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The aim of the present paper is to investigate the behavior of 
the spectrum of the Neumann Laplacian in domains with little 
holes excised from the interior. More precisely, we consider 
the eigenvalues of the Laplacian with homogeneous Neumann 
boundary conditions on a bounded, Lipschitz domain. Then, 
we singularly perturb the domain by removing Lipschitz 
sets which are “small” in a suitable sense and satisfy a 
uniform extension property. In this context, we provide an 
asymptotic expansion for all the eigenvalues of the perturbed 
problem which are converging to simple eigenvalues of the 
limit one. The eigenvalue variation turns out to depend on 
a geometric quantity resembling the notion of (boundary) 
torsional rigidity: understanding this fact is one of the main 
contributions of the present paper. In the particular case of a 
hole shrinking to a point, through a fine blow-up analysis, we 
identify the exact vanishing order of such a quantity and we 
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establish some connections between the location of the hole 
and the sign of the eigenvalue variation.

© 2025 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In the present paper, we investigate the stability of the spectrum of the Neumann 
Laplacian under singular perturbations, consisting in the removal of small holes from a 
bounded domain.

Eigenvalues and eigenfunctions of di!erential operators are ubiquitous in the theory 
of partial di!erential equations. Understanding how these are sensitive to small per-
turbations, such as variations in the domain, is of interest in several fields of physical 
applications, e.g. quantum mechanics, material sciences, heat conduction, climate mod-
eling and acoustics. See, in particular, [37] for perturbation theory in acoustics, [13, 
Chapter V] for eigenvalue problems in connection with vibrating systems and heat con-
duction and [17] (see also [42]) for links to climate analysis. We also quote [22] for a 
thorough survey on the dependence of eigenvalues and eigenfunctions on smooth and 
nonsmooth perturbations of the domain. Furthermore, a comprehensive understanding 
of the shape of eigenfunctions holds great significance in many numerical analysis prob-
lems. Nonetheless, the computational cost of determining eigenelements in domains with 
minute cavities is considerably high: indeed, to ensure precision in such cases, i.e. to 
discern even small variations, dense mesh structures are needed around these cavities. 
Consequently, theoretical approximation results in this specific context assume a piv-
otal role. We refer to [7] and references therein for a wide discussion of the topic. We 
also mention [32] for some recent applications to machine learning of spectral stability 
of the Neumann Laplacian under domain deformations. Finally, as pointed out in [24, 
Section 1.4], asymptotic expansions of eigenvalues in domains with small holes might 
find applications in shape optimization, e.g. in the proof of non-existence of minimizers.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The problem of spectral stability for di!erential operators in perforated domains has 
a long history, and presents intrinsically di!erent features depending on which kind of 
boundary conditions are taken into account. Let us consider a bounded open set Ω ⊆ RN , 
which we call unperturbed domain, and a compact subset K ⊆ Ω, which we call hole; 
we refer to the set Ω \ K as the perturbed domain. In order for Ω \ K to be regarded 
as a perturbation of Ω, the hole K needs to be sufficiently small, in a suitable sense 
depending on the operator under investigation. In this regard, a key role is played by the 
conditions prescribed on the boundaries of both the unperturbed domain and the hole; 
among the most studied cases, we find homogeneous Dirichlet and Neumann boundary 
conditions, as well as Robin-type ones. Under each of the boundary conditions mentioned 
above and under suitable regularity assumptions on the sets, the eigenvalue problem for 
the Laplace operator on the perturbed domain Ω \ K typically admits a sequence of 
diverging eigenvalues

Λ0(Ω \K) ≤ Λ1(Ω \K) ≤ Λ2(Ω \K) ≤ · · · ≤ Λn(Ω \K) ≤ · · · ,

by classical spectral theory. Analogously, the unpertubed problem (corresponding to the 
case K = ∅) typically admits a sequence of diverging eigenvalues

Λ0(Ω) ≤ Λ1(Ω) ≤ Λ2(Ω) ≤ · · · ≤ Λn(Ω) ≤ · · · .

In this setting, the stability of the spectrum is a main object of investigation. More 
precisely, a major question is the following:

Question 1. Under which conditions on the hole K, are the perturbed eigenvalues 
Λn(Ω \ K) arbitrarily close to the corresponding unperturbed ones Λn(Ω)?

Once conditions on K that ensure spectral stability are found, the further following 
question naturally arises:

Question 2. Is it possible to quantify the di!erence Λn(Ω \K)−Λn(Ω) in terms of some 
measurement of K?

In the case of homogeneous Neumann boundary conditions on both the external 
boundary ∂Ω and the hole’s boundary ∂K, question 1 has been answered in [38]. In 
the present paper we focus on question 2.

We precede the presentation of our results with a brief overview of the literature 
dealing with the spectral stability for the Laplacian in perforated domains. This problem 
is widely investigated. In particular, the case of Dirichlet boundary conditions is one of 
the most studied and, being the literature on the topic so vast, we cite here just some of 
the most relevant papers. In the Dirichlet case, it is well known that a key quantity in the 
study of spectral stability is the capacity of the hole. Some first estimates of the variation 
of the Dirichlet eigenvalues in terms of the capacity of the removed set date back to [39]. 
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The paper [38], published in 1975, still stands as a pivotal reference in this research 
field; it contains a more systematic study of spectral stability in domains with small 
holes, taking also into account more general boundary conditions. Subsequent studies 
are carried out in a series of papers by Ozawa in the 80s, deriving sharp asymptotic 
expansions of perturbed eigenvalues, especially in small dimensions, see e.g. [33]. Another 
relevant result is contained in [16] (recently revisited in [1]), which provides an asymptotic 
expansion for any perturbed (possibly multiple) eigenvalue; in particular, if Λn(Ω) is a 
simple Dirichlet eigenvalue and un is a corresponding L2-normalized eigenfunction, then

Λn(Ω \Kε) = Λn(Ω) + capΩ(Kε, un) + o(capΩ(Kε, un)) as ε → 0, (1.1)

where {Kε}ε>0 is a family of compact sets concentrating to a zero-capacity set as ε → 0, 
and

capΩ(Kε, un) := inf






∫

Ω 
|∇u|2 dx : u ∈ H1

0 (Ω), u− un ∈ H1
0 (Ω \Kε)


⎜

⎟ .

We also cite [3], treating the case of multiple limit eigenvalues. For simple eigenvalues, 
an analogue of (1.1) is derived in [2] in a fractional setting and in [20] for polyharmonic 
operators. The results of [18] seem to suggest that only the boundary conditions pre-
scribed on the hole essentially play a role in the asymptotics of eigenvalues when the 
hole disappears: indeed, in [18], in the case of Neumann conditions prescribed on the 
outer boundary and Dirichlet conditions on the hole, an asymptotic expansion similar 
to (1.1) is proved. Again a suitable notion of capacity of the hole comes into play.

As for Neumann boundary conditions prescribed on the hole, less is known, and a 
richer phenomenology can be observed. After the work of Rauch and Taylor [38], where 
sufficient conditions for stability of the Neumann spectrum are provided, several papers 
investigate the asymptotic behavior of perturbed eigenvalues. In dimension 2 and in the 
case of a disk-shaped hole, Ozawa [34] proves that, if Λn(Ω) is a simple eigenvalue of the 
Dirichlet Laplacian in Ω, and Λn,ε is the n-th eigenvalue of






−∆u = Λu, in Ωε := Ω \ Σε,

u = 0, on ∂Ω,

∂νu = 0, on ∂Σε,

(1.2)

with Σε = {x ∈ R2 : |x− x0| < ε} for some x0 ∈ Ω, then

Λn,ε = Λn(Ω) − πε2
⎡
2 |∇un(x0)|2 − Λn(Ω)u2

n(x0)
⎢

+ O(ε3| log ε|2) as ε → 0,

where un ∈ H1
0 (Ω) is a L2-normalized Dirichlet eigenfunction corresponding to Λn(Ω). 

See also [35] for asymptotic properties of eigenfunctions of (1.2) in dimension 2. For 
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N = 3, asymptotic expansions for the perturbed Neumann eigenvalues µn(Ωε) are ob-
tained in [31] in the case of a hole shrinking to a point: more precisely, the expansion

µn(Ωε) = µn(Ω) + Cnε
3 + o(ε3) as ε → 0,

is proved, where Cn ∈ R is explicitly characterized in [31, (2.46)]. A more general frame-
work is taken into account in [26]: here, the removed holes are tubular neighborhoods of 
d-dimensional manifolds M ⊆ Ω, i.e.

Σε = {x ∈ Ω : dist(x,M) < ε} , (1.3)

and both Neumann and Robin conditions on ∂Σε are considered. Denoting q := N−d ≥ 2, 
if Λn(Ω) is a simple eigenvalue of the Dirichlet Laplacian in Ω (with a L2-normalized 
eigenfunction un) and Λn,ε is the n-th eigenvalue of (1.2) with Σε as in (1.3), then [26] 
proves the expansion

Λn,ε = Λn(Ω)−ωq ε
q

∫

M 

⎣
q

q − 1 |∇⊥un|2 + |∇Mun|2 − Λn(Ω)u2
n + unH[un]

⎤
dHd + o(εq)

as ε → 0, where

H[un](x) := lim
t→0

un(x + tH(x)) − un(x)
t 

and H(x) denotes the mean curvature vector field on M. For Neumann conditions pre-
scribed on both ∂Ω and the hole’s boundary ∂Σε, full asymptotic expansions in terms 
of analytic functions are obtained in [29], in the case of a hole shrinking to a point. 
We also cite [27], where Neumann eigenvalues are studied for a zonal subdomain of the 
N -sphere, which converges to the whole sphere itself. Finally, it is worth mentioning 
[6,9,30] for other quantitative spectral stability results for the Neumann Laplacian and 
[5,10,11,14,23,28] for qualitative studies for more general types of holes.

As emerged from the previous discussion, the stability of Neumann eigenvalues in 
domains with small holes is not understood as well as in the Dirichlet case and presents 
di!erent and peculiar features. For instance, stability of the spectrum of the Neumann 
Laplacian is not guaranteed under assumptions that would otherwise ensure stability in 
the Dirichlet case, see e.g. [13, p. 420] or [40]. In [38] (see also [5]) it is proved that, by 
removing sets Σε whose measure tends to zero as ε → 0, a sufficient condition for stability 
is a uniform extension property (in the Sobolev sense) inside the hole, which rules out 
too wild behaviors of the disappearing hole itself; see assumption (H) in section 2. The 
main novelty of the present paper lies in the identification of a geometric quantity, 
related to the shape of the hole Σε and to the limit eigenfunction ϕn, that plays in the 
Neumann context the same role as the capacity does for the Dirichlet case, concerning 
quantitative spectral stability. This quantity, denoted as TΩ\Σε

(∂Σε, ∂νϕn), is introduced 
in Definition 2.1 and resembles a notion of torsional rigidity.
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Now, we provide a description of the most significant contents of the present paper, 
referring to section 2 for the rigorous statements. Our first main result Theorem 2.4
contains an asymptotic expansion for an eigenvalue λn(Ω\Σε) of the perturbed Neumann 
problem (2.3), in case it converges to a simple eigenvalue λn(Ω) of the unperturbed one 
(2.1). In the asymptotic expansion of the variation λn(Ω \ Σε) − λn(Ω), the sum of two 
contributions appears: the geometric quantity

−TΩ\Σε
(∂Σε, ∂νϕn) < 0 (1.4)

which always has a negative sign, and the additional term

−
∫

Σε

⎡
|∇ϕn|2 − (λn(Ω) − 1)ϕ2

n

⎢
dx, (1.5)

whose sign depends on where the hole is located, with respect to the nodal, regular and 
singular sets of ϕn. The presence of this additional term causes the eigenvalue variation 
not to have a fixed sign, in stark contrast to what happens in the Dirichlet setting, 
where the monotonicity of the eigenvalues with respect to the inclusion of domains 
always results in positive di!erences Λn(Ω \ Σε) − Λn(Ω).

Next, we focus on holes shrinking to a point by maintaining the same fixed shape, 
that is of the form

Σε := x0 + εΣ = {x0 + εx : x ∈ Σ}, (1.6)

for some x0 ∈ Ω and Σ ⊆ RN . In this case, if N ≥ 3, we succeed in performing a 
blow-up analysis, which provides the explicit rate of convergence of the quantity (1.4). 
Moreover, by analyzing the behavior of the limit eigenfunction ϕn near the point x0, we 
determine the explicit rate of convergence of the additional term (1.5). Combining these 
two sharp expansions, we obtain our second and third main results, namely Theorem 2.8
and Theorem 2.9, which provide, for N ≥ 3 and the hole being as in (1.6), a precise 
description of the asymptotic behavior of eigenvalues and eigenfunctions, respectively.

From Theorem 2.8 we can deduce some interesting information about the sign of the 
eigenvalue variation and the sharpness of the derived expansion. Notably, these aspects 
appear to depend on whether x0 is or is not located on the singular set of the limit 
eigenfunction, and, in the latter case, on its specific positioning relative to the interface 
Γ introduced in (2.22). See Remark 2.10 for details.

Finally, in Theorems 2.11 and 2.12 we derive more explicit expansions in the case of 
spherical holes, in dimensions N ≥ 3 and N = 2 respectively.

2. Statement of the main results

For any open, bounded, connected, Lipschitz set Ω ⊆ RN , N ≥ 2, we consider the 
following eigenvalue problem:
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⎥
−∆ϕ + ϕ = λϕ, in Ω,

∂νϕ = 0, on ∂Ω,
(2.1)

where ν denotes the outer unit normal vector to ∂Ω. Problem (2.1) is meant in a weak 
sense; i.e., λ ∈ R is an eigenvalue if there exists u ∈ H1(Ω) \ {0}, called eigenfunction, 
such that

∫

Ω 
(∇u ·∇ϕ + uϕ) dx = λ

∫

Ω 
uϕ dx, for all ϕ ∈ H1(Ω). (2.2)

In view of the compact embedding H1(Ω) ↪→ L2(Ω), classical spectral theory ensures 
the existence of a diverging sequence of eigenvalues

0 < 1 = λ0(Ω) < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λn(Ω) ≤ · · · .

It is evident that the eigenvalues {µn(Ω)} of the standard Neumann Laplacian can be 
obtained from those of (2.1) with a translation, i.e.

µn(Ω) := λn(Ω) − 1,

the eigenfunctions being exactly the same. Moreover, since λ0(Ω) is equal to 1 for any 
choice of the set Ω, in the following we only consider eigenvalues with index 1 or higher.

Let us now perturb Ω, by removing a small hole from the interior. More precisely, we 
consider a family {Σε}ε∈(0,ε0) of subsets of RN satisfying the following assumption.

Assumption (H). We assume that, for some ε0 > 0,

for every ε ∈ (0, ε0), Σε is an open, Lipschitz set such that Σε ⊆ Ω; (H1)

for every ε ∈ (0, ε0), there exists Eε : H1(Ω \ Σε) → H1(Ω) such that 
(H2)

(Eεu)|Ω\Σε
= u and ‖Eεu‖H1(Ω) ≤ C ‖u‖H1(Ω\Σε) for all u ∈ H1(Ω \ Σε),

where C > 0 is a constant independent of ε ∈ (0, ε0);

|Σε| → 0 as ε → 0 (where | · | denotes the N -dimensional Lebesgue measure). (H3)

For every ε ∈ (0, ε0), we denote the perturbed domain by

Ωε := Ω \ Σε,

and consider the perturbed problem



8 V. Felli et al. / Journal of Functional Analysis 288 (2025) 110817 

⎥
−∆ϕ + ϕ = λϕ, in Ωε,

∂νϕ = 0, on ∂Ωε,
(2.3)

meant in a weak sense as in (2.2). This produces the perturbed spectrum, which consists 
of an increasing diverging sequence {λj(Ωε)}j∈N . In [38, Theorem 3.1] Rauch and Taylor 
prove that, under assumption (H),

λj(Ωε) → λj(Ω) as ε → 0, for all j ∈ N. (2.4)

Moreover, by classical spectral theory, there exist

{ϕj}j≥0 ⊆ H1(Ω) and {ϕε
j}j≥0 ⊆ H1(Ωε) (2.5)

orthonormal bases of L2(Ω), respectively L2(Ωε), such that, for every j, ϕj and ϕε
j are 

eigenfunctions associated to λj(Ω) and λj(Ωε), respectively.
Hereafter, we fix n ∈ N \ {0} such that

λn(Ω) is simple. (2.6)

A key role in our asymptotic expansion is played by the geometric quantity defined 
below, which provides a measurement of the hole Σε and resembles the notion of torsional 
rigidity of a set; see e.g. [25,36] for the classical notion of torsional rigidity and [8] for 
the boundary torsional rigidity.

Definition 2.1. Let E ⊆ RN be an open Lipschitz set such that E ⊂ Ω and f ∈ L2(∂E). 
Let

JΩ,E,f : H1(Ω \ E) → R, JΩ,E,f (u) := 1
2

∫

Ω\E

(|∇u|2 + u2) dx−
∫

∂E

uf dS.

We define the Sobolev f -torsional rigidity of ∂E relative to Ω\E (briefly, the f -torsional 
rigidity of ∂E) as

TΩ\E(∂E, f) := −2 inf
⎦
JΩ,E,f (u) : u ∈ H1(Ω \ E)

}
.

By standard minimization arguments, there exists a unique UΩ,E,f ∈ H1(Ω \ E)
achieving the infimum defining TΩ\E(∂E, f), i.e. such that

TΩ\E(∂E, f) = −2JΩ,E,f (UΩ,E,f ), (2.7)

see Proposition 3.4. We also recall the definition of Sobolev capacity of a set.
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Definition 2.2. Let K ⊆ RN be a compact set. The Sobolev capacity of K is defined as

Cap (K) := inf
{ ∫

RN

(
|∇u|2 + u2) dx : u ∈ H1(RN ), u = 1

a.e. in an open neighborhood of K
}
.

If the family {Σε}ε∈(0,ε0) satisfies (H) and

lim
ε→0

Cap (Σε) = 0, (2.8)

under assumption (2.6) it is possible to uniquely choose the n-th eigenfunction of the 
orthonormal basis {ϕε

j}j≥0 in (2.5) in such a way that

∫

Ωε

ϕε
nϕn dx ≥ 0 for ε sufficiently small. (2.9)

If ϕε
n is chosen as above, one can prove that

‖ϕε
n − ϕn‖H1(Ωε) → 0 as ε → 0, (2.10)

see Lemma 3.7. Furthermore, assumption (H) implies that

TΩε
(∂Σε, ∂νϕn) → 0 as ε → 0,

see Corollary 3.3.

Remark 2.3. It could happen that (2.4) holds true while (2.8) fails (in contrast to what 
happens in the Dirichlet case). An example of this phenomenon can be found in [38, 
Section 4]. More precisely, for every j ∈ N \ {0}, let Ej be the union of j disjoint open 
balls of radius rj > 0, evenly spaced inside a bounded region U ⊂ RN . Let us choose the 
radii rj in such a way that limj→∞ jrNj = 0 (so that |Ej | → 0) and

⎥
limj→∞ jrN−2

j = +∞, if N ≥ 3,
limj→∞

j
| log rj | = +∞, if N = 2.

(2.11)

In [38, Section 4] it is observed that, under condition (2.11), Kj = Ej becomes solid in 
U as j → ∞, i.e.

αj := inf
⎥∫

U\Ej
|∇v|2 dx

∫
U\Ej

v2 dx 
: v ∈ H1(U \ Ej), v = 0 on ∂Ej

}
−→ 
j→∞

+∞.
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This implies that it cannot happen that limj→∞ Cap (Ej) = 0. Indeed, let us argue 
by contradiction and assume that limj→∞ Cap (Ej) = 0. Then, for every j ∈ N \ {0}
there exists uj ∈ H1(RN ) such that uj = 1 a.e. in an open neighborhood of Ej and 
limj→∞ ‖uj‖H1(RN ) = 0. Let η ∈ C∞

c (RN ) be such that η ≡ 1 in U . Then

∫
U |∇(uj − η)|2 dx∫

U (uj − η)2 dx 
=

∫
U\Ej

|∇(uj − η)|2 dx
∫
U\Ej

(uj − η)2 dx 
≥ αj

and a contradiction arises letting j → ∞, since the left hand side converges to 
1 
|U|

∫
U |∇η|2 dx.

On the other hand, the sequence of sets {Ej}j satisfies assumption (H), so that [38, 
Theorem 3.1] ensures spectral stability as j → ∞ for the Neumann problem under 
removal of the sets Ej .

Our first result provides an asymptotic expansion of a perturbed eigenvalue (and its 
corresponding eigenfunction) in the case it converges to a simple eigenvalue of the limit 
problem.

Theorem 2.4. Let n ≥ 1 be such that (2.6) is satisfied. Let {Σε}ε∈(0,ε0) satisfy assump-
tions (H) and (2.8). Then

λn(Ωε) = λn(Ω) − TΩε
(∂Σε, ∂νϕn) −

∫

Σε

⎡
|∇ϕn|2 − (λn(Ω) − 1)ϕ2

n

⎢
dx

+ o
(
TΩε

(∂Σε, ∂νϕn)
)

+ o




∫

Σε

⎡
|∇ϕn|2 − (λn(Ω) − 1)ϕ2

n

⎢
dx



 as ε → 0. (2.12)

In addition, if Uε := UΩ,Σε,∂νϕn ∈ H1(Ωε) denotes the function achieving TΩε
(∂Σε, ∂νϕn)

as in (2.7) and ϕε
n is chosen as in (2.9), then

‖ϕε
n − (ϕn − Uε)‖2

H1(Ωε) = o
(
TΩε

(∂Σε, ∂νϕn)
)

+ O(‖ϕn‖4
L2(Σε)) as ε → 0 (2.13)

and

‖ϕε
n − ϕn‖2

H1(Ωε) = TΩε
(∂Σε, ∂νϕn) + o

(
TΩε

(∂Σε, ∂νϕn)
)

+ O(‖ϕn‖4
L2(Σε)) + O

⎡
‖ϕn‖2

L2(Σε)

√
TΩε

(∂Σε, ∂νϕn)
⎢

as ε → 0. (2.14)

Let us briefly describe the basic idea behind the proof of Theorem 2.4. We consider 
the function

fε := ϕn − Uε.
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It turns out that fε is a good approximation of the perturbed eigenfunction ϕε
n, while 

encoding information from given quantities (the unperturbed eigenfunction ϕn and the 
hole Σε). Indeed, since by assumption

‖Uε‖2
H1(Ωε) = TΩε

(∂Σε, ∂νϕn) → 0 as ε → 0,

see Remark 3.5, then fε is close to ϕn for small ε. Moreover, it satisfies an equation 
rather similar to that of ϕε

n, i.e.

⎥
−∆fε + fε = λn(Ω)ϕn, in Ωε,

∂νfε = 0, on ∂Σε.

By estimating the di!erence ϕε
n − fε, through an abstract result known in the literature 

as Lemma on small eigenvalues (originally proved in [15]), see Lemma A.1, we obtain 
the expansion of the eigenvalue variation stated in Theorem 2.4.

Theorem 2.4 applies to a fairly general framework and provides an expansion in terms 
of TΩε

(∂Σε, ∂νϕn) and 
∫
Σε

(|∇ϕn|2 − (λn(Ω) − 1)ϕ2
n) dx. We now direct our attention 

towards the asymptotic behavior of these quantities, with the aim of deriving an explicit 
expansion of the eigenvalue variation in some relevant examples: the case of a hole 
shrinking to an interior point in dimension N ≥ 3 and the case of a disk-shaped hole in 
dimension N = 2.

Let us fix x0 ∈ Ω and an open, bounded, Lipschitz set Σ ⊆ RN , and consider a hole 
Σε = x0 +εΣ as in (1.6). In this case, the family {Σε} is concentrating to the point x0 by 
shrinking and maintaining the same shape Σ. Since Ω is open and Σ is bounded, there 
exist r0 > 0 and ε0 > 0 such that

x0 + Br0 ⊂ Ω and x0 + εΣ ⊂ x0 + Br0 for all ε ∈ (0, ε0), (2.15)

where Br0 := {x ∈ RN : |x| < r0} is the ball in RN with center at 0 and radius r0. 
The family {Σε}ε∈(0,ε0) turns out to satisfy assumptions (H) and (2.8), see Lemma A.2; 
therefore, Theorem 2.4 applies. Hence, if λn(Ω) is simple, the problem of finding explicit 
asymptotic expansions for the perturbed eigenvalue λn(Ωε) boils down to the analysis 
of the behavior of the quantities

TΩε
(∂Σε, ∂νϕn) and

∫

Σε

⎡
|∇ϕn|2 − (λn(Ω) − 1)ϕ2

n

⎢
dx

as ε → 0. Similarly to what happens in other singularly perturbed spectral problems 
(see e.g. [1,2,4,18,19]), the local behavior of the normalized eigenfunction ϕn (which is 
unique, up to a sign) near the point x0 plays a crucial role, as described below.
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For every u ∈ C∞(Ω), y ∈ Ω and i ∈ N, we consider the polynomial

Pu
y,i(x) :=

∑

β∈NN

|β|=i

1 
β!D

βu(y) xβ , x ∈ RN , (2.16)

where |β| = β1 + . . . + βN and β! = β1! · . . . · βN ! for all β = (β1, . . . ,βN ) ∈ NN , with 
the tacit convention that

Pu
y,0(x) := u(y) for all x ∈ RN . (2.17)

In the case y = 0, we drop the index and write

Pu
i := Pu

0,i. (2.18)

Definition 2.5. Let u ∈ C∞(Ω). We say that u vanishes of order k ∈ N at y if

Pu
y,k(x) -≡ 0 and Pu

y,i(x) ≡ 0 for all i < k.

We observe that every nontrivial solution to problem (2.1) is analytic in Ω, hence, at 
any point y ∈ Ω, it vanishes with some finite order k ∈ N (which is 0 if u(y) -= 0) in 
the sense of Definition 2.5. For every analytic function u : Ω → R, the nodal set of u is 
defined as

Z(u) :=
∞ ⋃

k=1
Zk(u),

where, for every k ∈ N \ {0},

Zk(u) := {x ∈ Ω : u vanishes of order k at x}.

We define the regular part of the nodal set as

Reg (u) := Z1(u) = {x ∈ Ω : u(x) = 0 and ∇u(x) -= 0}

and the singular part as

Sing (u) = Z(u) \ Reg (u).

Our second main result establishes that, in the case of a shrinking hole, the rate of 
convergence of the perturbed eigenvalue to the unperturbed one depends on whether the 
hole is made on the singular part or not. In order to state the result, we need a notion 
of limit boundary torsional rigidity, to introduce which we recall the definition of Beppo 
Levi spaces.
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Definition 2.6. Let N ≥ 3 and E ⊆ RN be an open Lipschitz set. The space D1,2(RN \E)
is defined as the completion of C∞

c (RN \ E) with respect to the norm

‖u‖D1,2(RN\E) :=
( ∫

RN\E

|∇u|2 dx
) 1

2

.

By classical Sobolev’s inequality,

D1,2(RN \ E) =
{
u ∈ L

2N
N−2 (RN \ E) : ∇u ∈ L2(RN \ E)

}
.

Definition 2.7. Let N ≥ 3, E ⊆ RN be a bounded open Lipschitz set, and f ∈ L2(∂E). 
Let

J̃E,f : D1,2(RN \ E) → R, J̃E,f (u) := 1
2

∫

RN\E

|∇u|2 dx−
∫

∂E

uf dS.

We define the f -torsional rigidity of ∂E relative to RN \ E as

τRN\E(∂E, f) := −2 inf
⎦
J̃E,f (u) : u ∈ D1,2(RN \ E)

}
.

By standard minimization arguments, there exists a unique ŨE,f ∈ D1,2(RN \ E)
achieving the infimum defining τRN\E(∂E, f), i.e.

τRN\E(∂E, f) = −2J̃E,f (ŨE,f ), (2.19)

see Proposition 3.4.
We are now ready to state our second main result, which is based on a blow-up analysis 

for the quantities appearing in the asymptotic expansion in Theorem 2.4. This provides 
the explicit rate of convergence of the perturbed eigenvalues, in terms of the behavior of 
the limit eigenfunction near the point where the hole is excised.

Theorem 2.8. Let N ≥ 3, x0 ∈ Ω, Σ ⊆ RN be an open, bounded, Lipschitz set, ε0 > 0 be 
as in (2.15) and, for every ε ∈ (0, ε0), Σε := x0 + εΣ. Let n ≥ 1 be such that λn(Ω) is 
simple.

(i) If x0 ∈ Ω \ Sing (ϕn), then, as ε → 0,

λn(Ωε) = λn(Ω)

− εN
(
τRN\Σ(∂Σ,∇ϕn(x0) · ν) + |Σ|(|∇ϕn(x0)|2 − (λn(Ω) − 1)ϕ2

n(x0))
)

+ o(εN ).
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(ii) If x0 ∈ Sing (ϕn), then, as ε → 0,

λn(Ωε) = λn(Ω)− εN+2k−2



τRN\Σ(∂Σ, ∂νP
ϕn

x0,k
) +

∫

Σ 
|∇Pϕn

x0,k
|2 dx



+ o(εN+2k−2),

where k ≥ 2 is the vanishing order of ϕn at x0 and Pϕn

x0,k
is as in (2.16).

Thanks to the estimates for the norm convergence of perturbed eigenfunctions, see 
(2.13), we are able to obtain the explicit rate of convergence in the case of a shrinking 
hole.

Theorem 2.9. Let N ≥ 3, x0 ∈ Ω, Σ ⊆ RN be an open, bounded, Lipschitz set, ε0 > 0 be 
as in (2.15), and, for every ε ∈ (0, ε0), Σε := x0 + εΣ. Let n ≥ 1 be such that λn(Ω) is 
simple and k ≥ 1 be the vanishing order of ϕn − ϕn(x0) at x0. Let

(ε(x) := ϕε
n(εx + x0) − ϕn(x0)

εk
,

where ϕε
n is chosen as in (2.9). Then, for all R > 0 such that Σ ⊆ BR,

(ε → Pϕn

x0,k
− ŨΣ,∂νP

ϕn
x0,k

in H1(BR \ Σ) as ε → 0, (2.20)

where ŨΣ,∂νP
ϕn
x0,k

∈ D1,2(RN \ Σ) is the function achieving τRN\Σ(∂Σ, ∂νP
ϕn

x0,k
) as in 

(2.19). Moreover

lim
ε→0

ε−(N+2k−2)‖ϕε
n − ϕn‖2

H1(Ωε) = τRN\Σ(∂Σ, ∂νP
ϕn

x0,k
). (2.21)

We observe that, in Theorem 2.8–(ii), k is actually equal to the vanishing order of 
ϕn −ϕn(x0), since ϕn(x0) = 0 when x0 ∈ Sing (ϕn), consistently with the notation used 
in Theorem 2.9. We refer to Remark 5.2 for further discussion on vanishing orders of 
eigenfunctions.

From Theorem 2.8, one can see that the sign of the leading term in the asymp-
totic expansion of λn(Ωε) − λn(Ω) might change depending on the position of the 
hole. Indeed, the function f .→ τRN\Σ(∂Σ, f) is continuous from L2(∂Σ) into R; hence 
τRN\Σ(∂Σ,∇ϕn(x0) · ν) is small if |∇ϕn(x0)| is small. It follows that, if x0 is close to 
critical points of ϕn which are not zeroes, then the coefficient of the leading term in the 
expansion is strictly positive (since, for n ≥ 1, we have λn(Ω) > 1), while close to the 
nodal set Z(ϕn) the coefficient is negative. A more detailed discussion is contained in 
the following remark.

Remark 2.10. In the case of holes of type (1.6) shrinking to a point x0, the vanishing 
order of λn(Ωε)− λn(Ω) is strongly influenced by the position of the point x0 ∈ Ω. If x0
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lies on the singular part of the nodal set of ϕn, which is known to be at most (N − 2)-
dimensional (see [12]), the eigenvalue variation vanishes with the same order as εN+2k−2, 
being k ≥ 2 the vanishing order of ϕn at x0, and the coefficient of the term εN+2k−2 in 
the expansion of λn(Ωε) − λn(Ω) is strictly negative; this implies that the expansion is 
sharp and

λn(Ωε) < λn(Ω), for ε sufficiently small.

On the other hand, if x0 is outside the singular set of ϕn and outside the set

Γ = ΓΣ,n :=
{
x ∈Ω : τRN\Σ(∂Σ,∇ϕn(x) · ν)

+ |Σ|(|∇ϕn(x)|2 − (λn(Ω) − 1)ϕ2
n(x)) = 0

}
\ Sing (ϕn), (2.22)

the rate of convergence is εN . If x0 ∈ Γ, Theorem 2.8 just lets us know that

λn(Ωε) − λn(Ω) = o(εN ) as ε → 0,

without further information about the next non-zero term in the expansion or about the 
sign. The complement of the set Γ in Ω is the disjoint union of the two regions

Ω+ :=
⎦
x ∈ Ω : τRN\Σ(∂Σ,∇ϕn(x) · ν) + |Σ|(|∇ϕn(x)|2 − (λn(Ω) − 1)ϕ2

n(x)) < 0
}

and

Ω− := {x ∈ Ω : τRN\Σ(∂Σ,∇ϕn(x) · ν) + |Σ|(|∇ϕn(x)|2

− (λn(Ω) − 1)ϕ2
n(x)) > 0} ∪ Sing (ϕn),

in each of which the mutual position of the perturbed eigenvalue and the limit one is 
di!erent. Indeed, recalling that λn(Ω) > 1, if x0 ∈ Ω+, then

λn(Ωε) > λn(Ω), for ε sufficiently small,

while, if x0 ∈ Ω−, then

λn(Ωε) < λn(Ω), for ε sufficiently small.

In particular, Z(ϕn) ⊆ Ω−, while Crit(ϕn) ⊆ Ω+, where

Crit(ϕn) := {x ∈ Ω : ϕn(x) -= 0 and ∇ϕn(x) = 0}

denotes the set of critical points outside Z(ϕn).
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The asymptotic expansion obtained in (2.12) can be made completely explicit in the 
case of a spherical hole. In dimension N ≥ 3 this can be done by calculating the limit 
quantity τRN\Σ(∂Σ, ∂νP

ϕn

x0,k
) that appears in Theorem 2.8.

Theorem 2.11. Let N ≥ 3, x0 ∈ Ω, and Σε := x0 + εB1. Let n ≥ 1 be such that λn(Ω) is 
simple.

(i) If x0 ∈ Ω \ Sing (ϕn), then

λn(Ωε) = λn(Ω) − ωNεN
(

N

N − 1 |∇ϕn(x0)|2 − (λn(Ω) − 1)ϕ2
n(x0)

)
+ o(εN )

as ε → 0, where ωN = |B1|.
(ii) If x0 ∈ Sing (ϕn), then

λn(Ωε) = λn(Ω) − k(N + 2k − 2)
N + k − 2 

εN+2k−2
∫

∂B1

Y 2 dS + o(εN+2k−2) as ε → 0,

where k ≥ 2 is the vanishing order of ϕn at x0 and Y is the spherical harmonic of 
degree k given by Y = Pϕn

x0,k

∣∣
∂B1

, Pϕn

x0,k
being as in (2.16).

In the case N = 2, the blow-up argument is not helpful due to the unavailability of 
Hardy-type inequalities, which prevents us from identifying a concrete functional space 
to which the blow-up limits belong. In this case, direct computations, carried out by 
expanding the torsion function for the perturbed problem in Fourier series, allow us to 
prove the following result.

Theorem 2.12. Let N = 2, x0 ∈ Ω, and Σε := x0 + εB1. Let n ≥ 1 be such that λn(Ω) is 
simple.

(i) If x0 ∈ Ω \ Sing (ϕn), then

λn(Ωε) = λn(Ω) − πε2
⎡
2 |∇ϕn(x0)|2 − (λn(Ω) − 1)ϕ2

n(x0)
⎢

+ o(ε2) as ε → 0.

(ii) If x0 ∈ Sing (ϕn), then

λn(Ωε) = λn(Ω) − 2kπε2k

(∣∣∣∣
∂kϕn

∂xk
1

(x0)
∣∣∣∣
2

+ 1 
k2

∣∣∣∣
∂kϕn

∂xk−1
1 ∂x2

(x0)
∣∣∣∣
2)

+ o(ε2k)

as ε → 0, where k ≥ 2 is the vanishing order of ϕn − ϕn(x0) at x0.
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Theorem 2.11 and Theorem 2.12 provide a more explicit expression for the interface Γ
introduced in Remark 2.10 and its 2-dimensional counterpart, in the case of a spherical 
hole: if Σ = B1, we have

Γ =
{
x ∈ Ω : N

N − 1 |∇ϕn(x)|2 − (λn(Ω) − 1)ϕ2
n(x) = 0

}
\ Sing (ϕn).

Some examples of interfaces Γ are described in Section 6, for Ω being a 3-dimensional 
box or a 2-dimensional disk.

Notation. In what follows, for any family {Σε}ε∈(0,ε0) satisfying assumption (H), we 
denote

λi := λi(Ω) and λε
i := λi(Ωε)

for all i ∈ N, where Ωε := Ω\Σε. Moreover, we fix an index n ∈ N, n ≥ 1, such that (2.6)
is satisfied; we recall that ϕn is a corresponding eigenfunction such that 

∫
Ω ϕ2

n dx = 1. 
We may also denote by

Tε := TΩε
(∂Σε, ∂νϕn) (2.23)

the Sobolev ∂νϕn-torsional rigidity of ∂Σε relative to Ωε, and by

Uε := UΩ,Σε,∂νϕn ∈ H1(Ωε) (2.24)

the function achieving it, see (2.7) and Proposition 3.4.

3. Preliminaries

The first part of this section is devoted to some basic properties of the f -torsional 
rigidity of a set.

Lemma 3.1. Let E ⊆ RN be an open Lipschitz set such that E ⊆ Ω and let f ∈ L2(∂E). 
Then

TΩ\E(∂E, f) = sup









∫

∂E

uf dS




2

∫

Ω\E

(|∇u|2 + u2) dx
: u ∈ H1(Ω \ E) \ {0}


⎜

⎟

. (3.1)

Proof. By the substitution u .→ tu, the characterization of TΩ\E(∂E, f) as in Defini-
tion 2.1 is equivalent to
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TΩ\E(∂E, f)

= −2 inf





t2

2 

∫

Ω\E

(|∇u|2 + u2) dx− t

∫

∂E

uf dS : u ∈ H1(Ω \ E) \ {0}, t ∈ R


⎜

⎟

= −2 inf
u∈H1(Ω\E)\{0}

inf





t2

2 

∫

Ω\E

(|∇u|2 + u2) dx− t

∫

∂E

uf dS : t ∈ R


⎜

⎟
. (3.2)

Minimizing in t for a fixed u -≡ 0, we find that

inf
t∈R

{
t2

2 

∫

Ω\E

(|∇u|2 + u2) dx− t

∫

∂E

uf dS
}

is attained for

t =

∫

∂E

uf dS

∫

Ω\E

(|∇u|2 + u2) dx
.

Thus, substituting this into (3.2) we complete the proof. !

The characterization of TΩ\E(∂E, f) given in (3.1) easily implies the following mono-
tonicity property with respect to domain inclusion.

Corollary 3.2. Let Ω1,Ω2 ⊂ RN be two connected open bounded Lipschitz sets and E ⊂
RN be an open Lipschitz set such that E ⊂ Ω1 ⊂ Ω2. Then, for any f ∈ L2(∂E),

TΩ2\E(∂E, f) ≤ TΩ1\E(∂E, f).

Proof. If u ∈ H1(Ω2 \ E) \ {0}, then its restriction, still denoted as u, belongs to 
H1(Ω1 \ E). If u ≡ 0 in Ω1 \ E then u has null trace on ∂E so that

(∫
∂E uf dS

)2
∫
Ω2\E(|∇u|2 + u2) dx

= 0.

If u -≡ 0 in Ω1 \ E, then u ∈ H1(Ω1 \ E) \ {0} and, by (3.1),

(∫
∂E uf dS

)2
∫
Ω2\E(|∇u|2 + u2) dx

≤
(∫

∂E uf dS
)2

∫
Ω1\E(|∇u|2 + u2) dx

≤ TΩ1\E(∂E, f).
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In both cases, we have

(∫
∂E uf dS

)2
∫
Ω2\E(|∇u|2 + u2) dx

≤ TΩ1\E(∂E, f) for all u ∈ H1(Ω2 \ E) \ {0},

which yields the conclusion by taking the supremum over H1(Ω2 \ E) \ {0}. !

Another relevant consequence of the characterization (3.1) is the vanishing of the ∂νϕ-
torsional rigidity of ∂Σε as ε → 0, whenever the family {Σε}ε∈(0,ε0) satisfies assumption
(H) and ϕ is any eigenfunction of problem (2.1).

Corollary 3.3. Let {Σε}ε∈(0,ε0) be a family of sets satisfying assumptions (H) and ϕ be 
an eigenfunction of problem (2.1). Then

TΩε
(∂Σε, ∂νϕ) → 0 as ε → 0. (3.3)

Proof. For every u ∈ H1(Ωε), the Divergence Theorem, Hölder’s inequality, and assump-
tion (H2) yield

∣∣∣∣
∫

∂Σε

u ∂νϕ dS
∣∣∣∣ =

∣∣∣∣
∫

Σε

div((Eεu)∇ϕ) dx
∣∣∣∣ =

∣∣∣∣
∫

Σε

⎡
(∆ϕ)(Eεu) + ∇(Eεu) ·∇ϕ

⎢
dx

∣∣∣∣

≤
(
‖∆ϕ‖L2(Σε) + ‖∇ϕ‖L2(Σε;RN )

)
‖Eεu‖H1(Ω)

≤ C‖u‖H1(Ωε)
(
(|λ− 1|‖ϕ‖L2(Σε) + ‖∇ϕ‖L2(Σε;RN )

)
,

where λ is the eigenvalue corresponding to the eigenfunction ϕ.
The characterization of TΩε

(∂Σε, ∂νϕ) given in (3.1) then implies

TΩε
(∂Σε, ∂νϕ) = sup 

u∈H1(Ωε)
u '=0

⎡∫
∂Σε

u ∂νϕ dS
⎢2

‖u‖2
H1(Ωε)

≤ C2(|λ− 1|‖ϕ‖L2(Σε) + ‖∇ϕ‖L2(Σε;RN )
)2
,

so that the conclusion follows from assumption (H3) and the absolute continuity of 
Lebesgue integral. !

The following proposition states that the infimum appearing in the definition of the 
torsional rigidity of a set is actually achieved.

Proposition 3.4. 

(i) Let E ⊆ RN be an open Lipschitz set such that E ⊆ Ω and let f ∈ L2(∂E). Then, 
there exists a unique U = UΩ,E,f ∈ H1(Ω \ E) such that
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TΩ\E(∂E, f) = −2JΩ,E,f (U),

with JΩ,E,f being as in Definition 2.1. In addition, U ∈ H1(Ω \ E) is the unique 
function weakly satisfying






−∆U + U = 0, in Ω \ E,

∂νU = 0, on ∂Ω,

∂νU = f, on ∂E,

that is
∫

Ω\E

(∇U ·∇v + Uv) dx =
∫

∂E

vf dS, for all v ∈ H1(Ω \ E). (3.4)

(ii) Let N ≥ 3, E ⊆ RN be an open bounded Lipschitz set and f ∈ L2(∂E). Then, there 
exists a unique Ũ = ŨE,f ∈ D1,2(RN \ E) such that

τRN\E(∂E, f) = −2J̃E,f (Ũ),

where J̃E,f is as in Definition 2.7. In addition, Ũ ∈ D1,2(RN \ E) is the unique 
function weakly satisfying

⎥
−∆Ũ = 0, in RN \ E,

∂νŨ = f, on ∂E,

that is
∫

RN\E

∇Ũ ·∇v dx =
∫

∂E

vf dS for all v ∈ D1,2(RN \ E).

Proof. The proof is a direct application of the Lax-Milgram lemma. In particular, con-
cerning the proof of point (ii), we observe that the functional v .→

∫
∂E vf dS is linear 

and continuous on D1,2(RN \ E). Indeed, since E is bounded, E ⊂ B for some ball B, 
hence the restriction map D1,2(RN \ E) → H1(B \ E) is continuous and there exists a 
continuous trace operator from D1,2(RN \ E) to L2(∂E). !

Remark 3.5. We observe that

TΩ\E(∂E, f) =
∫

Ω\E

(|∇UΩ,E,f |2 + U2
Ω,E,f ) dx =

∫

∂E

fUΩ,E,f dS,

as one easily obtains by choosing v = UΩ,E,f in (3.4). Similarly,



V. Felli et al. / Journal of Functional Analysis 288 (2025) 110817 21

τRN\E(∂E, f) =
∫

RN\E

|∇ŨE,f |2 dx =
∫

∂E

fŨE,f dS.

The following lemma provides a comparison between the L2-norm of the torsion func-
tion and the torsional rigidity as ε → 0.

Lemma 3.6. Let {Σε}ε∈(0,ε0) satisfy assumptions (H) and (2.8). If Tε → 0 as ε → 0, then

∫

Ωε

U2
ε dx = o(Tε), as ε → 0,

with Tε and Uε being as in (2.23) and (2.24) respectively.

Proof. Let us assume by contradiction that there exist a constant C > 0 and a sequence 
{εj}j≥1 such that limj→∞ εj = 0, Uεj -≡ 0 and

∫

Ωεj

U2
εj dx

Tεj
=

∫

Ωεj

U2
εj dx 

∥∥Uεj

∥∥2
H1(Ωεj )

≥ C for all j ≥ 1,

see Remark 3.5. For any ε, let us consider the extension to the whole Ω of Uε, i.e.

Ũε := EεUε ∈ H1(Ω),

being Eε as in (H2). Letting Wj := Ũεj/‖Ũεj‖L2(Ω), we have ‖Wj‖L2(Ω) = 1 and

‖Wj‖H1(Ω) =
‖Ũεj‖H1(Ω)

‖Ũεj‖L2(Ω)
≤

C
∥∥Uεj

∥∥
H1(Ωεj )∥∥Uεj

∥∥
L2(Ωεj )

≤ C √
C
.

Therefore, there exists W ∈ H1(Ω) such that, along a subsequence (still denoted by 
{Wj}),

Wj , W weakly in H1(Ω) and Wj → W strongly in L2(Ω)

as j → ∞. From the strong L2(Ω)-convergence we immediately infer that ‖W‖L2(Ω) = 1, 
which in turn tells us that W -≡ 0.

Let v ∈ C∞(Ω). By assumption (2.8), there exists {uε}ε∈(0,1) ⊂ C∞
c (RN ) such that 

uε = 1 in a neighborhood of Σε and ‖uε‖H1(RN ) → 0 as ε → 0. Letting vj = v(1−uεj

∣∣
Ω), 

we observe that vj ∈ C∞(Ω), vj ≡ 0 in a neighborhood of Σεj , and vj → v strongly in 
H1(Ω), as j → ∞. Then, from the weak convergence Wj , W in H1(Ω) it follows that
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∫

Ω 
(∇Wj ·∇vj + Wjvj) dx →

∫

Ω 
(∇W ·∇v + Wv) dx, as j → ∞.

On the other hand, equation (3.4) and the fact that vj ≡ 0 in a neighborhood of Σεj

imply that
∫

Ω 
(∇Wj ·∇vj + Wjvj) dx = 1 

‖Ũεj‖L2(Ω)

∫

Ωεj

(∇Uεj ·∇vj + Uεjvj) dx

= 1 
‖Ũεj‖L2(Ω)

∫

∂Σεj

vj∂νϕn dS = 0,

for all j ∈ N. Therefore, we conclude that
∫

Ω 
(∇W ·∇v + Wv) dx = 0

for every v ∈ C∞(Ω), and, by density, for every v ∈ H1(Ω). This implies that W = 0, 
thus giving rise to a contradiction. !

We conclude this section by proving (2.10).

Lemma 3.7. Let {Σε}ε∈(0,ε0) satisfy (H) and (2.8) and n ≥ 1 be such that (2.6) holds. 
If, for every ε ∈ (0, ε0), ϕε

n is an eigenfunction of (2.3) associated to the eigen-
value λε

n and chosen in such a way that 
∫
Ωε

|ϕε
n|2 dx = 1 and (2.9) is satisfied, then 

limε→0 ‖ϕε
n − ϕn‖H1(Ωε) = 0.

Proof. Since ϕε
n solve (2.3) with λ = λε

n, from (2.4) and (H2) it follows that (possibly 
choosing ε0 smaller) {Eεϕε

n}ε∈(0,ε0) is bounded in H1(Ω). Therefore, for every sequence 
εj → 0+, there exist a subsequence (still denoted as εj) and ϕ̃ ∈ H1(Ω) such that 
Eεjϕ

εj
n , ϕ̃ weakly in H1(Ω) as j → ∞.

Let v ∈ C∞(Ω). Arguing as in the proof of Lemma 3.6, thanks to assumption (2.8)
we can find a sequence {vj} such that vj ∈ C∞(Ω), vj ≡ 0 in a neighborhood of Σεj , 
and vj → v strongly in H1(Ω), as j → ∞. From the equation satisfied by ϕε

n we have
∫

Ω 

(
∇(Eεjϕ

εj
n ) ·∇vj + (Eεjϕ

εj
n )vj

)
dx = λεj

n

∫

Ω 
(Eεjϕ

εj
n )vj dx,

passing to the limit in which we obtain, taking into account (2.4),
∫

Ω 
(∇ϕ̃ ·∇v + ϕ̃v) dx = λn

∫

Ω 
ϕ̃v dx, (3.5)
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for every v ∈ C∞(Ω) and hence, by density, for every v ∈ H1(Ω).
Since, for any p > 2,

∫

Σε

|Eεϕ
ε
n|2 dx ≤




∫

Ω 
|Eεϕ

ε
n|p dx




2/p

|Σε|(p−2)/p,

by assumption (H3), Sobolev embeddings and boundedness of {Eεϕε
n}ε∈(0,ε0) in H1(Ω)

we deduce that

lim
ε→0

∫

Σε

|Eεϕ
ε
n|2 dx = 0. (3.6)

Hence
∫

Ω 
|ϕ̃|2 dx = lim

j→∞

∫

Ω 
|Eεjϕ

εj
n |2 dx

= lim
j→∞




∫

Ωεj

|ϕεj
n |2 dx +

∫

Σεj

|Eεjϕ
εj
n |2 dx



 = lim
j→∞

(1 + o(1)) = 1 (3.7)

and, in view of (2.9),

∫

Ω 
ϕ̃ϕn dx = lim

j→∞

∫

Ω 
(Eεjϕ

εj
n )ϕn dx = lim

j→∞




∫

Ωεj

ϕεj
n ϕn dx + o(1)



 ≥ 0. (3.8)

In view of assumption (2.6), (3.5), (3.7), and (3.8) imply that ϕ̃ = ϕn. In view of 
Urysohn’s subsequence principle, we conclude that

Eεϕ
ε
n , ϕn as ε → 0 weakly in H1(Ω). (3.9)

By (3.9) and compactness of the embedding H1(Ω) ⊂ L2(Ω) we have limε→0 ‖Eεϕε
n −

ϕn‖L2(Ω) = 0, hence

‖ϕε
n − ϕn‖L2(Ωε) → 0 as ε → 0. (3.10)

Testing the equation satisfied by ϕε
n with ϕε

n − ϕn and taking into account (3.6) and 
(3.9) we obtain

∫

Ωε

∇ϕε
n ·∇(ϕε

n − ϕn) dx = (λε
n − 1)

∫

Ωε

ϕε
n(ϕε

n − ϕn) dx
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= (λε
n − 1)



1 −
∫

Ωε

ϕε
nϕn dx





= (λε
n − 1)



1 −
∫

Ω 
(Eεϕ

ε
n)ϕn dx +

∫

Σε

(Eεϕ
ε
n)ϕn dx



 = o(1) (3.11)

as ε → 0. Furthermore,
∣∣∣∣∣∣

∫

Σε

∇ϕn ·∇(Eεϕ
ε
n − ϕn) dx

∣∣∣∣∣∣
≤ ‖Eεϕ

ε
n − ϕn‖H1(Ω)‖∇ϕn‖L2(Σε) = o(1) as ε → 0,

so that, in view of (3.9),

∫

Ωε

∇ϕn ·∇(ϕε
n − ϕn) dx

=
∫

Ω 
∇ϕn ·∇(Eεϕ

ε
n − ϕn) dx−

∫

Σε

∇ϕn ·∇(Eεϕ
ε
n − ϕn) dx = o(1) (3.12)

as ε → 0. Combining (3.11) and (3.12) we obtain
∫

Ωε

|∇(ϕε
n − ϕn)|2 dx → 0 as ε → 0 (3.13)

The conclusion follows from (3.10) and (3.13). !

4. Asymptotics of simple eigenvalues

The aim of this section is to prove Theorem 2.4. To this end, we apply the “Lemma 
on small eigenvalues” due to Colin de Verdiére [15], which is stated in the Appendix, see 
Lemma A.1. The underlying idea is that good approximations of perturbed eigenfunc-
tions induce good approximations of perturbed eigenvalues.

Proof of Theorem 2.4. We first observe that, in view of (3.3) and Remark 3.5,

lim
ε→0

‖ϕn − Uε‖2
L2(Ωε) = ‖ϕn‖2

L2(Ω) = 1; (4.1)

hence, possibly choosing ε0 smaller from the beginning, ϕn − Uε -≡ 0 in Ωε and

2 ≥ ‖ϕn − Uε‖L2(Ωε) ≥
1
2 (4.2)
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for all ε ∈ (0, ε0). In order to apply Lemma A.1 in our setting, we fix ε ∈ (0, ε0) and 
define:

H := L2(Ωε), with (·, ·) := (·, ·)L2(Ωε) and ‖·‖ := ‖·‖L2(Ωε) ;

D := H1(Ωε);

q(u, v) :=
∫

Ωε

(∇u ·∇v + uv) dx− λn

∫

Ωε

uv dx, for every u, v ∈ D;

f := ϕn − Uε

‖ϕn − Uε‖
.

We observe that λε
n−λn is an eigenvalue of q and an associated normalized eigenfunction 

is given by ϕε
n; hence assumption (i) in Lemma A.1 is satisfied with

λ := λε
n − λn, φ := ϕε

n.

Letting H1 = span{ϕε
k : 0 ≤ k < n} and H2 = span{ϕε

k : k > n}, we observe that H1, H2
are mutually orthogonal in L2(Ωε), {φ}⊥ = H1 ⊕H2, and condition (A.1) is satisfied.

We are going to estimate the corresponding values ., /1, and /2 defined in (A.4), 
(A.2), and (A.3), respectively. For what concerns the former, for any v ∈ D\{0} we have

q(f, v) = 1 
‖ϕn − Uε‖

q(ϕn − Uε, v)

= 1 
‖ϕn − Uε‖

∫

Ωε

(∇(ϕn − Uε) ·∇v + (1 − λn)(ϕn − Uε)v) dx

= 1 
‖ϕn − Uε‖

(∫

Ωε

(∇ϕn ·∇v + ϕnv) dx−
∫

Ωε

(
∇Uε ·∇v + Uεv

)
dx

− λn

∫

Ωε

(ϕn − Uε)v dx
)

= λn

‖ϕn − Uε‖

∫

Ωε

Uεv dx,

where the last equality follows from the equations satisfied by ϕn and Uε respectively, 
see (2.2) and (3.4). Combining this with (4.2) and the Cauchy-Schwarz inequality, we 
obtain that

. ≤ 2λn ‖Uε‖ for every ε ∈ (0, ε0).

Since λn is simple and limε→0 λε
i = λi for all i ∈ N, if ε is sufficiently small we have
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/1 = inf
⎥
|q(v, v)|
‖v‖2 : v ∈ H1 \ {0}

}
= λn − λε

n−1 > 0,

/2 = inf
⎥
|q(v, v)|
‖v‖2 : v ∈ (H2 ∩D) \ {0}

}
= λε

n+1 − λn > 0,

so that, if ε is sufficiently small,

/ = min{/1, /2} ≥ /0,

where

/0 = 1
2 min {λn+1 − λn,λn − λn−1}

is a positive number independent of ε. Hence, with these estimates for . and / and 
denoting as )ε the orthogonal projection onto span{ϕε

n}, i.e.

)ε : L2(Ωε) → L2(Ωε), )ε(v) = (ϕε
n, v)L2(Ωε) ϕ

ε
n, (4.3)

from Lemma A.1 and (4.2) we obtain

‖ϕn − Uε − )ε(ϕn − Uε)‖ = ‖f − )εf‖ ‖ϕn − Uε‖ ≤ 4
√

2λn

/0
‖Uε‖ (4.4)

and

|λε
n − λn − ξε| ≤

8λ2
n ‖Uε‖2

/0

(
|λε

n − λn|
/0

+ 1
)
, (4.5)

for ε sufficiently small, where

ξε := q(f, f) = q(ϕn − Uε,ϕn − Uε)
‖ϕn − Uε‖2 .

At this point, we analyze what happens asymptotically as ε → 0. Bearing in mind that 
Lemma 3.6 ensures that ‖Uε‖2 = ‖Uε‖2

L2(Ωε) = o(Tε) as ε → 0, estimates (4.4) and (4.5)
yield

‖ϕn − Uε − )ε(ϕn − Uε)‖2
L2(Ωε) = o(Tε) (4.6)

and

λε
n = λn + ξε + o(Tε), (4.7)

as ε → 0. We are now ready to establish expansions (2.12) and (2.13)–(2.14).
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Proof of (2.12). We begin by expanding ξε as ε → 0. By (4.1) we have

ξε = q(ϕn − Uε,ϕn − Uε)(1 + o(1)) as ε → 0. (4.8)

Furthermore

q(ϕn − Uε,ϕn − Uε) =
∫

Ωε

(|∇ϕn|2 + ϕ2
n) dx− λn

∫

Ωε

ϕ2
n dx

+
∫

Ωε

(|∇Uε|2 + U2
ε ) dx− λn

∫

Ωε

U2
ε dx

− 2




∫

Ωε

(∇Uε∇ϕn + Uεϕn) dx− λn

∫

Ωε

Uεϕn dx



 . (4.9)

Since ϕn is an eigenfunction associated to λn we have
∫

Ωε

(|∇ϕn|2 + ϕ2
n) dx− λn

∫

Ωε

ϕ2
n dx = −

∫

Σε

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx.

In view of Remark 3.5 and Lemma 3.6, the term on the second line of (4.9) satisfies
∫

Ωε

(|∇Uε|2 + U2
ε ) dx− λn

∫

Ωε

U2
ε dx = Tε + o(Tε) as ε → 0.

Finally, an integration by parts and Remark 3.5 allow us to rewrite the term on the last 
line of (4.9) as

∫

Ωε

(∇Uε ·∇ϕn + Uεϕn) dx− λn

∫

Ωε

Uεϕn dx =
∫

∂Σε

Uε∂νϕn dS = Tε.

Plugging these identities into (4.8) and (4.7), we conclude the proof of (2.12).

Proof of (2.13). Let )ε be as in (4.3). We claim that

‖hε − )εhε‖2
H1(Ωε) = o(Tε) as ε → 0, (4.10)

where hε = ϕn − Uε. We observe that
⎥
−∆(hε − )εhε) + (hε − )εhε) = λε

n(hε − )εhε) + λnUε + (λn − λε
n)hε, in Ωε,

∂ν(hε − )εhε) = 0, on ∂Ωε,

in a weak sense. By testing the above equation with hε − )εhε itself, we obtain
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‖hε − )εhε‖2
H1(Ωε) = λε

n ‖hε − )εhε‖2
L2(Ωε) + λn(Uε, hε − )εhε)L2(Ωε)

+ (λn − λε
n)(hε, hε − )εhε)L2(Ωε). (4.11)

We are going to estimate each of the three terms on the right-hand side. Concerning the 
first one, thanks to (4.6) and (2.4), we have

λε
n ‖hε − )εhε‖2

L2(Ωε) = o(Tε) as ε → 0.

To estimate the second term on the right hand side of (4.11), we use the Cauchy-Schwarz 
inequality, Lemma 3.6 and (4.6). This leads to

λn(Uε, hε − )εhε)L2(Ωε) = o(Tε) as ε → 0.

As far as the third term is concerned, we preliminarily observe that, by Lemma 3.1,

Tε = sup 
u∈H1(Ωε)\{0}




∫

∂Σε

u∂νϕn dS




2

∫

Ωε

(|∇u|2 + u2) dx 
≥




∫

∂Σε

ϕn∂νϕn dS




2

λn
,

which, by an integration by parts, implies that
∣∣∣∣∣∣

∫

Σε

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

∂Σε

ϕn∂νϕn dS

∣∣∣∣∣∣
= O(

√
Tε) as ε → 0. (4.12)

Combining (2.12) and (4.12) we obtain the rough estimate

λε
n − λn = O(

√
Tε) as ε → 0. (4.13)

The last term in (4.11) can be estimated using (4.13), the Cauchy-Schwarz inequality, 
(4.1) and (4.6), thus obtaining

(λn − λε
n)(hε, hε − )εhε)L2(Ωε) = o(Tε) as ε → 0.

This concludes the proof of (4.10).

By the triangle inequality, Lemma 3.6, and (4.10), we have

‖)εhε − ϕn‖L2(Ωε) ≤ ‖hε − ϕn‖L2(Ωε) + ‖)εhε − hε‖L2(Ωε) = o(
√

Tε) (4.14)

as ε → 0, which implies that
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‖)εhε‖L2(Ωε) =
⎡
1 − ‖ϕn‖2

L2(Σε) + o(
√

Tε)
⎢1/2

= 1 − 1
2‖ϕn‖2

L2(Σε) + o(
√

Tε) + o(‖ϕn‖2
L2(Σε)) as ε → 0. (4.15)

From (4.14) and the fact that limε→0 ‖ϕn‖H1(Σε) = 0 we also deduce that

∫

Ωε

ϕn )εhε dx = 1 + o(1) as ε → 0,

which, combined with (4.15), implies that
∫

Ωε

ϕn
)εhε

‖)εhε‖L2(Ωε)
dx > 0

for ε sufficiently small. Hence, since ϕε
n ∈ H1(Ωε) is uniquely determined by the condition 

above, see (2.9), then necessarily

ϕε
n = )εhε

‖)εhε‖L2(Ωε)
,

for ε sufficiently small. We finally observe that

‖ϕε
n − ϕn + Uε‖2

H1(Ωε)

= 1 

‖)εhε‖2
L2(Ωε)

∥∥∥)εhε − ‖)εhε‖L2(Ωε) ϕn + ‖)εhε‖L2(Ωε) Uε

∥∥∥
2

H1(Ωε)

= 1 

‖)εhε‖2
L2(Ωε)

∥∥∥)εhε − hε +
⎡
1 − ‖)εhε‖L2(Ωε)

⎢
ϕn

+
⎡
‖)εhε‖L2(Ωε) − 1

⎢
Uε

∥∥∥
2

H1(Ωε)
.

By the previous identity, (4.10) and (4.15) we obtain (2.13). To prove (2.14) we observe 
that, since ‖Uε‖2

H1(Ωε) = Tε, see Remark 3.5,

(Uε,ϕ
ε
n − ϕn + Uε)H1(Ωε)

= 1 
‖)εhε‖L2(Ωε)

⎡
Uε,)εhε − hε +

⎡
1 − ‖)εhε‖L2(Ωε)

⎢
ϕn

+
⎡
‖)εhε‖L2(Ωε) − 1

⎢
Uε

⎢

H1(Ωε)

=
‖)εhε‖L2(Ωε) − 1
‖)εhε‖L2(Ωε)

Tε +
(Uε,)εhε − hε)H1(Ωε)

‖)εhε‖L2(Ωε)
+

1 − ‖)εhε‖L2(Ωε)
‖)εhε‖L2(Ωε)

(Uε,ϕn)H1(Ωε),
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hence, in view of (4.15) and (4.10),

(Uε,ϕ
ε
n − ϕn + Uε)H1(Ωε) = o(Tε) + O

⎡
‖ϕn‖2

L2(Σε)
√

Tε
⎢

(4.16)

as ε → 0. Writing ‖ϕε
n − ϕn‖2

H1(Ωε) as

‖ϕε
n − ϕn‖2

H1(Ωε) = ‖Uε‖2
H1(Ωε) + ‖ϕε

n − ϕn + Uε‖2
H1(Ωε) − 2(Uε,ϕ

ε
n − ϕn + Uε)H1(Ωε),

estimate (2.14) follows from (2.13), (4.16), and the fact that ‖Uε‖2
H1(Ωε) = Tε. !

5. Blow-up analysis

In the present section, we focus on a particular choice of holes Σε. More precisely, let

N ≥ 3, x0 ∈ Ω, and Σ be a bounded open Lipschitz set, (5.1)

so that (2.15) is satisfied for some ε0, r0 > 0. Then, for every ε ∈ (0, ε0), we consider the 
hole Σε := x0 + εΣ as in (1.6) and the corresponding perforated domain

Ωε = Ω \ Σε = Ω \ (x0 + εΣ). (5.2)

Without loss of generality, we can assume that x0 = 0. We observe that the family 
{Σε}ε∈(0,ε0) defined as above satisfies assumption (H). Indeed, (H1) and (H3) follow 
directly from the definition of Σε and (2.15). Condition (H2) is, instead, a consequence 
of Lemma A.2 in the Appendix.

The local behavior of the eigenfunction ϕn near 0 is described in the following propo-
sition.

Proposition 5.1. If ϕn vanishes of order k ≥ 0 at 0, then, for every R > 0,

ϕn(rx)
rk

→ Pϕn

k (x) uniformly in BR and in H1(BR)

as r → 0; furthermore, Pϕn

k is a harmonic polynomial, homogeneous of degree k.
If ϕn − ϕn(0) vanishes of order k ≥ 1 at 0, then, for every R > 0,

ϕn(rx) − ϕn(0)
rk

→ Pϕn

k (x) uniformly in BR and in H1(BR)

and

∇ϕn(rx)
rk−1 → ∇Pϕn

k (x) uniformly in BR and in H1(BR;RN
)

as r → 0.
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Proof. The proof of the convergences follows from the analyticity of ϕn. Moreover, the 
fact that Pϕn

k is harmonic follows from standard scaling arguments, together with the 
fact that ϕn is an eigenfunction. !

Remark 5.2. It is obvious that ϕn vanishes at 0 of order k ≥ 1 if and only if ϕn(0) = 0; 
in such a case, ϕn−ϕn(0) vanishes of the same order k. On the other hand, if ϕn(0) -= 0, 
the vanishing order of ϕn − ϕn(0) is necessarily equal to either k = 1 or k = 2; this 
can be easily verified by taking into account that ϕn is a solution to (2.1) (which is not 
constant since n ≥ 1) and comparing the Taylor expansions of −∆ϕn + ϕn and λnϕn. 
In the case ϕn(0) -= 0 and k = 2, 0 is a critical point for the function ϕn, whereas, if 
ϕn(0) -= 0 and k = 1, 0 is a regular point outside the nodal set.

The following Hardy-type inequality on perforated balls will be crucial to identify the 
limit blow-up profiles.

Lemma 5.3 (Hardy-type inequality). Let N ≥ 3 and Σ ⊆ RN be an open, Lipschitz set 
such that Σ ⊂ BR0 for some R0 > 0. There exists CH > 0, depending only on N and Σ, 
such that

∫

BR\Σ

u2

|x|2
dx ≤ CH




∫

BR\Σ

|∇u|2 dx + 1 
R2

∫

BR\Σ

u2 dx



 (5.3)

for all u ∈ H1(BR \ Σ) and R > 2R0. Moreover,
∫

RN\Σ

u2

|x|2
dx ≤ CH

∫

RN\Σ

|∇u|2 dx (5.4)

for all u ∈ C∞
c (RN \ Σ).

Inequality (5.4) allows us to characterize the space D1,2(RN \ Σ) introduced in Defi-
nition 2.6 as

D1,2(RN \ Σ) =





u ∈ L1

loc(RN \ Σ) :
∫

RN\Σ

(
|∇u|2 + u2

|x|2

)
dx < ∞


⎜

⎟
. (5.5)

Furthermore,

u .→
( ∫

RN\Σ

(
|∇u|2 + u2

|x|2

)
dx

) 1
2

is an equivalent norm on D1,2(RN \ Σ).
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Proof of Lemma 5.3. Let R > 2R0 and u ∈ H1(BR \ Σ). We define the scaled function

uR(x) := u(Rx) ∈ H1(B1 \ 1 
RΣ

)
,

as well as its extension to the whole B1

vR := E 1 
R
uR ∈ H1(B1).

Lemma A.2 ensures that the norm of the extension operator E 1 
R

does not depend on R. 
Moreover

∫

B1

v2
R

|x|2
dx ≤ CN




∫

B1

|∇vR|2 dx +
∫

B1

v2
R dx



 , (5.6)

for some constant CN > 0 depending only on N . The above Hardy-type inequality is 
classical, see, for instance, [18, Lemma 6.7] for a proof in half-balls. In view of (5.6), we 
have

∫

B1\
1 
RΣ

v2
R

|x|2
dx ≤ CNC2





∫

B1\
1 
RΣ

|∇vR|2 dx +
∫

B1\
1 
RΣ

v2
R dx



 ,

with C being as in Lemma A.2 with Ω = B1, ε0 = 1 
2R0

, and r0 = 1
2 . Being vR the 

extension of uR, the above inequality holds for uR as well. Scaling back the inequality 
to BR yields

R2−N

∫

BR\Σ

u2(x)
|x|2

dx ≤ CNC2R−N




∫

BR\Σ

R2 |∇u(x)|2 dx +
∫

BR\Σ

u2(x) dx



 ,

which, after a straightforward simplification, is precisely (5.3). Inequality (5.4) follows 
from (5.3) by letting R → ∞. !

The following result provides a first rough estimate of TΩε
(∂(εΣ), ∂νϕn).

Lemma 5.4. Under assumptions (5.1)–(5.2) with x0 = 0, let k ≥ 1 be the vanishing order 
of ϕn − ϕn(0) at 0. Then

TΩε
(∂(εΣ), ∂νϕn) = O(εN+2k−2) as ε → 0.

Proof. For every u ∈ H1(Ωε), by the Divergence Theorem, Hölder’s inequality, and 
Lemma A.2 we have
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∣∣∣∣
∫

∂(εΣ)

u ∂νϕn dS
∣∣∣∣ =

∣∣∣∣
∫

εΣ 
div((Eεu)∇ϕn) dx

∣∣∣∣ =
∣∣∣∣
∫

εΣ 

⎡
(∆ϕn)(Eεu) + ∇(Eεu) ·∇ϕn

⎢
dx

∣∣∣∣

≤ ‖∆ϕn‖L2(εΣ)‖Eεu‖L2∗ (εΣ)|εΣ|1/N

+ ‖∇ϕn‖L2(εΣ;RN )‖∇(Eεu)‖L2(εΣ;RN )

≤ ‖Eεu‖H1(Ω)
⎡
SN,Ω‖∆ϕn‖L2(εΣ)ε|Σ|1/N + ‖∇ϕn‖L2(εΣ;RN )

⎢

≤ C‖u‖H1(Ωε)
⎡
SN,Ω‖∆ϕn‖L2(εΣ)ε|Σ|1/N + ‖∇ϕn‖L2(εΣ;RN )

⎢

where 2∗ = 2N
N−2 is the critical Sobolev exponent (remember that in the present section we 

are assuming N ≥ 3) and SN,Ω is the operator norm of the embedding H1(Ω) ↪→ L2∗(Ω). 
In view of the characterization of TΩε

(∂(εΣ), ∂νϕn) given in (3.1), the above estimate 
yields

TΩε
(∂(εΣ), ∂νϕn) = sup 

u∈H1(Ωε)\{0}

⎡∫
∂(εΣ) u ∂νϕn dS

⎢2

‖u‖2
H1(Ωε)

≤ C2
⎡
SN,Ω‖∆ϕn‖L2(εΣ)ε|Σ|1/N + ‖∇ϕn‖L2(εΣ;RN )

⎢2
. (5.7)

Since ϕn − ϕn(0) vanishes at 0 with order k ≥ 1, we have

∆ϕn(x) = O(|x|k−2) and |∇ϕn(x)| = O(|x|k−1) as x → 0,

which implies that

‖∆ϕn‖L2(εΣ) = O
⎡
εk−2+N

2 
⎢

and ‖∇ϕn‖L2(εΣ;RN ) = O
⎡
εk−1+N

2 
⎢

(5.8)

as ε → 0. The conclusion follows by combining (5.7) and (5.8). !

Remark 5.5. Arguing as in the proof of Lemma 5.4, we can prove that, if N = 2,

TΩε
(∂(εΣ), ∂νϕn) = O(ε2(k−δ)) as ε → 0,

for every . ∈ (0, 1). To prove this, it is sufficient to retrace the steps of the previous 
proof, using the Sobolev embedding H1(Ω) ↪→ Lp(Ω) with p = 2/.. In particular, we 
have, even in dimension N = 2, limε→0 TΩε

(∂(εΣ), ∂νϕn) = 0.

We are now in position to state and prove the main result of this section.

Theorem 5.6 (Blow-up). Under assumptions (5.1)–(5.2) with x0 = 0, let k ≥ 1 be the 
vanishing order of ϕn − ϕn(0) at 0 and Pϕn

k be as in (2.16)–(2.18). Then
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lim
ε→0

ε−N−2k+2TΩε
(∂(εΣ), ∂νϕn) = τRN\Σ(∂Σ, ∂νP

ϕn

k ).

Furthermore, if Uε := UΩ,εΣ,∂νϕn ∈ H1(Ωε) is the function achieving TΩε
(∂(εΣ), ∂νϕn), 

see (2.7), and

Ũε(x) := ε−kUε(εx), x ∈
( 1
ε Ω

)
\ Σ, (5.9)

then

Ũε → ŨΣ,∂νP
ϕn
k

in H1(BR \ Σ), as ε → 0,

for all R > 0 such that Σ ⊆ BR, where ŨΣ,∂νP
ϕn
k

∈ D1,2(RN \Σ) is the function achieving 
τRN\Σ(∂Σ, ∂νP

ϕn

k ) as in (2.19).

Proof. Let r0, R0 > 0 be such that Br0 ⊂ Ω and Σ ⊂ BR0 , so that (2.15) is satisfied 
with x0 = 0 and ε0 = r0/R0. Let R > R0 and ε < r0

2R . Since R < r0
ε and r0ε > 2R0, by 

Lemma 5.3 and a change of variable, we have

∫

BR\Σ

(
|∇Ũε|2 + Ũ2

ε

|x|2

)
dx ≤

∫

B r0
ε \Σ

(
|∇Ũε|2 + Ũ2

ε

|x|2

)
dx

≤
∫

B r0
ε \Σ

|∇Ũε|2 dx + CH

∫

B r0
ε \Σ

(
|∇Ũε|2 + ε2

r2
0
Ũ2
ε

)
dx

= ε−N−2k+2




∫

Br0\εΣ

|∇Uε|2 dx + CH

∫

Br0\εΣ

(
|∇Uε|2 + 1 

r2
0
U2
ε

)
dx



 .

Hence, by Lemma 5.4 we have

∫

BR\Σ

(
|∇Ũε|2 + Ũ2

ε

|x|2

)
dx ≤ C1ε

−N−2k+2TΩε
(∂(εΣ), ∂νϕn) ≤ C2, (5.10)

where C1, C2 > 0 are constants independent of R and ε. Therefore, by a diagonal argu-
ment, for every sequence εj → 0+ there exists a subsequence (still denoted as {εj}) and 
a limit profile Ũ ∈ L1

loc(RN \ Σ) such that, for all R > R0, Ũ ∈ H1(BR \ Σ) and

Ũεj , Ũ as j → ∞ weakly in H1(BR \ Σ). (5.11)

Furthermore, by compactness of the embedding H1(BR \ Σ) ↪→ L2(BR \ Σ) and of the 
trace map from H1(BR \ Σ) into L2(∂Σ), we also have, as j → ∞,
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Ũεj → Ũ strongly in L2(BR \ Σ) for all R > R0, (5.12)
Ũεj → Ũ strongly in L2(∂Σ). (5.13)

From (5.10) and the weak lower semicontinuity of the norm we deduce that

∫

BR\Σ

(
|∇Ũ |2 + Ũ2

|x|2

)
dx ≤ C2 for all R > R0,

which implies that

∫

RN\Σ

(
|∇Ũ |2 + Ũ2

|x|2

)
dx < +∞

and, consequently, that Ũ ∈ D1,2(RN \ Σ), see (5.5).
For any v ∈ C∞

c (RN \ Σ) fixed, let j be sufficiently large in order to ensure that

supp v ⊆ BRv \ Σ ⊆ 1 
εj

Ω \ Σ,

for some Rv > R0. From the equation satisfied by Uε, see (3.4), and a change of variable 
it follows that

∫

BRv\Σ

(∇Ũεj ·∇v + ε2
j Ũεjv) dx−

∫

∂Σ

v
∂νϕn(εjx)

εk−1
j

dS = 0. (5.14)

In view of (5.11), (5.12), and Proposition 5.1, we can pass to the limit as j → ∞ in 
(5.14). Hence, by density, we obtain

∫

RN\Σ

∇Ũ ·∇v dx−
∫

∂Σ

v ∂νP
ϕn

k dS = 0 for all v ∈ D1,2(RN \ Σ),

which, together with Proposition 3.4, implies that Ũ = ŨΣ,∂νP
ϕn
k

. On the other hand, 
by (5.13) and Proposition 5.1 we have

ε−N−2k+2
j TΩεj

(∂(εjΣ), ∂νϕn) =
∫

∂Σ

Ũεj
∂νϕn(εjx)

εk−1
j

dS

→
∫

∂Σ

ŨΣ,∂νP
ϕn
k

∂νP
ϕn

k = τRN\Σ(∂Σ, ∂νP
ϕn

k ) 

as j → ∞. Being the limit profile uniquely determined, by Urysohn’s subsequence prin-
ciple we conclude that the convergence statements above hold as ε → 0, independently 
of the sequence {εj} and of the subsequence.
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In order to prove the strong H1-convergence, we observe that, in view of the equations 
satisfied by Ũε and ŨΣ,∂νP

ϕn
k

, for R > R0 we have

∫

BR\Σ

∣∣∣∇(Ũε − ŨΣ,∂νP
ϕn
k

)
∣∣∣
2

dx =
∫

∂Σ

(Ũε − ŨΣ,∂νP
ϕn
k

)(∂ν ϕ̃ε − ∂νP
ϕn

k ) dS

+
∫

∂BR

(Ũε − ŨΣ,∂νP
ϕn
k

)(∂νŨε − ∂νŨΣ,∂νP
ϕn
k

) dS

− ε2
∫

BR\Σ

(Ũ2
ε − ŨεŨΣ,∂νP

ϕn
k

) dx, (5.15)

where

ϕ̃ε(x) := ϕn(εx) − ϕn(0)
εk

. (5.16)

Since Ũε weakly solves the equation −∆Ũε = −ε2Ũε in B2R \ BR0 and the fam-
ily {ε2Ũε}0<ε< r0

2R
is bounded in L2(B2R \ BR0), by classical elliptic regularity theory 

{Ũε}0<ε< r0
2R

is bounded in H2(B 3
2R

\B(R0+R)/2), so that, by continuity of the trace opera-
tor, {∂νŨε}0<ε< r0

2R
is bounded in L2(∂BR). This, combined with Proposition 5.1, conver-

gences (5.12)–(5.13), and the compactness of the embedding H1(BR \Σ) ↪→ L2(BR \Σ), 
allows us to pass to the limit in (5.15), proving that ∇Ũε → ∇ŨΣ,∂νP

ϕn
k

strongly in 
L2(BR \ Σ) and completing the proof in view of (5.12). !

We finally have all the necessary ingredients for the proofs of Theorem 2.8 and The-
orem 2.9.

Proof of Theorem 2.8. By translation, it is not restrictive to assume x0 = 0. We first 
observe that the family {Σε}ε∈(0,ε0) = {εΣ}ε∈(0,ε0) satisfies the assumptions of The-
orem 2.4. Indeed, by scaling arguments, one can easily verify that |εΣ| → 0 and 
Cap (εΣ) → 0 as ε → 0. Moreover, (H2) follows from Lemma A.2. In view of Theo-
rem 2.4 and Theorem 5.6, to obtain an explicit expansion for the perturbed eigenvalue 
we only have to analyze the asymptotic behavior, as ε → 0, of the term

∫

Σε

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx.

To start, let us consider the case 0 ∈ Ω \ Sing (ϕn). Since ϕn is smooth, we have

ϕn(x) = ϕn(0) + O(|x|) and ∇ϕn(x) = ∇ϕn(0) + O(|x|) as |x| → 0,

which directly yields
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∫

εΣ 

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx = εN |Σ|

⎡
|∇ϕn(0)|2 − (λn − 1)ϕ2

n(0)
⎢

+ o(εN ) (5.17)

as ε → 0. On the other hand, to identify the order of the term TΩε
(∂(εΣ), ∂νϕn) appear-

ing in the expansion (2.12), we distinguish two cases: ∇ϕn(0) -= 0 and ∇ϕn(0) = 0. If 
∇ϕn(0) -= 0, we can apply Theorem 5.6 with k = 1 and, since Pϕn

1 (x) = ∇ϕn(0) · x, we 
obtain

TΩε
(∂(εΣ), ∂νϕn) = εNτRN\Σ(∂Σ,∇ϕn(0) · ν) + o(εN ) as ε → 0. (5.18)

If, instead, ∇ϕn(0) = 0, then Theorem 5.6 applies with some k ≥ 2, thus implying that

TΩε
(∂(εΣ), ∂νϕn) = o(εN ) as ε → 0. (5.19)

Moreover, trivially,

τRN\Σ(∂Σ,∇ϕn(0) · ν) = τRN\Σ(∂Σ, 0) = 0. (5.20)

Combining (5.18), (5.19), and (5.20) with (5.17) we obtain (i).
If 0 ∈ Sing (ϕn) and k ≥ 2 is the vanishing order of ϕn at 0, then

ϕn(x) = O(|x|k) and ∇ϕn(x) = ∇Pϕn

k (x) + O(|x|k) as |x| → 0,

thus implying that, as ε → 0,

∫

εΣ 
|∇ϕn(x)|2 dx =

∫

εΣ 
|∇Pϕn

k |2 dx + O(ε2k−1+N ) = εN+2k−2




∫

Σ 
|∇Pϕn

k |2 dx + o(1)



 ,

∫

εΣ 
|ϕn(x)|2 dx = O(ε2k+N ) = o(εN+2k−2),

and hence

∫

εΣ 

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx = εN+2k−2




∫

Σ 
|∇Pϕn

k |2 dx + o(1)



 as ε → 0.

Combining this and Theorem 5.6 with Theorem 2.4 we obtain (ii). !

Proof of Theorem 2.9. By translation, it is not restrictive to assume x0 = 0.
Let uε := (ε − ϕ̃ε + Ũε, where ϕ̃ε and Ũε are defined in (5.16) and (5.9), respectively. 

From (2.13) and the change of variable x .→ εx it follows that, as ε → 0,
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∫

1
ε Ω\Σ

|∇uε|2 dx + ε2
∫

1
ε Ω\Σ

u2
ε dx = o

(
ε−N−2k+2TΩε

(∂(εΣ), ∂νϕn)
)

+ O
(
ε−N−2k+2‖ϕn‖4

L2(εΣ)
)
.

If ϕn(0) = 0, ϕn(x) = O(|x|k) as |x| → 0, hence ‖ϕn‖4
L2(εΣ) = O(ε2N+4k) = o(εN+2k−2)

as ε → 0. If ϕn(0) -= 0, either k = 1 or k = 2 by Remark 5.2, so that

‖ϕn‖4
L2(εΣ) = O(ε2N ) = o(εN+2k−2)

as ε → 0. In both cases we have

‖ϕn‖4
L2(εΣ) = o(εN+2k−2) as ε → 0. (5.21)

From this and Theorem 5.6 we deduce that
∫

1
ε Ω\Σ

|∇uε|2 dx + ε2
∫

1
ε Ω\Σ

u2
ε dx → 0 as ε → 0. (5.22)

Let r0, R0 > 0 be such that Br0 ⊂ Ω and Σ ⊂ BR0 ; let R > R0 and ε < r0
2R . By 

Lemma 5.3 we have

∫

BR\Σ

(
|∇uε|2 + u2

ε

|x|2

)
dx ≤

∫

B r0
ε \Σ

(
|∇uε|2 + u2

ε

|x|2

)
dx

≤
∫

B r0
ε \Σ

|∇uε|2 dx + CH

∫

B r0
ε \Σ

(
|∇uε|2 + ε2

r2
0
u2
ε

)
dx

≤ (CH + 1)




∫

1
ε Ω\Σ

|∇uε|2 dx + ε2

r2
0

∫

1
ε Ω\Σ

u2
ε dx



 .

From this estimate and (5.22) we deduce that

∫

BR\Σ

(
|∇uε|2 + u2

ε

|x|2

)
dx → 0 as ε → 0

for any R > 0 such that Σ ⊆ BR, which implies that uε → 0 strongly in H1(BR \ Σ) as 
ε → 0. Combining this with Proposition 5.1 and Theorem 5.6 we obtain (2.20).

Finally, (2.21) follows from (2.14), Theorem 5.6, and (5.21). !
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6. The case of a spherical hole

In this section, we focus on spherical holes, deriving in this specific situation more 
explicit expressions for the coefficients of the asymptotic expansions obtained above. We 
distinguish between the cases N ≥ 3 and N = 2.

6.1. The case N ≥ 3

As proved in Theorem 2.8, di!erent behaviors occur depending on the vanishing 
order or ϕn at x0. The most interesting and diverse phenomena are observed when 
x0 ∈ Ω \ Sing(ϕn), as in this situation the sign of the leading term in the asymptotic 
expansion is not always the same regardless of where the domain is perforated. In view 
of Theorem 2.8-(i), the interface Γ defined in (2.22) divides the points of Ω where a hole 
produces a positive sign of the eigenvalue variation λε

n−λn from those where there would 
be a negative sign, see Remark 2.10. Here we focus on the specific case

Σ = B1,

providing the proof of Theorem 2.11, to which we precede the following preliminary 
lemma.

Lemma 6.1. If N ≥ 3 and P : RN → R is a harmonic polynomial homogeneous of degree 
k ∈ N \ {0}, then

τRN\B1(∂B1, ∂νP ) = k2

N + k − 2

∫

∂B1

Y 2 dS,

where Y is the spherical harmonic of degree k given by Y = P
∣∣
∂B1

.

Proof. To determine the torsion function U := ŨB1,∂νP , we recall that U ∈ D1,2(RN \B1)
is the unique weak solution to

⎥
−∆U = 0, in RN \B1,

∂νU = ∂νP, on ∂B1.
(6.1)

We work in spherical coordinates (r,θ) and look for solutions to (6.1) of the form

U(r,θ) = u(r)Y (θ),

where Y = P
∣∣
∂B1

. We observe that, since P is harmonic and k-homogeneous, Y is a 
spherical harmonic of degree k and solves

−∆∂B1Y = k(N + k − 2)Y, on ∂B1,
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where ∆∂B1 is the Laplace-Beltrami operator. Then, we can rewrite (6.1) as




u′′(r) + N − 1

r
u′(r) − k(N + k − 2)

r2 u(r) = 0, in (1,+∞),
u′(1) = k.

(6.2)

The solutions to the equation in the first line of (6.2) are of the form

u(r) = c1r
k + c2r

−(N+k−2)

for some c1, c2. The fact that U(r,θ) = u(r)Y (θ) ∈ D1,2(RN \B1) implies that necessarily 
c1 = 0, whereas the condition u′(1) = k yields c2 = − k

N+k−2 . Hence, by uniqueness of 
the torsion function,

U(r,θ) = − k

N + k − 2r
−(N+k−2)Y (θ).

We conclude that

τRN\B1(∂B1, ∂νP ) =
∫

∂B1

U(∂νP ) dS = k2

N + k − 2

∫

∂B1

Y 2(θ) dS,

thus completing the proof. !

Proof of Theorem 2.11. We observe that P (x) = ∇ϕn(x0) · x is a harmonic polynomial 
of degree k = 1. Then Lemma 6.1 applies and yields

τRN\B1(∂B1,∇ϕn(x0) · ν) = 1 
N − 1

∫

∂B1

|∇ϕn(x0) · θ|2 dS.

Exploiting the symmetry of the domain of integration, a simple computation yields

τRN\B1(∂B1,∇ϕn(x0) · ν) = HN−1(∂B1)
N(N − 1) |∇ϕn(x0)|2 = ωN

N − 1 |∇ϕn(x0)|2,

where ωN := |B1| denotes the N -dimensional measure of B1. Substituting the above 
expression for τRN\B1(∂B1,∇ϕn(x0) · ν) in the expansion of Theorem 2.8-(i), we obtain 
(i).

If x0 ∈ Sing(ϕn), ϕn vanishes at x0 with order k ≥ 2. Then, as observed in Proposi-
tion 5.1, Pϕn

x0,k
is a harmonic polynomial homogeneous of degree k. From Lemma 6.1 it 

follows that

τRN\B1(∂B1, ∂νP
ϕn

x0,k
) = k2

N + k − 2

∫

∂B1

Y 2 dS (6.3)
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where Y = Pϕn

x0,k

∣∣
∂B1

is a spherical harmonic of degree k. Furthermore, by the fact that 
∆Pϕn

x0,k
= 0 and the Divergence Theorem, we have

∫

B1

|∇Pϕn

x0,k
(x)|2 dx =

∫

B1

div(Pϕn

x0,k
∇Pϕn

x0,k
) dx

=
∫

∂B1

Pϕn

x0,k
∇Pϕn

x0,k
· θ dS = k

∫

∂B1

Y 2 dS. (6.4)

Substituting (6.3)–(6.4) in the expansion of Theorem 2.8-(ii), we obtain (ii). !

Thanks to Lemma 6.1 and Theorem 2.11, the interface Γ defined in (2.22) can be 
described quite explicitly in the case of spherical holes. More precisely, if Σ = B1 we 
have

Γ = {x ∈ Ω \ Sing (ϕn) : h(x) = 0} ,

where

h(x) := N

N − 1 |∇ϕn(x)|2 − (λn − 1)ϕ2
n(x).

We present below the example of spherical holes excised from 3-dimensional boxes.

Example 6.2. Let us consider the 3-dimensional open box

Ω = (0, 1) × (0, 4√2) × (0, 4√3).

It is a well-known fact (see e.g. [21]) that the eigenvalues of problem (2.1) on Ω are 
simple and of the form

λn1,n2,n3 = π2n2
1 + π2n2

2√
2

+ π2n2
3√

3
+ 1, n1, n2, n2 ∈ N,

and the associated eigenfunctions are, up to a normalization constant,

ϕn1,n2,n3(x, y, z) = cos (πn1x) cos
(
πn2
4√2

y

)
cos

(
πn3
4√3

z

)
.

Then the interface Γ associated to ϕn1,n2,n3 is characterized by the equation

n2
1 tan2(πn1x) + n2

2√
2

tan2
(
πn2y

4√2

)
+ n2

3√
3

tan2
(
πn3z

4√3

)
− 2

3

(
n2

1 + n2
2√
2

+ n2
3√
3

)
= 0.

Let us consider two specific cases. The first situation of interest is the one corresponding 
to the smallest nontrivial eigenvalue, namely,
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Fig. 1. The case λ0,0,1. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

λ0,0,1 = π2
√

3
+ 1.

Here, Γ turns out to be the union of two planes

Γ =
⎥

(x, y, z) ∈ R3 : z =
4√3
π

arctan
√

2
3

}

∪
⎥

(x, y, z) ∈ R3 : z =
4√3
π

⎡
π − arctan

√
2
3
⎢}

.

In Fig. 1 we can see the plot of Γ (in blue), along with the nodal set of the eigenfunction 
ϕ0,0,1 (in green). By our analysis, if the hole is punctured between the green and a blue 
plane, then λε

n < λn.
Finally, we describe Γ for λn = λ1,1,1. In this case the situation is more complex, 

but the general picture does not change. With the help of Mathematica™, we can plot 
the set Γ = {h = 0}, along with the nodal set of ϕ1,1,1 (once again in blue and green 
respectively). The resulting image is presented in Fig. 2.
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Fig. 2. The case λ1,1,1. 

6.2. The case N = 2

In this subsection we consider the case N = 2 and Σε being of the form (1.6) with 
Σ = B1 and x0 = 0, i.e. Σε = Bε, proving the following asymptotic expansion for 
TΩ\Bε

(∂Bε, ∂νϕn).

Proposition 6.3. If N = 2 and the vanishing order of ϕn − ϕn(0) at 0 is k ≥ 1, then

(i) if ϕn(0) -= 0 and 0 is a critical point of ϕn (hence, necessarily, k = 2), then

TΩ\Bε
(∂Bε, ∂νϕn) = π

2 
(λn − 1)2(ϕn(0))2ε4| log ε| + o(ε4| log ε|) as ε → 0;

(ii) if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0), then

TΩ\Bε
(∂Bε, ∂νϕn) = πk

(∣∣∣∣
∂kϕn

∂xk
1

(0)
∣∣∣∣
2

+ 1 
k2

∣∣∣∣
∂kϕn

∂xk−1
1 ∂x2

(0)
∣∣∣∣
2)

ε2k+o(ε2k) as ε → 0.

Let k ≥ 1 be the vanishing order of ϕn −ϕn(0) at 0. We observe that the polynomial 
Pϕn

k is harmonic in R2 in all cases except when k = 2 and ϕn(0) -= 0. More precisely, 
recalling that in all critical points outside the nodal set ϕn − ϕn(0) necessarily vanishes 
of order 2, we have
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∆Pϕn

k =
⎥

0, if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0),
(1 − λn)ϕn(0), if ϕn(0) -= 0 and 0 is a critical point of ϕn.

(6.5)

By (2.16)-(2.17) we have, for all j ≥ 1,

Pϕn
j (r cos t, r sin t) = rjfj(t),

where

fj(t) =
j∑

i=0 

∂jϕn

∂xi
1∂x

j−i
2

(0)(cos t)i(sin t)j−i.

Let us consider the Fourier coefficients of fj :

aji = 1 
π

2π∫

0 
fj(t) cos(it) dx, i ≥ 0, (6.6)

bji = 1 
π

2π∫

0 
fj(t) sin(it) dx, i ≥ 1. (6.7)

We observe that

aji = bji = 0 if i > j, (6.8)

and, by the Divergence Theorem,

aj0 = 1 
π

2π∫

0 
fj(t) dx = 1 

πj

∫

∂B1

∇Pϕn
j · x 

|x| dS = 1 
πj

∫

B1

∆Pϕn
j dS.

Remark 6.4. In particular, for j = k we have

ak0 =





0, if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0),
1 − λn

k
ϕn(0), if ϕn(0) -= 0 and 0 is a critical point of ϕn.

(6.9)

Furthermore, if j = k and if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0), then, by (6.5), Pϕn

k is 
harmonic and, consequently, there exist c1, c2 ∈ R such that (c1, c2) -= (0, 0) and

Pϕn

k (r cos t, r sin t) = rk
(
c1 cos(kt) + c2 sin(kt)

)
, r ≥ 0, t ∈ [0, 2π].

Since
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Pϕn

k (r cos t, r sin t) = rk
k∑

i=0 

∂kϕn

∂xi
1∂x

k−i
2

(0)(cos t)i(sin t)k−i,

direct computations yield

c1 = ∂kϕn

∂xk
1

(0) and c2 = 1 
k

∂kϕn

∂xk−1
1 ∂x2

(0). (6.10)

Therefore, if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0), for i ≥ 1 we have

aki =
⎥

0, if i -= k,
∂kϕn

∂xk
1

(0), if i = k,
bki =





0, if i -= k,
1 
k

∂kϕn

∂xk−1
1 ∂x2

(0), if i = k.
(6.11)

For every j ≥ 1, R > 0, and ε ∈ (0, R), we define

T j
ε,R = −2 inf





1
2

∫

BR\Bε

|∇u|2 dx− 
∫

∂Bε

(∂νPϕn
j ) u dS : u ∈ H1(BR \Bε), 

∫

BR\Bε

u dx = 0 


⎜

⎟
.

The above infimum is achieved by a unique function Wε,R,j ∈ H1(BR \Bε) satisfying

∫

BR\Bε

Wε,R,j dx = 0,

and

∫

BR\Bε

∇Wε,R,j ·∇v dx =
∫

∂Bε

∂νP
ϕn
j



v − 1 
|BR \Bε|

∫

BR\Bε

v dx



 dS

=
∫

∂Bε

(∂νPϕn
j ) v dS + jaj0ε

j

R2 − ε2

∫

BR\Bε

v dx (6.12)

for every v ∈ H1(BR \Bε), i.e. Wε,R,j is the unique zero-average weak solution to






−∆Wε,R,j = jaj
0ε

j

R2−ε2 , in BR \Bε,

∂νWε,R,j = 0, on ∂BR,

∂νWε,R,j = ∂νP
ϕn
j , on ∂Bε.

(6.13)
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Lemma 6.5. For every j ≥ 1 and R > 0

T j
ε,R =






1
2πj

2(aj0)2ε2j | log ε| + o(ε2j | log ε|), if aj0 -= 0,

πj2

(
j∑

i=1 

(aji )2 + (bji )2
i 

)
ε2j + o(ε2j), if aj0 = 0,

(6.14)

as ε → 0, with aji , b
j
i being as in (6.6)–(6.7). Moreover,

∫

BR\Bε

W 2
ε,R,j dx = o(T j

ε,R) as ε → 0. (6.15)

Proof. For j ≥ 1 and R > 0 fixed, let us expand Wε,R,j in Fourier series:

Wε,R,j(r cos t, r sin t) = ϕ0,ε(r)
2 

+
∞ ∑

i=1 

⎡
ϕi,ε(r) cos(it) + ψi,ε(r) sin(it)

⎢
,

where

ϕi,ε(r) = 1 
π

2π∫

0 
Wε,R,j(r cos t, r sin t) cos(it) dx, i ≥ 0,

ψi,ε(r) = 1 
π

2π∫

0 
Wε,R,j(r cos t, r sin t) sin(it) dx, i ≥ 1.

From (6.13) and the fact that 
∫
BR\Bε

Wε,R,j dx = 0 it follows that the function ϕ0,ε
solves the problem






−ϕ′′
0,ε(r) −

1
r
ϕ′

0,ε(r) = 2jaj0εj
R2 − ε2 , in (ε, R),

ϕ′
0,ε(ε) = jεj−1aj0,

ϕ′
0,ε(R) = 0,
R∫

ε 
rϕ0,ε(r) dr = 0,

(6.16)

while the functions ϕi,ε and ψi,ε with i ≥ 1 solve





−ϕ′′
i,ε(r) −

1
r
ϕ′
i,ε(r) + i2

r2ϕi,ε(r) = 0, in (ε, R),

ϕ′
i,ε(ε) = jεj−1aji ,

ϕ′
i,ε(R) = 0,
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and





−ψ′′
i,ε(r) −

1
r
ψ′
i,ε(r) + i2

r2ψi,ε(r) = 0, in (ε, R),

ψ′
i,ε(ε) = jεj−1bji ,

ψ′
i,ε(R) = 0,

respectively. For i ≥ 1, direct computations yield

ϕi,ε(r) = − jajiε
i+j

i(R2i − ε2i) (ri + R2ir−i), ψi,ε(r) = − jbjiε
i+j

i(R2i − ε2i) (ri + R2ir−i). (6.17)

In particular, by (6.8) we have ϕi,ε ≡ ψi,ε ≡ 0 if i > j. Moreover, the unique solution to 
(6.16) is

ϕ0,ε(r) = jaj0ε
j

1 −
(
ε 
R

)2

(
log r − r2

2R2 + 1
2 + ε2 log ε−R2 logR

R2 − ε2 + 1 
4R2 (R2 + ε2)

)
. (6.18)

We conclude that the unique zero-average weak solution to (6.13) is given by

Wε,R,j(r cos t, r sin t) = ϕ0,ε(r)
2 

+
j∑

i=1 

⎡
ϕi,ε(r) cos(it) + ψi,ε(r) sin(it)

⎢
,

with ϕ0,ε as in (6.18) and ϕi,ε,ψi,ε as in (6.17). Furthermore, by Parseval’s Theorem,

T j
ε,R =

∫

∂Bε

(∂νPϕn
j )Wε,R,j dS

= ε

2π∫

0 
∂νP

ϕn
j (ε cos t, ε sin t)Wε,R,j(ε cos t, ε sin t) dt

= ε(−jεj−1)π
(
aj0ϕ0,ε(ε)

2 
+

j∑

i=1 
(ajiϕi,ε(ε) + bjiψi,ε(ε))

)
.

We observe that, by (6.18),

aj0ϕ0,ε(ε)
2 

∼ 1
2j(a

j
0)2εj log ε as ε → 0,

while (6.17) implies

j∑

i=1 
(ajiϕi,ε(ε) + bjiψi,ε(ε)) ∼ −jεj

j∑

i=1 

(aji )2 + (bji )2
i 

as ε → 0,
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thus proving (6.14).
By Parseval’s Theorem we have

∫

BR\Bε

W 2
ε,R,j dx = π

R∫

ε 
r

(
ϕ2

0,ε(r)
2 

+
j∑

i=1 

⎡
ϕ2
i,ε(r) + ψ2

i,ε(r)
⎢

dr
)
. (6.19)

By (6.14) and (6.18)

R∫

ε 
rϕ2

0,ε(r) dr =





0, if aj0 = 0,

O(ε2j) = o(T j
ε,R), if aj0 -= 0,

= o(T j
ε,R) as ε → 0,

and, by (6.14) and (6.17),

R∫

ε 
r(ϕ2

i,ε(r) + ψ2
i,ε(r)) dr = j2ε2i+2j((aji )2 + (bji )2)

i2(R2i − ε2i)2

R∫

ε 
r(r2i + R4ir−2i + 2R2i) dr

= j2ε2i+2j((aji )2 + (bji )2)
i2(R2i − ε2i)2

(
R2i+2 − ε2i+2

2i + 2 
+ R4iR

2−2i − ε2−2i

2 − 2i + R2i(R2 − ε2)
)

= O(ε2j+2) = o(T j
ε,R) as ε → 0,

if i ≥ 2, while, for i = 1,

R∫

ε 
r(ϕ2

1,ε(r) + ψ2
1,ε(r)) dr = j2ε2+2j((aj1)2 + (bj1)2)

(R2 − ε2)2

R∫

ε 
r(r2 + R4r−2 + 2R2) dr

= j2ε2+2j((aj1)2 + (bj1)2)
(R2 − ε2)2

(
R4 − ε4

4 
+ R4(logR− log ε) + R2(R2 − ε2)

)

= O(ε2j+2| log ε|) = o(T j
ε,R) as ε → 0.

Therefore (6.15) follows from (6.19). !

Remark 6.6. In view of (6.9) and (6.11), in the case j = k Lemma 6.5 provides the 
following information:

(i) if ϕn(0) -= 0 and 0 is a critical point of ϕn (hence, necessarily, k = 2), then

T k
ε,R = T 2

ε,R = π

2 
(λn − 1)2(ϕn(0))2ε4| log ε| + o(ε4| log ε|) as ε → 0;
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(ii) if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0), then

T k
ε,R = πk

(∣∣∣∣
∂kϕn

∂xk
1

(0)
∣∣∣∣
2

+ 1 
k2

∣∣∣∣
∂kϕn

∂xk−1
1 ∂x2

(0)
∣∣∣∣
2)

ε2k + o(ε2k) as ε → 0.

Lemma 6.7. For every j ≥ 1 and R > 0,

TBR\Bε
(∂Bε, ∂νP

ϕn
j ) = T j

ε,R + o(T j
ε,R) as ε → 0.

Proof. By (3.4) we have

∫

BR\Bε

(∇UBR,Bε,∂νP
ϕn
j

·∇Wε,R,j + UBR,Bε,∂νP
ϕn
j

Wε,R,j) dx

=
∫

∂Bε

(∂νPϕn
j )Wε,R,j dS = T j

ε,R,

while (6.12) and Remark 3.5 yield

∫

BR\Bε

∇Wε,R,j ·∇UBR,Bε,∂νP
ϕn
j

dx

=
∫

∂Bε

(∂νPϕn
j ) UBR,Bε,∂νP

ϕn
j

dS + jaj0ε
j

R2 − ε2

∫

BR\Bε

UBR,Bε,∂νP
ϕn
j

dx

= TBR\Bε
(∂Bε, ∂νP

ϕn
j ) + jaj0ε

j

R2 − ε2

∫

BR\Bε

UBR,Bε,∂νP
ϕn
j

dx.

From the above identities we deduce that

TBR\Bε
(∂Bε, ∂νP

ϕn
j ) − T j

ε,R

= −
∫

BR\Bε

UBR,Bε,∂νP
ϕn
j

Wε,R,j dx− jaj0ε
j

R2 − ε2

∫

BR\Bε

UBR,Bε,∂νP
ϕn
j

dx. 

From Cauchy-Schwarz’s inequality, (6.15), and Lemma 3.6 (Remark 5.5 guaranteeing the 
validity of assumption limε→0 TBR\Bε

(∂Bε, ∂νP
ϕn
j ) = 0) it follows that

∫

BR\Bε

UBR,Bε,∂νP
ϕn
j

Wε,R,j dx = o

(√
T j
ε,R TBR\Bε

(∂Bε, ∂νP
ϕn
j )

)
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as ε → 0. Moreover, since ε2j = O(T j
ε,R) as ε → 0 in view of (6.14), from Cauchy-

Schwarz’s inequality and Lemma 3.6 we deduce that

εj

∣∣∣∣∣∣∣

∫

BR\Bε

UBR,Bε,∂νP
ϕn
j

dx

∣∣∣∣∣∣∣
≤ εj

√
π(R2 − ε2)

√√√√
∫

BR\Bε

U2
BR,Bε,∂νP

ϕn
j

dx

= O

(√
T j
ε,R

)
o
⎡√

TBR\Bε
(∂Bε, ∂νP

ϕn
j )

⎢

= o

(√
T j
ε,R TBR\Bε

(∂Bε, ∂νP
ϕn
j )

)

as ε → 0. Hence TBR\Bε
(∂Bε, ∂νP

ϕn
j ) = T j

ε,R + o(T j
ε,R) + o(TBR\Bε

(∂Bε, ∂νP
ϕn
j )), i.e.

(1 + o(1))TBR\Bε
(∂Bε, ∂νP

ϕn
j ) = (1 + o(1))T j

ε,R as ε → 0.

The lemma is thereby proved. !

Combining Lemmas 6.7 and (6.14) we derive the following asymptotic expansion as 
ε → 0

TBR\Bε
(∂Bε, ∂νP

ϕn
j ) =






1
2πj

2(aj0)2ε2j | log ε| + o(ε2j | log ε|), if aj0 -= 0,

πj2

(
j∑

i=1 

(aji )2 + (bji )2
i 

)
ε2j + o(ε2j), if aj0 = 0,

(6.20)

for all j ≥ 1. If j = k, in view of Remark 6.6, we have, more precisely,

(i) if ϕn(0) -= 0 and ∇ϕn(0) = (0, 0) (hence, necessarily, k = 2), then, as ε → 0,

TBR\Bε
(∂Bε, ∂νP

ϕn

k ) = π

2 
(λn − 1)2(ϕn(0))2ε4| log ε| + o(ε4| log ε|); (6.21)

(ii) if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0), then, as ε → 0,

TBR\Bε
(∂Bε, ∂νP

ϕn

k ) = πk

(∣∣∣∣
∂kϕn

∂xk
1

(0)
∣∣∣∣
2

+ 1 
k2

∣∣∣∣
∂kϕn

∂xk−1
1 ∂x2

(0)
∣∣∣∣
2)

ε2k+o(ε2k). (6.22)

Lemma 6.8. For every R > 0

TBR\Bε
(∂Bε, ∂νϕn)

= TBR\Bε
(∂Bε, ∂νP

ϕn

k ) +
⎥
O(ε9/2| log ε|3/4), if ϕn(0) -= 0 and ∇ϕn(0) = (0, 0),
O(ε2k+ 1

2 ), if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0),
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=






π
2 (λn − 1)2(ϕn(0))2ε4| log ε| + o(ε4| log ε|), if ϕn(0) -= 0 and

∇ϕn(0) = (0, 0),

πk
⎡∣∣∂kϕn

∂xk
1

(0)
∣∣2 + 1 

k2

∣∣ ∂kϕn

∂xk−1
1 ∂x2

(0)
∣∣2
⎢
ε2k + o(ε2k), if either ϕn(0) = 0 or

∇ϕn(0) -= (0, 0),

as ε → 0.

Proof. We first observe that, if N = 2, by Lemma A.2 and Sobolev trace theorems, there 
exists CR > 0 (depending on R but independent of ε) such that

∫

∂Bε

u2 dS ≤ CR

ε 
‖u‖2

H1(BR\Bε) for all u ∈ H1(BR \Bε). (6.23)

Let Ψε = UBR,Bε,∂νϕn − UBR,Bε,∂νP
ϕn
k

− UBR,Bε,∂νP
ϕn
k+1

. From (3.4) it follows that

∫

BR\Bε

(∇Ψε ·∇v + Ψεv) dx =
∫

∂Bε

v ∂ν(ϕn − Pϕn

k − Pϕn

k+1) dS

for every v ∈ H1(BR \Bε), so that (6.23) yields

∫

BR\Bε

(|∇Ψε|2 + Ψ2
ε) dx =

∫

∂Bε

Ψε ∂ν(ϕn − Pϕn

k − Pϕn

k+1) dS ≤ const εk+ 3
2

√√√√
∫

∂Bε

Ψ2
ε dS

≤ const εk+1‖Ψε‖H1(BR\Bε)

for some const > 0 independent of ε which varies from line to line. Hence

‖Ψε‖H1(BR\Bε) = O(εk+1) as ε → 0. (6.24)

From (6.24), Remark 3.5, (6.20), (6.21), and (6.22) it follows that

‖UBR,Bε,∂νϕn‖H1(BR\Bε)

≤ ‖Ψε‖H1(BR\Bε) + ‖UBR,Bε,∂νP
ϕn
k

‖H1(BR\Bε) + ‖UBR,Bε,∂νP
ϕn
k+1

‖H1(BR\Bε)

=
⎥
O(ε2| log ε|1/2), if ϕn(0) -= 0 and ∇ϕn(0) = (0, 0),
O(εk), if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0),

(6.25)

as ε → 0. Cauchy-Schwarz’s inequality and estimates (6.24)–(6.25), (6.20), (6.21), and 
(6.22) imply
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‖UBR,Bε,∂νϕn − UBR,Bε,∂νP
ϕn
k

‖2
H1(BR\Bε) − ‖UBR,Bε,∂νP

ϕn
k+1

‖2
H1(BR\Bε)

= (Ψε, UBR,Bε,∂νϕn − UBR,Bε,∂νP
ϕn
k

+ UBR,Bε,∂νP
ϕn
k+1

)H1(BR\Bε)

≤ ‖Ψε‖H1(BR\Bε)

⎡
‖UBR,Bε,∂νϕn‖H1(BR\Bε) + ‖UBR,Bε,∂νP

ϕn
k

‖H1(BR\Bε)

+ ‖UBR,Bε,∂νP
ϕn
k+1

‖H1(BR\Bε)

⎢

=
⎥
O(ε5| log ε|1/2), if ϕn(0) -= 0 and ∇ϕn(0) = (0, 0),
O(ε2k+1), if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0),

as ε → 0. Hence, in view of (6.20),

‖UBR,Bε,∂νϕn − UBR,Bε,∂νP
ϕn
k

‖H1(BR\Bε)

=
⎥
O(ε5/2| log ε|1/4), if ϕn(0) -= 0 and ∇ϕn(0) = (0, 0),
O(εk+ 1

2 ), if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0),
(6.26)

as ε → 0. From Remark 3.5, Cauchy-Schwarz’s inequality, (6.26), (6.25), (6.21), and 
(6.22) it follows that

TBR\Bε
(∂Bε, ∂νϕn) − TBR\Bε

(∂Bε, ∂νP
ϕn

k )
= ‖UBR,Bε,∂νϕn‖2

H1(BR\Bε) − ‖UBR,Bε,∂νP
ϕn
k

‖2
H1(BR\Bε)

= (UBR,Bε,∂νϕn − UBR,Bε,∂νP
ϕn
k

, UBR,Bε,∂νϕn + UBR,Bε,∂νP
ϕn
k

)H1(BR\Bε)

=
⎥
O(ε9/2| log ε|3/4), if ϕn(0) -= 0 and ∇ϕn(0) = (0, 0),
O(ε2k+ 1

2 ), if either ϕn(0) = 0 or ∇ϕn(0) -= (0, 0),

as ε → 0, thus completing the proof in view of (6.21) and (6.22). !

Proof of Proposition 6.3. Since 0 ∈ Ω, there exist R1, R2 > 0 such that BR1 ⊂ Ω ⊂ BR2 . 
From Corollary 3.2 it follows that

TBR2\Bε
(∂Bε, ∂νϕn) ≤ TΩ\Bε

(∂Bε, ∂νϕn) ≤ TBR1\Bε
(∂Bε, ∂νϕn),

so that the conclusion follows from Lemma 6.8. !

Proposition 6.9. Let N = 2.

(i) If 0 ∈ Ω \ Sing (ϕn), then
∫

Bε

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx = πε2

⎡
|∇ϕn(0)|2 − (λn − 1)|ϕn(0)|2

⎢
+ o(ε2)
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as ε → 0.
(ii) If 0 ∈ Sing (ϕn), then

∫

Bε

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx = kπε2k

(∣∣∣∣
∂kϕn

∂xk
1

(0)
∣∣∣∣
2

+ 1 
k2

∣∣∣∣
∂kϕn

∂xk−1
1 ∂x2

(0)
∣∣∣∣
2)

+o(ε2k)

as ε → 0, where k ≥ 2 is the vanishing order at 0 of ϕn − ϕn(0).

Proof. If 0 -∈ Sing (ϕn), we can argue as in (5.17) to deduce (i).
Let 0 ∈ Sing (ϕn). In this case Pϕn

k (r cos t, r sin t) = rk
(
c1 cos(kt) + c2 sin(kt)

)
with 

c1, c2 as in (6.10), see Remark 6.4. Then

∫

Bε

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx = −

∫

∂Bε

ϕn∂νϕn dS = −
∫

∂Bε

Pϕn

k ∂νP
ϕn

k dS + o(ε2k)

= kε2k
2π∫

0 
(c1 cos(kt) + c2 sin(kt))2 dt + o(ε2k) = kπε2k(c21 + c22) + o(ε2k) as ε → 0, 

thus proving (ii). !

We are now in position to prove Theorem 2.12.

Proof of Theorem 2.12. By translation, it is not restrictive to assume x0 = 0. The con-
clusion follows from Theorem 2.4, expanding the torsional rigidity TΩ\Bε

(∂Bε, ∂νϕn) as 
in Proposition 6.3 and 

∫
Bε

⎡
|∇ϕn|2 − (λn − 1)ϕ2

n

⎢
dx as in Proposition 6.9. !

Example 6.10. We conclude this section with an example, in which the hole is excised 
from a disk. To this end, let us take Ω = B2 ⊂ R2. It is well known (see, e.g., [21]) that 
the eigenvalues of the unperturbed Neumann problem (2.1) are 

λnk = α2
nk

4 
+ 1,

αnk being the positive roots, enumerated by k, of J ′
n(z), where Jn(z) is the Bessel 

function of the first kind of order n. These eigenvalues are all simple for n = 0. In this 
case, the eigenfunctions read

ϕk(r, θ) = J0
⎡
α0k

r

2
⎢
.

Therefore, the 2-dimensional analogue of the interface Γ introduced in Remark 2.10 is 
characterized by the equation
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Fig. 3. Interface Γ and nodal lines of the eigenfunction for the cases α01 (left) and α02 (right). 

2J2
1

⎡
α0k

r

2
⎢
− J2

0

⎡
α0k

r

2
⎢

= 0.

Relying again on the computational software Mathematica™ we can plot the interface 
(in blue), along with the nodal lines of ϕk (in green), for the cases

α01 ≈ 3.831, α02 ≈ 7.016.

The results can be seen in Fig. 3.
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Appendix A

We recall here a known result about approximation of small eigenvalues of linear op-
erators. This lemma, originally proved by Y. Colin de Verdiére in [15] and then revisited 
in [16] and [3], also applies to multiple eigenvalues. We present here a simplified version 
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applicable to the case of simple eigenvalues and provide a short proof for the readers’ 
convenience.

Lemma A.1 (Lemma on small eigenvalues). Let (H, (·, ·)) be a real Hilbert space, D ⊆ H
a subspace, and q : D ×D → R a bilinear symmetric form. Let

(i) λ ∈ R and φ ∈ D be such that

‖φ‖ = 1 and q(φ, v) = λ(φ, v) for all v ∈ D,

where ‖ · ‖ =
√

(·, ·) denotes the norm associated to the scalar product;
(ii) f ∈ D be such that ‖f‖ = 1.

Let us assume that {φ}⊥ = H1 ⊕ H2 for some subspaces H1, H2 mutually orthogonal 
such that H1 ⊂ D,

q(v1, v2) = 0 for all v1 ∈ H1 and v2 ∈ H2 ∩D, (A.1)

/1 := inf
⎥
|q(v, v)|
‖v‖2 : v ∈ H1 \ {0}

}
> 0, (A.2)

/2 := inf
⎥
|q(v, v)|
‖v‖2 : v ∈ (H2 ∩D) \ {0}

}
> 0, (A.3)

and

. := sup
{
|q(f, v)|
‖v‖ : v ∈ D \ {0}

}
< +∞. (A.4)

Then

‖f − )f‖ ≤
√

2 .
/

, (A.5)

where / := min{/1, /2} and ) denotes the orthogonal projection onto span{φ}, i.e.

) : H → span{φ}

v .→ (φ, v) φ.

Finally, if ξ := q(f, f), then

|λ− ξ| ≤ 2|λ| .
2

/2 + 2.
2

/
. (A.6)
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Proof. Let us denote

Nf := f − )f.

We observe that Nf is orthogonal to φ, i.e.

(φ,Nf) = 0,

and, letting

N1 : H → H1 and N2 : H → H2

be the orthogonal projections on H1 and H2, respectively, we have

Nf = N1f + N2f. (A.7)

Moreover

(φ,N1f) = (φ,N2f) = 0. (A.8)

Since H1 ⊂ D by assumption, we have N1f ∈ D; moreover Nf ∈ D, hence N2f ∈ D∩H2
by (A.7). Therefore, taking into account (A.8),

q(φ,N1f) = λ(φ,N1f) = 0, q(φ,N2f) = λ(φ,N2f) = 0,

so that

q()f,N1f) = q()f,N2f) = 0. (A.9)

From (A.1), (A.7), and (A.9) it follows that

q(N1f,N1f) = q(f − )f − N2f,N1f) = q(f,N1f) − q()f,N1f) − q(N2f,N1f)
= q(f,N1f)

q(N2f,N2f) = q(f − )f − N1f,N2f) = q(f,N2f) − q()f,N2f) − q(N1f,N2f)
= q(f,N2f).

Therefore, from the definition of ., /1, and /2 we obtain

|q(N1f,N1f)| = |q(f,N1f)| ≤ . ‖N1f‖ ≤ .

√
|q(N1f,N1f)|

/1
,

|q(N2f,N2f)| = |q(f,N2f)| ≤ . ‖N2f‖ ≤ .

√
|q(N2f,N2f)|

/2
,
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which yields

|q(N1f,N1f)| ≤ .2

/1
|q(N1f,N2f)| ≤ .2

/2
. (A.10)

Combining (A.10) with the definition of /1, /2, /, we obtain the estimates

‖N1f‖2 ≤ |q(N1f,N1f)|
/1

≤ .2

/2
1
≤ .2

/2 , ‖N2f‖2 ≤ |q(N2f,N2f)|
/2

≤ .2

/2
2
≤ .2

/2 . (A.11)

From (A.7), the orthogonality of H1 and H2 and (A.11), we deduce that

‖Nf‖2 = ‖N1f‖2 + ‖N2f‖2 ≤ 2.2

/2 ,

thus proving (A.5).
Now, the proof of (A.6) follows from direct estimates, making use of (A.5) and (A.10). 

More precisely, if )f -= 0, we first write |λ− ξ| as

|λ− ξ| =
∣∣∣∣∣
q()f,)f)
‖)f‖2 − q(f, f)

‖f‖2

∣∣∣∣∣ =
∣∣∣∣∣
q()f,)f)
‖)f‖2 − q(Nf + )f,Nf + )f)

‖Nf + )f‖2

∣∣∣∣∣ .

Then, by this, the orthogonality condition (A.9), assumption (A.1), and the fact that 
‖f‖ = 1, we obtain

|λ− ξ| =
∣∣∣λ ‖Nf‖2 − q(N1f,N1f) − q(N2f,N2f)

∣∣∣ . (A.12)

On the other hand, (A.12) is trivially satisfied if )f = 0, since, in this case, f = Nf . 
Combining (A.12) with the triangle inequality, (A.5) and (A.10), we obtain (A.6). !

The following lemma provides an uniform extension property in domains with small 
holes of the form (1.6), see [41] for the proof.

Lemma A.2 (Extension operators). For N ≥ 2, let Ω ⊂ RN and Σ ⊂ RN be bounded, 
open Lipschitz sets. Let ε0 > 0 and r0 > 0 be such that (2.15) is satisfied for some 
x0 ∈ Ω. For every ε ∈ (0, ε0), let Σε := x0 + εΣ and Ωε = Ω \ Σε. Then, for every 
ε ∈ (0, ε0), there exists an (inner) extension operator

Eε : H1(Ωε) → H1(Ω)

such that, for all u ∈ H1(Ωε),

(Eεu)|Ωε
= u
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and

‖Eεu‖H1(Ω) ≤ C ‖u‖H1(Ωε) ,

for some constant C > 0 independent of ε ∈ (0, ε0).
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