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Quasi-nilpotency of Generalized Volterra
Operators on Sequence Spaces

N. Chalmoukis and G. Stylogiannis

Abstract. We study the quasi-nilpotency of generalized Volterra operators
on spaces of power series with Taylor coefficients in weighted �p spaces
1 < p < +∞. Our main result is that when an analytic symbol g is a
multiplier for a weighted �p space, then the corresponding generalized
Volterra operator Tg is bounded on the same space and quasi-nilpotent,
i.e. its spectrum is {0}. This improves a previous result of A. Limani and
B. Malman in the case of sequence spaces. Also combined with known
results about multipliers of �p spaces we give non trivial examples of
bounded quasi-nilpotent generalized Volterra operators on �p. We ap-
proach the problem by introducing what we call Schur multipliers for
lower triangular matrices and we construct a family of Schur multipliers
for lower triangular matrices on �p, 1 < p < ∞ related to summability
kernels. To demonstrate the power of our results we also find a new class
of Schur multipliers for Hankel operators on �2, extending a result of E.
Ricard.
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1. Introduction

Let H(D) be the space of holomorphic functions in the unit disc equipped
with the topology of local uniform convergence which renders it a Fréchet
space. A Banach space of analytic functions in the unit disc is a Banach space
X ⊆ H(D) such that the inclusion is continuous. One of the most classical
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examples is the family of Hardy spaces Hp, 1 ≤ p < +∞ which consists of
functions f ∈ H(D) such that

‖f‖Hp := sup
0<r<1

( ∫ 2π

0

|f(reiθ)|pdθ
)1/p

< +∞.

For p = ∞, H∞ is just the algebra of bounded analytic functions in the
unit disc. The literature on Hardy spaces is vast, but here we would like to
concentrate on the Taylor coefficients of Hardy functions. Suppose we consider
the Banach space of analytic functions �p

A which consists of functions f ∈ H(D)
such that its Taylor coefficients f̂(n) belong to �p, i.e.,

‖f‖�p
A

:=
( ∞∑

n=0

|f̂(n)|p
)1/p

< +∞.

Then the classical Hausdorff–Young inequalities [13, Theorem 6.1] say
that for 1 ≤ p < +∞ and q its conjugate exponent (p−1 + q−1 = 1),

Hp ⊆ �q
A, (1 ≤ p ≤ 2), and �q

A ⊆ Hp, (2 ≤ p < +∞).

It is also known that the inclusions are strict unless p = 2 in which case
�2A = H2. This superficially might suggest a connection between the Hardy
space Hp and the sequence space �q

A, but although function theory and op-
erator theory of Hardy spaces is a mature and well developed subject, only
recently there has been some interest on studying �p

A, p �= 2 as function spaces,
and the theory is still at its infancy. The monograph [9] of R. Cheng et al
contains most of what is currently known.

In particular a problem which has attracted a lot of interest is the char-
acterization of multipliers for �p

A. In general if X is Banach space of analytic
functions in the unit disc, its multiplier space Mult(X) is the space of all
g ∈ H(D) such that g · f ∈ X,∀f ∈ X. In other words (via the closed graph
theorem) g is a multiplier of X if the multiplication operator Mf (g) = g · f is
bounded on X.

If X = Hp it is known and not very difficult to prove that Mult(Hp) =
H∞. In general it is true that Mult(X) ⊆ H∞, but it can happen that the
inclusion is strict. In particular Mult(�p

A) is a strict subset of H∞ if p �= 2 [17]
as it doesn’t contain the singular inner function exp(− 1+z

1−z ). As far as we know
there exist no simple analytic characterization of the functions in the space
Mult(�p

A) when p �= 2.
In this article we would like to concentrate on a different operator acting

on �p
A and its connection with multipliers. Let g ∈ H(D) and consider the

generalized Volterra operator;

Tg(f)(z) :=
∫ z

0

f(t)g′(t)dt.
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There exists also the generalized Cesáro operator

Cg(f)(z) :=
1
z

∫ z

0

f(t)g′(t)dt.

The reason for this terminology is that if g(z) = log 1
1−z then the matrix

which represents the operator Cg with respect to the orthonormal basis of the
monomials in �2A is the Cesáro matrix

C :=

⎛
⎜⎜⎜⎝

1 0 0 · · ·
1
2

1
2 0 · · ·

1
3

1
3

1
3 · · ·

...
. . .

⎞
⎟⎟⎟⎠ .

The generalized Volterra operator seems to have been introduced first by Pom-
merenke [22], in connection to the John–Nirenberg inequality, and since then
it has been intensively studied in terms of its boundedness and compactness
properties in a variety of settings (see [3,7,19]), but also finer properties such as
Schatten ideals, spectral properties and quasi-nilpotency have been examined
on various spaces (see [2,18,20]).

In terms of boundedness, on the spaces that we work with, the operators
Cg and Tg are bounded simultaneously therefore we will use the one that is
more convenient. One can ask, as for multipliers, which is the space of symbols
g such that Tg acts boundedly on a given Banach space of analytic functions X.
There is no commonly accepted notation for this space, but we will denote it by
T (X). It can be proven that T (X) carries a Banach space structure [24]. In this
case as well, the state of the art is the same. There is a nice characterization
of holomorphic functions g which give rise to a bounded operator Tg on Hp.
The space in question [3], which does not depend on p, turns out to be the well
known BMOA space, the space of analytic functions in H1 such that their non
tangential boundary values have bounded mean oscillation. Whereas for the
sequence spaces �p

A almost nothing is known. Even giving a nontrivial example
of a function in T (�p

A) requires a moments thought. In fact such an example
is provided by Hardy’s inequality, which asserts that for every sequence of
positive numbers {an} ∈ �p,

∞∑
n=1

( 1
n

n∑
k=1

ak

)p

≤ ( p

p − 1
)p

∞∑
n=1

ap
n.

which in our language can be written,

‖Clog 1
1−z

f‖�p
A

≤ p

p − 1
‖f‖�p

A
, ∀f ∈ �p

A.

Our aim here is not to give an analytic characterization of the space
T (�p

A), a probably infinitely complex problem, but we content ourselves with
the more modest problem of studying the relation between Mult(�p

A) and T (�p
A)
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and try to understand the spectral picture of Tg when g ∈ Mult(�p
A). Our

motivation is the following theorem [18, Theorem 2.2]

Theorem 1.1. Let X be a Banach space of analytic functions in the unit disc,
which contains the constants and such that the algebra B(X) of bounded linear
operators on X contains the multiplication operators Mg and the generalized
Volterra operator whenever g ∈ H∞. Then we have that σ(Tg|X) = {0} when-
ever Tg lies in the norm closure of {Th : h ∈ H∞} in B(X).

Notwithstanding the apparent interest of this theorem in some respects is
not optimal. First of all it is required that the Banach space has as multiplier
algebra the whole H∞ which as we have seen is a rather special case. Further-
more, and maybe more importantly it is required a priori the finiteness of the
norm of Tg whenever g is a multiplier for X.

Our main result is an optimal version of this theorem when X is a
(weighted) �p space. Suppose that ω := {ωn} is a positive weight function
such that limn ωn/ωn+1 = 1, then the weighted sequence space �p

A(ω) is de-
fined as the space of f ∈ H(D) such that

‖f‖�p
A(ω) :=

( ∞∑
n=0

|f̂(n)|pωn

)1/p

.

Theorem 1.2. Let �p
A(ω) be a weighted sequence space. Then the multiplier al-

gebra of �p
A(ω) is contained in the space of symbols that induce bounded gen-

eralized Volterra operators. Explicitly,

Mult(�p
A(ω)) ⊆ T (�p

A(ω)).

Furthermore if g is in the norm closure of Mult(�p
A(ω)) in T (�p

A(ω)) then Tg

is quasi–nilpotent, i.e., σ(Tg|�p
A(ω)) = {0}.

The surprising fact is that one does not have to know anything about
the multiplier algebra Mult(�p

A(ω)) and yet can conclude that the generalized
Volterra operator is bounded and it has trivial spectrum. It is worth also
mentioning that in this generality this theorem is new also in the Hilbert
space case p = 2. We will try to illustrate this with an example.

Example 1.3. Consider the Dirichlet space D, the space of analytic functions
f ∈ D such that ∫

D

|f ′(z)|2dA(z) < +∞,

where dA is the normalized Lebesgue area measure in the unit disc. This is a
Hilbert space of analytic functions equipped with the norm

‖f‖2D :=
∞∑

n=0

(n + 1)|f̂(n)|2.
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It is known that the multipliers of the Dirichlet space have a description in
terms of Carleson measures for D, that is positive Borel measures μ in the unit
disc such that D ⊆ L2(dμ, D). Let X := {g ∈ H(D) : |g′|2dA is a Carleson
measure}. Then [25] Mult(D) = H∞ ∩X. It is also easy to check that T (D) =
X which of course contains Mult(D) as it is to be expected by Theorem 1.2.
Furthermore Theorem 1.2 tells us that if g is in the closure of H∞ ∩X in X,
Tg is quasi–nilpotent in the Dirichlet space.

The next example shows that combining some known results with our
main theorem we can give some non trivial examples of quasi–nilpotent gen-
eralized Volterra operators on �p

A.

Example 1.4. Let r > 1 and 0 ≤ α < π
2 and consider the region

Ωr,α := {z : |z| < r} \ {z : arg(z − 1) ≤ α}.

In [26] Vinogradov showed that if a function g is analytic and bounded on Ωr,α

then it is a multiplier for �p
A. For example let B a Blaschke product with all

its zeros belonging in [0, 1), then by Vinogradov’s Theorem and Theorem 1.2
the operator TB is bounded and quasi-nilpotent on all �p

A, 1 < p < +∞.

2. Schur Multipliers for Lower Triangular Matrices

In this section we will discuss the ideas that are behind the proof of Theorem
1.2. Temporarily we can forget about analytic functions and work with the
Banach spaces �p. Since �p is a sequence space it is convenient to work with the
matrix representation of operators with respect to the standard unconditional
basis en := {δkn}k. With respect to this basis a bounded linear operator A ∈
B(�p) has a representation

[A] = (〈Aek, en〉)0≤k,n

as an infinite matrix, where the pairing 〈·, ·〉 is the standard �p− pairing.
Usually we denote by akn the entries of the matrix representation. From now
on we shall make little distinction between a bounded linear operator itself and
its matrix representation. A Schur multiplier is an infinite matrix S = (σkn)kn

such that

S � A := (σknakn)kn ∈ B(�p), ∀A ∈ B(�p).

The pointwise product � is usually referred to as Schur or Hadamard mul-
tiplication. An application of the closed graph theorem shows, that we can
naturally define a norm on the space of Schur multipliers

‖S‖Sp
:= sup{‖S � A‖B(�p) : ‖A‖B(�p) ≤ 1}.

With this norm and the � multiplication the space of all Schur multipliers,
denoted by Sp is a unital commutative Banach algebra with identity element
the matrix 1 := (1)kn. The study of this space, as an object with inherent
interest, has been initiated in the seminal paper of Bennett [4]. Since then,
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there has been a growing interest in Schur multipliers (see for example [1,5,
11]).

In particular it seems the case that quite a few problems in operator
theory, but also in the study of spaces of analytic functions can be formulated
in terms of Schur multipliers. We will return to this point later in connection
to our main theorem.

To see the connection between Schur multipliers and the discussion before
let us write Cg in “matrix form”

[Cg] =

⎛
⎜⎜⎜⎝

ĝ(1) 0 0 · · ·
ĝ(2) 1

2 ĝ(1) 0 · · ·
ĝ(3) 2

3 ĝ(2) 1
3 ĝ(1) · · ·

...
...

. . .

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0 0 · · ·
1 1

2 0 · · ·
1 2

3
1
3 · · ·

...
...

. . .

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

ĝ(1) 0 0 · · ·
ĝ(2) ĝ(1) 0 · · ·
ĝ(3) ĝ(2) ĝ(1) · · ·

...
...

. . .

⎞
⎟⎟⎟⎠

= F � [MS∗g].

Where S∗ is the backward shift operator, S∗g(z) := (g(z) − g(0))/z and we
have used the notation F := (1 − k

n+1 )0≤k≤n.1 We shall call F the Fejer
matrix because the nth row is just the positive Fourier coefficients of the nth

Fejer kernel.
Therefore, with regards to the first half of Theorem 1.2, the fact that Tg

is bounded whenever g ∈ Mult(�p
A), we would be done if we knew that F ∈ Sp.

Unfortunately this is not the case.

Proposition 2.1. Let 1L = (1)k≤n. For any 1 < p < ∞ and any λ ∈ C we have
that λ · 1L + F �∈ Sp.

Proof. We shall use the following necessary condition for Schur multipliers
which is due to Bennett [4] for S2 and Coine [10] for Sp, p �= 2. Suppose that
S = (σkn) is a Schur multiplier and that the iterated limits

lim
k

lim
n

σkn =: �1, lim
n

lim
k

σkn =: �2

exist. Then �1 = �2.
Suppose now that λ ·1L +F belongs to Sp for some p ∈ (1,∞) and some

λ ∈ C. Since the iterated limits for this matrix are respectively 1+λ and 0 we
conclude that λ = −1. In this case the matrix is given by

F − 1L =
( −k

n + 1

)
0≤k≤n

.

To see that this matrix is still not a Schur multiplier, consider the discrete
Hilbert transform;

H :=
( 1
n − k

)
k �=n

.

1When writing A = (akn)0≤k≤n. we mean that the elements above the main diagonal are

zero. Similarly when writing A = (akn)k �=n we mean that the diagonal elements are zero.
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One has,
( −k

n + 1
)
0≤k≤n

� H =
(n − k + 1

n − k

1
n + 1

)
0≤k<n

− ( 1
n − k

)
0≤k<n

.

On the right we have the sum of a bounded operator (dominated by twice the
Cesáro matrix) and an unbounded one (the lower truncation of the discrete
Hilbert transform), which proves our point. �

Therefore, if this approach is to be fruitful, one has to relax the require-
ment that F is a Schur multiplier for bounded operators in �p. In fact it would
be enough to ask the Schur multiplier property for a subclass of matrices that
contain the matrices [MS∗g], whenever they are bounded on �p.

In the sequel we will try to develop a theory for Schur multipliers for lower
triangular matrices. By lower triangular matrices we mean matrices of the form
A = (akn)0≤k≤n, that is, matrices that vanish above the main diagonal.

Definition 2.2. Let S = (σkn)0≤k≤n a lower triangular matrix. We say that
S is a Schur multiplier for lower triangular matrices if for every A ∈ B(�p)
which is lower triangular, S � A ∈ B(�p). The set of all such matrices S we
will denote it by SL

p .

This choice is motivated by several reasons. For one thing, Schur multipli-
ers for lower triangular operators form a unital commutative Banach algebra,
which we shall denote by SL

p , with identity element the matrix 1L and therefore
the tools from the classical theory of Banach algebras are available. Moreover,
a little less obvious is that elements in SL

2 are in fact Schur multipliers for
Hankel operators on �2 (see Sect. 4.1).

More importantly we are able to prove that SL
p contains interesting el-

ements that do not belong to Sp, among them, the Fejer matrix F. We have
this more general theorem.

Theorem 2.3. Let θ ∈ C(R) with support in [−1, 1]. Denote by θ̂ the Fourier
transform of θ and suppose that

|θ̂(x)| ≤ C(1 + |x|)−a,

for some a > 1. Then the matrix

Θ :=
{
θ
( k

n + 1
)}

0≤k≤n

is a Schur multiplier for lower triangular matrices on �p, 1 < p < ∞.

The proof of the above theorem, although requires a long calculation, uses
only elementary techniques. In fact if one considers the kernel kθ

n corresponding
to the generating function θ

kθ
n(t) :=

∑
|k|≤n

θ
( k

n + 1
)
eikt,
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the theorem follows by elementary manipulations and some simple pointwise
estimates of these kernels.

There is a variety of examples of functions θ satisfying the hypothesis of
the theorem. A comprehensive list for example can be found in [27, Chapter
2.11], but some particular kernels including the so called Riesz kernels are of
special interest.

Corollary 2.4. Let γ > 0, p > 1, we define the matrix

Fγ :=
((

1 − k

n + 1
)γ

)
0≤k≤n

.

Then Fγ belongs to SL
p . Moreover, there exists a constant C = C(p) > 0 such

that ‖FN‖SL
p

≤ CN2 for all N = 1, 2, . . .

The quantitative estimate will be important for our last application of the
theorem and it is obtained by a careful examination of the constants involved
(see Sect. 3).

2.1. Extensibility of Schur Multipliers for Lower Triangular Operators

In this short section we would like to draw attention to a problem connected
to multipliers in SL

p that we think is very interesting. Suppose that a lower
triangular matrix S has the following property; there exists a matrix T ∈ Sp

such that

Π(T ) := T � 1L = S.

If this happens we say that S extends to a Schur multiplier in Sp. Of course
if S is such it is also a Schur multiplier for lower triangular matrices on �p,
because for A ∈ B(�p), lower triangular T � A = S � A ∈ B(�p). The converse
is not at all clear.

Problem 2.5. Is it true that every element in SL
p , 1 < p < ∞ can be extended

to a Schur multiplier in Sp?

At least when p = 2, a necessary condition that a Schur multiplier for
lower triangular operators has to satisfy in order to be extensible is to be
completely bounded as an operator on the space of bounded lower triangular
operators. That is because every Schur multiplier in �2 is completely bounded
[21, Theorem 5.1].

In the particular case that a := {ak}k≥0 and p = 2 is a sequence of com-
plex numbers and Ta is the corresponding (lower triangular) Toeplitz matrix
Tα := {αn−k}0≤k≤n, it can be seen without difficulty that this is indeed the
case.

Proposition 2.6. For a and Ta as before, Ta ∈ SL
2 if and only if

τ(z) :=
∑
k≥0

akzk

is a Cauchy transform of a finite (complex) Borel meausure on the unit circle.
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If τ is is as above, that is, there exists a finite Borel measure μ such
that ak are the positive Fourier coefficients of μ, then by [4, Theorem 8.1]
Tμ := {μ̂(n − k)}kn is in S2, and it extends Ta.

Proof. One direction is clear. Suppose now that Ta ∈ SL
2 . Let us denote by

∗ the coefficient wise multiplication of two power series. Then for a bounded
holomorphic function h we have

‖Ta � Th‖�2 = ‖Tτ∗h‖�2 = ‖τ ∗ h‖H∞ < +∞.

For the second inequality we have used [28, Proposition 10.1] In other words
τ is a coefficient self-multiplier for H∞, and this is equivalent [15, Theorem
10.1.2] to being a Cauchy transform of a finite Borel measure. �

Notation

We will use the letter C to denote a general positive constant that depends on
some parameters and might change from appearance to appearance. When we
want to stress the dependence of C on some parameters α, β, γ, . . . we write
C = C(α, β, γ, . . . ).

3. Proof of the Main Theorems

The proof of the the following elementary lemma can be found scattered around
the literature. We provide a short proof of it for the sole purpose of complete-
ness.

Lemma 3.1. Let θ ∈ C(R) with support contained in [−1, 1], and

|θ̂(x)| ≤ (1 + |x|)−a,

for some a > 1. Then the kernel

kθ
n(t) :=

∑
|k|≤n

θ
( k

n + 1
)
eikt

satisfies
(1) ‖kθ

n‖L1(T) ≤ ‖θ̂‖L1(R).

(2) |kθ
n(x)| ≤ C min{n + 1, (n + 1)−(a−1)|x|−a}, |x| < π,

for some positive constant C = C(‖θ‖L∞(R), ‖θ̂(x)|x|α‖L∞(R), a).

Proof. We shall use the following normalization for the Fourier transform

f̂(ξ) =
1
2π

∫

R

f(x)e−iξxdx.

For λ > 0 let also δλ(f)(x) = f(λx), the dilation operator.
Consider now the corresponding “continuous version” of the kernel kθ

n;

Kθ
T (ξ) : =

1
2π

∫ T

−T

θ
( x

T

)
e−ixξdx = ̂δ1/T (θ)(ξ) = T θ̂(Tξ).
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By the Poisson summation formula [14, Theorem 3.2.8 ] we have that

kθ
n(x)=

∑
k∈Z

δ1/(n+1)(θ)(k)eikx =
∑
k∈Z

̂δ1/(n+1)(θ)(x + 2kπ) =
∑
k∈Z

Kθ
n+1(x + 2kπ).

Hence,

‖kθ
n‖L1(T)≤

∑
k∈Z

∫ π

−π

|Kθ
n+1(x + 2kπ)|dx =

∫

R

|Kθ
n+1(x)|dx =

∫

R

|θ̂(x)|dx < +∞.

Also, by the definition of kθ
n,

|kθ
n(x)| ≤ (2n + 1)‖θ‖L∞(R).

Finally for n ≥ 1,

|kθ
n−1(x)| ≤ n

∑
k∈Z

|θ̂(nx + 2knπ)|

≤ Cn
∑
k∈Z

1
|xn + 2kπn|a

≤ C
a

a − 1
1

|x|ana−1
, |x| < π.

�

Theorem 2.3 will now follow from the following result.

Lemma 3.2. Let {ϕn} ⊂ L1(T) be a family of kernels which satisfy:
(1) ϕn is a trigonometric polynomial of degree n.
(2) ‖ϕn‖L1 ≤ ρ,
(3) |ϕn(t)| ≤ ρmin{n + 1, 1

(n+1)ata+1 }, a > 0,−π < t < π.

Then the matrix

Φ :=
{
ϕ̂n(k)

}
k,n

is a Schur multiplier for lower triangular matrices on �p for p > 1. Further-
more,

‖Φ‖SL
p

≤ Cρ, as ρ → ∞,

where C = C(α, p).

Proof. Suppose now that x = (xk) ∈ �p. By Hölder’s inequality and the fact
that ‖ϕn‖L1 ≤ ρ we have that,

‖Φ � A(x)‖p
�p =

∞∑
n=0

∣∣∣∣∣
n∑

k=0

ankϕ̂n(k)xk

∣∣∣∣∣
p

=
∞∑

n=0

∣∣∣∣∣
∫ π

−π

ϕn(t)
n∑

k=0

ankxkeikt dt

2π

∣∣∣∣∣
p
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≤ρ
p
q

∞∑
n=0

∫ π

−π

|ϕn(t)| ·
∣∣∣∣∣

n∑
k=0

ankxkeikt

∣∣∣∣∣
p

dt

2π

≤2p−1ρ
p
q

∞∑
n=0

∫ π

−π

|ϕn(t)| ·
∣∣∣∣∣

n∑
k=0

ankxk(eikt − 1)

∣∣∣∣∣
p

dt

2π

+ 2p−1ρp
∞∑

n=0

∣∣∣∣∣
n∑

k=0

ankxk

∣∣∣∣∣
p

≤2p−1ρp
∞∑

n=0

(n + 1)

∫

|t|< 1
n+1

∣∣∣∣∣
n∑

k=0

ankxk(eikt − 1)

∣∣∣∣∣
p

dt

2π

+ 2p−1ρp
∞∑

n=0

∫
1

n+1 <|t|<π

1

(n + 1)a|t|a+1

∣∣∣∣∣
n∑

k=0

ankxk(eikt − 1)

∣∣∣∣∣
p

dt

2π

+ 2p−1ρp‖A‖p‖x‖p
�p .

Lets call the two main terms appearing above (I) and (II) in order of appear-
ance. In order to estimate these terms, for n ∈ N we define

Sn(t) :=
n∑

λ=0

∣∣∣∣∣
λ∑

k=0

aλkxk(eikt − 1)

∣∣∣∣∣
p

. (1)

Notice that if we define a sequence yk = xk(eikt − 1) for 0 ≤ k ≤ n, yk = 0
otherwise we have that

Sn(t) =
n∑

λ=0

∣∣∣∣∣
λ∑

k=0

aλkyk

∣∣∣∣∣
p

≤ ‖A(y)‖p
�p ≤ ‖A‖p

n∑
k=0

|xk|p|eikt − 1|p. (2)

(Notice that this is the only place where we use the assumption that A is lower
triangular.) With this estimate in hand we go back to estimate (I) and (II).
Fix M > 0 and by Abel’s summation by parts we have

I =
∫ π

−π

M∑
n=0

(n + 1)χ[|t|< 1
n+1 ]

(t)

∣∣∣∣∣
n∑

k=0

ankxk(eikt − 1)

∣∣∣∣∣
p

dt

2π

=
∫ π

−π

M∑
n=0

(n + 1)χ[|t|< 1
n+1 ]

(t) (Sn(t) − Sn−1(t)))
dt

2π

=
∫ π

−π

M−1∑
n=0

(
(n + 1)χ[|t|< 1

n+1 ]
(t) − (n + 2)χ[|t|< 1

n+2 ]
(t)

)
Sn(t)

dt

2π

+
∫ π

−π

(M + 1)χ[|t|< 1
M+1 ]

(t)SM (t)
dt

2π

≤
M−1∑
n=0

(n + 1)
∫

1
n+2<|t|< 1

n+1

Sn(t)
dt

2π
+ (M + 1)

∫ 1
M+1

− 1
M+1

SM (t)
dt

2π



173 Page 12 of 18 N. Chalmoukis and G. Stylogiannis Results Math

≤
∞∑

n=0

(n + 1)
∫

1
n+2<|t|< 1

n+1

Sn(t)
dt

2π
+

2p

π
‖A‖p‖x‖p

�p

=: I′ +
2p

π
‖A‖p‖x‖p

�p .

But,

I′ ≤ 2p‖A‖p
∞∑

n=0

(n + 1)
∫ 1

n+1

1
n+2

n∑
k=0

|xk|p(kt)pdt

≤ 2p‖A‖p
∞∑

k=0

kp|xk|p
∞∑

n=k

1
(n + 1)p+1

≤ 2p‖A‖p
∞∑

k=0

kp|xk|p
∫ ∞

k

1
xp+1

dx

≤ 2p

p
‖A‖p‖x‖p

�p .

For (II) we use a similar method. Fix M > 0,

M∑
n=0

∫
1

n+1<|t|<π

1
(n + 1)a|t|a+1

∣∣∣
n∑

k=0

ankxk(eikt − 1)
∣∣∣
p dt

2π

=
∫ π

−π

M∑
n=0

1
(n + 1)a

χ[ 1
n+1<|t|<π](t)

∣∣∣
n∑

k=0

ankxk(eikt − 1)
∣∣∣
p dt

2π|t|a+1

≤
∞∑

n=0

(
1

(n + 1)a
− 1

(n + 2)a

) ∫
1

n+1<|t|<π

Sn(t)
dt

2π|t|a+1

+
1

(M + 1)a

∫
1

M+1<|t|<π

SM (t)
dt

2π|t|a+1

≤
∞∑

n=0

(
1

(n + 1)a
− 1

(n + 2)a

) ∫
1

n+1<|t|<π

n∑
k=0

|xk|p|eikt − 1|p dt

2π|t|a+1
‖A‖p

+
2p

aπ
‖A‖p‖x‖p

�p

=
∞∑

k=0

|xk|p
∞∑

n=k

(
1

(n + 1)a
− 1

(n + 2)a

) ∫
1

n+1<|t|<π

|eikt − 1|p
2π|t|a+1

dt‖A‖p

+
2p

πa
‖A‖p‖x‖p

�p

= II′ +
2p

aπ
‖A‖p‖x‖p

�p .
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We estimate the integral in II′ as follows:
∫

1
n <|t|<π

|eikt − 1|p
|t|a+1

dt

2π
≤ 2p+1kp

∫ 1
k

1
n

tp−a−1 dt

2π
+ 2p+1

∫ π

1
k

1
ta+1

dt

2π

≤ 2p

π
(

1
p − a

+
1
a
)ka.

Where the last estimate is obtained by directly computing the integrals and
omitting the negative terms in the resulting expression. Here note that we can
always assume that a ≤ 1, so p > a. Consequently,

II′ ≤ 2p

π
(

1
p − a

+
1
a
)ka

∞∑
n=k

(
1

(n + 1)a
− 1

(n + 2)a

)
≤ 2p

π
(

1
p − a

+
1
a
).

�

Corollary 2.4 is in fact a direct consequence of Lemmas 3.1 and 3.2 com-
bined with the simple estimate

Lemma 3.3. [8, Lemma 2] Let γ > 0 and

φγ(x) := max{0, (1 − |x|)}γ .

Then

|φ̂γ(x)| ≤ c(γ)(1 + |x|)−min{1,γ}−1

In order to obtain the quantitative behaviour of the Schur multiplier norm
claimed in Corollary 2.4 we need the quantitative estimates for the constant
c(γ) ≤ Cγ2, γ ∈ N. This is a quite standard calculus argument, integrating by
part twice the Fourier transform of of φ̂γ , that we omit.

We can now proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Let g ∈ Mult(�p
A(ω)). It is easy to check that since

limn
ωn+1
ωn

= 1 then also S∗g ∈ Mult(�p
A(ω)). Consider the natural isometry

U which maps �p
A surjectively onto �p

A(ω), and sents zn to ω
−1/p
n zn. Consider

also the operators Ĉg, M̂S∗g on �p
A, where recall that S∗ is the backward shift

operator, which are represented by the matrices

[Ĉg] =
((

1 − k

n + 1
) ĝ(n + 1 − k)ω1/p

n

ω
1/p
k

)
0≤k≤n

=
(
1 − k

n + 1
)
0≤k≤n

� [M̂S∗g].

(3)
We claim that U is an intertwining operator for the couples Cg, Ĉg and

MS∗g, M̂S∗g, in other words that for all polynomials p,

ĈgU(p) = UCg(p) and M̂S∗gU(p) = UMS∗g(p).

By linearity it is enough to check it for monomials. The verification is
left for the reader.
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With this at hand, we can deduce that M̂S∗g is bounded on �p
A since MS∗g

is bounded on �p
A(ω). Then, Eq. (3) and Corollary 2.4 allow us to conclude

that Ĉg is also bounded on �p
A and again using the intertwining relation, Cg

is bounded on �p
A(ω), equivalently Tg is bounded on �p

A(ω) i.e. ‖Tg‖B(�p
A(ω)) <

+∞.
It remains to prove that the spectrum of Tg is trivial whenever g is in

the closure of the space of multipliers in T (�p
A(ω)). For this we shall follow

the proof of [18, Theorem 2.2] mutatis mutandis. For a non zero complex
number λ we set, at least formally, Rg(λ) := (id−λ−1Tg)−1. Suppose now
that λ ∈ C \ {0}. By assumption we can find a function h ∈ Mult(�p

A(ω)) such
that ‖Tg −Th‖B(�p

A(ω)) = ‖Tg−h‖B(�p
A(ω)) is small enough such that Tg−h −λ id

is invertible. For the constant function 1 ∈ �p
A(ω) we have that

Rg(λ)1 = e
h
λ ∈ Mult(�p

A(ω)) ⊆ �p
A(ω).

The fact that the exponential of a multiplier is still a multiplier is a consequence
of the fact that Mult(�p

A(ω)) is a Banach algebra. Finally if f ∈ �p
A(ω) and

f(0) = 0, by [18, p. 8] we have that

Rg(λ)f = Meh/λRg−h(λ)Me−h/λf + Meh/λRg−h(λ)Te−h/λf.

The first term represents a bounded operator since e±h/λ is a multiplier and
λ �∈ σ(Tg−h|�p

A(ω)). The second term is bounded since from the first part of
the theorem, e−h/λ ∈ Mult(�p

A(ω)) ⊆ T (�p
A(ω)). �

4. A Miscellaneous Result

4.1. Schur Multipliers for Hankel Matrices

In this last section we would like to point out a connection with a result due
to Ricard [23]. Recall that a Hankel matrx associated to a sequence of complex
numbers α = {αn}n≥0 is the infinite matrix

Hα :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0 α1 α2 · · ·
α1 α2 α3

. . .

α2 α3
. . .

α3
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The following theorem concern Hankel operators which act boundedly on
�2.

Theorem 4.1. [23] The matrix

E :=
( k + 1

k + n + 1

)
k,n
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is a Schur multiplier for bounded Hankel matrices on �2, meaning that for for
every Hankel matrix Hα which is bounded on �2 the matrix E � Hα is also
bounded on �2.

It worth’s mentioning that this result apart from the independent interest
that it might have, it answers a question of Davidson and Paulsen about CAR-
valued Foguel–Hankel operators which are similar to a contraction (for more
details see [12,23]). The following theorem can be considered as an asymmetric
version of Ricard’s theorem.

Theorem 4.2. For Re λ > 0, the matrices

Eλ :=
( k + 1
k + λn + 1

)
k,n

are Schur multipliers for bounded Hankel operators on �2.

Proof. We decompose the matrix Eλ to its lower and upper triangular parts;

Eλ :=
( k + 1

k + λn + 1

)
0≤k≤n

+
( n + 1

λk + n + 1

)T

0≤k<n
:= X + Y T .

It suffices to prove that X,Y ∈ SL
2 because by a theorem of Bonami and

Bruna [6], if Hα is a bounded Hankel operator on �2 then its lower triangular
truncation, which remember we denote it by Π(Hα) is also bounded on �2.
Hence,

Eλ � Hα = X � Π(Hα) + [Y � (Hα − Π(Hα))T ]T ∈ B(�2).

Let us denote by X	N the Nth Hadamard power of a matrix (i.e. the
matrix with every entry elevated to the power N). By the quantitative estimate
in Corollary 2.4

lim
N→∞

‖F	N‖ 1
N

SL
p

= lim
N→∞

‖FN‖ 1
N

SL
2

≤ lim
N→∞

(CN2)
1
N = 1.

Therefore by the spectral radius formula have

σ(F|SL
2 ) ⊆ D.

Hence, if Re λ > 0, λ + 1 �∈ σ(F|SL
2 ), in other words the element (λ +

1)1L − F is invertible in SL
2 . But the inverse is obtained just by taking the

algebraic inverse of the entries in the lower triangular part of the matrix, i.e.

((λ + 1)1L − F)−1 = (
n + 1

k + λ(n + 1)
)0≤k≤n.

Since SL
2 is an algebra,

(1L − F) � ((λ + 1)1L − F)−1 =
( k

k + λ(n + 1)
)
0≤k≤n

∈ SL
2 .

We further have,
k + 1

k + λn + 1
− k

k + λn + λ
=

k + 1
k + λn + λ

λ − 1
k + λn + 1

+
1
λ

1
k
λ + n + 1

. (4)
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Which proves that also the matrix

X =
( k + 1

k + λn + 1

)
k≤n

is a Schur multiplier for lower triangular matrices, since the first matrix on
the right hand side of Eq. (4) is bounded (hence in SL

2 by [4, Proposition 2.1])
as a product of a bounded Hilbert type matrix and a matrix in SL

2 and the
second matrix is a bounded Hilbert type matrix.

By a similar reasoning we can show that the matrix ((λ + 1)1L − F)−1

also belongs to SL
2 because it differs from Y by a matrix in B(�2). �

We should also mention that our approach is completely different from
the one followed by Ricard, which uses Hardy space theory.

It would be interesting to know if the theorem of Bonami and Bruna
remains valid when p �= 2, or for weighted �2 spaces, but this appears to
be a subtle question. The problem seems to be that the proof of Bonami and
Bruna uses the Nehari theorem and also some delicate estimates for the bilinear
Hilbert transform due to Lacey and Thiele [16].
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