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Therapy

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical 
syndrome affecting approximately 3 million people in the US and up to 
32  million people worldwide. Patients with HFpEF are hospitalised 
approximately 1.4 times per year and have a mortality rate of approximately 
15% per year.1

HFpEF is mainly characterised by the presence of diastolic dysfunction 
(DD) and elevated left ventricular (LV) filling pressure, in the setting of a LV 
ejection fraction (LVEF) ≥50%.2 Despite epidemiological evidence of a 
steadily increasing prevalence, both in absolute terms and relative to the 
entire HF population, a prompt diagnosis of HFpEF is still challenging. Two 
scores have been created to better recognise this syndrome: the 2018 
H2FPEF score and the 2020 HFA-PEFF algorithm.3,4 Although they 
represent a remarkable step forward for a correct diagnosis, this approach 
still leaves many cases in the ‘uncertainty area’.

From a haemodynamic perspective, a hallmark of this syndrome is a 
pulmonary capillary wedge pressure of ≥15 mmHg (at rest) or ≥25 mmHg 
(after exercise), or LV end-diastolic pressure ≥16 mmHg (at rest). However, 
direct haemodynamic measurement during exercise is not widely 
available; it is an invasive procedure and should be kept for very selected 
cases. Right heart catheterisation at rest and during exercise is indeed the 
diagnostic gold standard for an accurate HFpEF diagnosis.5

HFpEF is mainly characterised by different phenotypes driven by different 
cardiac and non-cardiac comorbidities. This is probably the reason why 
several HFpEF clinical trials did not reach strong outcomes to recommend 
a single therapy for this syndrome, as happened in heart failure with 
reduced ejection fraction (HFrEF), where four pillars have been elected as 
optimal medical therapy from international guidelines.6,7 Recently, the 
paradigm has changed and the unmet clinical need for HFpEF treatment 
found a proper response as a result of a new class of drug, the sodium–
glucose cotransporter 2 inhibitors (SGLT2i), which beneficially act through 
the whole spectrum of LVEF.8

In this review, we focus on the HFpEF phenotypes according to the latest 
evidence, the role of the new drugs and the potential role of new devices 
to treat this complex syndrome.

The Origin of HFpEF Phenotypes
The term ‘preserved ejection fraction’ was first coined in the CHARM 
program to split the enrolled population into two subgroups on the basis 
of the most validated and readily available tool to define LV squeezing 
function, which was LVEF measured by echocardiography.9 This ‘heart-
centred’ approach proved to be very effective in defining the subgroup of 
patients who could benefit from therapies targeting neurohormonal 
activation.
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The mainstays of the reduced ‘LVEF paradigm’ consisted of: a single 
organ involved, or at least responsible for the clinically relevant outcomes; 
an easily recognisable dysfunction, with no need to deeply investigate the 
underlying aetiology, at least for what concerns the basic pharmacological 
treatment; and effective therapies approved by international guidelines to 
treat the disease.

Similarly, scientific communities tried to apply the same ‘paradigm’ to 
patients with a normal LVEF. Nonetheless, this model did not fit in this 
setting as: multiple organs and systems are involved, with the heart 
playing an important, but not exclusive, role due to cardiac and non-
cardiac comorbidities; a variety of morphological and functional 
abnormalities of uncertain significance, with rest echocardiography still 
playing a key role as a gatekeeper, but with the need to implement it with 
other techniques; and frequent inconsistency between phase II clinical 
trials showing improvement in surrogate outcomes and neutral phase III 
clinical trials with neutral results on clinically relevant outcomes.

All of this evidence led us to consider the importance of phenotype in 
HFpEF, to address a tailored therapy rather than ‘one size fits all’.

Phenotyping for Tailored Therapy
Complexity and multimorbidity are the hallmarks of HFpEF. This has been 
graphically represented as overlapping circles, where every circle is a 
pathophysiological abnormality.10 According to this model, patients with 
HFpEF could fall into one or another part of the circle and they could 
develop the syndrome on the basis of a single mechanism or as the result 
of multiple concurrent injuries. Addressing the single components of the 
picture seems to be the way for tailored treatment.

In contrast, the clinical phenotypic approach is a different and perhaps 
more ambitious way to classify patients.11,12 The underlying assumption is 
that HFpEF is not a single disease, but a group of different disease 
processes that share HF symptoms and signs as clinical manifestation. 
The studies supporting this view divide HFpEF cohorts into mutually 
exclusive subgroups, the so-called phenotypes, on the basis of the clinical 
and epidemiological characteristics of patients.13–20 The cluster of 
comorbidities characterising a specific phenotype is the result of a specific 
pathological pathway that could be hopefully targeted by specific 
treatments.

HFpEF Phenotypes: Pieces of a 
Complex Clinical Puzzle
The physiopathological complexity and clinical heterogeneity of HFpEF 
have prompted cardiologists to use artificial intelligence and machine 
learning techniques to analyse the complex relationships within this 
diverse population, and identify specific subgroups with the goal of 
greater internal homogeneity to treat them in the same way. The first 
research group to attempt this ambitious goal was that of Shah et al., who 
identified patient subgroups based on their comorbidities, including those 
related to obesity, metabolic syndrome and pulmonary hypertension.11,21

More recently, Uijil et al. proposed a model consisting of five clusters 
obtained from HFpEF patients recorded in the Swedish Heart Failure 
Registry, and validated it externally with the Chronic Heart Failure 
European Society of Cardiology guideline-based Cardiology Practice 
Quality project registry.18

The first cluster is that of young patients, with an average age <60 years 
and a reduced burden of comorbidities, including arterial hypertension 

and obesity. This group of patients also includes those with HF with 
improved ejection fraction (EF). Weight loss and blood pressure control 
using renin–angiotensin–aldosterone system (RAAS) inhibitors (RAASi) 
are central to these patients.

The next four clusters include a population that is, on average, older 
(aged between 60 and 90 years), with a higher burden of comorbidities, 
including arterial hypertension. The second cluster is the most represented 
and consists of patients with an average age of 77 years who have AF, in 
the absence of diabetes. These patients, even more than others, benefit 
from a lenient heart rate control to avoid further reducing their already 
compromised chronotropic reserve. The third cluster is the second most 
represented and consists of the oldest patients, with an average age of 
88 years, the highest burden of comorbidities and the highest 
concentration of natriuretic peptides. These patients present with frank 
congestion, which must be attenuated using diuretics, including anti-
aldosterone agents, which have shown remarkable clinical benefit in the 
TOPCAT trial.22 These patients derive the highest prognostic benefit from 
the intensive treatment of all comorbidities.

The fourth cluster consists of patients with an average age of 71 years, AF 
and diabetes. In this group of patients, in addition to glycaemic control, 
the introduction of an SGLT2 inhibitor appears to be fundamental, as the 
EMPEROR-Preserved and DELIVER trials have shown a reduction in 
cardiovascular (CV) mortality and hospitalisation for HF.

Finally, the fifth cluster is the fusion of the second and fourth clusters 
because it includes elderly patients with an average age of 82 years, 
diabetes and AF. The DECLARE-TIMI 58 trial found that diabetes patients 
without AF may benefit from the use of SGLT2i because they have a 
preventive effect on this arrhythmia.23–25

Beyond the different clusters identified by Uijil et al. and by the countless 
attempts of many other authors, obesity is a common comorbidity in many 
patients with HFpEF. Excess visceral adipose tissue promotes the 
hyperactivation of neurohormonal systems that, together with the 
reduced plasma activity of neprilysin typical of these patients, make the 
pro-inflammatory and fibrotic effect of aldosterone unopposed, favouring 
diastolic dysfunction that is responsible for the progressive increase in 
filling pressures.21 Considering the typical pathophysiological changes of 
the obese phenotype, RAASi, particularly aldosterone antagonists and 
neprilysin inhibitors (ARNI), play a central role, in addition to the use of 
SGLT2i. Furthermore, the STEP-HFpEF trial has recently demonstrated in 
obese HFpEF patients that semaglutide versus placebo significantly 
reduced body weight, improving symptoms, physical limitations and 
exercise function, with a positive impact on quality of life (QoL), 
inflammatory status and survival.26

Current Progress in ‘Phenomapping’: 
Insights From the Literature
Recently, a review conducted by Peters et al. identified the three most 
recurrent HFpEF phenotypes in studies that focused on specific 
characteristics through statistical analysis of large datasets, known as 
‘phenomapping’.27 These three phenotypes were also observed in studies 
where researchers did not employ this static strategy, demonstrating some 
robustness in the results (Figure 1).28 The first two analysed phenotypes 
closely reflect everyday clinical practice, as they represent two patient 
groups commonly encountered in outpatient settings. The most prevalent 
phenotype is ‘older, vascular ageing’, which aligns with Shah et al.’s findings, 
describing a group of elderly patients with arterial stiffness leading to 
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hypertension and chronic kidney disease.11 These patients exhibit concentric 
LV hypertrophy on echocardiograms, a higher incidence of chronic kidney 
disease and elevated levels of inflammatory molecules in the blood, 
contributing to the pathophysiology of this phenotype and partially justifying 
its partial overlap with the ‘metabolic, obese’ group.

Additionally, inflammation is responsible for remodelling the left atrial 
muscle and conduction tissue, promoting the progression of these 
patients towards ‘left atrial myopathy’, associated with increased 
pulmonary pressures and right ventricular dysfunction, defining a subtype 
of this first phenotype. Given that arterial stiffness and kidney disease 
play a role in the already poor prognosis of these patients, it is evident 
that blood pressure control with drugs targeting the RAAS plays a central 
role. Moreover, these elderly hypertensive patients are at a higher risk of 
AF, which is deleterious in HFpEF patients.

The second most frequent phenotype is the ‘metabolic, obese’, 
represented by patients with high body weight and type 2 diabetes, 
predisposing them to widespread atherosclerotic vascular disease, 
particularly affecting the renal vessels, which accounts for the high 
prevalence of chronic kidney disease in this group. Obesity leads to 
increased renin–angiotensin activity and aldosterone levels, explaining 
why patients with characteristics related to this phenotype showed better 
responsiveness to spironolactone in the TOPCAT trial.29

While the patients in the first phenotype are older, those belonging to the 
third phenotype are ‘relatively younger’, with lower levels of stress 

biomarkers, such as B-type natriuretic peptide (BNP)/N-terminal fraction of 
pro-BNP (NT-proBNP) and soluble ST2. Identifying these patients solely 
through peptide assays and resting echocardiography is challenging; 
thus, prompt additional investigations are necessary, including 
measurements of telediastolic filling pressures and non-invasive or 
invasive assessment of pulmonary artery pressures during exercise. 
Uncertainty remains regarding this third phenotype, which seems to 
benefit from spironolactone treatment (based on post hoc analysis from 
the TOPCAT trial in both the full and the Americas cohort) and exhibits 
some degree of overlap with the ‘metabolic, obese’ phenotype, partially 
justifying the responsiveness to mineralocorticoid receptor antagonists 
and lower atrial natriuretic peptide concentrations.29

While older HFpEF patients often experience classic symptoms, such as 
dyspnoea and fatigue, younger patients with low BNP levels may present 
with other symptoms, such as exercise intolerance, unexplained dyspnoea 
on exertion or other non-specific complaints. Medications, lifestyle 
modifications and interventions that have been shown to benefit older 
HFpEF patients may need to be tailored for this group. Moreover, 
traditional hard endpoints, such as mortality, may not be suitable for 
assessing the efficacy of treatments in younger HFpEF patients. Alternative 
outcome measures, including QoL, exercise capacity and early markers of 
HFpEF progression should be considered in clinical trials.

Based upon these considerations, it appears clear that the scarcity of 
dedicated research focused on ‘young-low BNP populations’ in HFpEF 
highlights a significant research gap. Indeed, more studies are needed to 

Figure 1: Three Heart Failure with Preserved Ejection Fraction Phenotypes
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The first phenotype is the 'older, vascular ageing', characterised by arterial stiffness, leading to arterial hypertension, and left ventricular hypertrophy. It is associated with significant systemic 
inflammation and often coexists with chronic kidney disease, which is also observed in the second phenotype, the 'metabolic, obese', where type 2 diabetes is the prevalent comorbidity and patients 
often report dyspnoea and reduced tolerance to physical activity, which can also be attributed to deconditioning. The last phenotype is the 'younger, low BNP', which overlaps with the previous one due 
to the frequent presence of excess body weight and, notably, responsiveness to spironolactone. BNP = B-type natriuretic peptide; eGFR = estimated glomerular filtration rate; NT-proBNP = N-terminal 
pro-B-type natriuretic peptide; NYHA = New York Heart Association. Source: Partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported 
licence.
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better understand the unique aspects of HFpEF in this population, and to 
identify effective diagnostic and treatment approaches to solve this 
unmet clinical need.

In summary, among the three clinical phenotypes, there is a gradient of 
age, inflammation, diagnostic tools and poor prognosis, which is highest 
in the ‘older, vascular ageing’ phenotype and gradually decreases from 
the ‘metabolic, obese’ to the ‘younger, low BNP’ phenotype.

A New Drug for HFpEF: SGLT2i
In recent years, cardiologists have added SGLT2i to their pharmacological 
arsenal.6,7 Initially, these molecules were shown to reduce the incidence 
of CV events, including HF, in patients with type 2 diabetes who were at 
high or very high CV risk.25,30–32 Subsequently, two randomised controlled 
clinical trials, DAPA-HF and EMPEROR-Reduced, were conducted with 
patients with HFrEF.33,34 In these trials, dapagliflozin and empagliflozin, 
respectively, significantly reduced the incidence of fatal CV events and 
hospitalisation for HF, leading to their inclusion as the ‘fourth pillar’ of 
HFrEF pharmacological therapy. The efficacy of these molecules was also 
studied in HFpEF and heart failure with moderately reduced EF (HFmrEF) 
in the EMPEROR-Preserved and DELIVER clinical trials.23,24

Both of these trials had positive results, with a significant reduction in the 
primary outcome (a composite of CV death and hospitalisation for HF). 
The magnitude of the effect was similar in EMPEROR-Preserved (HR 0.79; 
95% CI [0.69–0.90]; p<0.001) and in DELIVER (HR 0.82; 95% CI [0.73–
0.92]; p<0.001). The positive result was mainly driven by a lower risk of 
hospitalisation for HF and worsening HF events. The effect on CV deaths 
was almost significant in both trials (HR 0.88; 95% CI [0.74–1.05] in 
DELIVER; HR 0.91; 95% CI [0.76–1.09] in EMPEROR-Preserved). Given the 
large number of patients needed to reach a significant result, a 
prespecified meta-analysis of DELIVER and EMPEROR-Preserved was 
planned, and it proved a significant reduction in CV mortality (HR 0.88; 
95% CI [0.77–1.00]).35 SGLT2i also improved health status and QoL, as 
measured by the Kansas City Cardiomyopathy Questionnaire.36,37

In summary, empagliflozin and dapagliflozin significantly reduced the 
incidence of CV events and worsening HF in HFpEF, demonstrating that 
SGLT2i improved the prognosis of HF patients across the entire LVEF 
spectrum.

SGLT2i: Pharmacology and Mechanism of Action
The introduction of SGLT2i has opened up a new avenue for HF treatment 
beyond neurohormonal activation control. The mechanism of action of 
this drug class is complex and not yet fully understood. However, it is 
known that inhibiting SGLT2 at the proximal convoluted tubule level 
causes glucose and sodium to be excreted in the urine, which, due to 
osmotic effects, promotes diuresis.38 This diuresis, however, is different 
from that caused by loop diuretics, as it appears to have a selective effect 
on interstitial volume, with minimal impact on vascular volume. This leads 
to a reduction in preload and, albeit modestly, blood pressure without 
triggering compensatory activation of the RAAS.39

Additionally, the increase in sodium concentration in the ultrafiltrate 
promotes the restoration of a normal tubule-glomerular feedback, which, 
through the macula densa, induces vasoconstriction of the afferent 
arteriole. This leads to a reduction in intraglomerular pressure, which, due 
to haemodynamic effects, reduces the extent and rate of the glomerular 
filtration rate and proteinuria reduction.40–42 The beneficial effect on the 
kidneys is purely haemodynamic and visible from the beginning of drug 

administration. Simultaneously, a transient mild reduction in the 
glomerular filtration rate and, equally slightly, an increase in creatinine 
levels can be observed. SGLT2i reduce insulin resistance and contribute 
to weight loss, both for their diuretic effect and, over time, for the loss of 
calories in the urine, which induces a fasting-like state promoting lipolysis 
and ketogenesis.43

Ketone bodies are an alternative source of energy to glucose and fatty 
acids, improving metabolic efficiency. This is even more evident in 
patients with HFpEF, whose cardiac cells become less efficient in terms 
of oxidative metabolism and become increasingly dependent on 
glycolysis.44 Therefore, ketone bodies provide the cardiomyocyte with 
an ‘extra’ energy supply without interfering with glucose oxidation, 
causing improved cardiac performance, regardless of the presence of 
diabetes.45

SGLT2i: Practical Implications
The introduction of SGLT2i has transformed the paradigm of HFpEF 
treatment.46,47 Rather than solely targeting neurohormonal activation, this 
class of drugs addresses comorbidities, which is a peculiar feature of 
HFpEF, and offers a valuable opportunity for cross-sectional intervention 
on the cardio–renal–metabolic continuum, which is profoundly altered in 
these patients.

According to new evidence, SGLT2i should be introduced during 
hospitalisation for acute HF.48 Clinical studies have shown that their use is 
safe, well-tolerated and effective in achieving faster decongestion. 
Furthermore, their use in combination with ARNI and mineralocorticoid 
receptor antagonists (MRA) has an additive effect, facilitating faster 
titration of the latter due to improved potassium control.49,50

Neurohormonal Antagonism
Patterns of neurohormonal activation are different in HF cohorts according 
to LVEF.51,52 Sympathetic and RAAS activation, resulting in elevated levels 
of plasma renin activity, aldosterone, catecholamines and NT-proBNP, is a 
key feature of HFrEF. Just a small proportion of HFpEF patients display the 
same cascade of activation, and the prognostic impact of elevated plasma 
level of neurohormones (well established in HFrEF patients) is uncertain in 
the HFpEF subgroup.53

The heterogeneity of the HFpEF population is at least in part responsible 
for the puzzling results of the several neutral trials that tried to replicate 
the success achieved in the HFrEF trials.54,55

Angiotensin-converting Enzyme Inhibitors 
and Angiotensin Receptor Blockers
Three large-scale randomised clinical trials tested the safety and 
efficacy of angiotensin-converting enzyme inhibitors in HFpEF.56–58 Two 
of them, the CHARM-Preserved and the I-PRESERVE used an angiotensin 
receptor blocker (ARB), the PEP-CHF trial used an angiotensin-
converting enzyme inhibitor.56–58 CHARM-Preserved inclusion criteria 
were: LVEF >40%, New York Heart Association (NYHA) class II–IV and 
previous hospital admission for HF. The primary outcome of composite 
CV death and HF admission was not met (HR 0.89; [95% CI 0.77–1.03]; 
p=0.118). The echocardiographic CHARM substudy proved that only half 
of patients enrolled had a moderate or severe DD, given that a worse 
DD was a strong prognostic predictor.59 Based on these observations, 
the clinical trials that followed tried to target a more selected cohort, 
adding in the inclusion criteria both echocardiographic evidence of DD 
and congestion. The results were fairly similar, confirming no effects on 



New Insights on HFpEF Treatment

CARDIAC FAILURE REVIEW
www.CFRjournal.com

mortality and some effect on HF hospitalisation. A large metanalysis 
that included the aforementioned clinical trials and other smaller size 
studies concluded that both ARB and angiotensin-converting enzyme 
inhibitors have no effect on all-cause mortality (HR 1.01; 95% CI [0.92–
1.11]), CV death (HR 1.02; 95% [0.90–1.14]) and HF hospitalisation (HR 
0.92; 95% CI [0.83–1.02]).60

A subanalysis of the CHARM study examined LVEF as a continuous 
variable and found a significant effect on HF hospitalisation for values 
<50%.22,61 Based on this evidence, the 2022 American Heart Association/
American College of Cardiology/Heart Failure Society of America 
guidelines give a class 2b recommendation for ARB use with the aim of 
reducing HF hospitalisation, especially in the lower end of the LVEF.7

Mineralocorticoid Receptor Antagonists
One large, multicentre, randomised, double-blind, placebo-controlled 
clinical trial and other smaller studies have tested the efficacy and safety 
of MRA in HFpEF. The TOPCAT trial enrolled patients aged >50 years with 
at least one sign or symptom of HF and VEF >45%, history of HF 
hospitalisation in the previous 12 months or natriuretic peptide (NP) 
level.22

The overall result on the primary outcome of a composite CV death and 
HF hospitalisation was neutral (HR 0.89; 95% CI [0.77–1.04]; p=0.14), as 
only HF hospitalisations were significantly reduced in the treatment arm 
(HR 0.83; 95% CI [0.69–0.99], p=0.04). Two clearly diverging trajectories 
in the occurrence of the primary outcome emerged since the first 
publication of the results.62 Patients enrolled with the HF hospitalisation 
criterion recorded a far lower rate of events than those enrolled with the 
NP criterion. Regional differences were also striking, with patients 
enrolled in Russia and Georgia (mostly with the hospitalisation criterion) 
showing a lower risk profile, few events and younger age. A post hoc 
analysis proved that the outcome was met in patients enrolled in countries 
other than Russia and Georgia. To make things worse, the significantly 
lower level of patients from Eastern Europe compared with the rest of the 
trial countries raises the legitimate suspicion that many participants were 
not taking the drug at all.63

The TOPCAT trial shaped much of our knowledge around the use of MRA 
in HFpEF, being the only large-scale clinical trial on clinically relevant 
outcomes. Smaller studies found beneficial effects of MRA on surrogate 
outcomes (mainly echocardiographically assessed DD parameters, 
reverse remodelling and NP decrease), but not on QoL, symptoms and 
exercise capacity.64,65

New trials are ongoing to better define the role of MRA in HFpEF. SPIRRIT-
HFpEF and FINEARTS-HF (NCT04435626) will hopefully shed light on 
this.66 

The 2022 American Heart Association/American College of Cardiology/
Heart Failure Society of America guidelines give a class 2b recommendation 
for MRA use, with the aim of reducing HF hospitalisation, especially in the 
lower LVEF range.7 However, the European guidelines do not mention 
MRA for HFpEF.6

Antagonist Receptor Neprilysin Inhibitors
The PARAGON-HF trial randomised 4,822 patients with NYHA class II–IV, 
EF >45%, elevated NP and structural heart disease to valsartan alone or 
sacubitril/valsartan.67 The primary endpoint was a composite of total HF 
hospitalisation or CV death. The primary endpoint was missed for a small 

number of events (just seven events). Splitting the components of the 
outcomes, a truly neutral effect on CV mortality (HR 0.95; 95% CI [0.79–
1.16]) and a modest positive effect on HF hospitalisations (rate ratio 0.85; 
95% CI [0.72–1.00]) were evident. Other important secondary outcomes 
(NYHA class improvement, change in QoL assessed by the Kansas City 
Cardiomyopathy Questionnaire and renal function preservation) showed 
benefit from ARNI treatment compared with valsartan.

Prespecified subgroups analysis highlighted a different response to 
treatment in women (who benefitted most) compared with men and, as 
seen in the CHARM Preserved and TOPCAT trials, in the lower end of the 
EF spectrum, with an efficacy of the treatment up to an EF of 57%.68

Recently, the PARAGLIDE study randomised 466 patients with LVEF >40 % 
and a recent event of worsening heart failure to sacubitril/valsartan versus 
valsartan. The primary endpoint of N-terminal fraction of pro-BNP 
reduction was greater in the sacubitril/valsartan group (p=0.0049), and 
was associated with clinical benefit as reduced worsening renal failure 
compared with valsartan alone, despite a more symptomatic 
hypotension.69 

A recent pool analysis of PARAGLIDE and PARAGON showed that in a 
population of 5,262 patients, sacubitril/valsartan versus valsartan alone 
significantly reduced CV death and total worsening heart failure events 
(p=0.027). These data encourage the use of ARNI in HF with mildly 
reduced or preserved LVEF, particularly in those with a LVEF below 
normal.70

β-blockers
β-blockers have been studied less intensively and in smaller clinical trials 
compared with the RAASi agents. As a consequence, their use in this 
population is still subject to clinical judgement and tailored care. The 
heterogeneity of the HFpEF population, and the various underlying 
mechanisms and aetiologies make the design of clinical trials even more 
difficult than with other agents.

The SENIORS trial enrolled HF patients across the entire spectrum of the 
LVEF and randomised them to nebivolol or a placebo.71 The subgroup 
analysis of 752 patients with LVEF >35% is the largest cohort randomised 
to a placebo we have to date. A smaller study, the J-DHF, tested carvedilol 
compared with a placebo in a smaller cohort of patients; several 
metanalyses put together data from randomised clinical trials and 
observational cohorts with or without propensity score analysis, but the 
overall quality of the data was low, and the results are inconsistent 
throughout the studies. Nonetheless, metanalyses suggest that β-blockers  
could reduce CV mortality or all-cause mortality without significant effect 
on HF hospitalisation.72–75 

In all these clinical trials, β-blocker withdrawal was high due to drug 
intolerance. Chronotropic incompetence related to β-blockers is a well-
recognised contributor to exercise intolerance commonly observed in 
HFpEF.76 One study reported significant improvement in functional 
capacity measured by peak oxygen consumption after β-blocker 
withdrawal in patients with HFpEF and chronotropic incompetence.77

Treating Cardiac Comorbidities in HFpEF
HFpEF is a complex syndrome characterised by non-cardiac and cardiac 
comorbidities, conditioning phenotypes and affecting prognosis. In this 
review, we focus on the latter, underlying the potential therapeutic options 
to improve symptoms, QoL and outcomes (Figure 2).78
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Ischaemic Heart Disease: A General Term 
for Several Conditions Related to HFpEF
Ischaemic heart disease and HF are strongly and tightly connected 
conditions.79–83 Ischaemic heart disease is a common cardiac comorbidity 
in HFpEF, even though prevalence varies across studies, also depending 
on the imaging modalities used to ascertain it and on the general arterial 
involvement. Ischaemic heart disease includes microvascular dysfunction 
(MVD), coronary artery disease or previous ‘silent’ MI.84,85

MVD contributes to the pathophysiological mechanisms of HFpEF in 
several ways. The pro-inflammatory state, exacerbated by the multiple 
comorbidities present in HFpEF, promotes oxidative stress and endothelial 
dysfunction. The most important mechanisms leading to MVD in HFpEF 
consist of microvascular inflammation, capillary rarefaction and cardiac 
fibrosis.86–89 The involvement of MVD in the pathophysiology of HFpEF is 
crucial to identify possible therapeutic targets. SGLT2s have shown 
beneficial effects of cardiac microvascular endothelial cells on 
cardiomyocyte function, and demonstrate an improvement in myocardial 
flow reserve in a single-centre prospective randomised clinical trial.90

Ranolazine inhibits the late sodium current and reducing intracellular 
calcium in cardiomyocytes and promotes ventricular relaxation by 
decreasing diastolic tone and microcirculatory resistance, thus improving 
coronary blood flow. It also acts on cardiac fibrosis; thus, it could improve 
the most important physiological mechanisms of MVD in this syndrome.91

New studies on antidiabetic agents, glucagon-like peptide-1 agonists, are 

ongoing on the obese HFpEF phenotype, and they could also have a role 
in chronic inflammation and MVD.26

Atrial Fibrillation
AF is a highly prevalent cardiac comorbidity in HFpEF, ranging from 32% 
to 65% in epidemiological studies.92,93 Despite this difference in absolute 
prevalence, AF is consistently reported to be more common in HFpEF 
than in HFrEF, and to be associated with older age. An interesting analysis 
of the HF Long-Term Registry of the European Society of Cardiology, 
evaluating both ambulatory and hospitalised HF patients, showed that 
after multivariable adjustment, AF significantly increased long-term 
mortality and hospitalisation just in the HFpEF and HFmrEF population, 
but not in the HFrEF population.94.

Patients with AF and HFpEF should be anticoagulated according to 
guidelines, keeping in mind the high incremental thromboembolic risk 
added by HF.95 Based on the available evidence, no firm recommendation 
can be drawn on rhythm versus rate control strategy preference.

Rate control is still a very popular choice among clinicians, and convincing 
evidence to support a routine rhythm control strategy is still missing. The 
two major trials on this subject and subsequent metanalysis suggest no 
benefit of one strategy over the other.96–98 Three drug classes are valuable 
options for rate control in HFpE: β-blockers, non-dihydropyridine calcium 
channel blockers and digoxin. Few studies have directly compared these 
drugs. The RATE-AF trial compared low-dose digoxin and bisoprolol in HF 

Figure 2: Heart Failure with Preserved Ejection Fraction Pathophysiology, 
Clinical Manifestations and Possible Sites of Intervention

Burden of metabolic respiratory and renal comorbidities

and/or and/or
COPD CKD

Systemic inflammation

Ischaemic heart disease

HFpEF

Extracellular fibrous
tissue deposition

HIGH

Caloric restriction and
aerobic physical activity

Smoking cessation

Specific treatments

Diuretics

SGLT2i

β-blockers and RAASi
(ACEi/ARB, ARNI, MRA) 

CAD, AF

The global burden of renal-metabolic and respiratory comorbidities increases systemic inflammation, which in turn promotes endothelial dysfunction, atherosclerosis, and fibro-collagen deposition in the 
myocardial interstitium following fibroblast activation. Weight control, achieved through both calorie restriction and regular aerobic physical activity (which also improves conditioning and reduces 
exercise intolerance), smoking cessation, and treatment of individual non-cardiac comorbidities, play a central role. At the cardiac level, early identification, and equally intensive treatment of 
comorbidities, such as ischaemic heart disease (coronary artery disease) and AF, are mandatory. Furthermore, all patients should be offered a loop diuretic to reduce congestive symptoms and a SGLT2i 
to improve cardiovascular and renal prognosis in patients with HFpEF. ACEi = angiotensin-converting enzyme inhibitors; ARB = angiontensin receptor blockers; ARNI = antagonist receptor neprilysin 
inhibitors; CAD = coronary artery disease; CKD = chronic kidney disease; COPD = chronic obstructive pulmonary disease; HFpEF: heart failure with preserved ejection fraction; MRA = mineralocorticoid 
receptor antagonists; RAASi = renin–angiotensin–aldosterone system inhibitors; SGLT2i = sodium–glucose cotransporter type 2 inhibitors.
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patients with permanent AF.99 The vast majority of the trial cohort (81%) 
had HFpEF. The primary endpoint (QoL at 6 months from randomisation) 
was not different in the two groups, and fewer adverse events were 
recorded in the digoxin group (p<0.001).

Diabetes and Metabolism Disorders
Diabetes, excess weight and obesity, typical features of HFpEF patients, 
as already documented in the above-mentioned phenotypes, cause 
inactivity and deconditioning, justifying the high prevalence of dyspnoea 
and exercise intolerance in this population. Weight loss, through caloric 
restriction or increased physical activity, and glycaemic control have a 
positive effect on prognosis and CV events. Notably, visceral and 
pericardial adipose tissues play a negative, pro-inflammatory role 
compared with subcutaneous adipose tissue, emphasising that ‘not all fat 
is equal’.100 Metabolically active fat, responsible for releasing inflammatory 
adipokines into circulation, exerts a detrimental impact on the heart and 
other organs, particularly the kidneys, where fibrotic degeneration leads 
to diastolic dysfunction and chronic kidney disease. Additionally, obesity 
is associated with obstructive sleep apnoea, contributing to increased 
right ventricular afterload, promoting functional deterioration, and 
eventually its failure.101

From the therapeutic perspective, glucagon-like peptide-1 agonists may 
represent a future therapeutic target for patients with HFpEF, acting on 
several pathways involved in the pathophysiology of HFpEF, including 
diabetes and obesity.

It has been demonstrated that the use of liraglutide is associated with 
reduced body weight and improved metabolic control. The LEADER study 
demonstrated that the rate of the first occurrence of death from CV 
causes, non-fatal MI or non-fatal stroke among patients with type 2 
diabetes was lower with liraglutide than with a placebo.102

Moreover, in the STEP-HFpEF trial, semaglutide significantly reduced body 
weight, improving symptoms with a positive impact on QoL in obese 
HFpEF patients.26

Supplementary Table 1 shows the most important trials on RAASi, SGLT2i 
and glucagon-like peptide-1 agonists in HFpEF described in this review.

Devices for HFpEF
Transcatheter Interatrial Shunt Device
One of the key haemodynamic features of HFpEF is elevated left atrial and 
pulmonary venous pressure at rest or on exertion, resulting in dyspnoea 
and reduced exercise capacity. A transcatheter-implanted interatrial shunt 
device has been developed with the aim of opening an 8 mm large left-to-
right atrial shunt and unloading left atrium. The REDUCE LAP-HF I trial, a 
phase II clinical trial, demonstrated a greater reduction of exercise 
pulmonary capillary wedge pressure in patients on active treatment 
compared with patients treated with a sham procedure.103 A phase III 
clinical trial, REDUCE LAP-HF II, was then conducted to test if the results 

could translate into CV death, non-fatal ischaemic stroke and HF events 
reduction, or change in QoL measured by the Kansas City Cardiomyopathy 
Questionnaire overall summary score.104 The trial enrolled 1,072 patients, 
of which 314 underwent an atrial shunt device procedure and 312 a sham 
procedure. The overall population results were neutral both for the 
composite primary endpoint (win ratio 1.0; [95% CI 0.8–1.2]; p=0.85) and 
for the single components of the outcome. The analysis of prespecified 
subgroups showed that in the highest tertiles of exercise pulmonary 
artery pressure (pulmonary pressure >70 mmHg) and right atrial volume 
(>29.7 ml/m2), the HF events rate was higher in the device-treated patients 
compared with those in the sham procedure arm, suggesting a detrimental 
effect of the implanted interatrial shunt device. Several clinical trials are 
ongoing or still have to start on the role of inter-atrial devices, and they 
hopefully will be able to shed light on the net clinical benefit of this kind 
of strategy in HFpEF (FROST-HF study, NCT05136820).105 

Cardiac Contractility Modulation
Abnormal myocardial contractility, and pathological atrial and ventricular 
remodelling is a key feature of HFpEF. Nowadays, a new therapeutic 
option could be counted in this contest, cardiac contractility modulation 
(CCM). CCM is a new device acting through myocytes stimulation during 
the absolute refractory period of the action potential, leading to an 
increase in peak calcium concentration and inducing positive inotropism.106 
CCM has been shown to improve tolerance to exercise and outcome in 
HFrEF patients, and growing data exist on the benefits of HFmrEf in terms 
of functional status and QoL.107,108 A prospective, multicentre, single-arm 
study (CCM-HFpEF) was designed to assess the impact of CCM in a bigger 
HFpEF cohort. Over a 24-week follow-up period, in a population of 47 
patients in NYHA II and III with LVEF >50%, CCM caused an improvement 
in health status and the Kansas City Cardiomyopathy Questionnaire with 
no impact on safety outcomes.109 Further randomised clinical trials are 
needed to better define the potential impact on outcome and prognosis 
of this innovative device in HFmrEF and HFpEF.

Conclusion
HFpEF is a complex syndrome characterised by profound clinical and 
pathophysiological heterogeneity that accounts for the difficulty in 
identifying a unique pharmacological treatment. The identification of 
specific clinical phenotypes could play a role in choosing specific 
strategies aimed at treating specific pathophysiological alterations and 
comorbidities, both cardiac and non-cardiac, with the aim of improving 
the quantity and, above all, the quality of life of the patient as quickly as 
possible. Currently, SGLT2 inhibitors represent the only class of drugs with 
a beneficial role in the treatment of HFpEF, likely due to their ability to act 
across multiple common pathophysiological aspects of different disease 
phenotypes.

Ultimately, the goal of phenotyping is not only to better understand the 
complex pathophysiological mechanisms underlying HFpEF, but also to 
provide cardiologists with as many tools as possible to improve the 
quantity and, above all, the quality of life of their patients. 
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