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Abstract

A generating pair x, y for a group G is said to be symmetric if there exists an
automorphism ϕx,y of G inverting both x and y, that is, xϕx,y = x−1 and yϕx,y = y−1.
Similarly, a group G is said to be strongly symmetric if G can be generated with
two elements and if all generating pairs of G are symmetric.

In this paper we classify the finite strongly symmetric non-abelian simple groups.
Combinatorially, these are the finite non-abelian simple groups G such that every
orientably regular hypermap with monodromy group G is reflexible.

Mathematics Subject Classifications: 05C10, 05C25, 20B25

1 Introduction

The aim of this note is to classify the finite strongly symmetric non-abelian simple groups.

Theorem 1. Let S be a finite non-abelian simple group. Then S is strongly symmetric if
and only if S ∼= PSL(2, q) for some prime power q.

Interest on strongly symmetric groups stems from maps and hypermaps, which (roughly
speaking) are embeddings of graphs on surfaces, see [6]. We give a brief account on this
connection, for more details see [4, 10].

A map on a surface is a decomposition of a closed connected surface into vertices,
edges and faces. The vertices and edges of this decomposition form the underlying graph
of the map. An automorphism of a map is an automorphism of the underlying graph
which can be extended to a homeomorphism of the whole surface. For the definition of
hypermaps, which bring us closer to strongly symmetric groups, we need to take a more
combinatorial point of view.

Each map on a orientable surface can be described by two permutations, usually
denoted by R and L, acting on the set of directed edges (that is, ordered pairs of adjacent
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vertices) of the underlying graph. The permutation R permutes cyclically the directed
edges starting from a given vertex and preserving a chosen orientation of the surface. The
permutation L interchanges the end vertices of a given directed edge. The monodromy
group of the surface is the group generated by R and L and the map is said to be regular
if the monodromy group acts regularly, that is, the identity is the only permutation fixing
some element.

Observe that in a map, we have L2 = 1. A hypermap is simply given by the combina-
torial data R and L, where L is not necessarily an involution. Inspired by the topological
and geometrical counterpart for maps, a hypermap is said to be reflexible if the assig-
ment R 7→ R−1 and L 7→ L−1 extends to a group automorphism of 〈R,L〉; otherwise the
hypermap is said to be chiral.

It was shown in [4, Lemma 7], that a finite group G is strongly symmetric if and only if
every orientably regular hypermap with monodromy group G is reflexible. In particular,
Theorem 1 classify the finite non-abelian simple groups G with the property that every
orientably regular hypermap with monodromy group G is reflexible.

In our opinion, Theorem 1 suggests a natural problem, which in principle should give
a measure of how chirality is abundant among regular hypermaps. Let S be a non-abelian
simple group and let δ(S) be the proportion of strongly symmetric generating sets of S,
that is,

δ(S) :=
|{(x, y) ∈ S × S | x, y symmetric generating set}|

|{(x, y) ∈ S × S | S = 〈x, y〉}|
.

The closer δ(S) is to 1, the more abundant reflexible hypermaps are among orientably
regular hypermaps with monodromy group S. Indeed, Theorem 1 classifies the groups S
attaining 1. We do not have any “running conjecture”, but we wonder whether statistically
it is frequent the case that δ(S) < 1/2. Moreover, we wonder whether it is statistically
significant the case that δ(S) → 0 as |S| → ∞, as S runs through a certain family of
non-abelian simple groups.1

2 Proof of Theorem 1

We start with a preliminary lemma.

Lemma 1. Let n be an integer with n > 3, let q be a prime power with (n, q) 6= (3, 4),
let g ∈ GL(n, q) be a Singer cycle of order qn − 1, let x := ggcd(n,q−1) and let a ∈ ΓL(n, q)
such that xa = zxε, for some z ∈ Z(GL(n, q)) and ε ∈ {−1, 1}. Then z = 1, ε = 1 and
a ∈ 〈g〉.

Proof. Let e1, . . . , en be the canonical basis of the n-dimensional vector space Fnq of row
vectors over the finite field of cardinality q. Set v := e1 and let P1 be the stabilizer in
GL(n, q) of the vector v. As 〈g〉 acts transitively on the set of non-zero vectors of Fnq and
as P1 is the stabilizer of the non-zero vector v, we deduce from the Frattini argument

1During the refereeing process of this paper, Theorem 1 has proved to be useful in [7, page 2 and 3] for
the proof of Cherlin’s conjecture on finite primitive binary permutation groups.
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that GL(n, q) = 〈g〉P1. In particular, as a ∈ ΓL(n, q), we have a = gibc, where i ∈ Z,
b ∈ P1 and c lies in the Galois group Gal(Fq) of the field Fq. Set a′ := bc. Observe
that xa = xa

′
because gi centralizes x ∈ 〈g〉. Moreover, a ∈ 〈g〉 if and only if a′ ∈ 〈g〉.

Therefore, replacing a with a′ if necessary, in the rest of the argument we may suppose
that a = a′ = bc.

As Z(GL(n, q)) consists of scalar matrices, we may identify the matrix z with an
element in the field Fq. We show that, for every ` ∈ N, we have (vx`)a = z`vxε`. When
` = 0, va = vbc = v, because b and c fix the vector v = e1. When ` > 0, we have

(vx`)a = va(x`)a = v(x`)a = v(xa)` = v(zxε)` = v(z`xε`) = z`vxε`.

Observe that v, vx, . . . , vxn−1 is a basis of Fq and hence there exists a0, a1, . . . , an−1 ∈
Fq with

vxn = a0v + a1vx+ · · ·+ an−1vx
n−1. (2.1)

Now, by applying a on both sides of this equality and using the previous paragraph, we
obtain

znvxεn = ac0v + ac1zvx
ε + · · ·+ acn−1z

n−1vxε(n−1). (2.2)

We let f(T ) := T n−an−1T n−1−an−2T n−2−· · ·−a1T−a0 ∈ Fq[T ] be the characteristic
polynomial of the matrix x. Observe that f(T ) is irreducible in Fq[T ] because x =
ggcd(n,q−1) acts irreducibly on Fnq . Let λ ∈ Fqn be a root of f(T ) and observe that λ
generates the field extension Fqn/Fq. Observe that λ has order (qn − 1)/ gcd(n, q − 1)
in the multiplicative group F∗q, because so does x. Now, let f c(T ) = T n − acn−1T n−1 −
acn−2T

n−2 − · · · − ac1T − ac0 ∈ Fq[T ] be the image of the polynomial f(T ) ∈ Fq[T ] under
the Galois automorphism c ∈ Gal(Fq). Clearly, the roots of f(T ) are

λ, λq, . . . , λq
n−1

and the roots of f c(T ) are

λc, λcq, . . . , λcq
n−1

.

Moreover, let κ ∈ N with q = pκ, for some prime number p, and let j ∈ {0, . . . , κ − 1}
with ωc = ωp

j
, ∀ω ∈ Fq.

We now distinguish the cases, depending on whether ε = 1 or ε = −1. Assume ε = 1.
Using (2.1) and (2.2) and using the fact that f(λ) = 0, we get f c(zλ) = 0. Therefore, we
deduce zλ is a root of f c(T ) and hence, there exists i ∈ {0, . . . , n−1}, with λcq

i
= zλ. This

gives λcq
i−1 = z ∈ F∗q and hence λ(cq

i−1)(q−1) = 1. Since λ has order (qn−1)/ gcd(n, q−1),
this implies

qn − 1

gcd(n, q − 1)
divides (pjqi − 1)(q − 1). (2.3)

If pjqi − 1 = 0, then j = 0 and i = 0. This implies c = 1 and z = 1 and the lemma
follows in this case. Suppose pjqi − 1 6= 0. Assume further that (κn, p) 6= (6, 2). Then
Zsigmondy’s theorem guarantees the existence of a primitive prime divisor r of pκn − 1.
Clearly r does not divide pjqi − 1 = pj+κi − 1 and hence we contradict (2.3). Finally,
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assume (nκ, p) = (6, 2). Since we are excluding the case (n, q) = (3, 4) in the statement
of this lemma, we have (n, q) = (6, 2). In particular, have κ = 1 and hence z = 1 and the
proof follows again.

Assume ε = −1. Using (2.1) and (2.2) and using the fact that f(λ) = 0, we obtain that
zλ−1 is a root of f c(T ) and hence, there exists i ∈ {0, . . . , n− 1}, with λcq

i
= zλ−1. This

gives λcq
i+1 = z ∈ F∗q and hence λ(p

jqi+1)(q−1) = 1. Since λ has order (qn−1)/ gcd(n, q−1),
this implies

qn − 1

gcd(n, q − 1)
divides (pjqi + 1)(q − 1). (2.4)

An argument similar to the one above shows that (2.4) is never possible.

Proof of Theorem 1. Macbeath has proved in [11] that, for every prime power q, PSL(2, q)
is strongly symmetric; see also [4, Proposition 8]. In particular, for the rest of the proof,
we let S be a finite strongly symmetric non-abelian simple group and our task is to show
that S ∼= PSL(2, q), for some prime power q.

Observe that, if S = 〈s1, s2〉 and α ∈ Aut(S) inverts both s1 and s2, then

α2 ∈ CAut(S)(s1) ∩CAut(S)(s2) = CAut(S)(〈s1, s2〉) = CAut(S)(S) = 1.

If α is the identity automorphism, then s1, s2 are involutions and hence S = 〈s1, s2〉 is a
dihedral group, contradicting the fact that S is a non-abelian simple group. Therefore α
has order 2, that is, α is an involution of Aut(S).

In [10, Theorem 1.1], Leemans and Liebeck have proved that, if T is a finite non-
abelian simple group that is not isomorphic to Alt(7), to PSL(2, q), to PSL(3, q) or to
PSU(3, q), then there exist x, s ∈ S such that the following hold:

(i) T = 〈x, s〉;

(ii) s is an involution;

(iii) there is no involution α ∈ Aut(T ) such that xα = x−1, sα = s.

In particular, if S is not isomorphic to Alt(7), to PSL(2, q), to PSL(3, q) or to PSU(3, q),
then S is not strongly symmetric. In the rest of this proof, we deal with each of these
cases separately.

Assume S = Alt(7); in particular, Aut(S) = Sym(7). Let s1 := (1, 2, 3, 4, 5, 6, 7) and
s2 := (1, 2, 3, 4, 6, 7, 5) and, for i ∈ {1, 2}, let ∆i := {α ∈ Sym(7) | sαi = s−1i }. It can be
easily checked that S = 〈s1, s2〉 and

∆1 = {(2, 7)(3, 6)(2, 4), (1, 7)(2, 6)(3, 5), (1, 6)(2, 5)(3, 4), (1, 5)(2, 4)(6, 7),

(1, 4)(2, 3)(5, 7), (1, 3)(4, 7)(5, 6), (1, 2)(3, 7)(4, 6)},

∆2 = {(2, 5)(3, 7)(4, 6), (1, 5)(2, 7)(3, 6), (1, 7)(2, 6)(3, 4), (1, 6)(2, 4)(5, 7),

(1, 4)(2, 3)(5, 6), (1, 3)(4, 5)(6, 7), (1, 2)(3, 5)(4, 7)}.
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Since ∆1∩∆2 = ∅, the generating pair s1, s2 of Alt(7) witnesses that Alt(7) is not strongly
symmetric.

Assume S = PSL(3, q). Since PSL(3, 2) = PSL(2, 7), we may assume q > 2. Moreover,
we have verified with a computer that PSL(3, 4) is not strongly symmetric.

Let A := Aut(S), let d := gcd(3, q − 1) and let ι be the graph automorphism of
PSL(3, q) defined via the inverse-transpose mapping x 7→ xι = (x−1)T , for every x ∈
PSL(3, q), where xT denotes the transpose of the element x of PSL(3, q). Since x ∈
PSL(3, q) is not a single matrix, but a coset of the center Z(SL(3, q)) in SL(3, q), there
is a slight abuse of notation when we talk about the transpose of the coset x. However,
since Z(SL(3, q)) consists of diagonal matrices, this should cause no confusion.

Next, let Ω1 be the set of cyclic subgroups of S generated by a Singer cycle of order
(q2 + q + 1)/d and, for any K ∈ Ω1, let

∆K := {α ∈ A | α2 = 1, kα = k−1 ∀k ∈ K}.

Observe that the set Ω1 consists of a single S-conjugacy class.
Let K ∈ Ω1, let k ∈ K be a generator of K and let α, β ∈ ∆K . Then kα = k−1 = kβ

and hence β−1α ∈ CAut(S)(k). This shows that ∆K ⊆ CAut(S)(k)α and that ∆K consists
of the involutions in CAut(S)(k)α.

From [2, Theorem 8], we see that there exists a symmetric matrix g ∈ GL(3, q) having
order q3 − 1. Let ḡ be the projection of g in PGL(3, q). The element h := ḡd generates a
subgroup H ∈ Ω1. Since g is symmetric, g = gT and hence hι = h−1, that is, ι ∈ ∆H and
∆H consists of the involutions contained in CAut(S)(h)ι. From Lemma 1, we deduce that,
if a ∈ PΓL(3, q) and ha = hε with ε ∈ {1,−1}, then ε = 1 and a ∈ 〈ḡ〉. As ḡι = ḡ−1, we
deduce CAut(S)(h) = 〈ḡ〉 and that 〈ḡ, ι〉 is a dihedral group of order 2(q2 + q + 1). Thus

|∆H | = q2 + q + 1. (2.5)

Let Ω2 be the set of the conjugates of ι in A. Given y ∈ Ω2, we want to determine the
number δy of subgroups K ∈ Ω1 with the property that y ∈ ∆K . Consider the bipartite
graph having vertex set Ω1 ∪ Ω2 and having edge set consisting of the pairs {K, y} with
K ∈ Ω1, y ∈ Ω2 and y ∈ ∆K . Since Ω1 and Ω2 both consist of a single A-conjugacy class,
the group A acts as a group of automorphisms on our bipartite graph with orbits Ω1 and
Ω2. Thus, the number of edges of the bipartite graph is |Ω1||∆H | = |Ω2|δy. Therefore, for
every y ∈ Ω1, we have

δy =
|Ω1||∆H |
|Ω2|

. (2.6)

Let ωH be the number of K ∈ Ω1 with ∆H ∩∆K 6= ∅. Clearly

ωH 6 δy|∆H |. (2.7)

We claim that there exists K ∈ Ω1 with ∆H ∩∆K = ∅. From (2.5), (2.6) and (2.7),
it suffices to show that

|Ω1| > δy|∆H | =
|Ω1||∆H |2

|Ω2|
> ωH
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or, equivalently, that

|A : CA(ι)| = |Ω2| > |∆H |2 = (q2 + q + 1)2.

Let G = InnDiag(S) = PGL(3, q). From [8, Chapter 4] or [5, Proposition 3.2.11], we have
CG(ι) = Sp(2, q) when q is even and CG(ι) = PGO(2, q) when q is odd. Thus, in both
cases, we have

|A : CA(ι)| > |G : CG(ι)| = (q3 − 1)(q2 − 1)q3

(q2 − 1)q
= (q3 − 1)q2.

As q > 2, it follows |A : CA(ι)| > (q2 + q + 1)2 and our claim is now proved.
Now choose K = 〈y〉 ∈ Ω1 such that ∆H ∩∆K = ∅. We use the list of the maximal

subgroups of S = PSL(3, q), see [3, Table 8.3]. When q 6= 4,NS(H) is a maximal subgroup
of S isomorphic to H : 3 and hence 〈h, y〉 = S. In particular, h, y is a generating pair of
S witnessing that S is not strongly symmetric. When q = 4, we have used the computer
algebra system magma [1] to show that PSL(3, 4) is not strongly symmetric.

Let S = PSU(3, q) and A = Aut(S). Since PSU(3, 2) is solvable, q > 2. Let A :=
Aut(S), let d := gcd(3, q + 1) and let Ω1 be the set of cyclic subgroups of S generated by
a Singer cycle of order (q2 − q + 1)/d and, for any K ∈ Ω1, let

∆K := {α ∈ A | α2 = 1, kα = k−1 ∀k ∈ K}.

Observe that the set Ω1 consists of a single S-conjugacy class.
Let φ be the automorphism of S induced by the Frobenius automorphism x 7→ xq of

the underlying finite field Fq2 of order q2. We recall now some main facts about Singer
cycles. Let Fq6 be the field with q6 elements and let a ∈ Fq6 with a 6= 0. Consider
the multiplication πa : Fq6 → Fq6 defined by πa(x) = ax, for all x ∈ Fq6 . For every
divisor d of 6, the set V = Fq6 can be interpreted as a vector space of dimension 6/d
over the field Fqd and the map πa is a Fqd-linear transformation of V . Thus, once a base
is fixed, πa induces a matrix belonging to GL(6/d, qd). Now, let a be a generator of the
multiplicative field of Fq6 . Then, by [9, Theorem 5.2], the multiplication πq3−1 seen as a
Fq2-linear transformation of Fq6 induces a Singer cycle g for GU(3, q) having order q3 + 1.
Moreover,

gφ = πφa3−1 = πa(q3−1)q3 = πaq6−q3 = πa1−q3 = πa−(q3−1) = g−1.

Let ḡ be the projection of g in PGU(3, q) and let h := ḡd. Thus H := 〈h〉 ∈ Ω1 and
φ ∈ ∆H . Since CPGU(3,q)(〈ḡ〉) = 〈ḡ〉 and since no field automorphism centralizes H, we
deduce that ∆H is the set of the q2−q+1 involutions in the dihedral group 〈ḡ, φ〉 of order
2(q2 − q + 1) (we are omitting some details here, but these are similar to the arguments
in the case of PSL(3, q)). In particular, |∆H | = q2 − q + 1.

Let Ω2 be the set of the conjugates of φ in A. Given y ∈ Ω2, we want to determine the
number δy of subgroups K ∈ Ω1 with y ∈ ∆K . Arguing as in the previous paragraph, we
deduce that

δy =
|Ω1||∆H |
|Ω2|

.
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Let ωH be the number of K ∈ Ω1 with ∆H ∩∆K 6= ∅. Clearly

ωH 6 δy|∆H |.

We claim that there exists K ∈ Ω1 with ∆H ∩∆K = ∅. It suffices to show that

|Ω1| > δy|∆(H)| = |Ω1||∆H |2

|Ω2|
> ωH

or, equivalently, that

|A : CA(φ)| = |Ω2| > |∆H |2 = (q2 − q + 1)2.

Let G = InnDiag(S) = PGU(3, q). From [8, Chapter 4] or [5, Proposition 3.3.15], we have
CG(φ) = Sp(2, q) when q is even and CG(φ) = PGO(2, q) when q is odd. In both cases,
it follows

|A : CA(φ)| > |G : CG(φ)| = (q3 + 1)(q2 − 1)q3

(q2 − 1)q
= (q3 + 1)q2.

It follows |A : CA(φ)| > (q2 − q + 1)2 and our claim is now proved.
Now choose K = 〈y〉 ∈ Ω1 such that ∆H ∩∆K = ∅. We use the list of the maximal

subgroups of S = PSU(3, q), see [3, Table 8.3]. When q /∈ {3, 5}, NS(H) is a maximal
subgroup of S isomorphic to H : 3 and hence 〈h, y〉 = S. In particular, h, y is a generating
pair of S witnessing that S is not strongly symmetric. When q ∈ {3, 4}, we have used the
computer algebra system magma [1] to show that PSU(3, 3) and PSU(3, 5) are not strongly
symmetric.
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