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1 Introduction

The AdS/CFT correspondence has enabled tremendous progress in our understanding of

quantum gravity. However, many important questions remain unanswered. Which CFTs

are dual to bulk theories of Einstein gravity, with or without matter fields? What is the

simplest CFT that reproduces the basic features of Einstein gravity? How does sub-AdS

scale locality emerge in AdS/CFT? The goal of the present paper is to address these

questions in the context of an explicit toy model.

We will focus on AdS3/CFT2, where it is simplest to obtain precise answers to these

rather grand questions. Indeed, the AdS3/CFT2 duality is a particularly constrained ex-

ample of holography. Einstein gravity is topological in three dimensions, so there are

no propagating gravitons. Additionally, two-dimensional CFTs are highly constrained by

the presence of the additional Virasoro symmetry. Nevertheless, many important fea-

tures of quantum gravity, for example aspects of black hole physics, are still captured in

three-dimensional gravity. The more constrained 3-dimensional framework thus provides a

tractable environment amenable to precise results, while yielding insights that generalize

to higher dimensions.

In the strongest interpretation of the AdS/CFT correspondence, every two-dimensional

CFT is dual to a theory of quantum gravity in AdS3. In some sense, the CFT defines the

theory of quantum gravity in the bulk. The CFT data, namely the full set of correlation
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functions, can be interpreted as scattering amplitudes in the dual theory. The central

charge is given by the AdS radius in Planck units [1],

c =
3`AdS

2GN
. (1.1)

However, a generic CFT will not correspond to a theory of weakly coupled gravity.

Rather, there exists a set of conditions the field theory must satisfy in order for it to

have a well-behaved geometric dual. Identifying this list of necessary and/or sufficient

conditions has been the focus of much recent effort [2–10]. Here we briefly summarize the

important constraints that will be relevant to the present work. We start with the weakest

assumption, and incrementally carve out a smaller and smaller subset of the space of all

two-dimensional CFTs.

1. The large N criterion. First, the relation (1.1) makes it clear that a weakly coupled

gravitational theory requires large central charge. The large N limit in the CFT is

thus equivalent to the semi-classical limit of the gravitational theory.

2. The convergence criterion. To obtain a sensible semi-classical limit, further con-

straints must be imposed. Chief among them is the requirement that the spectrum

of the theory remains well-defined in the large N limit [7–9]. Specifically, we require

that the density of states ρ(∆) remains finite in the N →∞ limit at fixed energy ∆.

This criterion can be seen as demanding that perturbation theory remains valid in

the bulk, since the latter requires a finite number of bulk fields at every given energy.

It is important to note that this is only a criterion on the perturbative spec-

trum of the gravitational theory, and therefore it says nothing about black holes; as

N →∞, the energy ∆ of the lightest black hole diverges.

3. The sparseness criterion. The phase structure of Einstein gravity in AdS3 is such that

there are two saddle points that dominate the finite temperature partition function

at low and high temperature, respectively: thermal AdS and the BTZ black hole.

These saddles exchange dominance in the Hawking-Page phase transition at the self-

dual temperature β = 2π. In [5], it was shown that in order for a CFT to reproduce

this phase structure in the large N limit, the density of light operators must be

bounded by

ρ(∆) . exp (2π∆) , ∆ ≤ c

12
. (1.2)

We refer to this as the sparseness criterion. However, this is a rather weak constraint,

since it corresponds to a Hagedorn growth typical of string theories in which the string

and AdS scales are equal. Thus it allows for theories that are drastically different from

Einstein gravity, and in particular theories that are non-local on sub-AdS scales. The

fact that such string theories can reproduce the phase structure of Einstein gravity is

a peculiarity of AdS3 (see [11] for a discussion of higher dimensions). It is therefore

necessary to impose a stronger constraint on the CFT in order to ensure that we

recover a bulk dual that is local on sub-AdS scales, which motivates the fourth and

final criterion on our list.
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4. The locality criterion. If the perturbative sector of the bulk theory is to behave as a

local quantum field theory in AdS, then the CFT must satisfy the following condition

on the density of states:

ρ(∆) ∼ exp
(
γ∆

D−1
D

)
, 1� ∆� N , (1.3)

where γ is some order-one coefficient, and D is a (positive) integer with a natural

interpretation: it is the total number of bulk dimensions whose sizes are comparable

to the AdS radius. The free energy resulting from such a density of states will be

compatible with bulk thermodynamics of a local quantum field theory in D dimen-

sions, namely F ∝ VDTD+1, with a proportionality constant that depends on γ. This

criterion is therefore necessary to reproduce the correct bulk thermodynamics at low

temperatures.

One may wonder, after carving out this subspace of field theories, whether these four

criteria are in fact sufficient to ensure locality on sub-AdS scales. In this paper, we will

show that they are not, by investigating sub-AdS scale locality in a weakly coupled toy

model. Despite its simplicity, our model reproduces a surprising number of the desired

features of a theory dual to Einstein gravity coupled to matter in AdS3. This includes

the correct density of states at both low and high energies, as well as the correct bulk

correlation functions at leading order in the large N expansion. Non-local effects are seen

to emerge at order 1/N . This is supported by the presence of an infinite tower of massless

higher-spin fields in the bulk, which renders the theory non-local in the sense that the

effective bulk Lagrangian contains interactions with an unbounded number of derivatives.

However, a deeper pathology of our toy model is the lack of modular invariance; indeed,

any attempt to restore modular invariance would add too many states to the low lying

spectrum, violating the sparseness criterion and thereby displacing us beyond the subspace

of holographic CFTs we so carefully circumscribed above. For this reason, we are led to

the following conjecture:

Sub-AdS Locality conjecture. At large N , every CFT2 that satisfies the locality crite-

rion, and has modular invariance, is dual to a bulk gravitational theory with sub-AdS scale

locality.

The evidence for this conjecture is essentially experimental, based largely on orbifold

CFTs. The basic reasoning is as follows: starting from a large N theory with a global sym-

metry and many low lying states, one can try to project out states until the bound (1.3)

is satisfied. In order to preserve modular invariance, twisted sectors must be added in

proportion to the severity of the projection. In [7, 9], it was shown that for any orbifold

by a permutation group G ⊆ SN , the locality criterion cannot be satisfied. This leaves the

possibility that a projection by a bigger group such as O(N) could achieve this criterion.

However, although this works for the untwisted sector, modular invariance forces the inclu-

sion of so many twisted sectors that the spectrum grows even faster than Hagedorn [12, 13].

None of the extant orbifold constructions seem to work, even for non-discrete groups. Thus

we would like to emphasize that the role of modular invariance is to constrain the set of
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theories one can consider in light of the criteria above. We are not claiming that restor-

ing modular invariance in a theory that originally was not will automatically ensure bulk

locality.

Of course, the absence of known counterexamples does not constitute a proof of our

conjecture, though it would be interesting to try to construct one. Conversely, the CFT

data that could most likely be used to disprove our conjecture are the OPE coefficients.

Upon imposing (1.3) and demanding modular invariance, one could try to constrain the

OPE coefficients using bootstrap techniques along the lines of [4, 6] (see also [14]). It would

also be interesting to understand how our conjecture relates to other criteria, such as the

gap in the operator dimensions given in [2]. We leave such attempts for future work, and

instead focus here on the properties and consequences of this particular model.

1.1 Summary of results

In this paper, we investigate the aforementioned criteria, and in particular the question

of sub-AdS scale locality, by exploring the detailed properties of an explicit toy model for

holography. The model, originally introduced in [15] and refined in [16], consists of N

massless free bosons restricted to the singlet sector of the global O(N) symmetry. This

model can be thought of as the two-dimensional version of the GKPY duality [17, 18]. The

theory has a scalar operator O dual to a massless scalar field in the bulk, defined as

O = ∂φI ∂̄φI . (1.4)

In [15, 16], the connection between gauge invariance and quantum error correction [19]

was investigated in the context of holographic reconstruction, and the model was used to

explicitly show how one can localize bulk operators within a given spatial region. In this

paper, we will investigate more refined properties of the model, including its spectrum and

1/N effects in correlation functions. We will see that the the spectrum of the theory is

given by

ρ (∆) ∼


exp

(
γ∆

2
3

)
, 1� ∆ . N

exp

(
2π
√

N
3 ∆

)
, ∆� N .

(1.5)

The high energy spectrum is given by the Cardy formula. This is actually surprising,

since the theory is not modular invariant. The projection to O(N) singlets breaks modular

invariance, and hence Cardy’s formula does not a priori apply. However, we will argue —

based on an explicit proof for SO(3) — that this projection is only a subleading effect at

energies much larger than N . Note that because modular invariance is broken, the regime

of validity of the Cardy formula does not extend to ∆ ∼ N even though the growth of the

low energy spectrum (1.5) satisfies the sparseness criterion. In the intermediate range, the

spectrum will interpolate smoothly between the two regimes in (1.5).

The low-energy spectrum is compatible with a local quantum field theory in AdS3.

However, the spectrum contains an infinite tower of higher-spin fields which ultimately

cause the breakdown of sub-AdS scale locality. We demonstrate this breakdown from

properties of the Lorentzian four point function of the operator O. In particular, there is no
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divergence at order O(1/N) when the boundary points form a bulk Landau diagram [2, 20–

23]. Furthermore, the bulk theory is a Vasiliev higher-spin theory [24], and the effective

Lagrangian contains interactions with an unbounded number of derivatives. In fact, it

turns out that this model is equivalent to a sector of the coset models described in [25, 26],

with a W(e)
∞ symmetry at λ = 1.

Our model demonstrates that the locality criterion on the spectrum is actually not a

sufficient condition for sub-AdS scale locality. However, the model was constructed by tak-

ing a modular invariant theory and projecting out many states. The result is manifestly not

modular invariant, and restoring it with the addition of twisted sectors would completely

destroy the sparseness of the low lying states. This was shown in a similar context in [12].

Our theory can therefore not satisfy both the locality criterion and modular invariance

simultaneously. We believe that these arguments extend beyond our specific toy model,

which leads us to the sub-AdS scale locality conjecture above.

The remainder of the paper is organized as follows: in section 2, we discuss properties

of the spectrum of our toy model at both low and high energies. In section 3, we comment

on properties of correlation functions at leading and subleading order in the 1/N expansion.

Explicit expressions for the first few single-trace primaries are collected in appendix A.

2 A toy model for holography

2.1 The model

The model we consider was defined in [16] as a refinemenet of an earlier version proposed

in [15]. The CFT consists of N free massless scalars in two dimensions. The action is

S =

∫
d2x ∂µφ

I∂µφI , (2.1)

where the scalars φI transform in the fundamental representation of a global O(N) sym-

metry. The Hilbert space of such a theory is given by

HN = H⊗N , (2.2)

where H is the Hilbert space of a single free boson. We wish to consider the subspace of

states that are invariant under the O(N) symmetry, namely the singlet sector. Therefore

the relevant Hilbert space is

Hsinglet = H⊗N/O(N) . (2.3)

It is important to specify the procedure by which we impose such a constraint. In general

field theories, the way to do so with local dynamics is by gauging the symmetry. This

will enforce Gauss’ Law and project to the singlet sector. However, preserving conformal

invariance in the process is more subtle. In three dimensions, this has been accomplished by

weakly gauging the global symmetry and bestowing Chern-Simons dynamics on the gauge

field. If the topology is trivial, one obtains the singlet projection without the introduction

of additional states. On non-trivial topologies however, the holonomies of the gauge field

come into play and appear to give rise to many new degrees of freedom [27].
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In two dimensions, there is a very natural way to enforce a singlet constraint while

preserving conformal invariance: orbifolding. The orbifolding procedure (which is usually

done for a discrete group) enforces the singlet constraint, but also adds new operators to

the theory from the twisted sectors. Indeed, a CFT2 orbifold should really be thought of

as a discrete gauge theory in two dimensions, where the twisted sectors are the degrees

of freedom arising from the holonomies of the gauge field. Note that the inclusion of the

twisted sector states comes from demanding that the theory is modular invariant on the

torus. Projecting to the singlet sector without adding twisted sectors manifestly breaks

modular invariance.

Throughout this paper, we will only consider the untwisted sector, which is tantamount

to imposing the singlet constraint by hand. As a consequence, our theory will not be

modular invariant. This has some important ramifications, some of which we address

when we discuss the high energy spectrum below. That said, we wish to emphasize that

the singlet sector nonetheless retains many desirable properties. For example, the sector

is closed: only singlet operators appear in the OPE of any two singlet operators. This

implies in particular that the four point function of any singlet operators obeys the crossing

relations.

2.2 Spectrum of primaries

In this section, we describe the spectrum of singlet operators in our CFT. We will be

particularly interested in the single-trace Virasoro primaries, since every such operator is

dual to a new bulk field, while multi-trace primaries correspond to multi-particle states

(single particle states with additional boundary gravitons can also be viewed as multi-

particle states in some broader sense).

The spectrum of the theory is characterized by the appearance of one new single-

trace Virasoro primary at every even level h, h̄ ≥ 4, in each of the holomorphic and anti-

holomorphic sectors. The general expression for these operators may be written [28]

W s(z) =
2s−3s!

(2s− 3)!!

s−1∑
l=1

(−1)l

s− 1

(
s− 1

l

)(
s− 1

s− l

)
∂lφI∂s−lφI +O

(
1

N

)
. (2.4)

Note that these operators are not exactly single trace, but their double trace components

are suppressed by powers of 1/N . We give explicit expressions to all orders in 1/N for

the holomorphic primaries up to level 12 in appendix A, and find that the multi-trace

components are always suppressed by higher powers of N . These fields correspond to

higher-spin currents, and have been shown to generate a non-linearW(e)
∞ [λ = 1] algebra [28].

In the mixed sector, the theory contains one single-trace scalar operator,

O = ∂φI ∂̄φI , (2.5)

with dimension (h, h̄) = (1, 1). This operator is also a W(e)
∞ primary, and naturally induces

an infinite tower of multi-trace W(e)
∞ operators given schematically by

Okni,n̄i =:
∑
ni,n̄i

an1...nkn̄1...n̄k∂
n1 ∂̄n̄1O∂n2 ∂̄n̄2O . . . .∂nk ∂̄n̄kO : +O

(
1

N

)
, (2.6)
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for an appropriate choice of coefficients ani,n̄i . A generic choice of these coefficient will not

lead to a primary, since the global descendants of the lower dimensional operators must be

subtracted out. Along with their global andW(e)
∞ descendants, the operators (2.6) generate

the entire spectrum of the theory in the limit N →∞. At finite N , there are new primary

operators that appear at ∆ = N . These will play an important role when we discuss the

high energy part of the spectrum.

It is worth mentioning that we do not include zero modes. The standard vertex op-

erators eik
IφI are not invariant under the O(N) symmetry and are thus projected out.

However, this still allows for operators of the form eλφ
IφI . We will not consider such op-

erators, and instead implicitly further project to states that are invariant under ISO(N)

symmetries φI → RIJφJ + CI .

2.3 Density of states

2.3.1 Low energies: 1 � ∆ � N

We first compute the asymptotic density of perturbative states, i.e., states whose energy is

parametrically smaller than N . States whose energy scales with N are typically associated

to non-perturbative objects such as a black holes, and will be the focus of the next sub-

section.

We will consider free bosons on the cylinder, where the excitations are given by os-

cillators aI−j . The index j denotes the energy of the oscillator, hence a single-oscillator

state would have h = j. In order to compute the density of perturbative states ρ(∆),

we consider n < N oscillators aI , each in the fundamental representation of O(N). The

singlet constraint forces us to contract all indices to form an invariant state. If n is even,

this can be done in (n− 1)!! different ways, while if n is odd, the singlet constraint implies

ρ(∆) = 0. The density of states for an n-oscillator state can therefore be estimated as

ρn(∆) ∼ (n− 1)!! · 1

n!

∫ ∆

0
d∆1 . . .

∫ ∆

0
d∆n δ

(
∆−

∑
i

∆i

)
(2.7)

= (n− 1)!!
∆n−1

n!(n− 1)!
=

∆n−1

n!(n− 2)!!
, (2.8)

where the factor of 1/n! in (2.7) approximates the number of ways of distributing the

energy ∆ over n oscillators. The total density of states is then

ρ(∆) ∼
∆∑
n=1

2nρn(∆) , ρn(∆) ≈ en log ∆− 3
2
n logn for n� 1 , (2.9)

where the factor of 2n accounts for the inclusion of both left- and right-movers. We may

evaluate this sum by performing a saddle-point approximation on n. The dominant saddle

is at n0 = (2∆)
2
3 e−1, which yields

ρ(∆) ∼ eγ∆
2
3 , 1� ∆� N . (2.10)
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Note that, in addition to the saddle point, we made two other approximations in the course

of obtaining this result: the factor of 2n from the choice of a or ā, and the double factorial

(n− 1)!! from pair contractions. These two factors are only exact when all the oscillators

have different momenta, otherwise one should include an appropriate symmetrization fac-

tor. Our approximations thus yield an overcounting of the total number of states, but are

subdominant in the regime under consideration. This is the reason for the undetermined

coefficient γ in (2.10), which cannot be determined from this analysis.

It is however possible to express the perturbative partition function analytically. The

W(e)
∞ identity character gives [26]

χ∞ =
∏
s∈2N∗

∏
n≥s

1

1− qn
≡M e(q) , (2.11)

where M e is the modified MacMahon function. The scalar contribution, including all

multi-trace operators and global descendants, was shown in [29] to be

χOglobal =
∞∏

l,l′=0

1

1− q1+lq̄1+l′
. (2.12)

The total perturbative partition function is therefore given by [25]

Z(q, q̄) = (qq̄)−
c
24 |M e(q)|2

∞∏
l,l′=0

1

1− q1+lq̄1+l′
, (2.13)

from which the appropriate coefficient could in principle be extracted. In practice, this

requires knowledge of the asymptotics of the modified MacMahon function. However, the

asymptotics of the coefficient of qn in the standard MacMahon function, where the product

is over all spins, is known to be ρ(n) ∼ e3ζ(3)(n/2)2/3 , and one expects a similar formula

for the growth of the modified MacMahon function, but with different numerical factors.

Thus, in conjunction with the upper bound on the density of states derived above, this

demonstrates that our theory satisfies the locality criterion. We now turn to the density

of high energy states.

2.3.2 Asymptotically high energies: 1 � N � ∆

Here we will show that the density of states at asymptotically high energies ∆ � N has

a Cardy growth. We will do this by showing that the density of states in this regime has

the same leading asymptotics as the product theory and the correction is only polynomial

in the energy. We will show that

e
2π

√
N
3

∆ ∼ ρproduct(∆) ≥ ρsinglet(∆) ≥
ρproduct(∆)

∆p
, ∆� N. (2.14)

Before embarking on the proof, some general comments are in order. The result (2.14)

may seem surprising since it implies that the Cardy formula also holds asymptotically in

the singlet theory, even though the theory is not modular invariant. This is a consequence

of the nature of the projection, which preserves certain properties of the full theory even
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though modular invariance is lost. To see this, consider an orbifold by a discrete group G.

The singlet sector (equivalently, the untwisted sector) partition function is given by

ZN (q, q̄) =
1

|G|
∑
g∈G

TrH⊗N
[
g qL0−c/24q̄L̄0−c̄/24

]
. (2.15)

The term in this sum where the group element g is the identity will be

ZN (q, q̄) =
1

|G|
TrH⊗N

[
qL0−c/24q̄L̄0−c̄/24

]
=

1

|G|
Z(q, q̄)N , (2.16)

where Z is the partition function of one free boson. For any discrete group, |G| is a finite

number, and will constitute only a small correction for sufficiently large temperatures.

Performing an inverse Laplace transform to obtain the density of states, we find that the

growth is Cardy up to some subleading correction from |G|. This shows that for any

discrete orbifold, even the non-modular invariant singlet theory still has a Cardy growth.

Unfortunately, such an argument fails for projections by continuous groups. However, the

analogue of the correction coming from |G| can still be calculated in our O(N) example. It

is no longer constant in the energy, but it is still subleading compared to the Cardy growth.

The proof of (2.14) proceeds as follows. A generic state will be of the form

an1
−1a

n2
−2 · · · a

nk
−k|0〉 , (2.17)

with energy ∆ =
∑k

i=1 i·ni. Since we can take the energy to be arbitrarily large, many of the

oscillators will have the same momenta and must therefore be appropriately symmetrized.

Hence in order to estimate the number of singlets at a given energy ∆, we must find the

multiplicity of the trivial representation in

Sym(n1)⊗ · · · ⊗ Sym(nk) , (2.18)

where Sym(n1) denotes the symmetric tensor product of n1 fundamentals. Since this is a

rather cumbersome counting problem, we will do the explicit computation for SO(3). The

argument for general N will be very similar and only the power p of the supression in (2.14)

will change.

Proof for SO(3). Consider the symmetric product of n fundamentals of SO(3). The

generating function for the number of states at a given jz in the symmetric tensor product

Sym(n) is given by

z(x, n) =
n∑

jz=−n
(# states)xjz =

 m/2∑
i=−m/2

x2i

( n∑
i=−n

xi

)
, m =

⌊n
2

⌋
, n =

⌈n
2

⌉
.

(2.19)

The states form a triangular distribution which is symmetric around jz = 0. The total

number of states is (n+1)(n+2)
2 , and the variance is given by n(n+3)

6 . See figures 1 and 2 for

examples of this distribution at even and odd n.
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Figure 1. Distribution of the number of states

per jz for Sym(12).
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Figure 2. Distribution of the number of states

per jz for Sym(13).

Now, when tensoring together Sym(n1) ⊗ · · · ⊗ Sym(nk), we know that the angular

momentum in the z-direction is additive:

jTotal
z =

k∑
i=1

jiz . (2.20)

This enables us to extract the number of singlets with the following formula:

# singlets =
(

# states with jTotal
z = 0

)
−
(

# states with jTotal
z = 1

)
. (2.21)

This expression can be understood by observing that any irrep of SO(3) with spin strictly

greater than zero has one state with jz = 0 for each state with jz = 1. Hence any difference

between the two must come from a spin zero singlet. For example, one can see from figures 1

and 2 that Sym(12) has 1 singlet, while Sym(13) has none.

The distribution of jTotal
z can be obtained using the central limit theorem. We view

the jiz as independent discrete random variables with mean 0 and variance σ2
i . j

Total
z has

mean zero and variance σ2
Total =

∑k
i=1 σ

2
i . Note that σ2

Total → ∞ as k → ∞. Since there

exists a constant A such that |jiz| ≤ A for all i, the central limit theorem implies that jTotal
z

is approximately Gaussian. More precisely, for a < b:

lim
n→∞

P

(
a <

jTotal
z

σTotal
< b

)
=

1√
2π

∫ b

a
dx e−

x2

2 . (2.22)

This implies that in the regime of very large energies, where we sum over a large number

of jiz, we can approximate the distribution of jTotal
z by

P (jTotal
z ) ≈ 1√

2πσ
e−

(jTotal
z )2

2σ2 , (2.23)

with variance

σ2 =
∑
i

σ2
i =

∑
i

ni(ni + 3)

6
≤
∑
i

n2
i ≤

(∑
i

i · ni

)2

≤ ∆2. (2.24)
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Note that this distribution is normalized, so that P
(
jTotal
z = 0

)
− P

(
jTotal
z = 1

)
gives the

ratio of singlets to the total number of states in the product theory. In the large E limit,

we may take σ arbitrarily large to obtain

P (jTotal
z = 0)− P (jTotal

z = 1) ≈ 1√
2πσ

(
1

2σ2

)
=

1√
8πσ3

≥ 1√
8π∆3

, (2.25)

and hence we conclude

ρproduct(∆) ≥ ρsinglet(∆) ≥
ρproduct(∆)

∆3
. (2.26)

3 Bulk locality

3.1 Locality and reconstruction

In this section, we review how bulk locality emerges in the model, and probe the breakdown

thereof. We shall work in Lorentzian signature in the CFT. The field theory contains an

operator O = ∂+φ
I∂−φ

I with conformal dimension ∆ = 2, which is dual to a massless

scalar Φ in AdS3. In [16], this holographic toy model was used to investigate bulk locality

and reconstruction of Φ in the large N limit. At leading order in 1/N , the bulk field is

free, and can be reconstructed on the boundary by integrating the CFT operator against

a suitable smearing function [30]

Φ(X) =

∫
dxdt K(X|x, t)O(x, t) +O

(
1

N

)
. (3.1)

This prescription correctly reproduces the bulk two-point function from the CFT.

We now demonstrate explicitly how bulk locality emerges at large N in this model.

Expanding the bulk field Φ into mode functions in Poincaré AdS3, we have

Φ(t, x, z) =

∫
dωdk (αωkgωk(t, z, x) + h.c.) . (3.2)

A local bulk field should satisfy the equal-time commutation relations ,

[Φ(x, z),Φ(x′, z′)] = [Π(x, z),Π(x′, z′)] = 0 , (3.3)

[Φ(x, z),Π(x′, z′)] ∼ δ(x− x′)δ(z − z′) , (3.4)

which in turn require

[αωk, αω′k′ ] = [α†ωk, α
†
ω′k′ ] = 0 , (3.5)

[αωk, α
†
ω′k′ ] ∼ δ(ω − ω

′)δ(k − k′) . (3.6)

Via the extrapolate dictionary, we can relate the bulk creation and annihilation operators

above to the those in the CFT by demanding that limz→0 z
−∆Φ(t, x, z)↔ ∂+φ

I∂−φ
I . This

implies

αωk ∼
aIω+kã

I
ω−k√
N

=
aIω+

ãIω−√
N

, (3.7)
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x1

x2

x3

x4

Figure 3. Four CFT insertions that are not lightlike separated in the CFT, but whose bulk

lightcones intersect at a point.

where the a’s are the left- and right-moving Fourier modes of the boundary fields φI .

Equation (3.7) is essentially the statement that a bulk particle corresponds to a pair of

left- and right-moving excitations in the CFT. Note that ω± < 0 corresponds to a creation

operator, and that a†ω± = a−ω± . Translating the bulk commutation relations (3.5) and (3.6)

into the CFT using [aIω, a
J
ω′ ] = ωδ(ω + ω′)δIJ yields

1

N
[aIω+

ãIω− , a
J
ω′+
ãJω′−

] = ω+ω−δ(ω+ + ω′+)δ(ω− + ω′−) (3.8)

+
1

N

(
ω−a

I
ω′+
aIω+

δ(ω− + ω′−) + ω+ã
I
ω′−
ãIω−δ(ω+ + ω′+)

)
,

which becomes local when N is large (i.e., when the last two terms can be dropped).

3.2 3- and 4-point correlation functions

At next-to-leading order in 1/N , we expect the bulk dual of our CFT to be non-local,

despite having the density of states of a local quantum field theory in 2 + 1-dimensions.

As detailed in section 2.2, the bulk contains massless higher-spin fields, which strongly

suggests locality violation since the effective Lagrangian will be unbounded in the number

of derivatives. To quantify the non-locality, we calculate the 3- and 4-point functions of

our primary field O. As explained in [2, 20–23], the 4-point functions provide a strong test

of bulk locality. Any theory with a non-trivial S-matrix in the flat space limit must have

certain lightcone singularities in the 4-point function. These singularities arise when the

bulk interaction point is lightlike connected to all 4 boundary points, none of which are

lightlike separated in the boundary theory; see figure 3. Such singularities do not occur in

a CFT at finite N , but they can appear in the large N limit.

The 3-point function of the operator O is zero,

〈OOO〉 = 0 . (3.9)
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This is easily seen since each O contains one left-mover and one right-mover, so the 3-point

function contains 3 left-movers. Since the boundary theory is free, the vacuum expectation

value of an odd number of left-movers is zero.

The 4-point function contains a factorized piece, which dominates at large N , and a

subleading connected piece. Defining the operator O with a normalization that makes the

2-point function order one in N-scaling,

O =
1√
N
∂+φ

I∂−φ
I , (3.10)

the 4-point function is

〈O(x1)O(x2)O(x3)O(x4)〉 = (3.11)

1

N2
〈∂+φ

I(x1)∂−φ
I(x1)∂+φ

J(x2)∂−φ
J(x2)∂+φ

K(x3)∂−φ
K(x3)∂+φ

L(x4)∂−φ
L(x4)〉.

We can then use the fact that

〈∂+φ
I(x1)∂+φ

J(x2)〉 =
δIJ

(x+
1 − x

+
2 )2

, 〈∂+φ
I(x1)∂−φ

J(x2)〉 = 0 , (3.12)

to obtain

〈O(x1)O(x2)O(x3)O(x4)〉 =

disconnected +
1

N

1

(x+
1 − x

+
2 )2(x−1 − x

−
3 )2(x−2 − x

−
4 )2(x+

3 − x
+
4 )2

+ permutations ,

(3.13)

where, with our normalization conventions, the disconnected piece is of order N0.

Examining this expression for the full 4-point function, it is clear that singularities

arise only when some pair of points are lightlike separated on the boundary, such that

they have the same value of x+ or x−. There are no additional singularities, which would

appear if the bulk theory were truly described by Einstein gravity coupled to matter.

This leaves us with two non-exclusive possibilities: the bulk theory is either non-local or

has a trivial S-matrix in the flat-space limit.1 There is some evidence for the latter on

general grounds (see, e.g., [38] and related work), so we cannot conclude directly from the

singularity structure that the bulk theory is non-local. However, we have found above that

the bulk theory contains an infinite tower of massless higher-spin fields, indicating that

it is non-local in the sense that the Lagrangian contains an arbitrarily large number of

derivatives. It would be interesting to better quantify the degree of non-locality in the

bulk (see for example [36]), and to determine whether the commutators can be corrected

order-by-order in 1/N . We leave these questions for future work.

1Determining the space of permissible field redefinitions that reveals the S-matrix to be trivial despite

the presence of interaction terms is an open area of research. We will not attempt to address the issue here,

but refer the reader to the higher-spin literature, e.g., [31–37].
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A Holomorphic primaries

Here we give explicit expressions for the holomorphic Virasoro primaries at finite N , up

to h = 12. We will work on the cylinder and discuss primary states. The comparison with

the operators on the plane can be performed via the state-operator correspondence; e.g.,

the spin 4 operator is given in [28]. To see that our states are single-trace in the large N

limit, some care is needed in the estimation of the magnitude of a given term. Terms with

more oscillators naturally weigh more since they have several sums. Each oscillator carries

an effective weight of N1/4, which follows from considering any normalized state,

Na1 . . . .ak |0〉 ∼ N−k/4a1 . . . .ak |0〉 . (A.1)

The states below are given up to an overall normalization.
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There is one new primary at h = 4:

W4 = aI−1a
I
−3 −

3

4
aI−2a

I
−2 −

3

2(N + 2)
aI−1a

I
−1a

J
−1a

J
−1 .

At h = 6, there is also one new primary given by

W6 = aI−1a
I
−5 −

5

2
aI−2a

I
−4 +

5

3
aI−3a

I
−3 +

5(8N + 7)

4(N − 1)(N + 2)
aI−1a

I
−1a

J
−2a

J
−2 +

5(N − 16)

4(N − 1)(N + 2)
aI−1a

J
−1a

I
−2a

J
−2

− 15

N + 2
aI−1a

J
−1a

J
−1a

I
−3 +

15

(N + 2)(N + 4)
aI−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1 .

There are 2 new primaries at h = 8. An orthogonal basis can be chosen such that one of these becomes single-trace at large N , while the other remains

multi-trace. The former may be written:

W8 = −N + 2

28
aI−1a

I
−7 +

N + 2

8
aI−2a

I
−6 −

N + 2

4
aI−3a

I
−5 +

5(N + 2)

32
aI−4a

I
−4 + aI−1a

J
−1a

J
−1a

I
−5

− 45

32
aI−2a

I
−2a

I
−2a

J
−2 −

4N + 3

2(N − 1)
aI−1a

I
−1a

J
−2a

J
−4 +

5(3N + 8)

12(N − 1)
aI−1a

I
−1a

J
−3a

J
−3 −

N − 8

2(N − 1)
aI−1a

J
−1a

J
−2a

I
−4

− 28−N
4(N − 1)

aI−1a
J
−2a

I
−2a

J
−3 −

5(5N + 6)

12(N − 1)
aI−1a

J
−1a

I
−3a

J
−3 +

14N + 13

4(N − 1)
aI−1a

J
−2a

J
−2a

I
−3

− 5

4(N − 1)
aI−1a

I
−1a

J
−1a

J
−1a

K
−2a

K
−2 +

5

4(N − 1)
aI−1a

J
−1a

K
−1a

K
−1a

I
−2a

J
−2 .

Similarly, there are 3 new primaries at h = 10, only one of which will be single-trace at large N :

W10 = −N
3 + 5N2 + 2N − 8

105(N + 104)
aI−1a

I
−9 +

3(N3 + 5N2 + 2N − 8)

70(N + 104)
aI−2a

I
−8 −

4(N3 + 5N2 + 2N − 8)

35(N + 104)
aI−3a

I
−7

+
N3 + 5N2 + 2N − 8

5(N + 104)
aI−4a

I
−6 −

3(N3 + 5N2 + 2N − 8)

25(N + 104)
aI−5a

I
−5 +

3(N2 + 3N − 4)

7(N + 104)
aI−1a

I
−7a

J
−1a

J
−1

+
3(N2 − 8N − 48)

7(N + 104)
aI−1a

J
−2a

I
−2a

J
−5 +

3(6N2 + 29N + 20)

7(N + 104)
aI−1a

J
−2a

J
−2a

I
−5 −

3N2 + 16N + 16

N + 104
aI−1a

J
−1a

J
−3a

I
−5

+
3(11N2 + 76N + 128)

40(N + 104)
aI−1a

J
−1a

I
−4a

J
−4 +

4(48N2 + 253N + 224)

35(N + 104)
aI−1a

J
−2a

I
−3a

J
−4

+
2N2 + 13N + 20

N + 104
aI−1a

I
−1a

J
−3a

J
−5 −

N2 + 26N + 88

5(N + 104)
aI−1a

I
−2a

J
−3a

J
−4 −

9N2 + 82N + 184

7(N + 104)
aI−1a

J
−2a

J
−3a

I
−4

–
15

–



− 28(N2 + 3N − 4)

9(N + 104)
aI−1a

J
−3a

J
−3a

I
−3 −

5N2 − 12N − 128

14(N + 104)
aI−1a

J
−1a

J
−2a

I
−6 −

16N2 + 75N + 44

14(N + 104)
aI−1a

I
−1a

J
−2a

J
−6

+
7N2 − 48N − 304

15(N + 104)
aI−2a

J
−2a

I
−3a

J
−3 +

38N2 + 183N + 124

15(N + 104)
aI−2a

I
−2a

J
−3a

J
−3

− 3(16N2 + 9N + 108)

40(N + 104)
aI−1a

I
−1a

J
−4a

J
−4 −

9(N2 + 3N − 4)

2(N + 104)
aI−2a

J
−2a

J
−2a

I
−4 −

1

3
aI−1a

I
−1a

J
−1a

J
−1a

K
−3a

K
−3

+ aI−1a
J
−1a

J
−1a

K
−2a

I
−2a

K
−3 +

3(24N + 71)

4(N + 104)
aI−1a

I
−1a

J
−2a

J
−2a

K
−2a

K
−2 +

3(N − 96)

4(N + 104)
aI−1a

J
−1a

K
−2a

K
−2a

I
−2a

J
−2

− N − 96

N + 104
aI−1a

J
−1a

K
−1a

J
−2a

K
−2a

I
−3 −

50(N + 3)

N + 104
aI−1a

J
−1a

J
−1a

K
−2a

K
−2a

I
−3

+
101N + 4

3(N + 104)
aI−1a

J
−1a

K
−1a

K
−1a

I
−3a

K
−3 +

50(N + 5)

(N + 6)(N + 104)
aI−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1a

L
−2a

L
−2

− 200(N − 1)

3(N + 6)(N + 104)
aI−1a

J
−1a

J
−1a

K
−1a

K
−1a

L
−1a

L
−1a

I
−3

+
40(N − 1)

(N + 6)(N + 8)(N + 104)
aI−1a

I
−1a

J
−1a

J
−1a

K
−1a

K
−1a

L
−1a

L
−1a

M
−1a

M
−1

− 300

(N + 6)(N + 104)
aI−1a

J
−1a

K
−1a

K
−1a

L
−1a

L
−1a

I
−2a

J
−2 .

Finally, there are 6 new primaries at h = 12, only one of which is single-trace at large N :

W12 =

(
−21980N3+168221N2+691811N+534898

)
4158(785N−3927)

aI−11a
I
−1+

(
−21980N3+168221N2+691811N+534898

)
2968812−593460N

aI−10a
I
−2+

5
(
−21980N3+168221N2+691811N+534898

)
1134(785N−3927)

aI−3a
I
−9

+
5
(
21980N3−168221N2−691811N−534898

)
504(785N−3927)

aI−4a
I
−8+

(
−21980N3+168221N2+691811N+534898

)
63(785N−3927)

aI−5a
I
−7+

(
−21980N3+168221N2+691811N+534898

)
424116−84780N

aI−6a
I
−6

+

(
−21980N2+212181N+267449

)
247401−49455N

aI−1a
I
−9a

J
−1a

J
−1+

5
(
306935N2−3887313N−8239196

)
567(785N−3927)

aI−3a
I
−3a

J
−3a

J
−3+

(
−1305455N2+15914271N+34603814

)
336(785N−3927)

aI−2a
J
−2a

J
−2a

I
−6

+

(
−26690N3+324523N2+667124N−2139592

)
21(N−1)(785N−3927)

aI−1a
J
−1a

J
−4a

I
−6+

5
(
305365N3−4092910N2−8201257N+4471138

)
336(N−1)(785N−3927)

aI−1a
I
−3a

J
−4a

J
−4

+

(
510250N3−4443925N2−27596383N+52673488

)
1134(N−1)(785N−3927)

aI−1a
J
−2a

J
−3a

I
−6+

(
545575N3−6683525N2−15872458N+18721430

)
315(N−1)(785N−3927)

aI−1a
J
−1a

I
−5a

J
−5

+

(
769300N3−7202610N2−11642125N+21364413

)
315(N−1)(785N−3927)

aI−1a
I
−1a

J
−5a

J
−5+

5
(
1023640N3−12610589N2−38988835N−21781732

)
1008(N−1)(785N−3927)

aI−2a
J
−2a

I
−4a

J
−4

–
16

–
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+

(
1923250N3−23419885N2+46206677N−3566612

)
2646(N−1)(785N−3927)

aI−1a
J
−2a

I
−2a

J
−7+

(
9708095N3−137201834N2−57820355N+100740374

)
10584(N−1)(785N−3927)

aI−1a
J
−2a

J
−2a

I
−7

+

(
−32970N3+87089N2+3039615N+8652616

)
42(N−1)(785N−3927)

aI−1a
I
−2a

J
−3a

J
−6+

(
−87920N3+787494N2+1769837N−1294776

)
21(N−1)(785N−3927)

aI−1a
I
−1a

J
−4a

J
−6

+

(
−182905N3+1912276N2+12438979N+18721430

)
294(N−1)(785N−3927)

aI−1a
J
−1a

J
−3a

I
−7+

(
−184475N3+1585790N2+8866187N+7352023

)
189(N−1)(785N−3927)

aI−1a
J
−2a

I
−4a

J
−5

+
5
(
−268470N3+3426506N2+8284521N+1478428

)
189(N−1)(785N−3927)

aI−2a
J
−3a

J
−3a

I
−4+

(
−439600N3+3957880N2+8107333N+3476837

)
378(N−1)(785N−3927)

aI−1a
I
−1a

J
−2a

J
−8

+

(
−731620N3+9702664N2+20738839N−5747329

)
189(N−1)(785N−3927)

aI−1a
J
−2a

J
−4a

I
−5+

(
−2990065N3+38646588N2+90510931N−40654026

)
378(N−1)(785N−3927)

aI−1a
J
−3a

I
−3a

J
−5

+

(
−15499825N3+174967830N2+711969205N+575713110

)
4032(N−1)(785N−3927)

aI−2a
I
−2a

J
−4a

J
−4−

(
−384650N3+3237065N2+10118963N+3473512

)
147(N−1)(785N−3927)

aI−1a
I
−1a

J
−3a

J
−7

−
(
−1135895N3+13711834N2+36977579N+12467210

)
168(N−1)(785N−3927)

aI−2a
I
−2a

J
−3a

J
−5−

5
(
38465N3−767742N2+3932638N+9717624

)
189(N−1)(785N−3927)

aI−2a
J
−3a

I
−3a

J
−4

−
(
−339120N3+4412329N2+16084509N+22598996

)
189(N−1)(785N−3927)

aI−1a
J
−3a

J
−3a

I
−5−

(
153860N3−2364467N2+6615097N+10697960

)
378(N−1)(785N−3927)

aI−1a
J
−1a

J
−2a

I
−8

−
(
−9682975N3+112840570N2+424758451N+148673714

)
2268(N−1)(785N−3927)

aI−1a
J
−2a

I
−3a

J
−6+

1639

224
aI−1a

I
−1a

J
−1a

J
−1a

K
−4a

K
−4+aI−1a

J
−1a

J
−1a

I
−2a

K
−3a

K
−4

−339

28
aI−1a

I
−1a

J
−1a

J
−1a

K
−3a

K
−5+

(1551109−103620N )

7(785N−3927)
aI−1a

J
−1a

K
−1a

K
−2a

J
−3a

I
−4+

(1551109−103620N )

109956−21980N
aI−1a

J
−1a

K
−1a

K
−1a

I
−4a

J
−4

+
15

(
213222N2−2080765N−6198962

)
448 (785N2−787N−15708)

aI−2a
I
−2a
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