Hypermaps Over Non-Abelian Simple Groups and Strongly Symmetric Generating Sets

Andrea Lucchini^a Pablo Spiga^b

Submitted: Mar 5, 2021; Accepted: Mar 30, 2023; Published: Jul 28, 2023 ©The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A generating pair x, y for a group G is said to be *symmetric* if there exists an automorphism $\varphi_{x,y}$ of G inverting both x and y, that is, $x^{\varphi_{x,y}} = x^{-1}$ and $y^{\varphi_{x,y}} = y^{-1}$. Similarly, a group G is said to be *strongly symmetric* if G can be generated with two elements and if all generating pairs of G are symmetric.

In this paper we classify the finite strongly symmetric non-abelian simple groups. Combinatorially, these are the finite non-abelian simple groups G such that every orientably regular hypermap with monodromy group G is reflexible.

Mathematics Subject Classifications: 05C10, 05C25, 20B25

1 Introduction

The aim of this note is to classify the finite strongly symmetric non-abelian simple groups.

Theorem 1. Let S be a finite non-abelian simple group. Then S is strongly symmetric if and only if $S \cong \text{PSL}(2, q)$ for some prime power q.

Interest on strongly symmetric groups stems from maps and hypermaps, which (roughly speaking) are embeddings of graphs on surfaces, see [\[6\]](#page-6-0). We give a brief account on this connection, for more details see [\[4,](#page-6-1) [10\]](#page-7-0).

A map on a surface is a decomposition of a closed connected surface into vertices, edges and faces. The vertices and edges of this decomposition form the underlying graph of the map. An automorphism of a map is an automorphism of the underlying graph which can be extended to a homeomorphism of the whole surface. For the definition of hypermaps, which bring us closer to strongly symmetric groups, we need to take a more combinatorial point of view.

Each map on a orientable surface can be described by two permutations, usually denoted by R and L, acting on the set of directed edges (that is, ordered pairs of adjacent

THE ELECTRONIC JOURNAL OF COMBINATORICS $30(3)$ (2023), $\#P3.13$ <https://doi.org/10.37236/10286>

^aDipartimento di Matematica "Tullio Levi-Civita", University of Padova, Via Trieste 63, 35121 Padova, Italy (lucchini@math.unipd.it).

 b Dipartimento di Matematica Pura e Applicata, University of Milano-Bicocca, Via Cozzi 55, 20126 Milano, Italy (pablo.spiga@unimib.it).

vertices) of the underlying graph. The permutation R permutes cyclically the directed edges starting from a given vertex and preserving a chosen orientation of the surface. The permutation L interchanges the end vertices of a given directed edge. The monodromy group of the surface is the group generated by R and L and the map is said to be regular if the monodromy group acts regularly, that is, the identity is the only permutation fixing some element.

Observe that in a map, we have $L^2 = 1$. A hypermap is simply given by the combinatorial data R and L, where L is not necessarily an involution. Inspired by the topological and geometrical counterpart for maps, a hypermap is said to be reflexible if the assigment $R \mapsto R^{-1}$ and $L \mapsto L^{-1}$ extends to a group automorphism of $\langle R, L \rangle$; otherwise the hypermap is said to be chiral.

It was shown in [\[4,](#page-6-1) Lemma 7], that a finite group G is strongly symmetric if and only if every orientably regular hypermap with monodromy group G is reflexible. In particular, Theorem [1](#page-0-0) classify the finite non-abelian simple groups G with the property that every orientably regular hypermap with monodromy group G is reflexible.

In our opinion, Theorem [1](#page-0-0) suggests a natural problem, which in principle should give a measure of how chirality is abundant among regular hypermaps. Let S be a non-abelian simple group and let $\delta(S)$ be the proportion of strongly symmetric generating sets of S, that is,

$$
\delta(S) := \frac{|\{(x, y) \in S \times S \mid x, y \text{ symmetric generating set}\}|}{|\{(x, y) \in S \times S \mid S = \langle x, y \rangle\}|}.
$$

The closer $\delta(S)$ is to 1, the more abundant reflexible hypermaps are among orientably regular hypermaps with monodromy group S. Indeed, Theorem [1](#page-0-0) classifies the groups S attaining 1. We do not have any "running conjecture", but we wonder whether statistically it is frequent the case that $\delta(S) < 1/2$. Moreover, we wonder whether it is statistically significant the case that $\delta(S) \to 0$ as $|S| \to \infty$, as S runs through a certain family of non-abelian simple groups.[1](#page-1-0)

2 Proof of Theorem [1](#page-0-0)

We start with a preliminary lemma.

Lemma 1. Let n be an integer with $n \geq 3$, let q be a prime power with $(n,q) \neq (3,4)$, let $g \in GL(n, q)$ be a Singer cycle of order $q^n - 1$, let $x := g^{\gcd(n,q-1)}$ and let $a \in \Gamma\mathcal{L}(n, q)$ such that $x^a = zx^{\varepsilon}$, for some $z \in \mathbf{Z}(\mathrm{GL}(n,q))$ and $\varepsilon \in \{-1,1\}$. Then $z = 1$, $\varepsilon = 1$ and $a \in \langle q \rangle$.

Proof. Let e_1, \ldots, e_n be the canonical basis of the *n*-dimensional vector space \mathbb{F}_q^n of row vectors over the finite field of cardinality q. Set $v := e_1$ and let P_1 be the stabilizer in $GL(n, q)$ of the vector v. As $\langle g \rangle$ acts transitively on the set of non-zero vectors of \mathbb{F}_q^n and as P_1 is the stabilizer of the non-zero vector v, we deduce from the Frattini argument

¹During the refereeing process of this paper, Theorem [1](#page-0-0) has proved to be useful in [\[7,](#page-6-2) page 2 and 3] for the proof of Cherlin's conjecture on finite primitive binary permutation groups.

that $GL(n,q) = \langle g \rangle P_1$. In particular, as $a \in \Gamma L(n,q)$, we have $a = g^i bc$, where $i \in \mathbb{Z}$, $b \in P_1$ and c lies in the Galois group $Gal(\mathbb{F}_q)$ of the field \mathbb{F}_q . Set $a' := bc$. Observe that $x^a = x^{a'}$ because g^i centralizes $x \in \langle g \rangle$. Moreover, $a \in \langle g \rangle$ if and only if $a' \in \langle g \rangle$. Therefore, replacing a with a' if necessary, in the rest of the argument we may suppose that $a = a' = bc$.

As $\mathbf{Z}(\mathrm{GL}(n,q))$ consists of scalar matrices, we may identify the matrix z with an element in the field \mathbb{F}_q . We show that, for every $\ell \in \mathbb{N}$, we have $(vx^{\ell})^a = z^{\ell}vx^{\epsilon\ell}$. When $\ell = 0, v^a = v^{bc} = v$, because b and c fix the vector $v = e_1$. When $\ell > 0$, we have

$$
(vx^{\ell})^a = v^a(x^{\ell})^a = v(x^{\ell})^a = v(x^a)^{\ell} = v(zx^{\varepsilon})^{\ell} = v(z^{\ell}x^{\varepsilon\ell}) = z^{\ell}vx^{\varepsilon\ell}.
$$

Observe that $v, vx, ..., vx^{n-1}$ is a basis of \mathbb{F}_q and hence there exists $a_0, a_1, ..., a_{n-1} \in$ \mathbb{F}_q with

$$
vx^{n} = a_0v + a_1vx + \dots + a_{n-1}vx^{n-1}.
$$
\n(2.1)

Now, by applying a on both sides of this equality and using the previous paragraph, we obtain

$$
z^{n}vx^{\varepsilon n} = a_0^{c}v + a_1^{c}zvx^{\varepsilon} + \dots + a_{n-1}^{c}z^{n-1}vx^{\varepsilon(n-1)}.
$$
 (2.2)

We let $f(T) := T^n - a_{n-1}T^{n-1} - a_{n-2}T^{n-2} - \cdots - a_1T - a_0 \in \mathbb{F}_q[T]$ be the characteristic polynomial of the matrix x. Observe that $f(T)$ is irreducible in $\mathbb{F}_q[T]$ because $x =$ $g^{\gcd(n,q-1)}$ acts irreducibly on \mathbb{F}_q^n . Let $\lambda \in \mathbb{F}_{q^n}$ be a root of $f(T)$ and observe that λ generates the field extension $\mathbb{F}_{q^n}/\mathbb{F}_q$. Observe that λ has order $(q^n-1)/\text{gcd}(n, q-1)$ in the multiplicative group \mathbb{F}_q^* , because so does x. Now, let $f^c(T) = T^n - a_{n-1}^c T^{n-1}$ $a_{n-2}^cT^{n-2}-\cdots-a_1^cT-a_0^c\in \mathbb{F}_q[T]$ be the image of the polynomial $f(T)\in \mathbb{F}_q[T]$ under the Galois automorphism $c \in Gal(\mathbb{F}_q)$. Clearly, the roots of $f(T)$ are

$$
\lambda, \lambda^q, \ldots, \lambda^{q^{n-1}}
$$

and the roots of $f^c(T)$ are

$$
\lambda^c, \lambda^{cq}, \ldots, \lambda^{cq^{n-1}}.
$$

Moreover, let $\kappa \in \mathbb{N}$ with $q = p^{\kappa}$, for some prime number p, and let $j \in \{0, ..., \kappa - 1\}$ with $\omega^c = \omega^{p^j}, \,\forall \omega \in \mathbb{F}_q$.

We now distinguish the cases, depending on whether $\varepsilon = 1$ or $\varepsilon = -1$. Assume $\varepsilon = 1$. Using [\(2.1\)](#page-2-0) and [\(2.2\)](#page-2-1) and using the fact that $f(\lambda) = 0$, we get $f^c(z\lambda) = 0$. Therefore, we deduce $z\lambda$ is a root of $f^c(T)$ and hence, there exists $i \in \{0, \ldots, n-1\}$, with $\lambda^{cq^i} = z\lambda$. This gives $\lambda^{cq^i-1} = z \in \mathbb{F}_q^*$ and hence $\lambda^{(cq^i-1)(q-1)} = 1$. Since λ has order $(q^n-1)/\text{gcd}(n, q-1)$, this implies

$$
\frac{q^{n}-1}{\gcd(n, q-1)} \text{ divides } (p^{j}q^{i}-1)(q-1). \tag{2.3}
$$

If $p^j q^i - 1 = 0$, then $j = 0$ and $i = 0$. This implies $c = 1$ and $z = 1$ and the lemma follows in this case. Suppose $p^j q^i - 1 \neq 0$. Assume further that $(\kappa n, p) \neq (6, 2)$. Then Zsigmondy's theorem guarantees the existence of a primitive prime divisor r of $p^{kn} - 1$. Clearly r does not divide $p^j q^i - 1 = p^{j + \kappa i} - 1$ and hence we contradict [\(2.3\)](#page-2-2). Finally, assume $(n\kappa, p) = (6, 2)$. Since we are excluding the case $(n, q) = (3, 4)$ in the statement of this lemma, we have $(n, q) = (6, 2)$. In particular, have $\kappa = 1$ and hence $z = 1$ and the proof follows again.

Assume $\varepsilon = -1$. Using [\(2.1\)](#page-2-0) and [\(2.2\)](#page-2-1) and using the fact that $f(\lambda) = 0$, we obtain that $z\lambda^{-1}$ is a root of $f^c(T)$ and hence, there exists $i \in \{0, \ldots, n-1\}$, with $\lambda^{cq^i} = z\lambda^{-1}$. This gives $\lambda^{cq^i+1} = z \in \mathbb{F}_q^*$ and hence $\lambda^{(p^jq^i+1)(q-1)} = 1$. Since λ has order $(q^n-1)/\text{gcd}(n, q-1)$, this implies

$$
\frac{q^{n}-1}{\gcd(n, q-1)} \text{ divides } (p^{j}q^{i}+1)(q-1). \tag{2.4}
$$

An argument similar to the one above shows that [\(2.4\)](#page-3-0) is never possible.

Proof of Theorem [1](#page-0-0). Macbeath has proved in [\[11\]](#page-7-1) that, for every prime power q, $PSL(2, q)$ is strongly symmetric; see also [\[4,](#page-6-1) Proposition 8]. In particular, for the rest of the proof, we let S be a finite strongly symmetric non-abelian simple group and our task is to show that $S \cong \text{PSL}(2,q)$, for some prime power q.

Observe that, if $S = \langle s_1, s_2 \rangle$ and $\alpha \in \text{Aut}(S)$ inverts both s_1 and s_2 , then

$$
\alpha^{2} \in \mathbf{C}_{\mathrm{Aut}(S)}(s_{1}) \cap \mathbf{C}_{\mathrm{Aut}(S)}(s_{2}) = \mathbf{C}_{\mathrm{Aut}(S)}(\langle s_{1}, s_{2} \rangle) = \mathbf{C}_{\mathrm{Aut}(S)}(S) = 1.
$$

If α is the identity automorphism, then s_1, s_2 are involutions and hence $S = \langle s_1, s_2 \rangle$ is a dihedral group, contradicting the fact that S is a non-abelian simple group. Therefore α has order 2, that is, α is an involution of Aut(S).

In [\[10,](#page-7-0) Theorem 1.1], Leemans and Liebeck have proved that, if T is a finite nonabelian simple group that is not isomorphic to $Alt(7)$, to $PSL(2,q)$, to $PSL(3,q)$ or to $PSU(3, q)$, then there exist $x, s \in S$ such that the following hold:

(i)
$$
T = \langle x, s \rangle;
$$

- (ii) s is an involution;
- (iii) there is no involution $\alpha \in \text{Aut}(T)$ such that $x^{\alpha} = x^{-1}$, $s^{\alpha} = s$.

In particular, if S is not isomorphic to $Alt(7)$, to $PSL(2, q)$, to $PSL(3, q)$ or to $PSU(3, q)$, then S is not strongly symmetric. In the rest of this proof, we deal with each of these cases separately.

Assume $S = Alt(7)$; in particular, $Aut(S) = Sym(7)$. Let $s_1 := (1, 2, 3, 4, 5, 6, 7)$ and $s_2 := (1, 2, 3, 4, 6, 7, 5)$ and, for $i \in \{1, 2\}$, let $\Delta_i := \{ \alpha \in \text{Sym}(7) \mid s_i^{\alpha} = s_i^{-1} \}$ $\binom{-1}{i}$. It can be easily checked that $S = \langle s_1, s_2 \rangle$ and

$$
\Delta_1 = \{ (2, 7)(3, 6)(2, 4), (1, 7)(2, 6)(3, 5), (1, 6)(2, 5)(3, 4), (1, 5)(2, 4)(6, 7), (1, 4)(2, 3)(5, 7), (1, 3)(4, 7)(5, 6), (1, 2)(3, 7)(4, 6) \},
$$

\n
$$
\Delta_2 = \{ (2, 5)(3, 7)(4, 6), (1, 5)(2, 7)(3, 6), (1, 7)(2, 6)(3, 4), (1, 6)(2, 4)(5, 7), (1, 4)(2, 3)(5, 6), (1, 3)(4, 5)(6, 7), (1, 2)(3, 5)(4, 7) \}.
$$

 \Box

Since $\Delta_1 \cap \Delta_2 = \emptyset$, the generating pair s_1, s_2 of Alt(7) witnesses that Alt(7) is not strongly symmetric.

Assume $S = \text{PSL}(3, q)$. Since $\text{PSL}(3, 2) = \text{PSL}(2, 7)$, we may assume $q > 2$. Moreover, we have verified with a computer that $PSL(3, 4)$ is not strongly symmetric.

Let $A := \text{Aut}(S)$, let $d := \text{gcd}(3, q - 1)$ and let ι be the graph automorphism of PSL(3, q) defined via the inverse-transpose mapping $x \mapsto x^i = (x^{-1})^T$, for every $x \in$ $PSL(3, q)$, where x^T denotes the transpose of the element x of $PSL(3, q)$. Since $x \in$ $PSL(3, q)$ is not a single matrix, but a coset of the center $\mathbf{Z}(\mathrm{SL}(3, q))$ in $\mathrm{SL}(3, q)$, there is a slight abuse of notation when we talk about the transpose of the coset x . However, since $\mathbf{Z}(\mathrm{SL}(3,q))$ consists of diagonal matrices, this should cause no confusion.

Next, let Ω_1 be the set of cyclic subgroups of S generated by a Singer cycle of order $(q^2 + q + 1)/d$ and, for any $K \in \Omega_1$, let

$$
\Delta_K := \{ \alpha \in A \mid \alpha^2 = 1, \, k^{\alpha} = k^{-1} \, \forall k \in K \}.
$$

Observe that the set Ω_1 consists of a single S-conjugacy class.

Let $K \in \Omega_1$, let $k \in K$ be a generator of K and let $\alpha, \beta \in \Delta_K$. Then $k^{\alpha} = k^{-1} = k^{\beta}$ and hence $\beta^{-1}\alpha \in \mathbf{C}_{\text{Aut}(S)}(k)$. This shows that $\Delta_K \subseteq \mathbf{C}_{\text{Aut}(S)}(k)\alpha$ and that Δ_K consists of the involutions in $\mathbf{C}_{\text{Aut}(S)}(k)\alpha$.

From [\[2,](#page-6-3) Theorem 8], we see that there exists a symmetric matrix $q \in GL(3, q)$ having order $q^3 - 1$. Let \bar{g} be the projection of g in PGL(3, q). The element $h := \bar{g}^d$ generates a subgroup $H \in \Omega_1$. Since g is symmetric, $g = g^T$ and hence $h^{\iota} = h^{-1}$, that is, $\iota \in \Delta_H$ and Δ_H consists of the involutions contained in $\mathbf{C}_{\text{Aut}(S)}(h)\iota$. From Lemma [1,](#page-1-1) we deduce that, if $a \in \text{P}\Gamma\text{L}(3, q)$ and $h^a = h^{\varepsilon}$ with $\varepsilon \in \{1, -1\}$, then $\varepsilon = 1$ and $a \in \langle \bar{g} \rangle$. As $\bar{g}^{\iota} = \bar{g}^{-1}$, we deduce $\mathbf{C}_{\text{Aut}(S)}(h) = \langle \bar{g} \rangle$ and that $\langle \bar{g}, \iota \rangle$ is a dihedral group of order $2(q^2 + q + 1)$. Thus

$$
|\Delta_H| = q^2 + q + 1. \tag{2.5}
$$

Let Ω_2 be the set of the conjugates of ι in A. Given $y \in \Omega_2$, we want to determine the number δ_y of subgroups $K \in \Omega_1$ with the property that $y \in \Delta_K$. Consider the bipartite graph having vertex set $\Omega_1 \cup \Omega_2$ and having edge set consisting of the pairs $\{K, y\}$ with $K \in \Omega_1, y \in \Omega_2$ and $y \in \Delta_K$. Since Ω_1 and Ω_2 both consist of a single A-conjugacy class, the group A acts as a group of automorphisms on our bipartite graph with orbits Ω_1 and Ω_2 . Thus, the number of edges of the bipartite graph is $|\Omega_1||\Delta_H| = |\Omega_2|\delta_y$. Therefore, for every $y \in \Omega_1$, we have

$$
\delta_y = \frac{|\Omega_1||\Delta_H|}{|\Omega_2|}.\tag{2.6}
$$

Let ω_H be the number of $K \in \Omega_1$ with $\Delta_H \cap \Delta_K \neq \emptyset$. Clearly

$$
\omega_H \leqslant \delta_y |\Delta_H|. \tag{2.7}
$$

We claim that there exists $K \in \Omega_1$ with $\Delta_H \cap \Delta_K = \emptyset$. From [\(2.5\)](#page-4-0), [\(2.6\)](#page-4-1) and [\(2.7\)](#page-4-2), it suffices to show that

$$
|\Omega_1| > \delta_y |\Delta_H| = \frac{|\Omega_1||\Delta_H|^2}{|\Omega_2|} \geq \omega_H
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS $30(3)$ (2023), $\#P3.13$ 5

or, equivalently, that

$$
|A: \mathbf{C}_A(\iota)| = |\Omega_2| > |\Delta_H|^2 = (q^2 + q + 1)^2.
$$

Let $G = \text{InnDiag}(S) = \text{PGL}(3, q)$. From [\[8,](#page-7-2) Chapter 4] or [\[5,](#page-6-4) Proposition 3.2.11], we have $C_G(i) = Sp(2,q)$ when q is even and $C_G(i) = PGO(2,q)$ when q is odd. Thus, in both cases, we have

$$
|A: \mathbf{C}_A(\iota)| \geq |G: \mathbf{C}_G(\iota)| = \frac{(q^3 - 1)(q^2 - 1)q^3}{(q^2 - 1)q} = (q^3 - 1)q^2.
$$

As $q > 2$, it follows $|A : \mathbf{C}_A(\iota)| > (q^2 + q + 1)^2$ and our claim is now proved.

Now choose $K = \langle y \rangle \in \Omega_1$ such that $\Delta_H \cap \Delta_K = \emptyset$. We use the list of the maximal subgroups of $S = \text{PSL}(3, q)$, see [\[3,](#page-6-5) Table 8.3]. When $q \neq 4$, $\mathbf{N}_S(H)$ is a maximal subgroup of S isomorphic to H : 3 and hence $\langle h, y \rangle = S$. In particular, h, y is a generating pair of S witnessing that S is not strongly symmetric. When $q = 4$, we have used the computer algebra system magma $[1]$ to show that $PSL(3, 4)$ is not strongly symmetric.

Let $S = \text{PSU}(3, q)$ and $A = \text{Aut}(S)$. Since $\text{PSU}(3, 2)$ is solvable, $q > 2$. Let $A :=$ Aut(S), let $d := \gcd(3, q + 1)$ and let Ω_1 be the set of cyclic subgroups of S generated by a Singer cycle of order $(q^2 - q + 1)/d$ and, for any $K \in \Omega_1$, let

$$
\Delta_K := \{ \alpha \in A \mid \alpha^2 = 1, \, k^{\alpha} = k^{-1} \, \forall k \in K \}.
$$

Observe that the set Ω_1 consists of a single S-conjugacy class.

Let ϕ be the automorphism of S induced by the Frobenius automorphism $x \mapsto x^q$ of the underlying finite field \mathbb{F}_{q^2} of order q^2 . We recall now some main facts about Singer cycles. Let \mathbb{F}_{q^6} be the field with q^6 elements and let $a \in \mathbb{F}_{q^6}$ with $a \neq 0$. Consider the multiplication $\pi_a : \mathbb{F}_{q^6} \to \mathbb{F}_{q^6}$ defined by $\pi_a(x) = ax$, for all $x \in \mathbb{F}_{q^6}$. For every divisor d of 6, the set $V = \mathbb{F}_{q^6}$ can be interpreted as a vector space of dimension $6/d$ over the field \mathbb{F}_{q^d} and the map π_a is a \mathbb{F}_{q^d} -linear transformation of V. Thus, once a base is fixed, π_a induces a matrix belonging to $GL(6/d, q^d)$. Now, let a be a generator of the multiplicative field of \mathbb{F}_{q^6} . Then, by [\[9,](#page-7-3) Theorem 5.2], the multiplication π_{q^3-1} seen as a \mathbb{F}_{q^2} -linear transformation of \mathbb{F}_{q^6} induces a Singer cycle g for GU(3, q) having order q^3+1 . Moreover,

$$
g^{\phi} = \pi_{a^3-1}^{\phi} = \pi_{a^{(q^3-1)q^3}} = \pi_{a^{q^6-q^3}} = \pi_{a^{1-q^3}} = \pi_{a^{-(q^3-1)}} = g^{-1}.
$$

Let \bar{g} be the projection of g in PGU(3, q) and let $h := \bar{g}^d$. Thus $H := \langle h \rangle \in \Omega_1$ and $\phi \in \Delta_H$. Since $\mathbf{C}_{PGU(3,q)}(\langle \bar{g} \rangle) = \langle \bar{g} \rangle$ and since no field automorphism centralizes H, we deduce that Δ_H is the set of the $q^2 - q + 1$ involutions in the dihedral group $\langle \bar{g}, \phi \rangle$ of order $2(q^2-q+1)$ (we are omitting some details here, but these are similar to the arguments in the case of PSL(3,q)). In particular, $|\Delta_H| = q^2 - q + 1$.

Let Ω_2 be the set of the conjugates of ϕ in A. Given $y \in \Omega_2$, we want to determine the number δ_y of subgroups $K \in \Omega_1$ with $y \in \Delta_K$. Arguing as in the previous paragraph, we deduce that

$$
\delta_y = \frac{|\Omega_1||\Delta_H|}{|\Omega_2|}.
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS $30(3)$ (2023), $\#P3.13$ 6

Let ω_H be the number of $K \in \Omega_1$ with $\Delta_H \cap \Delta_K \neq \emptyset$. Clearly

$$
\omega_H \leq \delta_y |\Delta_H|.
$$

We claim that there exists $K \in \Omega_1$ with $\Delta_H \cap \Delta_K = \emptyset$. It suffices to show that

$$
|\Omega_1| > \delta_y |\Delta(H)| = \frac{|\Omega_1||\Delta_H|^2}{|\Omega_2|} \geq \omega_H
$$

or, equivalently, that

$$
|A: \mathbf{C}_A(\phi)| = |\Omega_2| > |\Delta_H|^2 = (q^2 - q + 1)^2.
$$

Let $G = \text{InnDiag}(S) = \text{PGU}(3, q)$. From [\[8,](#page-7-2) Chapter 4] or [\[5,](#page-6-4) Proposition 3.3.15], we have $C_G(\phi) = Sp(2,q)$ when q is even and $C_G(\phi) = PGO(2,q)$ when q is odd. In both cases, it follows

$$
|A: \mathbf{C}_A(\phi)| \geq |G: \mathbf{C}_G(\phi)| = \frac{(q^3+1)(q^2-1)q^3}{(q^2-1)q} = (q^3+1)q^2.
$$

It follows $|A: \mathbf{C}_A(\phi)| > (q^2 - q + 1)^2$ and our claim is now proved.

Now choose $K = \langle y \rangle \in \Omega_1$ such that $\Delta_H \cap \Delta_K = \emptyset$. We use the list of the maximal subgroups of $S = \text{PSU}(3, q)$, see [\[3,](#page-6-5) Table 8.3]. When $q \notin \{3, 5\}$, $\mathbf{N}_S(H)$ is a maximal subgroup of S isomorphic to H : 3 and hence $\langle h, y \rangle = S$. In particular, h, y is a generating pair of S witnessing that S is not strongly symmetric. When $q \in \{3, 4\}$, we have used the computer algebra system magma [\[1\]](#page-6-6) to show that $PSU(3,3)$ and $PSU(3,5)$ are not strongly symmetric. \Box

References

- [1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (3-4) (1997), 235–265.
- [2] J. V. Brawley, Similarity to symmetric matrices over finite fields, Finite Fields and *their applications* 4 (1998), 261–274.
- [3] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low dimensional classical groups, London Mathematical Society Lecture Note Series 407, Cambridge University Press, Cambridge, 2013.
- [4] A. Breda D'Azevedo, G. Jones, R. Nedela and M. Škoviera, Chirality groups of maps and hypermaps, J. Algebraic Combin. 29 (2009), no. 3, 337–355.
- [5] T. C. Burness, M. Giudici, Derangements and Primes, Australian Mathematical Society Lecture Series 25, Cambridge University Press, 2016.
- [6] H. S. M. Coxeter, W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd edn. Springer, New York (1972).
- [7] N. Gill, M. W. Liebeck, P. Spiga, Cherlin's Conjecture for Finite Primitive Binary Permutation Groups, Lecture notes in mathematics 2302, Springer, 2022.
- [8] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Number 3. Amer. Math. Soc. Surveys and Monographs 40, 3 (1998).
- [9] M. D. Hestenes, Singer groups, Can. J. Math. XXII, no 3 (1970), 492–513.
- [10] D. Leemans, M. W. Liebeck, Chiral polyhedra and finite simple groups, Bull. Lond. Math. Soc. 49 (2017), no. 4, 581-592.
- [11] A. M. Macbeath, On a theorem of Hurwitz, Proc. Glasgow Math. Assoc. 5 (1961), 90–96.