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Abstract
The ability to predict how efficiently a person finds an object in the environment is a crucial goal of attention research. Cen-
tral to this issue are the similarity principles initially proposed by Duncan and Humphreys, which outline how the similarity 
between target and distractor objects (TD) and between distractor objects themselves (DD) affect search efficiency. However, 
the search principles lack direct quantitative support from an ecological perspective, being a summary approximation of a 
wide range of lab-based results poorly generalisable to real-world scenarios. This study exploits deep convolutional neural 
networks to predict human search efficiency from computational estimates of similarity between objects populating, poten-
tially, any visual scene. Our results provide ecological evidence supporting the similarity principles: search performance 
continuously varies across tasks and conditions and improves with decreasing TD similarity and increasing DD similarity. 
Furthermore, our results reveal a crucial dissociation: TD and DD similarities mainly operate at two distinct layers of the 
network: DD similarity at the intermediate layers of coarse object features and TD similarity at the final layers of complex 
features used for classification. This suggests that these different similarities exert their major effects at two distinct percep-
tual levels and demonstrates our methodology’s potential to offer insights into the depth of visual processing on which the 
search relies. By combining computational techniques with visual search principles, this approach aligns with modern trends 
in other research areas and fulfils longstanding demands for more ecologically valid research in the field of visual search.

Keywords  Visual search · Visual similarity · Perceptual processing · Convolutional neural networks · Search efficiency · 
Computer vision

Introduction

Visual search literature shows that our ability to find a tar-
get stimulus heavily depends on the similarity relationships 
between the elements in the scene (see Fig. 1). Based on 
a wide range of findings, Duncan and Humphreys (1989) 
demonstrated that search performance varies continuously 

across tasks and conditions and identified two key factors that 
impact it: the similarity between targets and distractors (TD), 
where an increase results in a decrease in performance (e.g., 
Foster & Westland, 1995; Nagy & Sanchez, 1990; Verghese 
& Nakayama, 1994), and the similarity among distractors 
(DD), where an increase leads to an improvement in effi-
ciency (e.g., Farmer & Taylor, 1980; Feldmann-Wüstefeld 
et al., 2017; Rosenholtz, 2001). These two factors would 
interact in affecting performance, scaling each other’s effects.

Although both TD and DD are grounded on relationships 
of similarity, they rely on distinct processes. Duncan and 
Humphreys (1989) suggested that DD effects arise through 
widespread suppression of distractors grouped by similar-
ity, whereas TD was hypothesised to operate through a 
matching process between the input and the target tem-
plate. In a more recent perspective, TD effects have been 
linked to the increasing difficulty of the visual periphery in 
simultaneously comparing all items to the target when TD 
similarity is high (Buetti et al., 2016, 2019). Conversely, 
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DD effects have been linked to interitem interactions pro-
duced by high DD similarity, which facilitate distractor 
rejection (Lleras et al., 2019; Z. J. Xu et al., 2021).

Significant research has been conducted since Duncan 
and Humphreys (1989), leading to a more nuanced under-
standing of the impact of similarity patterns. This includes 
the identification, at various similarity levels, of different 
types of functions that relate response times (RTs) to set 
size, each targeting distinct underlying search mechanisms 
(see Haslam et al., 2001; Lleras et al., 2022). Nevertheless, 
the principles introduced by Duncan and Humphreys still 
offer a robust framework for understanding the impact of 
similarity relationships in visual search. However, there are 
some critical aspects to consider.

First, while TD and DD similarity effects are confirmed 
in a wide range of published results, they remain ‘a general, 
somewhat approximate summary of a wide range of search 
findings’ (Duncan & Humphreys, 1989, p. 444) with no sys-
tematic attempt to quantitative measure stimulus similarity.

Second, empirical findings supporting the validity of the 
similarity principles are mostly limited to a small domain of 
stimulus materials using very basic stimuli and extremely 
limiting constraints (such as letters or colour patches varying 
in a limited number of attributes). While these paradigms 
offer precise control over perceptual variables, they fail to 
capture the richness of real-world scenarios. In everyday 
life, looking for an object entails directing attention towards 
an entity of multidimensional attributes among others that 
might unpredictably share some of them. Given these con-
siderations, the gap between lab-based studies and real-
world scenarios is so significant that it is problematic to 
generalise lab-based findings to everyday visual searches 
(Wolfe, 2020).

Third, using basic stimuli inevitably limits our under-
standing of the level of representation at which similarity 
operates. In other words, when we search for a lost pen-
cil box, do we rely primarily on a low-level representa-
tion encoding its basic attributes (e.g., colour, size) or the 
complex object representation based on its whole design? 

Investigating similarity effects by means of basic stimuli 
cannot contribute to answering this question.

The first aim of this study is to offer an updated investiga-
tion of the impact of similarity in visual search using real 
images as stimuli. Other studies have already tested similarity 
effects using real images (e.g., Alexander & Zelinsky, 2011, 
2012; Trapp & Wienrich, 2018). Still, their approach did not 
allow a comprehensive account of these effects because they 
(1) did not simultaneously and orthogonally manipulate DD 
and TD similarity, (2) the similarity was not measured on a 
continuous gradient, and (3) visual search was investigated 
using limited sets of images (e.g., images of app icons or 
teddy bears). However, ‘alterations in search efficiency can 
only be understood by considering both variables together’ 
(Duncan & Humphreys, 1989, p. 442), and a continuous esti-
mate of similarity is required to accurately represent changes 
in the search performance on a continuous gradient.

With these aims, we adopted a pioneering approach that 
leverages the capabilities of deep convolutional neural net-
works (DCNN) to quantitatively estimate the similarity 
between images (Günther et al., 2023). Once trained, DCNNs 
take an image as input and produce the object’s label pre-
sented in the image as output. At their core, DCNNs con-
vert images to high-dimensional feature maps. The similarity 
between these maps provides a similarity estimate between 
the corresponding images. Notably, the validity and psycho-
logical plausibility of similarity estimates obtained in this way 
have been empirically demonstrated in various experiments in 
the cognitive domain (Günther et al., 2023; Petilli et al., 2021; 
Zhang et al., 2018). In the context of this study, adopting such 
an approach makes it possible to measure TD and DD image 
similarity and evaluate their effect on search performance.

Besides that, we also explored which level of feature 
representation underlies the effects of TD and DD similar-
ity. Previous literature suggests that various levels of visual 
representation contribute to visual search. At the visual 
processing level, Lleras et al. (2022) describe visual search 
as a dynamic process that handles both coarse and detailed 
object representations provided by parallel peripheral and 

Fig. 1   Impact of target–distractor and distractor–distractor similarity on search efficiency. Note. Finding a left-tilted line becomes more difficult 
as TD similarity increases (A vs B) or DD similarity decreases (A vs C)
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serial foveal processing. At the memory level, Wolfe (2020) 
theorises the existence of both low- and high-level internal 
representations of the target: one is the ‘guiding template’, 
a coarse representation incorporating task-relevant features 
guiding attention towards likely targets (Kerzel, 2019; van 
Loon et al., 2017). The second is the ‘target template’, a pre-
cise representation (Bravo & Farid, 2014) to be matched to 
attended items to ascertain, for example, that a given pencil 
box is actually mine and not just similar to mine.

Given this, one might wonder: If visual search relies on 
different levels of representation, on which of them do TD 
and DD similarity operate? Are they acting upon different 
stages of visual processing? To address these questions, 
similarity principles become crucial if we test them at dif-
ferent levels of stimulus representations to reveal which best 
explains search behaviour.

Importantly, DCNNs offer a valid framework to formal-
ise such aspects, providing a numerical characterization 
of image features at hierarchically organised layers with 
increasing complexity (see Fig. 2). These internal repre-
sentations, although differing in many respects from human 
ones, still offer one of the best approximations of the pro-
gress of visual information processing along the human 
ventral stream (for some reviews, see Celeghin et al., 2023; 
Lindsay, 2021). As we move deeper and approach the output 
of DCNN, the low-level features are progressively integrated 
into more complex patterns, reaching the final DCNN layers 
that represent the image through high-level features, such as 
the complex representation of the entire object to be classi-
fied (Kriegeskorte, 2015; Zeiler & Fergus, 2014). To identify 
the level of representation at which similarity affects search, 
we analysed TD and DD effects at the various DCNN lay-
ers and tested which best explains search behaviour. In the 
context of this study, this issue can be rephrased as the fol-
lowing question: Is the similarity between basic or complex 
features that matters in TD vis-à-vis DD similarity effects?

Methods

Computational framework

The present study exploits DCNNs for image classification 
to extract vector representations for individual images (Kriz-
hevsky et al., 2012). DCNNs are brain-inspired computational 
models designed for object recognition that are very popular 
in computer vision (LeCun et al., 2015). Despite some paral-
lels, DCNNs process visual information in ways that diverge 
from human visual processing in many respects. For example, 
compared with humans, DCNNs are less robust to image cor-
ruption (Geirhos, Temme, et al., 2018), do not seem to learn 
object detectors at the level of single units (Gale et al., 2020), 
are not as good at integrating global object shapes (Baker et al., 
2018; Jarvers & Neumann, 2023), and are more biased towards 
textures and colours rather than using shape as a primary cue 
for object recognition (Geirhos, Rubisch, et al., 2018; Landau 
et al., 1988). Overall, DCCNs are far from faithfully repro-
ducing human visual processing. Nevertheless, DCNNs still 
learn internal representations that roughly approximate human 
and nonhuman primate inferotemporal cortex representations 
(Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 2015). 
The validity of these representations is more evident when con-
sidering their capacity to approximate relative differences (i.e., 
similarities) among alternative external objects (i.e., second-
order isomorphism; Roads & Love, 2023) as shown, for exam-
ple, in studies using representational similarity analyses reveal-
ing that activation patterns in DCNNs match those in brain 
areas involved in object identification (e.g., Kalfas et al., 2018; 
Kriegeskorte, 2015; Yamins et al., 2014). This was confirmed 
at the behavioural level, showing that the DCNN similarity esti-
mates not only align with human ratings of visual similarity 
(Günther et al., 2023; Jozwik et al., 2017; Petilli et al., 2021; 
Zhang et al., 2018) but also outperform such ratings in predict-
ing human behaviour in perceptual tasks (Günther et al., 2023).

Fig. 2   Hierarchical organization of internal layers in a deep convolutional neural network. Note. Simplified representation of the internal archi-
tecture of a DCNN along with a visualisation—the top—of learned features in progressively deeper layers (sourced from Lee et al., 2011)
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The internal architecture of DCNNs consists of a mul-
tilayer structure composed of numerous dimensions. Each 
of these dimensions is activated by certain visual features. 
The dimensions can be seen as axes of a multidimensional 
visual space of features, and each value can be considered a 
coordinate. Thus, the vector encoding these dimensions can 
be interpreted as a point within such a visual space, and the 
proximity between points as the visual similarity between 
the corresponding images (with images visually similar—
i.e., with a similar combination of visual features—ending 
up being mapped to nearby points in the space).

In this study, we used as DCNN the pretrained network 
VGG-F (Chatfield et al., 2014) available in the MatConvNet 
MATLAB library (Vedaldi & Lenc, 2015). The VGG-F model 
is a streamlined variant of the VGG models (from the Vis-
ual Geometry Group at the University of Oxford), including 
seven layers (five convolutional—conv1, conv2, conv3, conv4, 
conv5—and two fully connected—fc6, fc7—before the clas-
sification layer fc81). The activations in these layers represent 
the set of features in the image, with initial layers naturally 
encoding low-level features (e.g., edges, colour patterns) and 
final layers naturally encoding high-level patterns combining 
basic features into texture and complex object shapes similar to 
humans (Khaligh-Razavi & Kriegeskorte, 2014; Kriegeskorte, 
2015; Zeiler & Fergus, 2014; but see Celeghin et al., 2023; Y. 
Xu & Vaziri-Pashkam, 2021; see Figs. 2 and 3).

Here, as an estimate of vision-based similarity between two 
images, we calculated the cosine of the angle between their 
vectors within a DCNN layer (Günther et al., 2023). Target 
and distractor stimuli were selected based on similarity rela-
tionships between activation vectors induced by the ‘fc6’ layer 
consisting of 4,096 dimensions, which has been shown to out-
perform the other layers in predicting reaction times in various 
tasks, including perceptual, such as image discrimination and 
visual priming (Günther et al., 2023). Similarity estimates 
derived from this layer were also initially employed to test the 
effect of TD and DD similarity on search performance. In a 
second set of analyses, we considered similarity based on all 
seven layers for both TD and DD similarity and tested which 
layers better captured search performance.

Participants

Forty participants were involved in the study (33 females, 
Mage = 22.6 years, SD ± 3.2) via the Sona-System, an online 
platform used for participant enrolment (https://​milano-​bicoc​ca.​
sona-​syste​ms.​com), in exchange for course credits. If available, 
participants were allowed to participate in multiple experimental 

Fig. 3   Feature visualisation in progressively deeper layers of a deep 
convolutional neural network. Note. Visualisation of distinct features 
learned by each layer of a DCNN. From graphical inspection, initial 
layers detect low-level features that are integrated into more complex 
features proceeding through the network. Feature visualisation has 
been conducted using the deepDreamImage function in MATLAB. 
(Colour figure online)

1  This output layer ‘fc8’ is designed to produce the final classifica-
tion and is not typically used for feature extraction due to its specific-
ity to the 1,000 classes of ImageNet on which it is trained and its low 
generalizability to other tasks or datasets.

https://milano-bicocca.sona-systems.com
https://milano-bicocca.sona-systems.com
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sessions on different days, with the condition that each partici-
pant would encounter a different set of blocks and stimuli in 
every session, thus ensuring that no stimuli were presented more 
than once to any participant. In total, the participants contributed 
to 51 experimental sessions. The study only included partici-
pants who indicated they had a normal or corrected-to-normal 
vision. The study was approved by the minimal-risk committee 
of the Department of Psychology of the University of Milano-
Bicocca (Prot. N, RM-2023–656) and was run according to the 
principles of the Declaration of Helsinki.

In the present study, statistical analyses were performed at 
the item level with generalised additive models (GAMs) and 
continuous predictors, diverging from conventional search 
experiments, and thus lacking specific sample size references. 
The initial sample size determination was established following 
Brysbaert and Stevens (2018) recommendations for item-level 
analyses using linear mixed-effects models, and additional data 
were collected to minimise the risk of statistical power issues as 
we moved from linear models to GAMs. In linear models, con-
tinuous predictors and two-level factors require estimating the 
same number of parameters. Considering the effect of interest 
in our study included two continuous predictors in interaction 
(DD Similarity × TD Similarity), this is equivalent to a 2 × 2 
factorial design. Following Brysbaert and Stevens’s recommen-
dation of at least 1,600 observations per condition, a total of 
6,400 observations would be recommended. Here, we collected 
data for 51 experimental sessions, each contributing with 384 
observations, resulting in 19,584 observations (for target-absent 
[TA] and target-present [TP] trials each), thus largely exceeding 
Brysbaert and Stevens’s (2018) recommendations to minimise 
the risk of low statistical power.

Material

Stimuli were selected from ImageNet (Deng et al., 2009), a 
large-scale database containing images labelled for categories. 
Only square images were considered and resized at a standard 
resolution of presentation (i.e., 224 × 224 pixels, which cor-
responds to the resolution of the image input for the VGG-F 
model). Images with frames or readable text were excluded.

The experiment included 24 visual search blocks, each 
consisting of 49 image stimuli taken from a distinct category 
of ImageNet, randomly chosen. This approach of selecting 
from heterogeneous categories was aimed at maximising the 
variability in relevant features across the stimuli. Figure 4 
shows an example of stimuli taken from the ImageNet cat-
egory ‘Pencil box’. As can be seen, this category tends to 
predominantly emphasise the long-axis orientation of the 
objects as a key feature for differentiating and recognising 
them. However, it is important to note that the complete 
range of stimuli we used in the experiment involves a much 
broader spectrum of relevant features. For instance, the ‘Ear-
phone’ category tends to emphasise the curvature and shape 

of the objects as relevant features, while others like ‘Dam-
ask’ give more relevance to the colour and texture of the 
objects (for the full list of stimuli, see https://​osf.​io/​2vad8/).

In the experiment, each block contained 96 visual search 
trials (50% TP and 50% TA) at different set sizes (~ 33% set 
size of 3, ~ 33% set size of 6, ~ 33% set size of 9). Each block 
included 49 image stimuli taken from a single category of Ima-
geNet randomly chosen (i.e., one target and 48 distractors for 24 
categories, resulting in 1,176 different images used in the experi-
ment). Each box in Fig. 4 includes a set of stimuli (i.e., a specific 
combination of target [the top image] and distractors [the three 
images under the target]) that we used in the same search trial.

The target image remained the same in each block while 
the distractors varied to produce various TD and DD similarity 
levels. For each level of similarity, a set of three distinct images 
was selected as distractors. To this aim, we first selected a 
random image to be used as a target. Then, we considered all 
the possible combinations of triplets of images available as 
candidate distractors for a single search array. For each tri-
plet, we computed the similarity between the target image and 
each of the three distractors (i.e., mean(cos( �⃗T , ��⃗D 1), cos( �⃗T , ��⃗D 
2), cos( �⃗T , ��⃗D 3)) and excluded those triplets for which the dif-
ference between the maximum similarity and the minimum 
similarity exceeded 0.025 (max(TD similarity) − min(TD 
similarity) > 0.025). This criterion was applied to keep simi-
larity between the target and each of the three distractors of a 
triplet relatively constant. Similarly, we computed the cosine 
similarity between each pair of distractors of all triplets (i.e., 
mean(cos(��⃗D 1 , ��⃗D 2), cos(��⃗D 1 , ��⃗D 3), cos(��⃗D 2 , ��⃗D 3)). Again, we 
excluded those triplets for which the difference between the 
maximum similarity and the minimum similarity exceeded 
0.025 (max(TD similarity) − min(TD similarity) > 0.025). This 
criterion was applied to keep the similarity among distractors 
forming a triplet relatively constant.

Then, the range of cosine similarity between stimuli of the 
experiment was set at an intermediate level, ranging from 0.55 
to 0.75. These precise values were chosen based on the visual 
examination of the distribution of TD and DD similarity for the 
available target–distractor combinations. The range of simi-
larities (both in terms of TD and DD similarity) between 0.55 
and 0.75 was well covered by target–distractor combinations, 
as can be seen in Fig. 5. Any target–distractor combinations 
outside this range were excluded. Other regions were excluded 
because they were underrepresented and not consistently cov-
ered by all the categories. Note that such a distribution of 
similarities is not specific to the set of images we selected 
but reflects the natural occurrences of similarity relationships 
among objects in the real world. Indeed, some areas in Fig. 5 
represent ‘impossible’ or ‘improbable’ regions to find adequate 
combinations of target and distractor images. The upper-left 
corner in Fig. 5 corresponds to an impossible area with combi-
nations of images for which the distractors are simultaneously 
very similar to the target but different from each other—thus, 

https://osf.io/2vad8/
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a logically not feasible scenario. Other regions of the TD–DD 
distribution, instead, are severely sparsely populated. These 
regions correspond to the higher levels of TD or DD similarity 
(where the cosine is close to 1). Let us consider a multidimen-
sional space in which the points in space are uniformly distrib-
uted, and the proximity between points denotes their similarity. 
The likelihood of having three equidistant points (distractors) 
from a central point (target) increases as the distance from 
the central point increases.2 The exclusions of these areas of 

similarity, therefore, not only ensure a balanced representation 
of the data in terms of TD and DD similarity but also align 
with the logical constraints of similarity relationships among 
objects in the real world.

To select target–distractor combinations well distributed 
within this area, we segmented the range of both TD and 
DD similarity into four bins, resulting in 16 cells. We then 
selected one triplet for each cell, covering the combination 
of four distinct TD and four distinct DD similarity levels. 
Thus, these levels ranged from 0.55 to 0.75 with interval 
increments of 0.05. As a result, each target–distractor triplets 
within a visual search block fell in one of the following TD 
and DD similarity ranges: (i) 0.55–0.60 (representing the 
lowest level of similarity); (ii) 0.60–0.65; (iii) 0.65–0.70; 
(iv) 0.70–0.75 (representing the highest level of cosine 
similarity).

In case a level of similarity included more than one suit-
able target–distractor combination, one of them was selected 
at random. An exception was made for the condition with 
the highest TD similarity (i.e., from 0.70 to 0.75) and lowest 

Fig. 4   Example of stimuli from the ImageNet category ‘Pencil box’. 
Note. Each quadruplet of images in the boxes corresponds to a spe-
cific combination of target (the top image) and distractors (the three 
images under the target). The number on the top-left black quadrant 

corresponds to the mean similarity between the target and the distrac-
tors as estimated through DCNN. The number on the top right black 
quadrant corresponds to the mean similarity between distractors as 
estimated through DCNN. (Colour figure online)

2  This concept becomes clearer when imagined in a two-dimensional 
space: three points equidistant from each other and from a central 
point can be represented by four points, one situated at the centre and 
the other on the perimeter of a circle, positioned at evenly spaced dis-
tances. As the ray of the circle decreases (i.e., increases TD similar-
ity), the perimeter of the circumference decreases as well. Thus, the 
probability that exists three points intersecting it decreases. At the 
same time, as the distance between the three points decreases (i.e., 
increases DD similarity) again, the circumference has to decrease to 
keep them equidistant. Thus, the probability that exists three points 
that intersect the circumference decreases.



Psychonomic Bulletin & Review	

DD similarity (i.e., from 0.55 to 0.60) since this condition is 
underrepresented at the top-left corner (see Fig. 5). In this 
case, when multiple sets were available, we selected the one 
with the TD similarity and DD similarity closest to 0.75 and 
0.55 (the top-left corner in Fig. 5) to balance the similarity 
distribution in the portion of the space less represented.

If there was no suitable distractor triplet for each of the 16 
similarity levels, a new target was chosen, and the process 
was repeated iteratively. Categories for which no image com-
binations met this criterion were excluded. This procedure 
was repeated until we obtained 24 categories.

Each of the 16 target–distractor triplets was used as 
stimuli for the various visual search trials. Every target–dis-
tractor triplet was displayed six times in an experimental 
block, covering three set sizes and both target-absent (TA) 
and target-present trials (TP) trials, as follows: (a) a search 
array with three stimuli (TP trials: one target and two dif-
ferent distractors), (TA trials: three distinct distractors); (b) 
a search array with six stimuli (TP trials: one target and 
five distractors; i.e., one unique and two repeated twice), 
(TA trials: six distractors; i.e., each repeated twice); (c) a 
search array with nine stimuli (TP trials: one target and eight 
distractors; i.e., one repeated twice and two repeated three 
times), (TA trials: nine distractors; i.e., each repeated three 
times). Note that each target–distractor triplet replicates the 
structure of standard search experiments, where the change 
of reaction times (RTs) as a function of set size is typically 
estimated through various search trials. These trials employ 
the same stimuli to keep constant similarity but vary in the 

number of stimuli to evaluate the impact of set size on search 
time (Duncan & Humphreys, 1989; Wolfe, 2020).

In each trial, the search display consisted of evenly 
spaced images arranged on the perimeter of an imaginary 
circle centred on the screen and with a radius equal to 40% 
of the screen’s height. Starting at 12 o’clock, 12 possible 
stimulus positions were evenly spaced around the circle. 
A (randomly selected) arc of adjacent positions was used 
for each display, equating the distance between adjacent 
images across display sizes (see Duncan & Humphreys, 
1989). When repeated distractor images were presented 
(i.e., set size of 6 and 9), they never appeared in adjacent 
positions to prevent strong perceptual grouping by proxim-
ity (besides similarity) of physically identical stimuli in 
adjacent locations as set size increased (Wagemans et al., 
2012).

Procedure

Participants were tested online using PsychoPy (Version 
2021.2.3; Peirce et al., 2019) through Pavlovia (https://​pavlo​
via.​org/).

Each experiment consisted of eight blocks out of the 
possible 24 (each block was administered to 17 different 
participants).

A practice block including 16 trials (not part of the exper-
iment) preceded the experimental blocks. The order of the 
experimental blocks was randomised. Additionally, within 

Fig. 5   Distribution of target–distractor and distractor–distractor simi-
larities across selected ImageNet categories. Note. The distribution of 
all combinations of TD similarity and DD similarity for the selected 
categories is represented in grey. Coloured marks show the distribu-

tion of the specific target–distractor combinations selected for the 
experiment. The legend reports the label associated with the selected 
category from ImageNet. (Colour figure online)

https://pavlovia.org/
https://pavlovia.org/
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each block, the order of the trials was randomised with the 
constraint that the same set of distractors was never pre-
sented in consecutive trials. This approach avoided potential 
intertrial effects induced by distractor repetition and expecta-
tion (Petilli et al., 2020).

Before the beginning of each block, participants were 
shown the target image of the block. To familiarise partici-
pants with the incoming stimuli, each block began with 16 
practice trials in which all target–distractor combinations 
belonging to the block were presented once. Then, the 96 
experimental trials of the block were presented sequentially.

Each trial began with the presentation of a central fixation 
cross. After a 500 ms, the search array was displayed and 
remained visible until a response was made. The intertrial 
interval had a duration of 2,000 ms. The trial procedure is 
illustrated in Fig. 6.

Participants were instructed to maintain central fixation 
before the search array appeared, and they were informed 
that they were free to move their eyes once the search 
array was displayed. Their task was to search for the target 
stimulus, ignore the distractors, and respond as quickly 
as possible, indicating whether the target stimulus was 
present (by pressing the ‘z’ key on the keyboard) or absent 
(by pressing the ‘m’ key on the keyboard). If the response 
was incorrect, the search display remained visible, and 
the feedback ‘ERROR!’ appeared along with the target in 
the centre of the screen. No feedback appeared for correct 
answers.

Statistical analysis

To account for potential nonlinear effects, analyses were per-
formed via GAMs using the mgcv R package (Wood, 2017; 
https://​CRAN.R-​proje​ct.​org/​packa​ge=​mgcv). GAMs also 
allowed us to model search performance on a trial-by-trial 
basis and include random effects, accounting for variability 
between subjects and blocks. Preliminary tests using linear 
models were implemented via linear mixed-effect regression 
using the R packages lme4 (Bates et al., 2015) and lmerTest 
(Kuznetsova et al., 2017). The AIC comparisons between 
lmer and GAM models consistently favoured the latter (see 
the Supplementary Materials), indicating the suitability of 
using the nonlinear approach.

Trial RT was the dependent measure throughout all 
analyses. Trials with errors (3.17%), anticipatory responses 
(RTs < 100 ms; N = 2 trials), and delayed responses (exceed-
ing three times the IQR above the third quartile of RT for 
each trial type: 2.1%) were excluded. In addition, to exclude 
the impact of overly influential outliers and ensure the 
robustness of the GAMs, data points were removed after 
model fitting based on a threshold of three standardised 
residual model errors, and the final GAMs were then refitted 
on the respective truncated data sets (Baayen et al., 2008).3 

Fig. 6   Schematic representation of the experimental timeline for the 
experiment. Note. Participants are presented with a preview of the 
target image before each block. Each trial begins with a 500-ms dis-

play with a central fixation cross. The stimulus display then appears, 
showing a circular arrangement of images. Participants respond by 
indicating whether the target is present or not. (Colour figure online)

3  Note that the pattern of results remains unchanged when influen-
tial outliers are not removed (see the Supplementary Materials for 
details).

https://CRAN.R-project.org/package=mgcv
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To avoid overfitting the effects of the specific stimuli used, 
the flexibility of the smooth terms in each GAM was con-
strained to k = 3. The same analyses were conducted for both 
TP and TA trials separately.

In the first set of analyses, we initially assessed the effect 
of similarity on search performance (i.e., trial RT) using TD 
and DD similarity estimates computed using the vector rep-
resentation induced by the sixth layer (‘fc6’) of the DCNN, 
which has been demonstrated to generally outperform other 
layers in capturing human behaviour across various cogni-
tive tasks (although the sixth and the seventh typically pro-
duces similar results and can be used quite interchangeably; 
Günther et al., 2023).

In a preliminary step, the model was specified as fol-
lows: As primary terms of interest, tensor product interac-
tions were used to model all two-way interactions and the 
three-way interaction between our independent variables 
of interest—DD similarity and TD similarity—as well as 
the covariate set size. The model also incorporated tensor 
product smooths for TD similarity, DD similarity, and set 

size independently. As control variables (CV), the model 
included a smooth term for trial order (i.e., the ordinal posi-
tion of each trial within its block of stimuli) to control for 
learning effects across trials, and a tensor product smooth 
interaction between the X and Y positions of the search array 
(i.e., computed as the average X and Y coordinates of the 
pair of middle items of the search array—or the middle item 
in odd set sizes) capturing spatial biases in stimulus posi-
tioning.4 The model further accounted for random effects 
(RE) by specifying smooth terms for participant and block 
as random intercepts, as well as random slopes for trial order 
and for the interaction of the X and Y position within partici-
pant and block, ensuring that order and spatial biases were 
accounted for across individuals and blocks.

For both TP and TA analyses, the three-way interaction 
(p values > 0.595), and the random slopes for the interaction 
of the X and Y position within participant and block (all p 
values > 0.521) were found to be not significant, so they were 
excluded from the final GAM to keep the model simple.

Thus, our final model can be summarised as follow:

RT ∼ TD ∶ DD + SetSize ∶ TD + SetSize ∶ DD + TD + DD + SetSize + CV + RE

In subsequent analyses, we compared the contribution of 
TD and DD similarity across all the model layers to identify 
the best-performing in predicting trial search time. Model 
comparisons were performed by estimating the Akaike infor-
mation criteria (i.e., AIC; Wagenmakers & Farrell, 2004), 
which returns an estimation of the quality of the model in 
terms of fit to the data. When comparing the AIC of two 
models, a difference in AIC (i.e., ΔAIC) equal to 2 is gener-
ally considered indicative of evidence in favour of the one 
with the lower AIC (Hilbe, 2011). This suggests that the 
model with the lower AIC is 2.7 times more likely to be 
better in terms of Kullback–Leibler distance from the ‘real’ 
distribution than the model with the higher AIC (Wagen-
makers & Farrell, 2004).

Specifically, we considered the ΔAIC produced by each 
similarity estimate across the seven layers (i.e., TD similar-
ity in conv1 vs conv2 vs conv3,...). This was done (sepa-
rately for TP and TA trials), estimating ΔAIC produced 
by each TD similarity layer when added to seven distinct 
baseline GAMs, each including a predictor of DD similarity 
from one layer. The structure of the GAM baseline and full 
models remained consistent with previous analyses, except 
that the predictor of TD similarity (and its interactions) was 
exclusively included in the full model.

For example, to test the ΔAIC produced by TD similar-
ity estimated in the conv1 layer of the model, we first fitted 
seven baseline models including DD similarity from a spe-
cific layer (i) and its interaction with set size:

Baseline_i = RT ∼ SetSize ∶ DDlayer_i + DDlayer_i + SetSize+ CV +RE

Then we added to each baseline model, TD similarity 
from the conv1 layer and its interactions:

Full_i = RT ∼ TDconv1 ∶ DDlayer _i + SetSize ∶ TDconv1 + SetSize ∶ DDlayer _i + TDconv1 + DDlayer _i + SetSize + CV + RE

The ΔAIC produced by TD similarity from conv1 was 
quantified as the difference in the AIC between each full and 
corresponding baseline model, with more negative values 
indicating a higher improvement in the model quality: 

△AICi = AIC(Full_i) − AIC(Baseline_i)

These analyses were repeated using TD similarity esti-
mated in each model layer, resulting in 49 ΔAIC values, 

4  Note that the pattern of results remains unchanged when control 
variables are excluded from the analyses (see the Supplementary 
Materials for details).
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with each of the seven layers of TD similarity tested against 
seven possible baselines of DD similarity. Finally, the ΔAIC 
values were compared across TD similarity layers with a lin-
ear mixed-effects model. This model included ΔAIC values 
as the dependent variable, the layer used for TD similarity 
as a predictor (i.e., from conv1 to fc7) and the layer used for 
DD similarity (i.e., from conv1 to fc7) as a random intercept:

Then, the same analyses were performed to compare 
ΔAIC as explained by DD (rather than TD) similarity from 
the seven layers (this time combined with baseline models 
including the layers of TD similarity as predictors).

Results

First, we tested the effects of similarity on RT. Table 1 
reports detailed results. The interaction between TD simi-
larity and DD similarity was significant in TA trials. We 
refrained from interpreting this result, as it did not hold in 
TP trials and in additional analyses conducted for each set 
size. Besides this, the overall pattern of results in TA tri-
als was comparable with TP trials except for substantially 
larger strength of the effects in the TP trials. The interactions 
between Set Size:TD similarity and Set Size:DD similarity 
were significant. Here, the rate of change in RTs increased 
with the increase in set size. Additional analyses separately 
for each set size showed the same pattern of results in all 
conditions. The effects of TD similarity and DD similarity 
were significant. As can be seen in Fig. 7, RTs consistently 
slowed as TD similarity increased and DD decreased.

△AIC ∼ TDlayer + (1|DDlayer )

In subsequent analyses, we compared TD and DD predic-
tors across all the model layers to identify those best explain-
ing search time (see Fig. 8).

In the analyses on TD similarity, the effect of layer was 
significant in both TP, F(7,18.414) = 278.63, p < 0.001, 
and TA, F(7,18.414) = 335.64, p < 0.001, trials. Post hoc 
comparison (Holm–Bonferroni corrected) revealed that the 
best-performing layers in TP trials were the final model lay-
ers. Indeed, the ΔAIC of TD similarity for ‘fc6’ (ΔAIC: 
mean =  − 597; SD = 48) and ‘fc7’ (ΔAIC: mean =  − 568; 
SD = 33) layers was significantly more negative than the 
ones from the others (all p values < 0.001; see Fig. 8C). 
This pattern was replicated in TA trials with the ΔAIC of 
TD similarity for ‘fc6’ (ΔAIC: mean =  − 2,387; SD = 74) 
and ‘fc7’ (ΔAIC: mean =  − 2,079; SD = 132) layers being 
more negative than ΔAIC achieved by the other layers (all p 
values < 0.001; Fig. 8D).

Also, in the analyses on DD similarity, the effect of layer 
was significant in both TP trials, F(7,18.414) = 37.091, 
p < 0.001, and TA trials, F(7,18.414) = 38.615, p < 0.001. 
However, post hoc comparisons (Holm–Bonferroni cor-
rected) revealed a different pattern. In TP trials, the best-
performing layers in modelling search performance were the 
intermediate layers ‘conv5’ (ΔAIC: mean =  − 177; SD = 41) 
followed by ‘conv4’ (ΔAIC: mean =  − 155; SD = 48) for 
which ΔAICs significantly outperformed those of the other 
layers (all p values < 0.002; see Fig. 8E). A similar pattern 
was found in TA trials. DD similarity computed for ‘conv4’ 
(ΔAIC: mean =  − 537; SD = 166) and ‘conv5’ (ΔAIC: 
mean =  − 535; SD = 166) significantly outperformed DD 
similarity for the other layers (all p values < 0.023; Fig. 8F).

Overall, the best-performing models are those using final 
layers for TD similarity and intermediate layers for DD 

Table 1   Results for the primary terms of interest from each GAM model tested

The table reports the results for the primary terms of interest from each GAM model tested (with TD and DD similarity calculated via DCNN’s 
fc6 layer). Rows 1 and 2 report results for the full models run separately for TP and TA trials. Rows 3 to 8 present results for the models run 
at each of the three set-size levels separately for TP and TA trials. For each model, the R2 value is reported to represent the model’s overall 
explained variance. Additionally, for each model term, the table provides the F-value and the change in unique variance (ΔR2), which indicates 
the improvement in explained variance provided by the inclusion of each specific term to the model. Finally, the column ƩΔR2 reports the sum 
of the unique variance of all terms of interest
*p < .05; **p < .01; ***p < .001; n.s. = nonsignificant

Model TD: Set Size DD: Set Size TD: DD Set Size TD DD

R2 F ΔR2 F ΔR2 F ΔR2 F ΔR2 F ΔR2 F ΔR2 ƩΔR2

TP Full .379 41.1*** .003 7.6**  < .001 1.1n.s  < .001 1046.8*** .012 204.3*** .014 37.9*** .001 .030
TA Full .527 195.1*** .009 21.5*** .001 2.9*  < .001 1398.9*** .025 1122.1*** .058 124.1*** .005 .098
TP Set Size 3 .351 – – – – 1.1n.s  < .001 – – 20.6*** .005 6*  < .001 .005
TP Set Size 6 .343 – – – – 1.2n.s  < .001 – – 86.3*** .019 8.6** .001 .020
TP Set Size 9 .337 – – – – .3n.s  < .001 – – 102.3*** .024 16.6*** .002 .025
TA Set Size 3 .417 – – – – .1n.s  < .001 – – 271.8*** .052 60*** .006 .058
TA Set Size 6 .474 – – – – 2.2n.s  < .001 – – 474.4*** .080 48.1*** .004 .085
TA Set Size 9 .506 – – – – 3.5n.s  < .001 – – 536*** .085 82.4*** .008 .093
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similarity, with a normalized probability for the best-per-
forming ones (i.e., in TP trials using TD-fc6 and DD-conv5; 
in TA trials using TP-fc6, DD-conv4) of p ≈ 0.999 to be pre-
ferred over their competitors (Wagenmakers & Farrell, 2004).

It is important to note that due to the way the experimen-
tal material was defined, the similarity distribution was opti-
mised for the fc6 layer. Therefore, it cannot be ruled out that 
the procedure used may have led to underestimating similar-
ity effects when derived from layers other than fc6. Never-
theless, the latter results indicate that the procedure did not 
prevent significant effects from other layers from emerging 
prominently and even outperforming those observed at fc6.

In Table 2, we report the results for the best-performing 
models (using again ‘conv6’ for estimating TD similarity, 
but ‘conv5’ and ‘conv4’ for DD similarity in TP and TA 
trials, respectively). Overall, the pattern of results is simi-
lar to previous analyses. However, the interaction between 
DD × Set Size and DD × TD is much more pronounced and 
consistently significant, suggesting that previous smaller 
effects were due to non-optimal model layers used to esti-
mate DD similarity. Figure 9 highlights well such interac-
tions. At Set Size 3, the fitted RTs appear relatively flat with 
no clear directionality of the similarity effects except for a 

slight peak in RTs at the highest TD and lowest DD simi-
larity levels. At higher set sizes, the direction of similarity 
effects becomes more evident. RTs slowed with increased 
TD and decreased DD similarity. Across set sizes, the inter-
active increase in TD and decrease in DD similarity leads to 
a noticeably nonlinear, steeper increase in RTs.

Discussion

This study provides a method to predict human search effi-
ciency from computational estimates of similarity between 
objects populating a visual scene. Using naturalistic images 
as stimuli, our results confirm from a more ecological per-
spective the fundamental similarity principles outlined by 
Duncan and Humphreys (1989): Search performance con-
tinuously varies across tasks and conditions and improves 
with decreasing TD similarity and increasing DD similarity, 
with these effects interacting to influence overall search effi-
ciency. Moreover, our results confirm overall higher RTs in 
TA compared with TP trials, a common observation in visual 
search attributed to the exhaustive nature of TA trials—where 
all items are typically examined—and the self-terminating 

Fig. 7   Effect of TD similarity and DD similarity on RTs as estimated 
by the GAMs full models. Note. The figure shows the effect of TD 
similarity and DD similarity on RTs as estimated by the GAMs full 
models (lines 1–2 of Table 1). The left contour plots show the effect 
of TD similarity and DD similarity (both calculated via DCNN’s 
fc6 layer) on RTs in TP (top graphs) and TA trials (bottom graphs) 
separately for the three set sizes. The colour gradient, from green to 
red, represents the increase in RTs. Each contour line denotes a spe-
cific RT value. The proximity of the lines to one another denotes the 
rate of change in RTs: Closer lines suggest steeper changes. To allow 
comparability between the effects in TA and TP trials the scales are 
kept consistent within the two conditions. The right 3D plots show 

the reconstructions of the search surface, indexing changes in search 
difficulty as a function of TD and DD similarity. For comparability 
with the seminal work by Duncan and Humphreys (1989), search dif-
ficulty was calculated as the linear slope of the fitted RT × set size 
function. Note, however, that while this method provides a straight-
forward graphical approximation of the changes in search difficulty, 
the linear slope is an ambiguous measure if interpreted in terms of 
attentional involvement (Haslam et  al., 2001; Kristjánsson, 2015) 
as different types of search slopes (i.e., linear and logarithmic) have 
been linked to distinct types of visual processing (e.g., Lleras et al., 
2022). Plots were generated using the vis.gam function. (Colour fig-
ure online)
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nature of TP trials—where the search ends as soon as the 
target is found, leading to greater variability in search time, 
which, on average, is faster (for a review, see Wolfe, 2020).

Besides supporting the search surface shape, the DCNN 
representations used in this study offer insight into what 
level of perceptual representation matters. In this regard, 
this study shows the effects of DD and TD similarity to be 
dissociated. This indicates that visual search operates at 
distinct levels of perceptual representation, a view that is 

suggested in various models and here empirically demon-
strated. For example, Wolfe described two distinct levels of 
representational complexity at two key visual search stages. 
The first, ‘guidance’, extracts a coarse gist from the scene 
to guide attention towards the most promising items, while 
the second, ‘verification’, involves a more detailed visual 
analysis aimed at classifying each attended item as target 
vis-à-vis distractor (Alexander & Zelinsky, 2012; Wolfe, 
1994, 2020). Likewise, recent literature further suggests 

Fig. 8   AIC and ΔAIC for the models using TD and DD similarity 
estimates computed from the various DCNN model layers. Note. The 
figure shows AIC and ΔAIC for the models using TD and DD simi-
larity estimates computed from the various DCNN model layers (left 
panels for TP trials, right panels for TA trials). A–B The top panels 
display the total AIC for 49 models, each combining an estimate of 
TD similarity and one of DD similarity computed from all model lay-
ers. The colour gradient, from black to light blue, represents the AIC 
value of each model, with darker values (i.e., lower AIC) indicating 
better predictive performance. Average AIC values achieved by each 
TD and DD similarity predictor are also reported. C–D The middle 
panels show the change in AIC (ΔAIC) produced by adding each of 

the seven TD similarity predictors (estimated by one of the seven 
model layers) to the seven possible baseline models, with each base-
line model already including one of the seven estimates of DD simi-
larity (estimated by one of the seven model layers). Grey dots repre-
sent the ΔAIC and red dots indicate the average ΔAIC produced in 
the model by adding each TD predictor. E–F The bottom panels show 
the change in AIC (ΔAIC) produced by adding each of the seven DD 
similarity predictors to the seven possible baseline models, with each 
baseline model already including one of the seven estimates of TD 
similarity. Grey dots represent the ΔAIC, and red dots indicate the 
average ΔAIC produced in the model by adding each DD predictor. 
(Colour figure online)
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that various levels of perceptual complexity are involved in 
visual search, ascribing them to the differential contributions 
of peripheral (engaged in analysing coarser information) ver-
sus foveal (responsible for detailed analysis) vision (Lleras 
et al., 2022; Rosenholtz, 2011).

In our study, we found that the faciliatory effects of DD 
similarity are best explained by the similarity between 

representations encoded in the intermediate DCNN layers. 
Conversely, we observed that the hindering effects of TD simi-
larity are best explained by the similarity in representations 
encoded in the final layers of DCNN. Although it is difficult to 
say what type of features are encoded at the DCNN layers on 
which DD similarity relies, it can be said that these features are 
still coarse and not sufficiently complex to allow in-depth object 

Table 2   Results for the primary terms of interest from each best-performing GAM model tested

The table reports the results for the primary terms of interest from each best-performing GAM model tested (i.e., with TD similarity consistently 
calculated via DCNN’s fc6 layer and DD similarity calculated via DCNN’s conv5 and conv4 layers in TP and TA trials, respectively). Rows 1 
and 2 report results for the full models run separately for TP and TA trials. Rows 3 to 8 present results for the models run at each of the three 
set-size levels separately for TP and TA trials. For each model, the R2 value is reported to represent the model’s overall explained variance. 
Additionally, for each model term, the table provides the F-value and the change in unique variance (ΔR2), which indicates the improvement in 
explained variance provided by the inclusion of each specific term to the model. Finally, the column ƩΔR2 reports the sum of the unique vari-
ance of all terms of interest
*p < .05; **p < .01; ***p < .001; n.s. = nonsignificant

Model TD: Set Size DD: Set Size TD: DD Set Size TD DD

R2 F ΔR2 F ΔR2 F ΔR2 F ΔR2 F ΔR2 F ΔR2 ƩΔR2

TP Full .387 41*** .003 36.3*** .002 37.6*** .005 939.3*** .011 198.6*** .014 10.2***  < .001 .035
TA Full .536 115.5*** .009 110.9*** .005 33.9*** .003 1486.8*** .025 1214.6*** .062 118.6*** .006 .110
TP Set Size 3 .352 – – – – 5.3*  < .001 – – 21.5*** .005 1.1n.s  < .001 .006
TP Set Size 6 .351 – – – – 15.3*** .007 – – 84.1*** .018 2.7n.s  < .001 .025
TP Set Size 9 .348 – – – – 20.8*** .009 – – 98.2*** .022 11.9*** .002 .033
TA Set Size 3 .419 – – – – 10.7*** .004 – – 294.9*** .056 27.4*** .005 .065
TA Set Size 6 .48 – – – – 11.9*** .004 – – 494.6*** .086 45.9*** .008 .097
TA Set Size 9 .508 – – – – 13.4*** .004 – – 552.4*** .090 53.1*** .008 .103

Fig. 9   Effect of TD similarity and DD similarity on RTs as estimated 
by the best-performing GAMs full models. Note. The figure shows 
the effect of TD similarity and DD similarity on RTs as estimated by 
the best-performing GAMs full models (lines 1–2 of Table  2). The 
left contour plots show the effect of TD similarity (calculated via 
DCNN’s fc6 layer) and DD similarity (calculated via DCNN’s conv5 
and conv4 layers in TP and TA trials, respectively) on RTs in TP (top 
graphs) and TA trials (bottom graphs) separately for the three set 
sizes (i.e., 3, 6, 9). Note that compared with Fig. 7, here, similarity 

values are not uniformly distributed since the distribution of similar-
ity values was optimised for the fc6 layer (see Computational Frame-
work section). Dotted areas correspond to smooth terms that are far 
away from data defined by the predictor variables (see documenta-
tion for vis.gam function from the mgcv package). The right 3D plots 
show the reconstructions of the search surface, indexing changes in 
search difficulty (i.e., the slope of the fitted RT × Set Size function). 
Plots were generated using the vis.gam function from the mgcv pack-
age. (Colour figure online)
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processing for identification. Instead, the final DCNN layers 
on which TD similarity relies are known to encode complex 
features the DCNN uses to classify the objects in the images.

Drawing a parallel with the frameworks above, our findings 
substantiate that the similarity effects of TD vis-à-vis DD pref-
erentially target different components of visual search. Given 
that the DD similarity effects are best explained by similarity 
across coarse perceptual representations, our findings would 
suggest that such similarity preferentially acts at the peripheral 
processing level or, within Wolfe’s framework, that such simi-
larity might lay the most appropriate groundwork to support 
guidance. Conversely, considering that the most relevant simi-
larity in the context of TD pertains primarily to the similarity 
between complex representations well suited for recognition, 
its impact is likely to be predominantly exerted during the 
foveal visual analysis of individual items or, within Wolfe’s 
framework, during verification (see also Alexander & Zelin-
sky, 2012). Note that this view also reconciles with early intui-
tions by Duncan and Humphreys (1989, 1992), who linked DD 
similarity to effects of local clustering of distractors through 
Gestalt principles of similarity based on basic features (e.g., 
colour or orientation). In contrast, TD effects were linked to a 
direct match of the input with the target template.

Importantly, these findings do not preclude the possibil-
ity that both forms of similarity still exert varying degrees of 
influence at multiple levels of processing. In this regard, many 
models of visual search posit that both types of similarity play 
a role early in the search process and contribute to guiding it in 
subsequent attentional stages (e.g., SERR model: Humphreys 
& Müller, 1993; Guided Search model: Wolfe, 1994). Here, 
we measured RTs in an overt paradigm with unlimited time 
to respond to match the original experiments by Duncan and 
Humphreys (1989). Although overall RTs provide a useful way 
to evaluate search efficiency, other measures derived from eye 
movement (Alexander & Zelinsky, 2012) or EEG (Mazza et al., 
2007) are more appropriate to decompose search time into dis-
tinct components—such as guidance versus verification (Wolfe, 
2020) or foveal versus peripheral processing (Lleras et al., 2022).

Future studies might consider some adaptations to our exper-
imental design to address other relevant issues in the literature. 
For example, an experimental design including more set sizes 
might allow testing the fit for different functions known to 
relate RT and set size, (i.e., linear functions linked to the paral-
lel comparison of elements to the target template or logarithmic 
functions denoting the serial inspection of items; Buetti et al., 
2019; Z. J. Xu et al., 2021). One could also consider a differ-
ent configuration in the search array, such as presenting items 
spread around the fixation point. This change could reduce the 
likelihood of clustering together near items at lower set sizes, 
a scenario that might prompt eye movement capture with the 
consequent increase in RT (Carrasco et al., 1998; Ng et al., 
2018; Zelinsky & Sheinberg, 1997; but consider also crowding 
variations across set sizes, Lleras et al., 2022).

As mentioned, this study cannot precisely determine 
which features are encoded at the layers on which DD and 
TD similarity were found to rely. It is worth noting that 
DCNN biases may influence the effects we observed. Indeed, 
DCNNs are highly sensitive to the texture and colour of 
objects. Therefore, it is plausible that differences in these 
dimensions are effectively captured in our simulations. Less 
can be said about other dimensions. Future research com-
bining our approach with feature-visualisation techniques 
(Zeiler et al., 2014) could better elucidate the specific fea-
tures underlying similarity effects.

Finally, it is important to acknowledge that the variance 
explained by our variables of interest is relatively low (never 
exceeding ~ 11%), especially in TP trials. Lower values in TP 
(vis-à-vis TA) trials can plausibly be attributed to their self-
terminating nature, which causes high variability in partici-
pants’ responses, thus introducing noise in trial-level analyses. 
Moreover, it is worth noting that a considerable degree of 
noise must be expected as a consequence of our ecological 
approach. Our experiment deliberately introduced variabil-
ity with image stimuli randomly changing trial by trial. Like 
classical studies, here we precisely manipulated our critical 
variables (similarity and set size) in a controlled manner, but 
unlike classical studies, all other perceptual variables were left 
to vary naturally and randomly instead of being kept precisely 
constant. This approach more closely mirrors real-world con-
ditions while inevitably influencing responses in a nonsys-
tematic manner, thus introducing noise. Remarkably, these 
considerations actually support the reliability of our findings: 
significant similarity effects were observed despite this natural 
noise, suggesting that these are robust enough to emerge even 
outside a highly controlled lab-based scenario.

In conclusion, our study adopted an objective, data-driven, 
computational approach to independently quantify on a con-
tinuous scale the similarity between naturalistic images used 
as target and distractor stimuli in visual search, thus increasing 
ecological validity without sacrificing the control of laboratory 
studies. The results of this study demonstrated the validity of 
the approach, replicating well-established similarity effects on 
search performance. This indicates that this approach provides 
a promising ground for future research, integrating similar-
ity analyses through vector-based deep learning techniques in 
visual search, akin to the successful trends observed in other 
research areas of cognitive psychology (Doerig et al., 2023; 
Günther et al., 2019; Roads & Love, 2023). Indeed, such an 
integration delivers a new methodological and theoretical 
advancement that has long been advocated in visual search 
(Wolfe, 2020; Wolfe & Horowitz, 2017). Finally, besides sup-
porting the validity of the approach, our study allowed us to 
infer the extent to which low-level and high-level image rep-
resentations are activated during the task, thereby laying the 
groundwork for a new approach to gain insights into the level 
of perceptual processing involved in visual search.
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