizes a convolutional neural network (CNN) to conduct 

knowledge graph embeddings. ConvKB represents each triplet (h, r, t) as a three-row matrix 
A , which is input to a convolution layer to obtain feature maps. Afterward, the feature maps 
are concatenated as a vector, and then a score is calculated to estimate the confidence of the 
triplet. The scoring function is as follows:

where O signifies the concatenation operator, g(⋅) is the ReLU activation function, A ∗ Ω 
indicates the convolution operation of matrix A by using the filters in the set Ω , w ∈ ℝ

3d is 
a weight vector.

R-GCN (Schlichtkrull et al. 2018) is an improvement of graph neural networks (GNNs). 
R-GCN represents knowledge graphs by providing relation-specific transformation. Its for-
ward propagation is calculated as follows:

where h(l+1)
k

 is the hidden state of the entity k in l-th layer, Nr
k
 denotes a neighbor collection 

of entity k and relation r ∈ R , nk,r is the normalization process, W (l)

i
 and W (l)

k
 are the weight 

matrices.

5.1.4 � Limitations of Existing Methods

The existing methods for generating knowledge graph embeddings still suffer several 
severe limitations. Many established methods only consider surface facts (triplets) of 
knowledge graphs. However, additional information, such as entity types and relation 
paths, are ignored, which can further improve the embedding accuracy. The performance 
of most traditional methods that do not consider the additional information is unsatisfac-
tory. Table 3 lists the embedding methods, which do not consider the additional informa-
tion. In Table 3, the performance evaluation is based on the link prediction and triplet clas-
sification tasks. The metrics that are for evaluation results are hit rate at 10 (Hits@10) and 
accuracy. As Table 3 presents, only a few models have impressive results, including the 
results of QuatE (90%), RMNN (89.9%), and KBGAN (89.2%). Recently, some researchers 
have started to combine additional information with a knowledge graph to improve the effi-
ciency of embedding models. For example, Guo et al. (2015) take advantage of additional 
entity type information, which is the semantic category of each entity, to obtain the correla-
tion between the entities and to tackle the data sparsity issue. Therefore, knowledge graphs 

(1)fr(h, t) = (Wh1h +Wh2r + bh)⊤(Wt1t +Wt2r + bt).

(2)fr(h, t) = ((Wh1h)◦(Wh2r) + bh)⊤((Wt1t)◦(Wt2r) + bt).

(3)fr(h, t) = O(g(A ∗ Ω))w,

(4)h
(l+1)

k
= �

(

∑

r∈R

∑

i∈Nr
k

1

nk,r
W

(l)

i
h
(l)

i
+W

(l)

k
h
(l)

k

)

,
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are represented more accurately. Not only entity types, some other information, including 
relation paths (Li et al. 2021), time information of dynamic graphs (Messner et al. 2022), 
and textual descriptions of entities (An et al. 2018), are getting the researchers’ attention in 
recent years. However, it is still a daunting challenge to effectively utilize rich additional 
information to improve the accuracy of knowledge graph embeddings.

General additional information can not adequately represent the semantic meaning of 
the triplets. For instance, the entity types are not related to the semantic information of 
triplets. Furthermore, the types of additional information that can be incorporated into the 
features of the triplets are now severely limited. Therefore, to improve the performance of 
existing knowledge graph embedding methods, multivariate information (such as the hier-
archical descriptions of relations and the combination of entity types and textual descrip-
tions) needs to be incorporated into the features of the triplets.

To the best of our knowledge, complex relation path remains an open research prob-
lem (Peng et al. 2021). For example, the inherent relations, referring to the indirect rela-
tionships between two unconnected entities, are not represented effectively. Although the 
inherent relations between the entities can be explored based on the chain of relationships 
in knowledge graphs, the inherent relations are complex and multiple. Therefore, it is not 
straightforward to represent these relations effectively.

5.2 � Knowledge Acquisition

Knowledge acquisition is a critical step for combining data from different sources and 
generating new knowledge graphs. The knowledge is extracted from both structured and 
unstructured data. Three main methods of knowledge acquisition are relation extraction, 
entity extraction, and attribute extraction (Fu et  al. 2019). Here, attribute extraction can 
be regarded as a special case of entity extraction. Zhang et al. (2019b) took advantage of 
knowledge graph embeddings and graph convolution networks to extract long-tail relations. 
Shi et al. (2021) proposed entity set expansion to construct large-scale knowledge graphs.

Nevertheless, existing methods for knowledge acquisition still face the challenge of 
low accuracy, which could result in incomplete or noisy knowledge graphs and hinder the 
downstream tasks. Therefore, the first critical issue regards the reliability of knowledge 
acquisition tools and their evaluation. In addition, a domain-specific knowledge graph 
schema is knowledge-oriented, while a constructed knowledge graph schema is data-ori-
ented for covering all data features (Zhou et al. 2022). Therefore, it is inefficient to produce 
domain-specific knowledge graphs by extracting entities and properties from raw data. 
Hence, it is an essential issue to efficiently achieve knowledge acquisition tasks by generat-
ing domain-specific knowledge graphs.

Besides, most existing knowledge acquisition methods focus on constructing knowledge 
graphs with one specific language. However, in order to make the information in knowl-
edge graphs richer and more comprehensive, we need cross-lingual entity extraction. It is 
thus vitally important to give more attention to cross-lingual entity extraction and the gen-
eration of multilingual knowledge graphs. For example, Bekoulis et  al. (2018) proposed 
a joint neural model for cross-lingual (English and Dutch) entity and relation extraction. 
Nevertheless, multilingual knowledge graph construction is still a daunting task since non-
English training data sets are limited, language translation systems are not always accurate, 
and the cross-lingual entity extraction models have to be retrained for each new language.

Multi-modal knowledge graph construction is regarded as another challenging issue 
of knowledge acquisition. The existing knowledge graphs are mostly represented by pure 
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symbols, which could result in the poor capability of machines to understand our real world 
(Zhu et al. 2022b). Therefore, many researchers focus on multi-modal knowledge graphs 
with various entities, such as texts and images. The construction of multi-modal knowl-
edge graphs requires the exploration of entities with different modalities, which makes the 
knowledge acquisition tasks complicated and inefficient.

5.3 � Knowledge Graph Completion

Knowledge graphs are often incomplete, i.e., missing several relevant triplets and entities 
(Zhang et  al. 2020a). For instance, in Freebase, one of the most well-known knowledge 
graphs, more than half of person entities do not have information about their birthplaces 
and parents. Generally, semi-automated and human leveraging mechanisms, which can be 
applied to ensure the quality of knowledge graphs, are essential tools for the evaluation of 
knowledge graph completion. Specifically, human supervision is currently considered the 
gold standard evaluation in knowledge graph completion (Ballandies and Pournaras 2021).

Knowledge graph completion aims to expand existing knowledge graphs by adding 
new triplets using techniques for link prediction (Wang et al. 2020b; Akrami et al. 2020) 
and entity prediction (Ji et  al. 2021). These approaches typically train a machine learn-
ing model on a knowledge graph to assess the plausibility of new candidate triplets. Then, 
they add the candidate triplets with high plausibility to the knowledge graph. For example, 
for an incomplete triplet (Tom, friendOf, ?), it is possible to assess the range of tails and 
return the more plausible ones to enrich the knowledge graph. These models successfully 
utilized knowledge graphs in many different domains, including digital libraries (Yao et al. 
2017), biomedical  (Harnoune et al. 2021), social media  (Abu-Salih 2021), and scientific 
research  (Nayyeri et  al. 2021). Some new methods are able to process fuzzy knowledge 
graphs in which each triple is associated with a confidence value (Chen et al. 2019).

However, most current knowledge graph completion methods only focus on extracting 
triplets from a closed-world data source. That means the generated triplets are new, but 
the entities or relations in the triplets need to already exist in the knowledge graph. For 
example, for the incomplete triplet (Tom, friendOf, ?), predicting the triplet (Tom, friendOf, 

Fig. 5   An illustration of tensor 
factorization of knowledge 
graphs
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Jerry) is only possible if the entity Jerry is already in the knowledge graph. Because of this 
limitation, these methods cannot add new entities and relations to the knowledge graph. To 
tackle this issue, we are starting to see the emergence of open-world techniques for knowl-
edge graph completion that extracts potential objects from outside of the existing knowl-
edge bases. For instance, the ConMask model (Shi and Weninger 2018) has been proposed 
to predict the unseen entities in knowledge graphs. However, methods for open-world 
knowledge graph completion still suffer from low accuracy. The main reason is that the 
data source is usually more complex and noisy. In addition, the similarity of the predicted 
new entities to the existing entities can mislead the results. In other words, two similar enti-
ties are regarded as connected entities, while they may not have a direct relationship.

Knowledge graph completion methods assume knowledge graphs are static and fail to 
capture the dynamic evolution of knowledge graphs. To obtain accurate facts over time, 
temporal knowledge graph completion, which considers the temporal information reflect-
ing the validity of knowledge, has emerged. Compared to static knowledge graph comple-
tion, temporal knowledge graph completion methods integrate timestamps into the learning 
process. Hence, they explore the time-sensitive facts and improve the link prediction accu-
racy significantly. Although temporal knowledge graph completion methods have shown 
brilliant performance, they still face serious challenges. Because these models consider 
time information would be less efficient (Shao et al. 2022), the key challenge of temporal 
knowledge graph completion is how to effectively incorporate timestamps of facts into the 
learning models and properly capture the temporal dynamics of facts.

5.4 � Knowledge Fusion

Knowledge fusion aims to combine and integrate knowledge from different data sources. 
It is often a necessary step for the generation of knowledge graphs (Nguyen et al. 2020; 
Smirnov and Levashova 2019). The primary method of knowledge fusion is entity align-
ment or ontology alignment (Ren et al. 2021), which aims to match the same entity from 
multiple knowledge graphs (Zhao et al. 2020). Achieving efficient and accurate knowledge 
graph fusion is a challenging task because of the complexity, variety, and large volume of 
data available today.

While a lot of work has been done in this direction, there are still several intriguing 
research directions that deserve to be investigated in the future. One of them regards cross-
language knowledge fusion (Mao et al. 2020), which allows the integration of information 
from different languages. This is often used to support cross-lingual recommender systems 
(Javed et  al. 2021). For example, Xu et  al. (2019) adopted a graph-matching neural net-
work to achieve cross-language entity alignment. However, the result of the cross-language 
knowledge fusion is still unsatisfactory because the accuracy of the matching entities from 
different languages is relatively low. Therefore, it remains a daunting challenge to explore 
cross-language knowledge fusion.

Another primary challenge regards entity disambiguation (Nguyen et al. 2020). As the 
polysemy problem of natural language, the same entity may have various expressions in 
different knowledge graphs. Hence, entity disambiguation is required before conducting 
entity alignment. Existing entity disambiguation methods mainly focus on discriminating 
and matching ambiguous entities based on extracting knowledge from texts containing 
rich contextual information (Zhu and Iglesias 2018). However, these methods can not pre-
cisely measure the semantic similarity of entities when the texts are short and have limited 
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contextual information. Only a few works have focused on solving this issue. For example, 
Zhu and Iglesias (Zhu and Iglesias 2018) have proposed SCSNED for entity disambigua-
tion. SCSNED measures semantic similarity based on both informative words of entities 
in knowledge graphs and contextual information in short texts. Although SCSNED allevi-
ates the issue of limited contextual information to some extent, more effort is needed to 
improve the performance of entity disambiguation.

In addition, many knowledge fusion methods only focus on matching entities with the 
same modality and ignore multi-modal scenes in which knowledge is presented in different 
forms. Specifically, entity alignment considering only single-modality knowledge graph 
scenario has insignificant performance because it can not fully reflect the relationships of 
entities in the real world (Cheng et  al. 2022b). Recently, to solve this issue, some stud-
ies have proposed multi-modal knowledge fusion, which matches the same entities having 
different modalities and generates a multi-modal knowledge graph. For example, HMEA 
(Guo et  al. 2021) aligns entities with multiple forms by mapping multi-modal represen-
tations into hyperbolic space. Although many researchers have worked on multi-modal 
knowledge fusion, it is still a critical task. Multi-modal knowledge fusion mainly aims to 
find equivalent entities by integrating their multi-modal features (Cheng et al. 2022b). Nev-
ertheless, how to efficiently incorporate the features having multiple modalities is still a 
tricky issue facing current methods.

5.5 � Knowledge Reasoning

The goal of knowledge reasoning is to infer new knowledge, such as the implicit relations 
between two entities (Liu et  al. 2021; Wang et  al. 2019b), based on existing data. For a 
given knowledge graph, wherein there are two unconnected entities h and t, denoted as 
h, t ∈ G , here G means the knowledge graph, knowledge reasoning can find out the poten-
tial relation r between these entities and form a new triplet (h, r, t). The knowledge reason-
ing methods are mainly categorized into logic rule-based (De Meester et al. 2021), distrib-
uted representation-based (Chen et al. 2020b), and neural network-based methods (Xiong 
et al. 2017). Logic rule-based knowledge reasoning aims to discover knowledge according 
to the random walk and logic rules, while distributed representation-based knowledge rea-
soning embeds entities and relations into a vector space to obtain distributed representation 
(Chen et  al. 2020b). Neural network-based knowledge reasoning method utilizes neural 
networks to infer new triplets given the body of knowledge in the graph (Xian et al. 2019).

There are two tasks in knowledge reasoning: single-hop prediction and multi-hop rea-
soning (Ren et  al. 2022). Single-hop prediction predicts one element of a triplet for the 
given two elements, while multi-hop reasoning predicts one or more elements in a multi-
hop logical query. In other words, in the multi-hop reasoning scenario, finding the answer 
to a typical question and forming new triplets requires the prediction and imputation of 
multiple edges and nodes. Multi-hop reasoning achieves a more precise formation of tri-
plets when compared with the single-hop prediction. Therefore, multi-hop reasoning has 
attracted more attention and become a critical need for the development of knowledge 
graphs in recent years. Although many works have been done, multi-hop reasoning over 
knowledge graphs remains largely unexplored. Notably, multi-hop reasoning on massive 
knowledge graphs is one of the challenging tasks (Zhu et  al. 2022). For instance, most 
recent studies focus on multi-hop reasoning over knowledge graphs, which have only 63K 
entities and 592K relations. The existing models can’t learn the training set effectively for 
a massive knowledge graph that has more than millions of entities. Moreover, multi-hop 
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reasoning needs to traverse multiple relations and intermediate entities in the knowledge 
graph, which could lead to exponential computation cost (Zhang et al. 2021). Therefore, it 
is still a daunting task to explore multi-hop knowledge reasoning.

Besides, the verification of inferred new knowledge is also a critical issue. Knowledge 
reasoning enriches existing knowledge graphs and brings benefits to the downstream tasks 
(Wan et al. 2021). However, the inferred new knowledge is sometimes uncertain, and the 
veracity of new triplets needs to be verified. Furthermore, the conflicts between new and 
existing knowledge should be detected. To address these problems, some research has pro-
posed multi-source knowledge reasoning (Zhao et al. 2020) that detects erroneous knowl-
edge and conflicting knowledge. Overall, more attention should be paid to multi-source 
knowledge reasoning and erroneous knowledge reduction.

6 � Conclusions

Knowledge graphs have played an instrumental role in creating many intelligent services 
and applications for various fields. In this survey, we provided an overview of knowledge 
graphs in terms of opportunities and challenges. We first introduced the definitions and 
existing research directions regarding knowledge graphs to provide an introductory anal-
ysis of knowledge graphs. Afterward, we discussed AI systems that take advantage of 
knowledge graphs. Then, we presented some representative knowledge graph applications 
in several fields. Furthermore, we analyzed the limitations of current knowledge graph 
technologies, which lead to severe technical challenges. We expect this survey to spark new 
ideas and insightful perspectives for future research and development activities involving 
knowledge graphs.
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