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ABSTRACT
Massive black hole binaries (MBHBs) with masses of ∼ 104 to ∼ 1010M� are one of the main
targets for currently operating and forthcoming space-borne gravitational wave observatories.
In this paper, we explore the effect of the stellar host rotation on the bound binary hardening
efficiency, driven by three-body stellar interactions. As seen in previous studies, we find that
the centre of mass (CoM) of a prograde MBHB embedded in a rotating environment starts
moving on a nearly circular orbit about the centre of the system shortly after the MBHB
binding. In our runs, the oscillation radius is ≈ 0.25 (≈ 0.1) times the binary influence radius
for equal mass MBHBs (MBHBs with mass ratio 1:4). Conversely, retrograde binaries remain
anchored about the centre of the host. The binary shrinking rate is twice as fast when the
binary CoM exhibits a net orbital motion, owing to a more efficient loss cone repopulation
even in our spherical stellar systems. We develop a model that captures the CoM oscillations
of prograde binaries; we argue that the CoM angular momentum gain per time unit scales
with the internal binary angular momentum, so that most of the displacement is induced by
stellar interactions occurring around the time of MBHB binding, while the subsequent angular
momentum enhancement gets eventually quashed by the effect of dynamical friction. The
effect of the background rotation on the MBHB evolution may be relevant for LISA sources,
that are expected to form in significantly rotating stellar systems.

Key words: gravitational waves – black hole physics – Galaxy: kinematics and dynamics –
methods: numerical – stars: black holes – stars: kinematics and dynamics

1 INTRODUCTION

In the past two decades massive black holes (MBHs) have been
recognized as an integral component of the galaxy formation and
evolution process (e.g. Croton et al. 2006;Hopkins et al. 2008). Dark
massive compact objects (i.e.MBHs) have been observed to be ubiq-
uitous in galaxy centers (see Kormendy & Ho 2013, and references
therein) and their black hole nature have been recently corroborated
by the Event Horizon Telescope observations of the nucleus of M87
(Event Horizon Telescope Collaboration et al. 2019).

In the hierarchical clustering scenario, theseMBHs grow along
the cosmic history together with their galaxy hosts, increasing their
mass primarily via accretion of cold gas promoted by secular insta-
bilities within the galactic potential and/or by mergers with other
galaxies (e.g. Kauffmann & Haehnelt 2000; Volonteri et al. 2003).
In this scenario, following the merger of two galaxies each hosting a
MBH, a MBH binary (MBHB) is expected to form (Begelman et al.
1980). The dynamical evolution of MBHBs has received a lot of
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attention in recent years, owing to the possibility of revealing their
gravitational wave (GW) signals with current pulsar timing array
(PTA) experiments (Desvignes et al. 2016; Reardon et al. 2016;
Perera et al. 2019; Arzoumanian et al. 2020), sensitive to MBHBs
of ∼ 109M� at 𝑧 < 1 (Sesana et al. 2008a), and with the planned
Laser Interferometer Space Antenna (LISA, Amaro-Seoane et al.
2017), which will detect coalescing MBHBs with masses in the
range 103M� − 107M� anywhere in the Universe (Klein et al.
2016).

The ‘vanilla’ evolution of MBHBs has been laid out already in
(Begelman et al. 1980). In the aftermath of a galaxy merger, dynam-
ical friction (against stars, gas and dark matter) efficiently brings the
two MBHs hosted by the parent galaxies to the center of the merger
remnant. When the two MBHs feel each other potential, they form
a bound binary which responds to the collective torque of the large
scale distribution of matter as a single object, making dynamical
friction inefficient. For typical MBHs of 106M� − 109M� , this
occurs at ∼ 1 − 10 pc, whereas GW emission can only drive the
system to coalescence in less than an Hubble time from a separation
of few milliparsecs (e.g. Sesana et al. 2007). The bridging of the
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three order of magnitude gap in between goes under the name of fi-
nal parsec problem (Milosavljević &Merritt 2003), and its solution
relies on the local interaction of the binary with its immediate dense
surrounding of stars and gas (see Dotti et al. 2012, for a review).

Since the 90’s it has been realized that three-body interactions
between the MBHB and stars intersecting its orbit can efficiently
extract energy and angular momentum from the binary: which is
known as slingshot mechanism (Mikkola &Valtonen 1992; Quinlan
1996). Shrinking the binary by orders of magnitudes to prompt a
GWdriven coalescence, however, requires to supply the systemwith
amass in starswhich is several time larger than its ownmass (Merritt
& Milosavljević 2005) in a ‘cosmologically short’ timescale (i.e. .
Gyr). Since stars interacting with the MBHB are expelled from the
core of the galaxy, the coalescence of MBHBs require an efficient
mechanism to repopulate stars on orbits intersecting the binary path,
i.e. the binary loss cone. In spherically symmetric stellar systems
the loss cone repopulation relies on two-body relaxation, and for
typical galaxies it turns out to be of the order of the Hubble time or
longer (Milosavljević & Merritt 2001).

This observation has triggered both (semi)analytical (e.g. Mer-
ritt & Poon 2004; Vasiliev & Merritt 2013) and numerical (e.g.
Berczik et al. 2006; Preto et al. 2011; Khan et al. 2011, 2013; Gua-
landris et al. 2017; Bortolas et al. 2018a) investigations of MBHB
evolution in more realistic stellar systems, including flattening, trax-
iality and rotation, which are expected as a result of the merger of
the progenitor galaxies (e.g. Bortolas et al. 2018b). The general con-
sensus emerging from this body of work is that the bulge resulting
from a galaxy merger has enough level of triaxiality to allow loss
cone repopulation in a relatively short timescale,1 leading to final
coalescence on timescales of Gyrs or less (Vasiliev et al. 2015).

Besides geometry (sphericity, axisimmetry, triaxiality), an-
other fundamental property of a stellar bulge that can influence
the evolution of the hosted MBHB is net rotation. It is in fact known
that retrograde stars extract more efficiently angular momentum
leading to eccentricity growth, whereas prograde stars promote cir-
cularization2 (Sesana et al. 2011). Moreover, a MBHB embedded in
retrograde stellar systems secularly change its orbital plane to align
its orbital angular momentum to that of the stars (Gualandris et al.
2012). The importance of these findings stem from the fact that GW
emission is much more efficient in eccentric binaries (Peters 1964),
thus significantly reducing MBHB merger timescales. Moreover,
LISA will have the capability of measuring the MBHB eccentricity
(Nishizawa et al. 2016), thus providing important information in the
reconstruction of the dynamical processes driving the pairing and
hardening phase.

The aforementioned early results have been subsequently more
rigorously formalized in Rasskazov & Merritt (2017) and exten-
sively investigated numerically in Holley-Bockelmann & Khan
(2015); Mirza et al. (2017) and Khan et al. (2020). These latter
works found that the center of mass (CoM) of a prograde binary
within rotating systems does not stay put in the centre (except for
the traditional Brownian motion that was already studied e.g. by
Merritt 2001; Chatterjee et al. 2003; Milosavljević & Merritt 2003;
Bortolas et al. 2016), but starts to move in approximately circular

1 This is because in a triaxial potential individual orbits do not preserve
their angular momentum and can diffuse into the loss cone over timescales
which are much shorter than two body relaxiation time.
2 Assuming a cartesian reference centered in the MBHB center of mass,
and the binary orbiting in the 𝑥−𝑦 plane, a prograde (retrograde) star has the
𝑧 component of its angular momentum aligned (antialigned) to the MBHB
angular momentum.

orbits around the CoMof the stellar system. Contextually, the binary
is found to shrink more effectively. Since in those simulations the
stellar system is also flattened by rotation, it is not clear whether
those effects are purely induced by rotation, and their physical origin
has not been investigated in depth.

In this paper we perform a detailed study of the wandering of
theMBHBCoM in a rotating stellar system. Bymeans of controlled
N-body experiments that keep the shape of the stellar distribution
spherically symmetric while introducing net rotation, we isolate
the role of rotation in the dynamical evolution of the MBHB CoM
and build a sound analytical model that describes the outcome of
the simulations. The paper is organized as follows. The setup of
our N-body experiments is described in Section 2 and the result-
ing MBHB CoM evolution is presented in Section 3 and modeled
analytically in Section 4. Finally, we discuss the relevance of this
physical mechanism for real-life astrophysical systems in Section 5.

2 SIMULATIONS SETUP

In order study the effects of the system rotation on the evolution
of MBHBs, we chose to initialize the host system as a spherically
symmetric distribution of stars. This allows us to isolate the effect
of the system rotation from the impact of galaxy morphology, thus
preventing the MBHB evolution to be affected by the combined
effect of both rotation and deviation from spherical symmetry. The
host system is first initialized following an Hernquist (1990) density
profile:

𝜌(𝑟) = 𝑀tot
2𝜋

𝑟0
𝑟

1
(𝑟0 + 𝑟)3

(1)

with total mass of stars 𝑀tot, inner density slope 𝛾 = 1 and scale
radius 𝑟0.We set ourmodel units (MU) such that𝑀tot = 𝐺 = 𝑟0 = 1,
with 𝐺 gravitational constant.

The stellar velocities are initialized at equilibrium in the poten-
tial well generated by the stellar distribution itself and by a primary
massive black hole (MBH) of 𝑀• = 0.005𝑀tot, at rest in the origin
of the system.

We introduced rotation in our model following the same proce-
dure adopted byKhan et al. (2020), i.e. by flipping the 𝑧−component
of the angular momentum (𝐿𝑧) of particles with initially negative
𝐿𝑧 , for the co-rotating cases, and flipping those with positive initial
𝐿𝑧 , for the counter-rotating case. In principle we could initialize a
flattened system with a morphology directly linked to the degree of
rotation by sampling a distribution function of the form 𝑓 (𝐸, 𝐿𝑧),
as done, e.g., in Wang et al. (2014). We however decided to enforce
the spherical symmetry of the stellar spatial distribution, to isolate
the effect of rotation only, as clarified above. A secondary MBH is
introduced in the system at an initial separation of 𝑟0 with initial
tangential velocity equal to 70% the circular velocity at 𝑟0 and with
null radial velocity. In all simulations, the angular momentum of
the MBH pair is initially perfectly aligned (or anti-aligned, for the
counter-rotating case) with the system angular momentum.

We performed a suite of direct summation N-body simulations
varying the mass resolution (i.e. the total number of particles 𝑁)
and the binary mass ratio 𝑞 ≤ 1 (𝑞 = 1, 0.25). The simulations
initializing parameters are summarized in Tab. 1. The labels of the
runs are assigned so that the trailing capital letter refers to whether
the (spherical) host system rotation is prograde (‘P’) or retrograde
(‘R’) with respect to theMBHB initial orbit; the subsequent number
indicates the number of particles in the simulation (1 for 𝑁 = 256 k,
2 for 𝑁 = 512 k and 3 for 𝑁 = 1 M); finally, the letter ‘e’ refers to
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MBHB hardening in rotating systems 3

Table 1. Parameters of the simulations presented in this work. The model
names have been chosen as follows: the capital letter ‘P’ refers to prograde
rotators while ‘R’ refers to the retrograde rotators, the number indicates
number of particles of the simulation (1 for 𝑁 = 256 k particles, 2 for
𝑁 = 512 k particles and 3 for 𝑁 = 1 M particles); finally, the letter ‘e’
refers to equal mass binaries (𝑞 = 1) while ‘u’ indicates unequal mass
binaries (𝑞 = 0.25). See the text for more details.

Model 𝑁 𝑞 Rotation

P1e 256 k 1 co-rotating
P1u 256 k 0.25 co-rotating
P2e 512 k 1 co-rotating
P2u 512 k 0.25 co-rotating
P3e 1 M 1 co-rotating
P3u 1 M 0.25 co-rotating
R2e 512 k 1 counter-rotating
AP3e 1 M 1 co-rotating, anchored

equal mass MBHs (𝑞 = 1) while ‘u’ indicates unequal mass MBHs
(𝑞 = 0.25). Note that the parameters of run P3e and P3u are similar
to the runs 𝑃1.00 and 𝑃0.25 in Khan et al. (2020). In particular,
the aforementioned runs present the same total number of particles
(𝑁 = 1M) and the same MBH mass ratios (𝑞 = 1 and 𝑞 = 0.25,
respectively). However, it is important to remember that the main
difference of our work with respect to Khan et al. (2020) consists in
the different geometry of the host system: while Khan et al. (2020)
study the evolution of aMBHB in a rotating flattenedDehnen profile
(with 𝛾 = 1 and with a minor to major axis ratio of 0.8), we study
how a MBHB evolve in a spherical rotating stellar system. This
is because we are interested in investigating the effect of the pure
net system rotation on the MBHB evolution and hardening, and the
introduction of a flattening would entangle the interpretation of our
results.

We additionally performed a simulation with the same param-
eters as the P3e model (i.e. the highest resolution simulation with
equal-mass binary co-rotatingwith the spherical stellar distribution)
in which we forced the binary to stay anchored in the center of the
system; we labelled this run as AP3e. More specifically, we took the
snapshot at time 𝑡 = 30.375 (shortly after the formation of the bound
binary): at this time we restarted the run forcing the binary centre
of mass to sit at the centre of the system. Every Δ𝑡 = 1.5625× 10−2
we recursively computed the centre of mass position and velocity
of all particles (excluding the MBHs) within 2.35𝑟0, which roughly
coincides with the half mass radius of the system.3 Then, we set
the centre of mass position and velocity of the binary equal to the
aforementioned one for the entire duration of the run. Note that
the recentering significantly slowed down the integration: for this,
AP3e was only evolved for 𝑡 ≈ 45 time units after the restart, while
all other runs were evolved for at least 160 time units.

The initial conditions were evolved using the direct-summation
N-body code HiGPUs, designed to run on GPU accelerators. HiG-
PUs features a very accurate, sixth order Hermite scheme with
block time-steps (Capuzzo-Dolcetta et al. 2013). The computation
of the timestep is performed by combining the fourth and sixth
order Aarseth criterion (Aarseth 2003; Nitadori & Makino 2008),
with the respective accuracy parameters equal to 0.01, 0.45. We set
the softening parameter 𝜖 = 10−4 for star-star interactions, 𝜖 = 10−6
for MBH-MBH interactions, while the softening for mixed stellar-

3 The recentering is performed 5 times per step, with the binary centre of
mass as the initial guess.

Table 2. For each run, the binary CoM radius is averaged over the time
interval from 𝑡 = 75, where all models have settled around a nearly constant
value, to 𝑡 = 175. The binary influence radius is computed using the def-
inition in Eq. 3 and averaged over the same time interval of 𝑅b, while the
Brownian radius is computed via Eq. 5, as better detailed in the text.

Model Binary CoM Binary influence Binary Brownian
final radius (MU) radius (MU) radius (MU)

P1e 0.047 0.22 0.011
P1u 0.020 0.16 0.014
P2e 0.058 0.22 0.008
P2u 0.012 0.16 0.010
P3e 0.065 0.22 0.006
P3u 0.026 0.15 0.007
R2e 0.010 0.20 0.008

MBH interactions is set equal to the geometric average of the two.
For a typical run with 1M particles, evolved for ≈ 200 time units,
the wall clock time needed is ≈ 110 hours, using one node equipped
with two NVIDIA TeslaTM V100 GPUs, and four cpu cores.

3 RESULTS

3.1 Evolution of the orbital parameters

Fig. 1 shows the evolution of the MBHB properties as a function
of time, and specifically the binary eccentricity 𝑒 and the inverse
of its semi-major axis, 1/𝑎. The dashed vertical lines indicate the
binary formation time 𝑡bf , chosen as the instant at which a bound
Keplerian binary forms. Note that the eccentricity and semimajor
axis are computed as the standard Keplerian parameters from the
binary formation time. Prior to that, these quantities are evaluated
as:

𝑎unbound =
𝑟𝑎 + 𝑟𝑝

2

𝑒unbound =
𝑟𝑎 − 𝑟𝑝

𝑟𝑎 + 𝑟𝑝

(2)

where 𝑟𝑝 and 𝑟𝑎 respectively represent the pericentre and apocentre
separations, computed once for each complete radial oscillation.

Fig. 1 shows the different stages characterizing the MBHs
orbital evolution. Initially, the MBHs mutual separation is reduced
via dynamical friction (Chandrasekhar 1943). In our models, the
two MBHs are initially placed at a relatively small separation, thus
this phase is very short, and it ends roughly with the formation of
a bound binary. When the binary reaches a separation comparable
to the MBHB influence radius, defined as the radius of a sphere
containing twice the MBHB mass in stars:

𝑀∗ (𝑟 < 𝑟inf) = 2𝑀𝑏 (3)

three body scatterings with stars start to efficiently extract energy
and angular momentum from the binary, adding up to the effect
of dynamical friction and excavating a core in the stellar density
profile (e.g. Milosavljević &Merritt 2003; Sesana et al. 2008b); the
scouring of the density profile in time is shown in Fig. 2 for model
P3e. The MBHB eventually reaches the hard binary separation 𝑎ℎ ,
i.e. the separation at which the binary binding energy exceeds the
kinetic energy of the field stars:

𝑎ℎ =
𝐺𝑀2

4𝜎2∗
(4)

where 𝑀2 is the mass of the secondary MBH and 𝜎∗ is the velocity
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Figure 1. Time evolution of eccentricity (upper panel) and inverse semi-
major axis (bottom panel) for each simulation. Note that prior to the binary
formation time (indicated with a vertical dashed line) the binary orbital
parameters are computed via Eq. 2, while the standard Keplerian parameters
are shown after the binary formation time.

dispersion of field stars. At this stage, the binary hardening occurs
by stellar interactions only, and the binary hardens at a slower pace,
until it reaches the separation at which GWs start to dominate its
evolution.4

Fig. 1 shows that the dynamical friction (DF) driven inspiral
is more efficient for equal mass binaries, as the intruding MBH
has a larger mass. After the binary formation, the binary tends

4 Note that the integrator implements a purely Newtonian approach and the
GW phase cannot be followed in the current setup.
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t = 125.0
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t = 175.0

Figure 2. Evolution of the stellar density profile at different simulated times
for model P3e. Density profiles are drawn at six different times: from the
dark purple line at 𝑡 = 0 to the yellow line at 𝑡 = 150. Each profile was
obtained averaging over five subsequent time-steps. The black solid line is
the initialized theoretical Hernquist profile. The vertical dashed lines, with
the same color code of the density profiles, indicate the binary CoM radius
at the corresponding time. The position of the binary CoM is not shown for
𝑡 = 0 since a bound binary has not formed yet. It is evident that, even though
at larger radii all the profiles are consistent with themodel, the central density
is progressively reduced with time as an effect of slingshot interactions; the
binary CoM always remains within the carved, almost constant density inner
region.

to circularize in all the prograde models. In the retrograde rotators
instead the binary eccentricity follows a significantly different trend:
after a short phase of slow decrease, 𝑒 starts rising and it reaches
𝑒 ' 0.8 by the end of the run. This result is aligned with what found
in previous studies addressing the binary eccentricity evolution in
rotationally supported systems (e.g. Gualandris et al. 2012) in which
the perturber interacts with stars with a net tangential (prograde or
retrograde) motion. The evolution of the inverse semi-major axis,
showed in the lower panel of Fig. 1, is an important measure of
the binary energy change as a function of time. All the simulated
models follow a similar qualitative evolution: once the binary forms,
the inverse semi-major axis undergoes a short phase of fast increase
after which it increases almost linearly with time. As expected,
the models with lower mass-ratio show a faster binary shrinking
compared to the corresponding equalmass case (Sesana et al. 2006).

In all runs, the slight dependence of the shrinking efficiency
on the total number of particles may be at least partially ascribed
to two-body relaxation, which refills the binary loss cone more effi-
ciently for the less resolved runs. We would like to stress once more
that, in our runs, the idealized assumption of spherical symmetry
in the mass distribution is made in order to isolate the impact of
the system rotation on the binary shrinking rate; deviations from
sphericity would tangle the interpretation of our results, as global
gravitational torques induced by a non-spherical morphology would
non-trivially impact the evolution of the binary hardening; the im-
pact of rotation and axisymmetry combined have been investigated
in Holley-Bockelmann & Khan (2015); Mirza et al. (2017); Khan
et al. (2020). It is important to note that the counter-rotating case
shows a significantly lower binary hardening compared to all the
co-rotating models. This aspect is better dissected in the sections
below.

MNRAS 000, 1–10 (2021)
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3.2 Center of mass evolution

In line with previous literature on the topic (Holley-Bockelmann
& Khan 2015; Mirza et al. 2017; Khan et al. 2020), we found that
the binary CoM in the prograde runs starts moving on a nearly
circular orbit about the centre of the system shortly after the binary
formation time. In this section, we investigate such behaviour in
detail. In order to characterize the binary CoMmotion we first need
to define a reference centre of the host stellar system. To define
the system centre we proceed as follows. As a first guess we set
the system CoM to coincide with the binary CoM. We proceed
computing the CoM of the stars contained within a radius of 2.35 𝑟0
and then re-centering thewhole system at that position. The iteration
is repeated five times per snapshot.

All our results are presented in a reference frame centered in
the above defined position.5

Fig. 3 shows the 3-dimensional trajectory of the MBHB CoM
for all the simulated models. The top panel in Fig. 4 reports the
temporal evolution of the distance between the MBHB CoM and
the host centre (𝑅b) after the binary formation time. For co-rotating
models, soon after the binary formation time 𝑡bf , the MBHB CoM
starts orbiting the host centre with a rapidly increasing 𝑅b. After
just few tens of time units the CoM settles on a nearly stable orbit. In
particular, equal mass binaries show a faster rise of the CoM radius
compared to the lower mass ratio cases. Moreover, the higher the
binary mass ratio, the larger the final orbital radius: the two differ
by nearly a factor 2. The retrograde run does not show the same
behaviour, and the binary CoM remains very close to the centre,
only experiencing the traditional Brownian wandering (as detailed
below). Table 2 reports the mean value of the final CoM radius for
each model, computed averaging 𝑅b over the time interval from
𝑡 = 75, where all models have settled around a nearly constant
value, to 𝑡 = 175, along with the binary influence radius, 𝑅inf ,
averaged over the same time interval. Bottom panels of Fig 4 show
the time evolution of the binary CoM orbit in the x and y-coordinate
(left and right panel, respectively) for the run 3Pe, thus pointing
out the quasi-periodicity of the binary CoM orbit. In co-rotating
runs hosting equal-mass binaries the influence radius is 𝑅inf = 0.22
while for co-rotating unequal-mass binaries is 𝑅inf ' 0.16. This
difference is, at least partially, due to the different total mass of the
MBHB (𝑀b = 0.01 if 𝑞 = 1, 𝑀b = 0.00625 for 𝑞 = 1/4). The
binary CoM oscillation in the prograde runs is much larger than the
binary separation (see e.g. the values of 1/𝑎 in Fig. 1), but smaller
than the MBHB influence radius by a factor 3−5 for the equal mass
and by a factor 6 − 13 for the unequal mass cases.

Note that the binary CoM oscillation found in the prograde
runs is different than the traditional MBHB Brownian motion (see
e.g. Merritt 2001; Chatterjee et al. 2003; Milosavljević & Merritt
2003; Bortolas et al. 2016). The latter is caused by the fact that
slingshot ejections of stars with isotropic velocities w.r.t. the binary
CoM induce a recoil in the binary CoM in random directions. The
associated displacement is contrasted by the effect of dynamical
friction onto the binary as a whole: These two phenomena balance

5 Note that the strategy described here to find the centre of the stellar
distribution is the same used for anchoring the binary at runtime for run
AP3e. In addition, we explored another possibility for computing the centre
of the system: we recursively computed the CoM of particles in a shrinking
sphere whose maximum (minimum) radius was set to 100𝑟0 (1.5𝑟0); the
radius was halved at each iteration. We found a very good match between
the two described centering strategies, with mismatches much smaller that
the wandering radius 𝑅𝑏 .

each other and result in a small and non-coherent wandering of the
binary CoM, which however does not exhibit, on average, any net
angular momentum. The typical scale of the traditional Brownian
wandering is smaller than the oscillation radius we find in prograde
runs. In fact, the Brownian wandering radius scales as

𝑟Brown ∝ (𝑚★/𝑀b)1/2 (5)

where 𝑚★ is the typical particle mass in the run and 𝑀b is the
binary total mass (Merritt 2001). Bortolas et al. (2016) report a
value of 𝑟Brown ≈ 0.008 for 𝑚★/𝑀b ≈ 2 × 10−4 in a system whose
initializing properties are analogue to the ones considered in the
present work (i.e. an initial Hernquist profile with unitary scale
radius and total mass). By rescaling this value via Eq. 5 we can
infer the magnitude of the Brownian wandering in our runs: the
computed values are shown in the left-hand column of Tab. 2, and
as error-bars in the upper-right panel of Fig. 4. The Brownian radius
is significantly smaller than the oscillation radius for prograde runs
with the best adopted resolution, especially for the equal mass cases.
The binaryCoMdisplacement found in the retrograde case is instead
compatible with being caused by the traditional Brownian motion.
It is reasonable to interpret the trends shown in the upper panel of
Fig. 4 for prograde runs as the combination of the net rotation of
the binary CoM, induced by the system rotation, and the traditional
Brownian motion, that is likely responsible for at least part of the
noise in the plotted curves. This idea is supported by the fact that
the runs featuring a larger 𝑁 are less noisy than the lower resolution
ones, as expected from Eq. 5; part of the oscillations in the trend of
the CoM radius (especially at early times, and in the low-resolution
cases) is due to the fact that the CoM orbital motion does not span
a perfectly circular orbit, but exhibits some residual eccentricity. It
is also important to notice that the final radius at which the MBHB
CoM settles does not depend on the number of particles adopted
in the run, supporting the fact that the CoM oscillations are not an
effect of limited resolution (which instead plays a significant role in
the traditional Brownian motion, Eq. 5).

3.3 Effect of the MBHB center of mass motion on binary
hardening

In this section we explore the impact of the CoM oscillation on
the MBHB hardening rate. This aspect is relevant as the MBHB
CoM wandering allows it to explore a region of space where it can
interact with stars which otherwise would not be able to approach
the binary. In this way, the binary loss cone can be considered to
be always full: the CoM oscillation may thus enhance the binary
shrinking efficiency even for spherical systems in the collisionless
limit.

To quantify the efficiency at which the binary shrinks, it is
customary to define the binary hardening rate 𝑠 as the time derivative
of the inverse semi-major axis:

𝑠 =
d
d𝑡

(
1
𝑎

)
. (6)

This quantity is a measure of the binary energy loss as a function
of time. Fig 5 shows the time evolution of the hardening rate for the
presented runs, and it is computed by fitting the slope of the inverse
semi-major axis over short time intervals (Δ𝑡 = 1.25). The harden-
ing rate evolution for the prograde runs does not show a substantial
dependence on the number of particles for each fixedmass ratio, and
it stabilizes to 𝑠 ≈ 10 (𝑠 ≈ 15) for equal (unequal) mass binaries.
On the other hand, the retrograde run (R2e) features a significantly
smaller hardening rate (nearly a factor 2 smaller) compared to the
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prograde equal mass runs. The fact that the retrograde run does not
feature any oscillation about the centre apart from the traditional
Brownian wandering, contrarily to the prograde cases, is an indica-
tion of the fact that the binary coherent oscillations ensure a more
efficient loss cone refilling.

In order to have a deeper insight on the role of the binary
oscillation on the loss-cone refilling, we performed a run forcing
the co-rotating binary in the P3e model to stay anchored to the
system’s center (A3Pe model), as detailed in Sec. 2. In Fig. 6 the
hardening rate of the anchored binary in AP3e is compared to that
of the free co-rotating binary in the same resolution run, P3e, and of
the counter rotating run, R2e. What emerges is that once the binary
CoM orbital motion is inhibited, the binary hardening rate is nearly
equal to that of the counter-rotating case. This is a very strong
indication of the fact that the loss cone refilling within rotating
systems hosting a prograde binary is induced by the MBHB CoM
oscillation.

3.4 CoM evolution for a single MBH

In order to better understand the nature of the MBHB wandering,
and especially if slingshot interactions with passing stars are the
responsible for the non-Brownian oscillation of prograde binaries,
we perform an additional run in which we manually merge the
MBHB in model P2e into a single MBH at time 𝑡 = 70. From this
moment on, we track the displacement of the single MBH from the
centre of the stellar distribution as a function of time. Fig. 7 shows
that, after the forced binary coalescence the MBH gradually sinks
back towards the center of the stellar distribution, and it stabilizes
its oscillation radius to ≈ 0.01 by 𝑡 ≈ 100; the final radius nearly
coincides with its expected Brownian wandering radius (see Eq. 5
and Tab. 2).6 This behavior is a strong indication of the fact that
slingshot interactions with the binary sustain its CoM displacement
and oscillation about the centre; once the binary has merged, the
single MBH can sink back near the origin of the distribution as
a result of dynamical friction. This proves that single MBHs only
experience the traditional Brownian wandering, regardless of the
system rotation.

4 MODELLING OF THE COM EVOLUTION

To explain the behavior of the MBHB CoM in spherical rotating
models, it is important to consider that, in the prograde scenario,
virtually all stars approach the binary with a 𝑧 component of their
angular momentum aligned with the binary angular momentum and
typically larger than that of the binary, at least for the stages just
after the binary formation, during which the binary external angu-
lar momentum experiences a significant growth. In addition, in the
prograde runs, the binary eccentricity remains always very close
to 0, or in other words, the MBHB has nearly the maximum an-
gular momentum allowed for that given semi-major axis. At each
prograde interaction, each star is thus likely to enhance the binary
angular momentum. This enhancement can result in (i) an enlarge-
ment of the binary semi-major axis, but this almost never happens,
as the interactions are typically found to shrink the binary (Fig. 1);
(ii) a reduction of the binary eccentricity, which is however already

6 Note that the Brownian wandering radius of a single MBH is expected to
be nearly equal to the one of a binary with the same mass (Eq. 5, Merritt
2001).
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Figure 3. The figures show the three dimensional evolution of the MBHB
CoM trajectory for each of the runs presented in the current study. In each
panel, the color code maps different time intervals in the orbital evolution,
as shown in the legend. The initial time corresponds to the instant at which
a bound Keplerian binary forms.

near its minimum, and it cannot decrease further; (iii) an enhance-
ment of the external angular momentum of the binary, which is
then the only viable option. In this situation, the time variation of
the external binary angular momentum7 𝐿ext = 𝑀𝑏𝑅𝑏𝑣𝑏 , with 𝑅𝑏 ,
𝑣𝑏 radius and velocity of the binary CoM, should be equal to the
rate at which the binary encounters stars times the typical angular
momentum gained by the binary for each encounter. The stellar en-
counter rate can be written as 𝑑𝑁/𝑑𝑡 = 2𝜋𝐺𝑀b𝑎𝑛★/𝜎, where 𝑎 is
the binary semimajor axis, while 𝑛★ and 𝜎 respectively represent
the stellar number density and velocity dispersion about the binary;
the typical angular momentum exchange per stellar interaction is

7 Here we assume that the external binary angular momentum is aligned
with the system rotation, as we find in our runs, and that the binary CoM
orbital motion remains perfectly circular.
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Figure 4. Upper panel: on the left is shown time evolution of the MBHB
CoM radius 𝑅𝑏 for the different runs presented in the paper; on the right,
the dots indicate, for each run, the value of the binary CoM radius averaged
between 𝑡 = 75 and 𝑡 = 175, while the error bars show the amplitude of the
Brownian wandering radius (see Tab. 2). Bottom panels: on the left is shown
the time evolution of the binary CoM orbit in the x-coordinate for run P3e,
the dots indicating the local maxima. The analogus is shown on the right
panel for the orbit in the y-coordinate.
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presented in the paper.
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Figure 6. Time evolution of the hardening rates (Eq. 6) for the prograde
equal mass run P3e, the retrograde equal mass run R2e and the model AP3e,
in which the CoM of the equal mass, prograde binary is fixed at the centre of
the stellar distribution. If the binary is anchored in the centre, its hardening
rate gets very similar to that of the retrograde run.
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Figure 7.Displacement from the centre of the stellar distribution of a single
MBH initialized by manually merging the binary in run P2e. Time 𝑡 = 0
corresponds to the instant at which the MBHs in the progenitor binary are
merged. The MBH gradually inspirals towards the centre of the system
in response to dynamical friction, and it does no longer exhibit coherent
oscillations about the system centre.

Δ𝐿★ ≈ (𝑚★/𝑀b)𝐿int, where 𝐿int = 𝜇
√︁
𝐺𝑀𝑏𝑎 is its internal angu-

lar momentum (in the – verified – assumption of a circular binary),
and 𝜇 is the reduced mass of the binary. It follows that

𝑑𝐿ext
𝑑𝑡

=
2𝜋𝐺𝜌

𝜎
𝜇

√︃
𝐺𝑀𝑏𝑎

3, (7)

where 𝜌 = 𝑚★𝑛★. The CoM velocity 𝑣𝑏 is the circular velocity
at the radius of the binary CoM; since the density profile remains
nearly flat in the central region after the initial scouring, we can
write

𝑣𝑏 =

√︂
4𝜋𝐺𝜌

3
𝑅𝑏 , (8)
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Figure 8. Time evolution of the binary CoM displacement from the centre of
the system, 𝑅𝑏 , as obtained from the simulations (solid lines) and from our
theoretical modelling (Eq. 11). For model P3e we solved Eq. (11) assuming
𝜌 = 0.8, 𝜎 = 0.7, 𝑎0 = 0.05, 𝑠 = 10 and we initialize 𝑅𝑏 = 0 at 𝑡 = 7.5;
for model P3u we set 𝜌 = 2, 𝜎 = 0.75 𝑎0 = 0.01, 𝑠 = 15 and we initialize
𝑅𝑏 = 0 at 𝑡 = 12. These are characteristic values we extracted from the
simulation. The most uncertaity is associated to the choice of 𝑎0, as better
detailed in the text and in footnote 9.

i.e. the expected circular velocity at 𝑅𝑏 ; we checked the validity of
this expression, and we found a very good match in our runs. On
the right-hand side of Eq. 7, 𝑎 exhibits the strongest dependence on
time (see e.g. 1/𝑎 in Fig. 1): from Eq. 6 we can write

𝑎(𝑡) = 𝑎0
1 + 𝑎0𝑠𝑡

, (9)

with 𝑎0 = 𝑎(𝑡 = 0).8 In this model we neglect the much milder
time dependence of 𝜎 (whose value within a radius of ≈ 𝑅𝑏 only
varies by nearly 10 per cent in our models) and 𝜌 (which nearly
halves its value at ≈ 𝑅𝑏 by the end of the integrations). Combining
Equations (7, 8, 9) we obtain

𝑑

𝑑𝑡
𝑅2
𝑏
=

√︄
3𝜋𝐺2𝜌
𝜎2

𝜇2

𝑀𝑏
𝑎3 (𝑡), (10)

whose solution reads, setting 𝑅2
𝑏
= 0 at 𝑡 = 𝑡0

𝑅𝑏 =

√︄
2𝐴
𝐵

(
1 − 1√︁

1 + 𝐵(𝑡 − 𝑡0)

)
(11)

𝐴 =

√︄
3𝜋𝐺2𝜌
𝜎2

𝜇2

𝑀𝑏
𝑎30 𝐵 = 𝑎0𝑠;

it is obviously valid only for 𝑡 ≥ 𝑡0.
Fig. 8 compares the evolution of 𝑅𝑏 in the simulations to what

obtained from the above equation, for models P3e and P3u: our
model seems to well reproduce the data. It is worth noting that the
normalization of the curve in the plots (i.e., the value of

√︁
2𝐴/𝐵) is

somewhat arbitrary, depending on the value one picks for theMBHB

8 Note that, in principle, this expression is valid only when the binary is
hard, but for simplicity we assume it to be valid from the moment 𝑅𝑏 starts
increasing; this is an approximation, but it is supported by the relatively
limited variation of 𝑠 (𝑡) in Fig. 5.

semimajor-axis 𝑎0 at which 𝑅𝑏 starts growing.9 This is due to the
fact that the angular momentum exchange is proportional to the
internal binary angular momentum, which is much larger near the
binary formation time and strongly declines later. This also means
that the interactions effectively displacing the binary from the centre
are those occurring shortly after the binary formation time, while
the ones occurring later impact less and less the external binary
angular momentum evolution.

It is also worth accounting for the fact that dynamical friction
should be acting on the binary CoM to bring it back to the centre,
as it happens for the single MBH (Fig. 7). While in the beginning of
the evolution the simulations clearly show that dynamical friction
is subdominant compared to stellar interactions in inducing the
evolution of 𝑅𝑏 , this could be no longer true at later times. In order
to check the relative importance of the two effects, we can compare
the torque on the binary CoM on the right-hand side of Eq. 7 to the
torque we expect from dynamical friction.

However, the magnitude of dynamical friction in the present
configuration cannot be trivially estimated, owing to the fact that the
binary moves very close to the centre of a cored stellar distribution,
in which fast moving stars may have an important contribution,
and in which the estimate of the minimum and maximum impact
parameter can be somewhat arbitrary. For this, we estimated the
DF empirically, only focussing on the equal mass prograde runs.
We start considering the time over which the single MBH of
run P2u shown in Fig. 7 is dragged back into the centre, given
its initial angular momentum 𝐿ext = 𝑀𝑏𝑅𝑏𝑣𝑏 (𝑅𝑏) ≈ 6 × 10−5
(Tab. 2 and Eq. 8), to write the associated dynamical friction torque
as 𝑑𝐿DF/𝑑𝑡 ≈ Δ𝐿ext/Δ𝑡 ≈ 5 × 10−7. This should be compared
to the right hand side of Eq. 7, which can be rewritten, for the
equal mass prograde cases, as 𝑑𝐿ext/𝑑𝑡 ≈ 1.8 × 10−3𝑎3/2; this
implies the two contributions to the evolution of the binary external
angular momentum to be equal for 𝑎 ≈ 4.3 × 10−3, and dynamical
friction to be a factor 10 more efficient than stellar interactions
at 𝑎 ≈ 9.2 × 10−4. As a consequence, we expect that the binary
should sink back towards the centre less than a hundred time units
after the end of our prograde runs at 𝑡 ≈ 180.

The model presented so far also allows to understand why the
CoM does not undergo analogous oscillations in the retrograde sce-
nario: in that case, stars can only deposit angular momentum that
has opposite sign compared to the binary one, thus they reduce the
binary internal angular momentum instead of inducing a net oscil-
lation in its CoM: this is supported by the fact that the eccentricity
undergoes a continuous growth in the counter-rotating run (Fig. 1).
In principle, over sufficiently long timescales, the counter-rotating
binary is expected to eventually flip the sign of its angular momen-
tum and finally circularize (Sesana et al. 2011; Gualandris et al.
2012). However, since the external angular momentum growth oc-
curs about the binary binding, and it is much less efficient at later
times, we expect counter-rotating binaries to always remain close to
the centre, even once they become prograde.

9 Shortly after the binary formation (and in coincidence with the onset of
the growth of 𝑅𝑏) the binary shrinks very quickly. Given the dependence
of 𝑅𝑏 ∝ 𝑎

3/4
0 , by picking different values of 𝑎0 we obtain curves whose

value gets larger or smaller by a factor of a few; we believe this uncertainty
is intrinsic in our simple treatment and we still believe our modelling can
capture the evolution of 𝑅𝑏 to a decent degree.
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5 DISCUSSION AND CONCLUSION

In this paper we tested the effect of spherical rotating stellar sys-
tems onto the dynamics of formingMBHBs. While we are perfectly
aware that realistic rotating systems typically display some degree
of flattening, we investigated rotating spherical systems as this al-
lowed us to isolate the effect of rotation, avoiding additional effects
possibly caused by the the global torques induced by deviations
from spherical symmetry10.

We found that prograde binaries (i.e. binaries with an angular
momentum aligned with the net angular momentum of the stel-
lar core) are forced out of the centre of their host galaxies due to
the interaction with their background. The CoM of prograde bi-
naries starts moving on quasi-circular orbits around the centre of
the stellar core. Such motion is considerably larger than the typical
Brownian wandering experienced by MBHBs evolving in isotropic
backgrounds, and introduces a time-dependence in loss-cone of the
binaries, that remains full during their whole shrinking. We demon-
strated through dedicated numerical experiments that such results
(the enhanced binary CoM wandering and the fast hardening rate)
are not valid for retrograde binaries nor for single MBHs: indeed
the artificial merger of a wandering prograde MBHB leads to the
return of the MBH remnant to the centre of the system, demonstrat-
ing that the physical process driving the CoM motion is the energy
and angular momentum exchange between (prograde) binaries and
single stars.

Our investigation improves upon the previous papers pre-
senting the circling of the binary CoM and the binary enhanced
hardening evolving in rotating axi-symmetric systems (Holley-
Bockelmann & Khan 2015; Mirza et al. 2017; Khan et al. 2020)
in two respects: (1) The deviations from spherical symmetry in the
initial condition of such seminal investigations prevented a clear
identification of the physical driver of the observed binary evolu-
tion. Indeed, in such geometries the global torques exerted by the
whole stellar distribution onto single stars could play a role in the re-
filling of the loss-cones of the MBHBs (but see Vasiliev et al. 2015,
for a different point of view). With our simplified (spherical) stellar
distribution we proved that rotation alone can cause both theMBHB
circling and the boosted hardening observed; (2) we complemented
our numerical study with a phenomenological analytical model that
reproduces the evolution of the binary CoM observed in the pro-
grade runs, strenghtening the proposed physical interpretation of
the behavious observed in the simulations.

A remarkable difference between our results and those obtained
by Holley-Bockelmann & Khan (2015) regards the hardening rates
of retrograde binaries. In the rotating-spherical scenario we find
that retrograde binaries shrink at a significantly slower pace than
their prograde counterparts, while such difference is not observed
in the rotating-flattened scenario discussed by Holley-Bockelmann
and collaborators. In our analytical model the different behaviours
are due to the absence of any binary CoM motion larger than the
Brownian motion typically observed in isotropic systems, that pre-
vent any significant collisionless loss-cone refilling associated to
the motion of the binary CoM. The disagreement with the findings
of Holley-Bockelmann & Khan (2015) could, in principle, be due
to the different geometries of the stellar distributions, motivating
further modeling of axi-symmetric systems.

Our analytical model and our numerical experiments agree on

10 Note that Holley-Bockelmann & Khan (2015) and Khan et al. (2020) do
indeed have flattened systems, but the rotation in their models is artificially
introduced using our same procedure.

the fact that MBHBs experience the most external angular momen-
tumgrowth right after their formation, at large semi-major axes. This
implies that binaries forming with their internal angular momentum
significantly offset from that of the surrounding environment would
neither experience the CoM circling nor the enhanced hardening11,
as they would have shrunk their semi-major axis significantly be-
fore getting aligned with the environmental angular momentum. It
is however possible that, in systems with a significant amount of
rotation at large scales, the internal angular momentum of the form-
ing binaries is already aligned with the angular momentum of the
surrounding environment. Such configurations are expected even
for initially strongly misaligned galaxy mergers, as (1) at large scale
dynamical friction onto rotating systems would act on the massive
bodies dragging them towards a prograde, circular orbit (e.g. Dotti
et al. 2006; Bonetti et al. 2020, 2021), and (2) the same process
can take place even at smaller scales immediately before the binary
formation (Mirza et al. 2017; Khan et al. 2020).

The relevance of the background rotation for the evolution of
MBHBs depends ultimately on the typical dynamical properties of
their hosts. For light host galaxies hosting light MBHs 105 − 107
M� , in the mass range detectable by the forthcoming LISAmission,
clear rotation is commonly observed at low redshift both at galactic
and sub-kpc scales (e.g. Kormendy 2013). It is yet unclear for which
mass ratios and up towhich redshift the same rotationally dominated
structures are expected in galaxy mergers. Dedicated observational
studies and detailed analyses of cosmologically motivated galaxy
merger simulations are needed to properly gauge the impact of the
presented results on the whole population of MBHBs.
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