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Abstract
Maximum likelihood estimation of discrete latent variable (DLV) models is usually
performed by the expectation-maximization (EM) algorithm. Awell-known drawback
is related to the multimodality of the log-likelihood function so that the estimation
algorithm can converge to a local maximum, not corresponding to the global one. We
propose a tempered EM algorithm to explore the parameter space adequately for two
main classes of DLV models, namely latent class and hidden Markov. We compare
the proposal with the standard EM algorithm by an extensive Monte Carlo simulation
study, evaluating both the ability to reach the global maximum and the computational
time. We show the results of the analysis of discrete and continuous cross-sectional
and longitudinal data referring to some applications of interest. All the results provide
supporting evidence that the proposal outperforms the standard EM algorithm, and it
significantly improves the chance to reach the global maximum. The advantage is
relevant even considering the overall computing time.
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1 Introduction

A latent variable model is a statistical model in which the distribution of the response
variables is affected by one or more variables that are not directly observable. Here, we
consider two special classes of discrete latent variable (DLV) models (Bartolucci et al.
2022) that are frequently employed to analyze continuous and categorical response
variables.

The latent class (LC) model (Lazarsfeld and Henry 1968; Goodman 1974; Lindsay
et al. 1991) assumes individual-specific latent variables having a discrete distribution
with a finite number of support points. The hidden (or latent) Markov (HM) model
(Zucchini and Guttorp 1991; Bartolucci et al. 2013; Zucchini et al. 2016) represents a
generalization of the LC model to the case of longitudinal data and the latent process
is frequently assumed as a first-order Markov chain. Both models are used as model-
based clusteringmethods, and in particular, theHMmodel allows a dynamic clustering
where each unit may move between clusters across time.

Maximum likelihood estimation (MLE) of DLV models is usually performed by
using the expectation-maximization (EM) algorithm (Baum et al. 1970; Dempster
et al. 1977; McLachlan and Krishnan 2008). This approach is straightforward to
implement, and it is available in many software packages; among others, we men-
tion MultiLCIRT (Bartolucci et al. 2014) and LMest (Bartolucci et al. 2017) in the
R software (RCore Team2022) for the estimation of LC andHMmodels, respectively.

A particular drawback of MLE is related to the multimodality of the log-likelihood
function which is especially observed with the DLV models. Consequently, the EM
algorithm could converge to a local maximum, not corresponding to the global one.
Multi-start strategies employing both deterministic and random rules to initialize the
model parameters are generally adopted. Although this approach encourages a more
accurate exploration of the parameter space, it is computationally intensive and does
not ensure that the global optimum is reached. For an overview of different initial-
ization strategies, some of which are based on a preliminary cluster analysis (Everitt
et al. 2011), see, among others, Maruotti and Punzo (2021).

Tempering and annealing (Sambridge 2014) constitute a broad family of optimiza-
tionmethods; bymeans of a parameter known as temperature, they allow us to re-scale
the target function and monitor the prominence of all possible maxima. In particular,
these procedures are gradually attracted towards the global optimum by accurately
defining a sequence of temperature values. The alternation of high and low values of
the temperature allows us to deal with two opposite but fundamental issues: on one
side, the algorithm is led to explore broad areas of the parameter space, thus escaping
local sub-optimal modes (high temperatures); on the other side, the algorithm is able
to perform a sharp optimization of the target function in a small area of the parameter
space (low temperatures).

The following different tempering methods are defined according to the choices of
temperature sequences. Simulated annealing (Kirkpatrick et al. 1983) makes use of a
strictly decreasing temperature sequence: the initial temperature is sufficiently high
so that the re-scaled function is relatively flat, and it decreases at each step, gradu-
ally restoring the original function. Simulated tempering (Geyer and Thompson 1995)
assumes that the temperature may either increase or decrease according to a stochastic
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rule: a new proposed temperature level may be accepted or rejected according to a
specific probability, and the process describing the temperature evolution follows a
Markov chain. Parallel tempering (Geyer 1991; Falcioni and Deem 1999; Earl and
Deem 2005) assumes an ensemble of Markov chains across all levels of the tempera-
ture sequence: at specified intervals, a swap between a pair of neighboring chains is
proposed and accepted or rejected according to a certain probability.

Tempering techniques are employed, among others, in Barbu and Zhu (2013) and
Robert et al. (2018) for simulating fromcomplexmultimodal statistical distributions by
means ofMarkov chainMonte Carlo methods (Metropolis et al. 1953; Hastings 1970).
On the other hand, the use of these procedures within the EM algorithm is quite scarce.
Hofmann (1999) proposed tempering techniques for the EM algorithm in the context
of probabilistic latent semantic analysis. For what concerns finite Gaussian mixture
models, recently, Lartigue et al. (2022) proposed a general class of deterministic
approximated versions of the EM algorithm following previous proposals in Yuille
et al. (1994), Ueda and Nakano (1998), and Zhou and Lange (2010).

In the following, dealing with DLV models, we propose a general approach. In
particular, we explicitly focus onLCandHMmodels because these are among themost
utilized LDVmodels in data analysis. However, the proposal can easily be adapted to
the aforementioned finite mixture models and to other DLV models. We explore two
different temperature sequences, including a non-monotone one, also evaluating the
computational time efficiency. Up to our knowledge, for the first time, we deal with the
problem of temperature sequence tuning, inspecting the performance of the tempered
EM (T-EM) algorithm with both optimally tuned and fixed temperature sequences.
Finally, we show the behavior of the algorithm for the selection of the optimal model.
The implemented code for the proposal is written for the open source software R (R
Core Team 2022). It is based on some functions of the package LMest (Bartolucci
et al. 2017), and it is available at the following link in the GitHub repository: https://
github.com/LB1304/T-EM.

The remainder of the paper is organized as follows. In Sect. 2 we outline the LC
and HM model formulations and the MLE of the model parameters through the EM
algorithm. In Sect. 3 we provide details on the proposed T-EM algorithm for both
models. In Sect. 4 we summarize the main findings of an extensive simulation study
aimed to assess the performance of the proposal by comparing it with the standard EM
algorithm for many different scenarios. We also evaluate the proposed algorithm in
connection with different initialization strategies, and compare the overall computing
time. In Sect. 5 we apply the T-EM algorithm to estimate LC and HM models using a
variety of data types. In Sect. 6 we provide some conclusions. Appendix A supplies
more details on the settings used for the simulation studies, while Appendices B
and C provide additional simulation results. Finally, Supplementary Information (SI)
contains the full outcomes of every sample under each simulated scenario.

2 Model formulation

In the following, mainly borrowing fromBartolucci et al. (2013) we briefly summarize
model notations and implementations of the standard MLE of the model parameters
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carried out through the EM algorithm; see also Bartolucci et al. (2014) and Pandolfi
et al. (2021).

2.1 Latent class model

Considering cross-sectional data and for a single individual, let Y = (Y1, . . . , Yr )′
denote the vector of response variables; we assume that each variable Y j is categorical
with the same number c of categories, labeled from 0 to c−1. Note that the formulation
of the model may be easily adapted to the case of continuous response variables. The
LC model relies on a single latent variable U with k support points that identify the
latent classes in the population, labeled from 1 to k. According to the assumption of
local independence, the response variables are conditionally independent given the
latent variable. The model parameters are the weight of each latent class, denoted by
πu = p(U = u), u = 1, . . . , k, and the conditional probability of each response
variable given the latent variable, denoted by φ j y|u = p(Y j = y|U = u), for y =
0, . . . , c − 1, j = 1, . . . , r , and u = 1, . . . , k.

In order to estimate the model parameters, collected in the vector θ , on the basis
of a sample of n independent observations yi , i = 1, . . . , n, the incomplete data log-
likelihood denoted as �(θ) is maximized considering the complete data log-likelihood,
given by

�∗(θ) =
r∑

j=1

k∑

u=1

c−1∑

y=0

a juy logφ j y|u +
k∑

u=1

bu logπu,

where a juy = ∑n
i=1 I (ui = u, yi j = y) is the frequency of subjects that are in latent

class u and respond by y at the j-th response variable, and bu = ∑n
i=1 I (ui = u) is

the number of sample units in latent class u, with I (·) denoting the indicator function.

2.2 HiddenMarkovmodel

With reference to longitudinal data and for a single individual, let Y (t) =
(Y (t)

1 , . . . ,Y (t)
r )′ denote the occasion-specific response variables for each time t =

1, . . . , T , and let Y denote the vector of responses, which is made of the union of the
vectors Y (t), t = 1, . . . , T . Given a latent process U = (U (1), . . . ,U (T ))′ having a
discrete distribution with k states, the latent model parameters are the initial proba-
bilities, denoted by πu = p(U (1) = u), u = 1, . . . , k, and the transition probabilities
denoted by π

(t)
u|ū = p(U (t) = u|U (t−1) = ū), t = 2, . . . , T , ū, u = 1, . . . , k. Note

that it is possible to include a constraint corresponding to the hypothesis that the latent
process is time homogeneous so that the transition probabilities do not depend on time
occasion t : π(t)

u|ū = πu|ū , t = 2, . . . , T .
The HM model in its basic formulation (Bartolucci et al. 2013) relies on the fol-

lowing three main assumptions, which can be suitably relaxed:
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• Y (1), . . . ,Y (T ) are conditionally independent given U ;
• Y (t)

1 , . . . ,Y (t)
r are conditionally independent given U (t), for t = 1,…, T ;

• U follows a first-order Markov chain with state space {1, . . . , k}, where k is the
number of latent states.

2.2.1 Hidden Markov model with categorical response variables

Let Y (t)
j , j = 1, . . . , r , t = 1, . . . , T , denote the categorical response variable with c

categories, where the conditional probabilities are defined as in Section 2.1.
Given a sample of n observations, the complete data log-likelihood is expressed

as

�∗(θ) =
r∑

j=1

T∑

t=1

k∑

u=1

c−1∑

y=0

a(t)
juy logφ j y|u +

k∑

u=1

b(1)
u logπu +

T∑

t=2

k∑

ū=1

k∑

u=1

b(t)
ūu logπ

(t)
u|ū,

where a(t)
juy = ∑n

i=1 I (u
(t)
i = u, y(t)

i j = y) is the number of subjects that, at time
occasion t , are in latent state u and have outcome y for the j-th response variable,
b(t)
u = ∑n

i=1 I (u
(t)
i = u) is the number of subjects in latent state u at time occasion

t , and b(t)
ūu = ∑n

i=1 I (u
(t−1)
i = ū, u(t)

i = u) is the number of subjects that move from
latent state ū to latent state u at time occasion t .

2.2.2 Hidden Markov model with continuous response variables

The response vectorsY (t), t = 1, . . . , T , are assumed to follow a conditional Gaussian
distribution, that is,

Y (t)|U (t) = u ∼ N (μu,�), u = 1, . . . , k,

with state-specific mean vectors μu ∈ R
r , u = 1, . . . , k, and variance-covariance

matrix � ∈ R
r×r constant across latent states under the assumption of homoscedas-

ticity. This latter assumption may be relaxed to allow for heteroscedasticity across
latent states.

The complete data log-likelihood function is

�∗(θ) =
n∑

i=1

T∑

t=1

k∑

u=1

z(t)iu log f ( y(t)
i |u)

+
n∑

i=1

k∑

u=1

z(1)iu logπu +
n∑

i=1

T∑

t=2

k∑

ū=1

k∑

u=1

z(t)i ūu logπ
(t)
u|ū,

where f ( y(t)
i |u) denotes the probability density function of a multivariate Gaussian

distribution with parameters μu and �, z(t)iu = I (u(t)
i = u) is an indicator function

equal to 1 if subject i is in latent state u at time occasion t , and z(t)i ūu = I (u(t−1)
i =
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ū, u(t)
i = u) is an indicator function equal to 1 if subject i is in latent state ū at time

t − 1 and moves to latent state u at time t .

2.3 Expectation-maximization algorithm

Maximum likelihood estimation of model parameters is performed through the EM
algorithm. Once the parameters are initialized, the EM algorithm alternates the fol-
lowing steps until a suitable convergence criterion is satisfied:

• E-step: compute the conditional expected value of �∗(θ) given the observed data
and the value of the parameters at the previous step:

Q(θ; θ (h−1)) = Eθ (h−1)[�∗(θ)| y];

• M-step: maximize the expected value Q(θ; θ (h−1)) and so update the model
parameters:

θ (h) = argmax
θ

Q(θ; θ (h−1)).

The computation of the expected values at the E-step is based on the following
conditional probabilities, generically referred to as q(·). For the LCmodel we consider
q(u| y) = p(U = u|Y = y), while for theHMmodel we define q(t)(u| y) = p(U (t) =
u|Y = y) and q(t)(ū, u| y) = p(U (t−1) = ū, U (t) = u|Y = y). In the following
section, we present some details on the EM algorithm, and we show the tempering
technique.

3 Tempered expectation-maximization algorithm

The T-EM algorithm is implemented by adjusting the computation of the expected
frequencies in the E-step. In the following we define some general rules for the
tempering constants, and we show details of the T-EM algorithm for the LC and HM
models.

The family of tempered probabilities has the following expression:

q̃(τ )(·)= m−1q(·)1/τ , (1)

where q(·) denotes the original conditional probability, τ is a suitable parameter,
known as temperature and varying over the interval [1,+∞), and m is a normalizing
constant. At each E-step of the T-EM algorithm, the conditional expected frequencies
are computed accordingly. Regarding the temperature, the choice τ → +∞ yields
q̃(τ )(·) to a uniformdistribution,while τ = 1 recovers the original posterior probability
q(·). Therefore, we define a sequence of temperature values (τh)h≥1, where h is the
algorithm iteration number, so that: (i) the initial temperature τ1 is sufficiently large,
implying that the corresponding tempered distribution q̃(τ1)(·) is relatively flat and (ii)
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the temperature value τh tends towards 1 as the algorithm iteration counter increases.
The resulting sequence, denoted as tempering profile, guarantees a proper convergence
of the algorithm (Lartigue et al. 2022).

We consider the following two tempering profiles:

• a monotonically decreasing exponential profile, which is defined as

τh = 1 + eβ−h/α, (2)

where α ≥ 1 and β ≥ 0 are two constants chosen so as to ensure flexibility in the
profile shape;

• a non-monotonic profile with oscillations of gradually smaller amplitude, which
is expressed as

τh = tanh

(
h

2ρ

)
+

(
τ0 − β

2
√
2

3π

)
α

h/ρβ sinc

(
3π

4
+ h

ρ

)
, (3)

with constants β, ρ, τ0 > 0 and 0 < α < 1. This profile has more parameters to
tune, but it guarantees a very high level of flexibility. Here tanh(·) indicates the
hyperbolic tangent, while sinc(x) = sin(πx)/(πx) (with sinc(0) = 1) denotes the
normalized sine cardinal function. In this case, the sequence (τh)h≥1 may assume
values that are smaller than 1 or even negative; although this is not an issue from
a strictly mathematical perspective, a tempering step with negative temperature
lacks a proper interpretation. Therefore, in practice, we can force the tempering
profile to be always greater than or equal to 1 by taking τh = max{τh, δ}, with
δ ≥ 1 (in this work we fix δ = 1).

The abbreviationsM-T-EM and O-T-EM are used for monotonic (2) and oscillating
(3) tempering profiles, respectively.

3.1 Tuning of tempering profiles

The selection of optimal tempering constants for both profiles may be carried out
through a grid-search procedure; in the following, the term grid will denote the
sequence of values considered for a constant, while the term step-size will refer to
the distance between two consecutive values.

For the monotonic profile the only two constants are simple to interpret: β controls
the value of the initial temperature, whileα adjusts the decrease rate of the temperature.
Lower values of both make the contribution of tempering insignificant; at the extreme,
α = 1 and β = 0 recover the standard EM algorithm. Although it is not possible to
provide precise and rigorous rules for the selection of these constants, some guidelines
hold in general: (i) avoid very high values of α and β. Indeed, beyond certain values,
the target function can not be flattened further, and only the computational time would
increase. This sort of “threshold” values are unfortunately data-dependent, but we
recommend not exceeding α = 15 and β = 5; (ii) choose step-sizes for each grid
such that the distance between two consecutive values of α will result much smaller
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than the one between two successive values of β. Indeed, the monotonic profile is
much more sensitive to variations in α than in β; we suggest, for example, a ratio
of about 1:10; (iii) avoid increasing β without a corresponding growth of α (while
the opposite has no shortcomings). This would lead to a fast decrease in the value
of the temperature; accordingly, the target function would not be warped back to its
original shape in a gradual way, and the algorithm could possibly be brought far from
the global mode; (iv) typically, for each type of data there are many possible suitable
tempering configurations, and an important step is to locate a rough range for the
constants. After that, although the tuning process can be further refined, most of the
tempering configurations chosen within that range would provide good results; (v)
various factors such as number of observations, of response variables, and of latent
components would guide the choice of this “unrefined” range. For example, estimating
a model with many latent components typically requires higher values of α and β with
respect to a model with fewer components.

The same guidelines illustrated above should also be taken into account for the
oscillating profile, where, however, there are more constants to tune. Their practical
interpretation is, in this case, slightly different: T0 controls the initial temperature,
ρ the distance between two consecutive peaks of the profile, β the amplitude of the
oscillations, and α the global decrease rate.

The following steps for tuning the tempering profile are derived from the aforemen-
tioned rules and are successfully employed to estimate the models for the applications
presented in Sect. 5:

(1) define grids for all the tempering constants, starting with large step-sizes;
(2) estimate the model using the T-EM algorithm with these “unrefined” grids for the

tempering constants employing a much smaller number of starting values with
respect to that required with the standard EM algorithm;

(3) identify the optimal tempering constants by comparing values of the log-likelihood
function at convergence;

(4) improve the tuning procedure, if necessary, in a smaller region of the tempering
constants space and repeat the same procedure (points 2 and 3) using the same
small number of different starting values.

A final note, which is effective for both profiles, is that in order to achieve a proper
convergence, the algorithm needs to be run until the temperature is steadily close to 1.
After that, the last step is conducted with the temperature precisely equal to 1 in order
to retrieve the shape of the original log-likelihood function. Typically, this approach
increases the number of steps that are required for the algorithm to converge, especially
in the case of the oscillating profile. The code written for this proposal is implemented
in R and it is freely available at the following link in the GitHub repository: https://
github.com/LB1304/T-EM.
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3.2 T-EM algorithm for the latent class model with categorical response variables

In the following, we provide some details of the tempered distribution (1) defined for
the LC model with categorical response variables considering a suitable tempering
profile τh :

q̃(τh)(u| yi ) = q(u| yi )1/τh

∑k
v=1 q(v| yi )1/τh

.

The corresponding pseudo-code is shown in the box Algorithm 1. The E- and M-step
of the T-EM algorithm are implemented as follows:

• E-step: compute the conditional expected values of a juy and bu revised according
to the rules

b̃(τh)
u =

n∑

i=1

q̃(τh)(u| yi ) and ã(τh)
juy =

n∑

i=1

I (yi j = y)q̃(τh)(u| yi )

to obtain the conditional expected value Q(θ; θ (h−1)).
• M-step: maximize Q(θ; θ (h−1)), thus updating the parameters as:

π(τh)
u = b̃(τh)

u

n
and φ

(τh)
j y|u = ã(τh)

juy

b̃(τh)
u

.

Algorithm 1 T-EM algorithm for LC model with categorical response variables
1: Define a tempering profile (τh)h≥1.
2: θ ← θ (0) and h ← 0.
3: while (Convergence Condition = FALSE) do
4: h ← h + 1;

5: E-Step: compute ã
(τh )

juy and b̃
(τh )
u ;

6: M-Step: compute π
(τh )
u and φ

(τh )

j y|u .
7: end while

3.3 T-EM algorithm for the hiddenMarkovmodel with categorical response
variables

Amore refined formulation for the tempered distribution in (1) is required to estimate
the HM model. Once the tempering profile τh is chosen, we obtain the following
tempered distributions:

q̃(t;τh)(u| yi ) = q(t)(u| yi )1/τh

∑k
v=1 q

(t)(v| yi )1/τh

and
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q̃(t;τh)(ū, u| yi ) = q(t)(ū, u| yi )1/τh

∑k
v̄=1

∑k
v=1 q

(t)(v̄, v| yi )1/τh
.

The pseudo-code is shown in the box Algorithm 2. In this setting, the steps of the
T-EM algorithm are:

• E-step: compute the revised conditional expected value of every frequency a(t)
juy ,

b(t)
u , and b(t)

ūu , so as to obtain the conditional expected value Q(θ; θ (h−1)); in
particular, we have the following explicit expressions:

ã(t;τh)
juy =

n∑

i=1

I (y(t)
i j = y)q̃(t;τh)(u| yi ),

b̃(t;τh)
u =

n∑

i=1

q̃(t;τh)(u| yi ),

b̃(t;τh)
ūu =

n∑

i=1

q̃(t;τh)(ū, u| yi ).

Similarly to the standard EM algorithm, posterior probabilities q̃(t;τh)(u| yi ) and
q̃(t;τh)(ū, u| yi ) may be efficiently computed by a backward recursion; see Bar-
tolucci et al. (2013, pp 61–64) for further details.

• M-step: by maximizing Q(θ; θ (h−1)) update the parameters as follows:

π(τh)
u = b̃(1;τh)

u

n
, π

(t;τh)
u|ū = b̃(t;τh)

ūu

b̃(t−1;τh)
ū

, and φ
(τh)
j y|u =

∑T
t=1 ã

(t;τh)
juy

∑T
t=1 b̃

(t;τh)
u

.

Algorithm 2 T-EM algorithm for HM model with categorical response variables
1: Define a tempering profile (τh)h≥1.
2: θ ← θ (0) and h ← 0.
3: while (Convergence Condition = FALSE) do
4: h ← h + 1;

5: E-Step: compute ã
(t;τh )

juy , b̃
(t;τh )
u , and b̃

(t;τh )

ūu ;

6: M-Step: compute π
(τh )
u , π

(t;τh )

u|ū , and φ
(τh )

j y|u .
7: end while

3.4 T-EM algorithm for hiddenMarkovmodel with continuous response variables

Regarding the HM model with continuous response variables, the pseudo-code is
shown in the box Algorithm 3. Similarly to the previous case, the steps of the resulting
T-EM algorithm are as follows:
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• E-step: compute the conditional expected valueQ(θ; θ (h−1)) considering z(t)iu and

z(t)i ūu :

z̃(t;τh)iu = q̃(t;τh)(u| yi ) and z̃(t;τh)i ūu = q̃(t;τh)(ū, u| yi ).

• M-step: maximize Q(θ; θ (h−1)) and update the model parameters as follows:

μ(τh)
u = 1

∑n
i=1

∑T
t=1 z̃

(t;τh)
iu

n∑

i=1

T∑

t=1

z̃(t;τh)iu y(t)
i ,

�(τh) =
n∑

i=1

T∑

t=1

k∑

u=1

z̃(t;τh)iu ( y(t)
i − μu)( y

(t)
i − μu)

′

nT
,

π(τh)
u =

∑n
i=1 z̃

(1;τh)
iu

n
,

π
(t;τh)
u|ū =

∑n
i=1

∑T
t=2 z̃

(t;τh)
i ūu∑n

i=1
∑T

t=2 z̃
(t−1;τh)
iu

.

Algorithm 3 T-EM algorithm for HM model with continuous response variables
1: Define a tempering profile (τh)h≥1.
2: θ ← θ (0) and h ← 0.
3: while (Convergence Condition = FALSE) do
4: h ← h + 1;

5: E-Step: compute z̃
(t;τh )

iu and z̃
(t;τh )

i ūu ;

6: M-Step: compute μ
(τh )
u , �(τh ), π

(τh )
u , and π

(t;τh )

u|ū .
7: end while

4 Simulation study

We conducted an extensive Monte Carlo simulation study to evaluate the performance
of the T-EM algorithm. In the following, we illustrate the simulation schemes for each
different model specifications and summarize the main results.

4.1 Settings of the experimental scenarios

The settings involved in each model are different values of sample size n, number
of response variables r , categories for each variable c, time occasions T , and latent
components k. We define a baseline scenario (setting A, see Tables 16, 17, and 18
in Appendix A) for each model, characterized by n = 500, r = 6, c = 3, T = 5,
and k = 3. In addition, more scenarios (settings from B to F in Appendix A) are
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obtained by doubling, one at a time, the value of each feature. In Tables 16, 17,
and 18 in Appendix A also the values of the models’ parameters are presented. For
each scenario, 50 different samples are drawn. For each of the simulated samples, we
estimate 100 times both the model with correctly specified latent structure and that
with misspecified latent structure, using each time different starting values randomly
selected and employing the standard EM algorithm and the two proposed versions of
the T-EM algorithm. The choice to also fit misspecified models allows us to show in
more detail the features of the proposed tempering approach.

The convergence of the algorithms is checked on the basis of both the relative
change in the log-likelihood of two consecutive steps, and the distance between the
corresponding parameter vectors. We stop the algorithm when both criteria are satis-
fied:

�(θ (h)) − �(θ (h−1))

|�(θ (h))| < ε1

and

max
s

|θ(h)
s − θ(h−1)

s | < ε2,

where θ (h) is the vector of parameter estimates obtained at the h-th iteration of the
M-step and ε1 and ε2 are tolerance levels equal to 10−8 and 10−4, respectively.

Regarding the algorithm initialization, we adopt a starting rule based on normal-
ized random numbers (Bartolucci et al. 2013). In more details, each initial (πu) and
transition (π(t)

u|ū) probability is initialized with a random number drawn from a uniform

distribution between 0 and 1. Then, they are normalized so that
∑k

u=1 πu = 1 and∑k
u=1 π

(t)
u|ū = 1. Similarly, we draw each φ j y|u from the uniform distribution and we

normalize these parameters so that
∑c−1

y=0 φ j y|u = 1. In the case of continuous response
variables, the mean vectors μu are drawn from a multivariate Gaussian distribution,
whereas � is initialized with the observed variance-covariance matrix. As suggested
in Bartolucci et al. (2013), combining deterministic and random starting values is
a proper approach. Therefore, in Sect. 4.4 we analyze the behavior of tempering in
connection with a different initialization strategy.

4.2 Simulation results

The EM and T-EM algorithms are compared according to the following criteria:

1. Global maximum achievement: the highest of themaximized log-likelihood values
over all 100 initial values, denoted by �̂max, is considered as the global maximum,
and a log-likelihood value at convergence denoted by �̂ is considered close to this
value once it satisfies (�̂max − �̂)/|�̂max| < ε̃, where ε̃ is a suitable threshold;

2. Average distance from the global maximum computed over the 100 log-likelihood
values �̂1, . . . , �̂100 and expressed as

∑100
s=1(�̂max − �̂s)/100;
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(a)

(b)

Fig. 1 Percentages of global maxima obtained using EM and M-T-EM algorithms under the simulated
scenarios presented in Table 16 of the Appendix A for the LC model

3. Low mean square error of the estimated model parameters with respect to the
true model parameters, computed only for models with a correctly specified latent
structure;

4. Low mean and median of the log-likelihood values at convergence.

In particular, in this first part of the simulation study, we analyze the performance of
the M-T-EM algorithm when the tempering profile is optimally tuned through a grid-
search procedure. The following values for the tempering constants are kept fixed
throughout the simulation studies: α ranging from 1 to 15 with a step-size equal to 1
and β ranging from 0 to 2, with a step-size equal to 0.1. In order to show the flexibility
of the method, we use the same grid for each model. However, efficient ad hoc grids
may be set according to the model and observed data. The results are summarized
in the following, and the full outcomes related to every sample under each simulated
scenario are reported in the SI.

Criterion 1 is the most important, providing a suitable measure of performance of
the algorithm. In this regard, the main results are summarized in Figs. 1, 2, and 3,
representing the frequencies of global maximum with respect to the LC model, HM
model with categorical response variables, and HM model with continuous response
variables, respectively. From all these figures it clearly emerges that the M-T-EM
algorithm ensures better performance in each considered scenario.

Regarding the estimation of models whose latent structure is correctly specified, in
particular (see Figs. 1a, 2a, and 3a), the improvement with respect to the standard EM
algorithm is very relevant: theM-T-EM is generally able to detect the global maximum
in the overwhelming majority of cases, and the frequency of convergence to the global
mode is very close, or even equal, to 100%. Only in estimating models with many
latent states (up to 6), this percentage is slightly reduced, even if the M-T-EM still
remains the algorithm providing the best performance. As an example, we consider the

123



L. Brusa et al.

(a)

(b)

Fig. 2 Percentages of global maximum using EM and M-T-EM algorithms under the simulated scenarios
presented in Table 17 of the Appendix A for the HM model with categorical response variables

(a)

(b)

Fig. 3 Percentages of global maximum using EM and M-T-EM algorithms under the simulated scenarios
presented in Table 18 of the Appendix A for the HM model with continuous response variables

HM model with categorical response variables and in the particular setting F (see the
last plot in Fig. 2a): in this case the frequency of convergence to the global maximum
is, on average, equal to 29% when the standard EM algorithm is used, and up to 52%
when the M-T-EM algorithm is employed. Moreover, this frequency is always lower
than 75% with the EM, while it reaches 100% with M-T-EM (though only in a few
cases).
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Table 1 Number of samples in
which the global maximum is
reached with frequency < 10%,
> 50%, or > 95%, using EM
(highlighted in bold) and
M-T-EM (highlighted in italic)
algorithms under the simulated
scenarios presented in Table 16
of the Appendix A for the LC
model

Correctly specified Misspecified

< 10% > 50% > 95% < 10% > 50% > 95%

A 1–0 43–49 20–49 7–2 9–25 0–8

B 0–0 41–50 15–49 1–0 10–33 0–3

C 0–0 50–50 47–50 9–4 0–9 0–0

D 1–1 47–48 32–47 4–1 0–21 0–0

E 10–5 0–13 0–2 32–18 0–5 0–0

Table 2 Number of samples in
which the global maximum is
reached with frequency < 10%,
> 50%, or > 95%, using EM
(highlighted in bold) and
M-T-EM (highlighted in italic)
algorithms under the simulated
scenarios presented in Table 17
of the Appendix A for the HM
model with categorical response
variables

Correctly specified Misspecified

< 10% > 50% > 95% < 10% > 50% > 95%

A 0–0 50–50 50–50 4–1 6–24 0–1

B 0–0 50–50 50–50 0–0 20–35 0–0

C 0–0 50–50 35–50 4–1 5–21 0–1

D 0–0 43–47 11–41 3–2 1–17 0–0

E 0–0 50–50 50–50 3–1 20–32 0–2

F 7–6 6–23 0–7 27–17 0–5 0–0

Table 3 Number of samples in
which the global maximum is
reached with frequency < 10%,
> 50%, or > 95%, using EM
(highlighted in bold) and
M-T-EM (highlighted in italic)
algorithms under the simulated
scenarios presented in Table 18
of the Appendix A for the HM
model with continuous response
variables

Correctly specified Misspecified

< 10% > 50% > 95% < 10% > 50% > 95%

A 0–0 50–50 12–36 3–2 13–23 0–0

B 0–0 50–50 14–36 0–0 20–26 0–1

C 0–0 50–50 0–40 2–0 19–24 0–0

D 0–0 50–50 18–47 4–4 20–28 0–1

E 0–0 15–40 0–0 17–5 0–1 0–0

All the algorithms are less efficient in steadily detecting the global mode when
models with misspecified latent components are estimated (see Figs. 1b, 2b, and 3b).
The M-T-EM algorithm always provides the best performance, and in many scenarios
the improvement is very relevant: in setting D of the LCmodel (Fig. 1b) the frequency
of convergence to the global mode increases from 18 to 41%; in setting C of the HM
model with categorical responses (Fig. 2b) for some samples this frequency reaches
100%.

In Tables 1, 2, and 3, for each one of the simulated scenarios, we show the number
of samples in which the global maximum is reached at least half of the times (> 50%),
almost always (> 95%), or almost never (< 10%). These results provide supporting
evidence for the conclusions drawn so far. In particular, when the considered mod-
els are estimated with the correct latent structure, the M-T-EM algorithm performs
really well, and significantly better than the standard EM algorithm. For example, this
enhancement is evident in setting C of the HM model with continuous response vari-
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Table 4 Mean square errors of the estimated model parameters with respect to the true model parameters,
using EM (highlighted in bold) and M-T-EM (highlighted in italic) algorithms under simulated scenarios
presented in Tables 16, 17, and 18 in the Appendix A and estimating models with correct latent structure

Scenario LC Categorical HM Continuous HM

A 0.0013–0.0012 0.0006–0.0002 0.0643–0.0272

B 0.0007–0.0006 0.0003–0.0001 0.0556–0.0294

C 0.0022–0.0010 0.0046–0.0003 0.1603–0.0433

D 0.0020–0.0006 0.0027–0.0002 0.0322–0.0094

E 0.0584–0.0544 0.0002–0.0001 0.1384–0.1168

F – 0.0202–0.0179 –

ables, where we observe that 40 samples reach the global mode with high frequency
compared to none with the standard EM algorithm. An analogous improvement is
noticeable for the case with 6 latent states but referred to the frequency of conver-
gence to the global maximummore than half the time. In the case of models estimated
with the wrong latent structure and many components, we show another important
result, not highlighted so far: the number of samples in which the global maximum
is almost never reached (< 10% of times) diminishes when the M-T-EM algorithm is
employed.

We also consider the mean distance from the global mode to measure how far the
obtained maximum is from the global one. In particular, although all settings provide
similar results, we notice that when dealing with correctly specified models, the mean
distance decreases to zero when the M-T-EM algorithm is employed, thus confirming
that the global maximum is almost always reached. In Appendix B, all detailed results
are provided in Figs. 7, 8, and 9.

Finally, we also provide the mean square error of the estimated model parameters
with respect to the true values, once the models are estimated with the correct latent
structure. The results, summarized in Table 4, show that the mean square error values
are always smaller with the M-T-EM algorithm than with the standard EM algorithm,
thus highlighting that the estimatedmodel parameters are more accurate by employing
the former.

4.3 Results in terms of computational time

Having assessed the good performance of the proposedM-T-EM algorithm in locating
the global maximum, we also compare the computational time required for con-
vergence with that required by the EM algorithm for the same simulation settings
illustrated above. Tempering constants are chosen as presented in Sect. 4.2. The esti-
mation is performed by employing an Intel(R) Core(TM) i7-8700T CPU@ 2.40GHz
Windows desktop with 8 GB of RAM.

The main results, summarized in Table 5, show that when estimating LC and HM
models with continuous response variables, the EM and M-T-EM algorithms show
very similar computing times. The EM algorithm generally remains the fastest even if
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Table 5 Computational time in seconds of the EM (highlighted in bold) andM-T-EM (highlighted in italic)
algorithms for each settings, computed as the mean over 50 samples and 100 starting values as presented
in Sect. 4.2

Scenario LC Categorical HM Continuous HM

Correctly specified models

A 0.039–0.055 0.178–0.643 3.499–3.442

B 0.042–0.067 0.288–1.109 6.225–6.381

C 0.046–0.052 0.212–0.583 7.475–7.224

D 0.035–0.039 0.191–0.775 5.974–5.897

E 0.466–0.537 0.270–1.206 9.545–9.495

F – 1.728–11.237 –

Misspecified models

A 0.205–0.484 1.114–7.282 11.114–12.480

B 0.268–0.348 2.045–13.258 18.646–21.016

C 0.294–0.407 1.396–6.747 24.670–29.081

D 0.244–0.364 1.173–7.365 19.981–23.852

E 0.581–0.630 2.022–13.217 18.513–19.714

F – 2.523–15.867 –

the difference with the M-T-EM is negligible. When dealing with correctly specified
HM models with continuous response variables, the M-T-EM algorithm is faster than
the EM algorithm. Conversely, for the case of the HMmodel with categorical response
variables it is the slowest, requiring up to 6.5 times the computational time of the EM
algorithm. These two opposite behaviors are due to the different implementations of
the T-EM algorithm: the one for the HMmodel with categorical responses requires an
additional loop to the code with respect to the other two models.

4.4 Initialization of the T-EM algorithm

In this section we consider different initialization strategies of the model parame-
ters to evaluate the effect of the different choices in detecting the global maximum
and reducing the computational time. For continuous data, as proposed by Leroux
and Puterman (1992), and following McLachlan and Basford (1988), we initialize
the parameters according to the partition obtained by applying the k-means method
(MacQueen 1967). Maruotti and Punzo (2021) inspected this initialization approach
and a few others, concluding that the k-means strategy provides the best results. A
similar initialization is employed for discrete data applying the k-modes algorithm
(Huang 1998). Initial values are computed as follows:

• proportion of observations assigned to cluster u at the first time occasion for the
initial probabilities (πu);

• proportion of transition (or persistence) estimated from cluster ū to cluster u for
the transition probabilities (π(t)

u|ū);
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Table 6 Percentage of samples
in which the global maximum is
reached by the M-T-EM
algorithm with k-means
initialization, but not by the
standard EM algorithm with the
same starting values when the
latent structure of the models is
correctly specified

LC Categorical HM Continuous HM

A 98% 62% 14%

B 98% 58% 8%

C 96% 0% 0%

D 76% 76% 0%

E 60% 38% 28%

F – 84% –

• proportion of observations assigned to cluster u who responded with category y
to the response variable j for the conditional probabilities (φ j y|u);

• maximum likelihood estimator on the observations of clusteru for themean vectors
(μu);

• maximum likelihood estimator on all the observations under the hypothesis of
homoscedasticity for the variance-covariance matrix (�).

We consider the same samples and starting values used in Sect. 4.2, comparing the
performance of the EM and the M-T-EM algorithms. In general, when the estimation
of correctly specified models is considered, the standard EM algorithm benefits from
the adoption of a k-means initialization using this kind of strategy, therefore, the results
obtained with the EM and the M-T-EM algorithms are very similar.

In Table 6, for each scenario, we report the number of samples in which the standard
EM algorithm with k-means initialization does not converge to the global maximum,
which is instead reached by the M-T-EM algorithm with the same starting values. It is
important to remark that M-T-EM algorithm does not behave worse than the standard
EM algorithm in all the other samples, but both algorithms converge to the same
value. Further analyses conducted on correctly specified HMmodels with continuous
response variables and k = 2 latent states highlight that in such case the global
maximum is always reached also by the EM algorithm with k-means initialization.

We also compare random and k-means initializations for the M-T-EM algorithm.
The results, summarized in Table 7, show that the k-means initialization works prop-
erly. Indeed this strategy significantly reduces the number of iterations required for
convergence, and hence the computational time. In particular we report, along with
the number of samples in which the M-T-EM algorithm with k-means initialization
reaches the global maximum, the average number of iterations required by the two
initialization strategies to converge. We notice that apart from some cases with many
latent components, the global maximum is almost always reached by the M-T-EM
algorithm when initialized with the k-means approach. As for the decrease in the
number of iterations, the advantage is particularly evident when dealing with HM
model with continuous responses; in this case, it is dropped up to one sixth.

In the case of models where the latent structure is not correctly specified, the
situation is lesswell defined: likewise the previous case, the results obtained comparing
EMandM-T-EMalgorithms initializedwith k-means strategy are very similar for some
samples (Table 8), highlighting that the standard EM algorithmmay sometimes benefit
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Table 7 Percentage of samples in which the M-T-EM algorithm with k-means initialization reaches the
global maximum and number of iterations until convergence with random and k-means (or k-modes)
initialization when the latent structure of the models is correctly specified

Percentage (Glob. Max) Iterations (Random) Iterations (k-means)

LC model

A 98% 26.49 25.10

B 98% 28.88 28.32

C 100% 11.00 6.82

D 92% 11.42 8.54

E 0% – –

HM model (categorical responses)

A 100% 10.09 5.48

B 100% 10.00 5.14

C 100% 8.89 5.78

D 92% 12.53 9.70

E 100% 9.50 5.16

F 36% 176.47 164.96

HM model (continuous responses)

A 100% 42.73 11.84

B 100% 37.97 10.76

C 100% 45.39 11.06

D 98% 34.21 10.62

E 100% 83.89 14.44

Table 8 Percentage of samples in which the global maximum is reached by the M-T-EM algorithm with
k-means initialization, but not by the standard EM algorithm with the same starting values when the latent
structure of the models is not correctly specified

Scenario LC Categorical HM Continuous HM

A 60% 86% 44%

B 60% 76% 70%

C 38% 82% 62%

D 60% 42% 68%

E 78% 70% 62%

F – 78% –

123



L. Brusa et al.

Table 9 Percentage of samples in which the M-T-EM algorithm with k-means initialization reaches the
global maximum and number of iterations until convergence with random and k-means (or k-modes)
initialization when the latent structure of the models is not correctly specified

Scenario Percentage (Glob. Max) Iterations (Random) Iterations (k-means)

LC model

A 16% 359.44 216.00

B 22% 136.21 121.27

C 0% – –

D 26% 112.04 99.04

E 0% – –

HM model (categorical responses)

A 40% 148.55 140.29

B 40% 134.40 121.61

C 32% 122.13 110.48

D 30% 147.47 132.06

E 32% 116.50 106.26

F 18% 263.00 253.79

HM model (continuous responses)

A 44% 142.33 142.33

B 56% 117.07 97.32

C 50% 141.78 136.68

D 44% 116.41 94.09

E 26% 136.21 89.54

from the adoption of this initialization strategy. However, whenM-T-EM is employed,
this improvement does not always correspond to an advantage when using the k-means
initialization with respect to the random one. As shown in Table 9, the number of
samples that benefit from this initialization strategy is quite limited and usually does
not reach the 50%. Finally, also in this case the k-means initialization provides some
benefits from the point of view of the number of iterations until convergence, even if
less pronounced than in the case of models with correctly specified latent structures.

4.5 The role of the oscillating tempering profile

Although the M-T-EM algorithm ensures significant improvements in terms of abil-
ity to detect the global maximum, in some cases the frequency of convergence to
this global mode remains inferior to 100%. A possible remedy is represented by the
oscillating profile, which is able to explore the parameter space more deeply than
the monotonic one. In the following we focus only on the LC model, comparing the
O-T-EMalgorithmwith the EMandM-T-EMalgorithms; this is due to the higher com-
puting time associated with this profile. The main results are summarized in Fig. 4,
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(a) (b)

Fig. 4 Percentage of global maximum and mean distance from it with the EM, M-T-EM, and O-T-EM
algorithms on simulated data from an LC model correctly specified with six latent classes

Table 10 Computational time in
seconds of the EM, M-T-EM,
and O-T-EM algorithms,
computed as the mean over 50
samples and 100 starting values,
as presented in Sect. 4.2

Algorithm Minimum Median Mean Maximum

EM 0.07 0.51 0.466 1.74

M-T-EM 0.11 0.59 0.537 1.78

O-T-EM 0.08 6.08 7.91 24.51

where we show the percentage of times the global maximum is reached and the mean
distance from the global maximum for the three versions of the algorithm.

Employing the oscillating profile, we notice a further improvement compared to
the results analyzed in Sect. 4.2: the global maximum is reached on average about
18% of times with the standard EM algorithm, which increases up to 38% with the
M-T-EM algorithm, and up to 60% with the oscillating version. It is also interesting
to evaluate the number of samples in which the global maximum is reached almost
surely (< 95%); this number, as reported in Table 1, was equal to 0 and 2 with
EM and M-T-EM algorithms, respectively. Using the O-T-EM algorithm instead it
increases to 18 samples. As for the mean distance from the global maximum, we
notice that this value decreases accordingly, following the general advantage of the
O-T-EM algorithm over the monotonic version. This optimal behavior of the tempered
algorithm with oscillating profile results, however, in a much higher computational
time, as reported in Table 10. This aspect sometimes makes the employment of the
O-T-EM algorithm rather complex; in particular, when it is applied to the HM model
with categorical responses, the convergence is extremely slow, and the M-T-EM could
be the most appropriate choice.

4.6 Analysis of the T-EM algorithmwith fixed tempering profile

Lastly, we check the performance of the T-EM algorithm when it is not opti-
mally tuned, but the tempering constants are fixed in advance. With this aim, for
each inspected scenario, a short list of different configurations of tempering constants
is considered for applying the M-T-EM algorithm to all samples. In the analysis of
the results, the tempered version is considered as the best choice only when it out-
performs the standard EM algorithm with respect to all the four criteria introduced in
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Sect. 4.2. Otherwise, if at least one criterion shows a better result with the standard
EM algorithm, the latter is preferred. In this way, we carry out a very rigorous analysis.

Tables 19, 20, and 21 in the Appendix C report for each scenario the configuration
of tempering constants which exhibits the best performance. Results are highly satis-
factory in most cases: given a fixed configuration, the M-T-EM algorithm outmatches
the standard version in around 50% of samples in almost all the analyzed scenarios.
In other words, once a configuration of tempering constants is set appropriately by
a grid-search procedure over a specific sample, it generally remains valid for around
50% of other samples. This percentage increases up to 100% in some scenarios, espe-
cially when the latent structure of the model is correctly specified: the considered
configuration of tempering constants provides optimal results in all samples. Similar
results are achieved in the case of oscillating tempering profile analyzing setting E of
the LC model when the latent structure is correctly defined: the best configuration of
tempering constants (α = 0.9, β = 50, ρ = 5, and T0 = 10) performs well with 62%
of the considered samples. It is clear that there are still some cases that require exper-
imenting with the tempering constants to yield good performance; however, in our
opinion, this represents a first significant improvement that allows avoiding specific
settings for models and types of data.

5 Applications

To explore the performance of the T-EM algorithm when dealing with real-world
cases, we apply it to cross-sectional and longitudinal data; we specifically address the
problem of selecting the best number of components for LC and HM models.

5.1 Evaluation of anxiety and depression

We consider data derived from the administration of 14 ordinal items measuring anxi-
ety and depression in a sample of 201 Italian oncological patients (Zigmond and Snaith
1983). Items are measured according to four response categories ranging from 0 to
3 and corresponding to the lowest and to the highest level of anxiety or depression,
respectively. Data are available in the R package MultiLCIRT (Bartolucci et al.
2014).

The LC model allows to discover subpopulations of patients with similar intensity
levels of these two pathologies. The model is estimated with both EM and T-EM algo-
rithms with a number of latent components k ranging from 1 to 4 to perform model
selection. The Bayesian Information Criterion (Schwarz 1978, BIC) is employed at
this purpose penalizing the maximized log-likelihood function for the model com-
plexity.

For the M- and O-T-EM algorithms the following two configurations of tempering
constants are used and held fixed over the values of k: α = 42 and β = 1.5 for the
monotonic version, and ρ = 90, τ0 = 10, β = 20, and α = 0.8 for the oscillating
one. In the following, we show the results only for values of k for which there is a
significant difference on the global maximum reached by employing the EM and the
T-EM algorithms. Figure 5 refers to the maximum log-likelihood values reached by
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(a)

(b)

(c)

Fig. 5 Maximized log-likelihood values of the LCmodel for the anxiety and depression data using standard
EM (left) and T-EM (right) algorithms; as for the latter, monotonic and oscillating versions provide the same
results. Three different choices for the number of latent classes are analyzed,with 100 random starting values
each

each algorithm for every model. As it is evident, while the EM algorithm spreads out
over a wide range of values, both tempered algorithms always converge to a single
value appearing as the global mode.

Results based on the O-T-EM algorithm are reported in Table 11, where it can be
seen that the optimal number of components corresponding to the minimum value of
BIC is three. It is important to remark that the results are always obtained using the
same configuration of tempering constants as presented above. Therefore, we highlight
again the considerable level of flexibility of the proposed method.
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Table 11 Maximum
log-likelihood, number of
parameters and BIC value
resulting from fitting a LC model
with the O-T-EM algorithm for
different values of k. The value
in bold represents the best result

k �̂ #par BIC

1 −3,153.15 42 6,529.04

2 −2,814.64 85 6,080.05

3 −2,674.48 128 6,027.79

4 −2,595.47 171 6,097.83

Table 12 Maximum
log-likelihood, number of
parameters and BIC index
resulting from fitting a time
heterogeneous HM model with
the M-T-EM algorithm for
different numbers of latent states
k. The value in bold represents
the best result

k �̂ #par BIC

1 −27,936.35 10 55,964.81

2 −22,638.39 31 45,562.30

3 −22,275.05 62 45,121.14

4 −22,051.55 103 45,051.77

5 −21,881.36 154 45,181.12

Table 13 Mean and median of maximized log-likelihood values of the HM model, proportion (Perc.) of
global maximum and mean distance (Dist.) from the global mode, using EM and M-T-EM algorithms on
criminal data with k = 4 latent states

Mean Median Perc.% [Dist.] (Glob. Max)

EM −22,075.02 −22,051.60 73% [23.52]
M-T-EM −22,053.53 −22,051.51 98% [2.03]

5.2 Discovering criminal trajectories

We consider longitudinal data on conviction histories of a cohort of n = 10, 000
offenders followed from the age of criminal responsibility (10 years) until age 40.
As described in Research Development and Statistics Directorate (1998), offenses are
grouped into the following 10 typologies: violence against the person, sexual offenses,
burglary, robbery, theft and handling stolen goods, fraud and forgery, criminal damage,
drug offenses, motoring offenses, and other offenses. Binary response variables (r =
10) indicate if the offender has committed a crime during six age bands (T = 6) of
length equal to five years. An HMmodel was proposed for the analysis of these data in
Bartolucci et al. (2007) and Pennoni (2014) to identify typologies of criminal behavior
and types of criminal career specialization over time.

Results of estimating a time heterogeneous HMmodel with the M-T-EM algorithm
for a number of states ranging from 1 to 5 are reported in Table 12. The optimal
number of latent states corresponding to the minimum value of BIC is four. The M-
T-EM algorithm with parameters α = 2 and β = 1.5 is compared with the EM
algorithm according to the same procedure illustrated in Sect. 4.2: for each value of
k, 100 different starting values are randomly chosen to initialize both versions of the
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Table 14 Maximum
log-likelihood and BIC index
resulting from fitting a time
heterogeneous HM model with
EM and O-T-EM algorithms for
increasing number of latent
states k. For both algorithms,
values in bold represent the best
results

EM O-T-EM

k �̂ BIC �̂ BIC

1 −18,100.06 36,339.58 −18,100.06 36,339.58

2 −17,299.80 34,816.53 −17,299.80 34,816.53

3 −16,891.00 34,117.72 −16,887.96 34,111.63

4 −16,386.89 33,269.60 −16,386.89 33,269.60

5 −16,161.01 33,019.26 −16,161.01 33,019.26

6 −16,006.90 32,953.79 −16,002.67 32,945.33

7 −15,859.53 32,943.11 −15,821.86 32,867.78

8 −15,692.55 32,934.54 −15,676.37 32,902.18

9 −15,569.32 33,054.78 −15,531.69 32,979.51

10 −15,459.35 33,242.85 −15,428.07 33,180.30

algorithm. As shown in Table 13, when the chosen HM model is estimated, even in
this context, the T-EM guarantees better performance.

More specifically, with the proposed algorithm, the frequency of global maximum
is higher: the M-T-EM algorithm reaches the global mode 98 times, while the stan-
dard EM algorithm only 73. Moreover, the mean distance from the global optimum
decreases to almost zero, and the mean of log-likelihood values increases accord-
ingly; only the median value remains essentially unchanged, with just a very slight
enhancement.

5.3 Analyzing countries development

We consider data obtained from the World Bank’s World Development Indicators
(The World Bank Group 2018) on n = 175 countries collected for T = 5 years
(from 2011 to 2015) on r = 6 continuous response variables: life expectancy at
birth, total population between the ages 0–14, percentage of population with access to
electricity, percentage of population using the internet, share of electricity generated
by renewable power plants, and fertility rate. A logit transformation is applied to the
variables expressed in a percentage scale, and a Box-Cox transformation (Box and
Cox 1964) to all the variables. Results of the estimation of a time heterogeneous HM
model on the transformed data with the O-T-EM algorithm for a number of states
ranging from 1 to 10 are reported in Table 14. In order to check the assumption on the
conditional distribution we check the posterior density of each response variable once
the units are allocated according to maximum a posteriori rule; results (available from
the authors upon request) seem satisfactory. In this case, the advantages of using the
tempering approach are even more evident:

1. it guarantees convergence to the global maximum. Indeed, for most values of k, the
maximized log-likelihood value is higher than that of the EM algorithm, showing
that the standard EM algorithm cannot correctly detect such a value. Moreover,
themean distance from the global maximum also shows significant improvements,
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Fig. 6 Maximized log-likelihood values of the HMmodel for the countries’ economic conditions data using
standard EM (left) and O-T-EM (right) with k = 7 latent states, using 100 random starting values

assuming much smaller values when the O-T-EM algorithm is used, thus showing
that it is able to converge repeatedly to the global maximum;

2. it allows us to select a more parsimonious model. Model selection performed
with the standard EM leads us to choose eight components, whereas the T-EM
algorithm suggests seven components. BIC values are always smaller than those
obtained with the standard algorithm;

3. it exhibits an appealing level of flexibility: there is no need to change the optimal
set of tempering constants (fixed at α = 0.6, β = 110, ρ = 5, and τ0 = 20) once
the HM model is fitted for a number of states ranging from 5 to 10. For values of
k from 2 to 4, another unique configuration of tempering constants proves to be
the best (α = 0.5, β = 120, ρ = 5, and τ0 = 10).

Focusing on the log-likelihood values shown in Fig. 6 related to the selected model
with seven states, we notice that the O-T-EM algorithm always avoids lower values
in favor of the higher ones of the maximized log-likelihood. These are reached much
more frequently with respect to the EM algorithm.

As already illustrated with the simulation study presented in Sect. 4 and also shown
in Table 15, the O-T-EM algorithm is more demanding in terms of computational time
with respect to the EM algorithm; however, it has superior performance. Moreover,
we notice that on average, a single execution of the T-EM algorithm requires the
same time of approximately 10 runs of the standard algorithm. It is important to note
that after 1,000 executions performed with 1,000 different random starting values, the
EM algorithm is still unable to detect the global maximum (according to the definition
providedby thefirst criterion inSect. 4) obtainedwith theO-T-EMalgorithm, and equal
to−15,821.86, since its highest reached value is−15,834.97.Neither a higher number
of random starting values (up to 10,000 in our study), nor the k-means initialization
strategy allows us to improve its performance.

6 Conclusions

The likelihood of discrete latent variable models is typically multimodal, and con-
vergence to a point that it is not the global maximum is a severe limitation of all the
algorithms employed for maximum likelihood estimation of the model parameters. To
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Table 15 Computational times in seconds of the EM and O-T-EM algorithms. The analysis refers to the
estimation of the HM model with continuous response variables for the countries’ economic conditions
data on the basis of 100 random starting values

Algorithm Minimum Median Mean Maximum

EM 0.56 2.08 2.33 5.13

O-T-EM 2.03 22.72 28.44 105.69

reduce the chance of localmaxima at convergencewhen the expectation-maximization
(EM) algorithm is employed, the model parameters are typically initialized with a
multiple-try strategy, employing deterministic and random values. Then, maximum
likelihood estimate of the parameters corresponds to the highest log-likelihood at
convergence of the algorithm.

In this paper, a new powerful estimation algorithm based on annealing and tem-
pering techniques is proposed in this context. The underlying idea of the tempered
EM (T-EM) algorithm is flattening the target function and then gradually warping it
back towards the original one. The ability of the algorithm to remain close enough to
the dominant maximum is related to the slowness and the graduation of the warping
process, which, in turn, is controlled by a sequence of parameters known as the tem-
perature or tempering profile. Two main classes of such profiles usable with many
models to be estimated are tested and compared: a monotonically decreasing expo-
nential profile, easy to tune, and an oscillating profile, having more parameters to tune
and ensuring best performances with a very high level of flexibility.

An accurate Monte Carlo simulation study is carried out considering two general
classes of discrete latent variable models: latent class and hidden Markov models.
We compare the performance of the standard EM algorithm with the proposed ones.
This comparison is carried out by evaluating the ability to reach the global maximum
and the computational time. From the results of the simulation study and those of
the applications we show that the proposed algorithms outperform the standard EM,
increasing significantly the chance to get to the global maximum in the overwhelming
majority of cases. In particular,when anoptimally tuned temperingprofile is employed,
the improvement with respect to the EM algorithm is remarkable: the T-EM algorithm
can reach the global mode with a high frequency, generally escaping all local sub-
optimal maxima. We detect that the variant with the oscillating profile shows the best
performance, sightly outperforming also the monotonic version in most cases.

Estimating the models with the proposed algorithms on categorical and continu-
ous data, having a cross-sectional or longitudinal structure, we also show their good
performance in choosing the proper number of latent components. According to the
results obtained for the HMmodel we argue that the proposal may be especially useful
for the estimation of the model parameters with complex data structures involving the
inclusion of covariates, missing values, and drop-out.

An additional appealing feature of the proposal is the high level of flexibility of
the tempering profiles: once a grid-search procedure is employed to set the tempering
constants, these constants remain valid also when data with similar characteristics are
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used to estimate the model parameters. Moreover, a broad range of values generally
performs optimally in many different applied contexts.

Future works may consider the relevant issue of finding a new family of temper-
ing profiles that combine the excellent performance of the oscillating profile with the
simple tuning procedure and the fast execution time of the monotonic profile. Other
relevant research directions include the exploration of the T-EM algorithm in con-
nection with other maximization algorithms; the most natural choice in this regard is
to apply a tempering approach to a direct maximization algorithm, such as Newton-
Raphson. The algorithm would also benefit from a more efficient implementation,
through the C++ language in order to reduce the computation time. Finally, another
possible research line would be to explore and compare the performance of genetic
algorithms (Pernkopf and Bouchaffra 2005) with the proposed tempering techniques.
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Appendix

A Characteristics of the simulated scenarios

Tables 16, 17, and 18 summarize the specific values used to simulate data for the
estimation of the LC model, HM model with categorical responses, and HM with
continuous responses presented in Sect. 4.1. The following parameters are considered:

• weights of the latent classes (for the LCmodel) and initial probabilities of the latent
states (for the HM models) are defined in such a way that each latent component
has the same probability: πu = 1/k, ∀u = 1, . . . , k;

• transition probabilities of the HM models are defined to favor persistence in each
state; in particular, for k = 3 the transition matrix is defined as follows:

⎡

⎣
0.800 0.150 0.050
0.100 0.800 0.100
0.050 0.150 0.800

⎤

⎦ ;
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Table 16 Description of the
scenarios for the LC model:
sample size (n), number of
response variables (r ), categories
(c), and latent classes (k)

Scenario n r c k

A 500 6 3 3

B 1,000 6 3 3

C 500 12 3 3

D 500 6 6 3

E 500 6 3 6

Table 17 Description of the
scenarios for the HM model with
categorical response variables:
sample size (n), number of
response variables (r ),
categories (c), time occasions
(T ), and latent states (k)

Scenario n r c T k

A 500 6 3 5 3

B 1,000 6 3 5 3

C 500 12 3 5 3

D 500 6 6 5 3

E 500 6 3 10 3

F 500 6 3 5 6

Table 18 Description of the
scenarios for the HM model with
continuous response variables:
sample size (n), number of
response variables (r ), time
occasions (T ), and latent states
(k)

Scenario n r T k

A 500 6 5 3

B 1,000 6 5 3

C 500 12 5 3

D 500 6 10 3

E 500 6 5 6

• conditional response probabilities are kept fixed considering scenarioA (seeTables
16, 17, and 18); for each response variable we define the corresponding matrix as
follows:

⎡

⎣
0.800 0.100 0.050
0.150 0.800 0.150
0.050 0.100 0.800

⎤

⎦ ;

• for the HM model with continuous response variables, the same conditional dis-
tribution holds for all response variables; for example, with k = 3 latent states,
the mean vector μ = [−2, 0, 2]′ is fixed for each response variable;

• the variance-covariance matrix � is computed as the sample covariance matrix of
the data.
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(a)

(b)

Fig. 7 Mean distance from the global maximum using EM and M-T-EM algorithms under the simulated
scenarios presented in Table 16 of the Appendix A for the LC model

(a)

(b)

Fig. 8 Mean distance from the global maximum using EM and M-T-EM algorithms under the simulated
scenarios presented in Table 17 of the Appendix A for the HM model with categorical response variables

B Additional simulation results

In this section we report additional details on the results of the simulation study in
Sect. 4.2. In particular, for each considered scenario (see Tables 16, 17, and 18), Figs. 7,
8, and 9 show the distribution of the mean distance from the global maximum through
boxplots.
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(a)

(b)

Fig. 9 Mean distance from the global maximum using EM and M-T-EM algorithms under the simulated
scenarios presented in Table 18 of the Appendix A for the HM model with continuous response variables

C Numerical results for the analysis of T-EM algorithmwith fixed tem-
pering profiles

In this section we present results obtained from the simulation studies comparing the
EM algorithm with the T-EM algorithm with fixed tempering profiles; the analysis
carried out on the basis of the results is reported in Sect. 4.6. See Tables 19, 20, and
21.
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Table 19 Performance of the
M-T-EM algorithm under
simulated scenarios presented in
Table 16 in the Appendix A for
the LC model using fixed
configurations of tempering
constants α and β. The last
column shows the percentage of
samples for which the M-T-EM
algorithm outperforms the EM
algorithm

Scenario Tempering profile Percentage

α β

Correctly specified LC model

A 6 0.7 58%

B 6 0.6 62%

C 1 0.7 78%

D 1 1.8 72%

E 1 1.5 64%

Misspecified LC model

A 2 0.6 50%

B 2 0.6 52%

C 2 0.6 44%

D 2 0.6 58%

E 2 0.6 62%

Table 20 Performance of the
M-T-EM algorithm under
simulated scenarios presented in
Table 16 in the Appendix A for
the HM model with categorical
response variables using fixed
configurations of tempering
constants α and β. The last
column shows the percentage of
samples for which the M-T-EM
algorithm outperforms the EM
algorithm

Scenario Tempering profile Percentage

α β

Correctly specified categorical HM model

A 1 0.7 96%

B 1 0.6 100%

C 1 1.9 74%

D 3 1.8 70%

E 1 0.6 100%

F 14 1.1 64%

Misspecified categorical HM model

A 5 2.0 60%

B 5 1.9 54%

C 6 0.0 66%

D 3 1.7 64%

E 1 1.9 52%

F 15 0.1 42%
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Table 21 Performance of the
M-T-EM algorithm under
simulated scenarios presented in
Table 16 in the Appendix A for
the HM model with continuous
response variables using fixed
configurations of tempering
constants α and β. The last
column shows the percentage of
samples for which the M-T-EM
algorithm outperforms the EM
algorithm

Scenario Tempering profile Percentage

α β

Correctly specified continuous HM model

A 1 1.3 92%

B 1 1.1 100%

C 2 0.3 96%

D 2 0.2 98%

E 1 1.1 100%

Misspecified continuous HM model

A 2 0.4 84%

B 1 0.9 92%

C 1 1.2 80%

D 2 0.2 80%

E 3 0.0 86%
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