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Abstract
Searching for accurate machine and deep learning models is a computationally expensive and awfully energivorous

process. A strategy which has been recently gaining importance to drastically reduce computational time and energy

consumed is to exploit the availability of different information sources, with different computational costs and different

‘‘fidelity,’’ typically smaller portions of a large dataset. The multi-source optimization strategy fits into the scheme of

Gaussian Process-based Bayesian Optimization. An Augmented Gaussian Process method exploiting multiple information

sources (namely, AGP-MISO) is proposed. The Augmented Gaussian Process is trained using only ‘‘reliable’’ information

among available sources. A novel acquisition function is defined according to the Augmented Gaussian Process. Com-

putational results are reported related to the optimization of the hyperparameters of a Support Vector Machine (SVM)

classifier using two sources: a large dataset—the most expensive one—and a smaller portion of it. A comparison with a

traditional Bayesian Optimization approach to optimize the hyperparameters of the SVM classifier on the large dataset only

is reported.

Keywords Green AI � Green machine learning � Multi information source optimization � Bayesian optimization �
Gaussian processes

1 Introduction

1.1 The Green AI challenge

Machine Learning (ML) models are computationally hun-

gry: this is particularly true in the case of Deep Neural

Networks (DNNs) in fields like computer vision (Bianco

et al. 2020) and Natural Language Processing (NLP)

(Kulkarni and Shivananda 2019): an approximate

quantification of the financial and environmental costs for

training and validating some of the neural network models

in the NLP domain is reported in Strubell et al. (2019) and

Hao (2019) showing the amazing amount of energy con-

sumed for training and validating a neural network model

for NLP, which can generate the emission of an amount of

carbon dioxide approximately five times the lifetime

emissions of an average American car. No surprise that

Green Machine Learning (Green-ML) and Green Artificial

Intelligence (Green AI) (Schwartz et al. 2019; Yang et al.

2020) have recently emerged as new research topics.

This paper is focused on the issue of hyperparameter

optimization (HPO), where hyper-parameters are all the

parameters of a model which are not updated during the

learning and are used to configure either the model (e.g.,

number of layers of a deep neural network, etc.) or char-

acterize the algorithm used in the training phase (learning

rate for gradient descent algorithm, etc.) and even to

include the choice of optimization algorithm itself and also

the data features which are fed into the ML model.

HPO can be regarded as an optimization outer loop on

top of ML model learning (inner loop) to find the set of
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hyperparameters leading to the lowest error on a validation

set. This two-tier optimization structure has several

implications. First, the evaluation of the objective function

of the outer loop is very expensive, as it requires learning a

model and evaluating its performance on a validation set.

This is usually repeated k times in a k-fold-cross-validation

procedure. Moreover, the objective function is unknown

and can only be observed pointwise with typically noisy

evaluations. Secondly, the average value of the loss func-

tion does not reflect the true distribution of the data (which

leads to the generalization error) and due to the relatively

small size of the validation set, the variance of the average

estimate obtained by cross-validation can be high. Ignoring

this uncertainty can result in suboptimal configuration of

hyperparameters. One must also consider that the perfor-

mance of the model is evaluated with some error, and thus

finding the true optimum with a high precision is usually

not critical: this fits nicely into in the Bayesian Optimiza-

tion (BO) framework that is very sample efficient and

yields an acceptable solution with relatively few function

evaluations.

The outer loop optimization algorithm can be passive,

like grid or pure random search, or ‘‘educated’’ to learn,

from previous evaluations, the structure of the objective

function, and to actively search where most interesting

solutions are. Indeed, BO is a framework to model the

learning process and to yield a principled quantification of

uncertainty (Frazier 2018; Candelieri and Archetti 2019).

BO has become the main approach to handle all the rele-

vant steps in finding an accurate ML model: Algorithm

selection, Hyperparameter Optimization, both recently

integrated in the more general setting named CASH:

Combining Algorithm Selection and Hyperparameter

optimization (Kotthoff et al. 2017). This led to the defini-

tion of Automated Machine/Deep Learning (AutoML/Au-

toDL) (Hutter et al. 2019) and Neural Architecture Search

(NAS) (Hutter et al. 2019; Lindauer and Hutter 2019),

showing that different algorithms and values of its hyper-

parameters can result in significantly different perfor-

mances (Wolpert 2002; Melis et al. 2017).

Although the active learning inherent in BO and the

ensuing sample efficiency are usually associated with the

search for the best algorithm and its configuration

(Shahriari et al. 2016), in terms of accuracy, they translate

into significant cost and energy savings. For instance, the

BERT (Bidirectional Encoder Representation from Trans-

former) model, now available in the Google Cloud, aimed

at contextual representation in NLP, can require 4 days

training sessions (with 110 million of DNN’s parameters to

be learned) (Strubell et al. 2019) which makes the NAS

performed in the outer loop awfully expensive. Sample

efficiency requires some assumption on the objective

function and a model of learning from observations.

Probabilistic models commonly used in BO are Gaus-

sian Processes (GPs) (Williams and Rasmussen 2006) and

Random Forests (RFs) (Ho 1995) (here we do not discuss

their relative merits in different problem classes). GPs are a

powerful framework for reasoning about an unknown

function f given partial knowledge of its behavior obtained

through function evaluations. GP leverages a principled

estimate of predictive uncertainty toward a careful balance

of exploration (increasing one’s knowledge about f ) and

exploitation (focusing on the best points found so far).

The global hyperparameter optimization problem is

usually defined as:

min
x2X�Rd

f xð Þ ð1Þ

where the search space X is generally box-bounded, f is

the loss function and x are the values of the hyperparam-

eters. We remark that f is analytically unknown (also

called latent) and only pointwise, usually noisy, evalua-

tions can be obtained by querying it. We refer to this sit-

uation as black-box optimization.

BO leverages the fact that conditioning the GP on pre-

vious observations provides versatile regressors of the

objective function. BO starts from a GP prior over f ,

encoded with parametric mean and kernel. The available

observations are used to build the posterior distribution

which is used to determine the learning policy, balancing

exploration (high GP variance) and exploitation (low GP

mean value).

Given the cost of evaluating the objective function, trial-

and-error methods like random or grid search are not

useful. Compared to a simple grid search, BO can identify

a better solution for HPO, given the same number of

configurations to evaluate. Given its modeling flexibility,

BO can build a relatively cheap probabilistic surrogate of f ,

take advantage of related tasks (Swersky et al. 2013) or use

problem specific priors (De Ath et al. 2020).

The strategy we follow here is to mitigate the high cost

of hyperparameter optimization enabling the BO algorithm

to trade-off the value of information gained from the

evaluation of a hyperparameter configuration against its

cost. In Swersky et al. (2013) and Klein et al. (2017) BO is

used to evaluate models trained on randomly chosen sub-

sets of data to obtain more, but less informative, evalua-

tions. Two strategies aiming at the same target, which we

do not consider here, are curriculum learning, which

leverages a data-centric view training the model on

increasingly larger datasets, and continuation learning,

which leverages a model-centric view building a sequence

of loss functions L1. . .Lr, in which each Liþ1 is more dif-

ficult to optimize than Li and one can view each Li as a

regularized version of Liþ1 (Aggarwal 2018).
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These approaches could be interpreted as optimization

problems in which multiple information sources are

available, with every source approximating the actual

black-box and expensive (loss) function, with a different

cost for querying each information source. This setting is

known as Multi-Information Source Optimization (MISO),

or multi-fidelity optimization in the special case that the

‘‘fidelity’’ of each source is known a priori and independent

on the value of the hyperparameters.

1.2 Multi information sources optimization:
related works

This problem was initially studied under the name of multi-

fidelity optimization in which rather than a single objective

f , we have a collection of information sources denoted with

f 1 xð Þ; . . .; f S xð Þ. Each source has its own cost, c1; . . .; cS,

where cs[ 08s ¼ 1; ::; S� 1, which controls the fidelity

with lower s giving higher fidelity: increasing the fidelity

gives a more accurate estimate but at a higher cost. In the

case of cross-validation, the fidelity can be related to the

number of iterations of the learning algorithm, the amount

of data used in the training or the number of folds in the

cross-validation. In MISO, the goal is to solve (1) while

reducing the overall cost along the optimization process.

MISO requires specific approaches to choose both the next

location and source to evaluate, leading to a sequence

sð1Þ; xð1Þ
� �

; . . .; sðNÞ; xðNÞ
� �� �

. It is always possible to sort

sources such that cs [ csþ1; in the case that also f xð Þ can be

queried, then it is the most expensive source, so we can set

f xð Þ ¼ f 1 xð Þ without loss of generality.

In the early work about multi-fidelity f s xð Þ were

assumed to be ordered in terms of accuracy and cost: in

more general problems of multi-information source opti-

mization, we only assume the function f ðxÞ taking a design

input x, the objective and f s xð Þ being the sources with

different biases, different amounts of noise and different

costs.

MISO has been gaining increasing attention in the last

years, also beyond ML. An example in engineering design

is the finite element method, where models with cost and

fidelity can be obtained using different mesh values. Cheap

approximations do not represent accurately the optimiza-

tion targets, but still can offer an indication of the sensi-

tivity of the output to changes in the parameters. Also,

output data from physical prototypes can be integrated in

the optimization framework as an additional information

source, with fidelity depending on the application and the

experimental setting. The application domain which has

first exploited the advantages offered by multi-fidelity and

multi-information source optimization is aerodynamics: in

Chaudhuri et al. (2019) and Lam et al. (2015) is presented

an approach that adaptively updates a multi-fidelity surro-

gate on multiple information sources and without any

assumption about hierarchical relations among them.

In a seminal paper (Swersky et al. 2013), the use of

small datasets to quickly optimize the hyperparameters of a

ML model for large datasets has been proposed. The

method shows that it is possible to transfer the knowledge

gained from previous optimizations to new tasks in order to

speed up k-fold cross-validation. The algorithm dynami-

cally chooses which dataset to query in order to yield the

most information per unit cost. In Kandasamy et al. (2016)

a multi-fidelity bandit optimization based on Gaussian

Process (GP) approximations of all the sources is proposed.

The algorithm is named Multi-Fidelity Gaussian Process

Upper Confidence Bound (MF-GP-UCB): it explores the

search space using first the lower fidelity sources and then

the higher ones in successively smaller regions, converging

to the optimum. FABOLAS (FAst Bayesian Optimization

on LArge dataSets) (Klein et al. 2017) is an approach for

HPO on large datasets: at each iteration, it selects an

hyperparameters configuration and a dataset size to use for

optimizing hyperparameters for the entire dataset. Results

are reported for HPO of Support Vector Machines (SVM)

and DNNs, with FABOLAS often providing good solutions

significantly faster than ‘‘vanilla’’ BO-based HPO on the

full dataset. The approach in Poloczek et al. (2017) uses a

GP with a kernel working on a space consisting of both the

search space (spanned by the hyperparameters to optimize)

and the information sources. In Ghoreishi and Allaire

(2019) an approach incorporating correlations both within

and among information sources is proposed. This allows to

exploit the information collected over all the sources and

then fusing them in a unique fused GP. Furthermore, the

constrained setting is considered, where also constraints

can be queried on multiple information sources.

A different approach has been proposed in Ariafar et al.

(2020) Importance-based Bayesian Optimization (IBO),

which models a distribution over the location of optimal

hyperparameter configuration and allocates experimental

budget according to cost adjusted expected reduction in

entropy (Hennig and Schuler 2012). Higher fidelity

observations provide a larger reduction in entropy, albeit at

a higher evaluation cost.

To properly quantify predictive uncertainty, it is

important for a learning system to recognize different types

of uncertainty arising in the modeling process (Liu et al.

2019). Two types of uncertainty must be considered:

aleatoric and epistemic. Aleatoric arises due to the

stochastic variability of the data generating process,

imperfect sensors, and epistemic arises due to our lack of

knowledge about the data generating mechanism. A model

epistemic uncertainty can be reduced by collecting more

data and takes two forms: parametric uncertainty that is
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uncertainty associated with estimating the model parame-

ters under the current model specification and structural

uncertainty that reflects the measure in which a model is

sufficient to describe the data, i.e. whether there exists a

systematic discrepancy.

1.3 Our contributions

The main contributions of this paper can be summarized as

follows:

• A new GP called augmented GP which does not require

a kernel working in the x; s space of hyperparameters

and sources. Relations among sources are captured by a

simplified and computationally cheap discrepancy

measure (related to the epistemic error), used to select

‘‘reliable’’ evaluations to fit the proposed GP and

included into a new acquisition function.

• A new acquisition function based on U/LCB but

implementing a sparsification strategy. Indeed, the

proposed GP results sparse, reducing the computational

cost for fitting it (i.e., the number of evaluations raised

power of three).

• The new GP mitigates the computational problems in

estimating nonparametric regression which is inherently

difficult in high dimensions with known lower bounds

depending exponentially on dimension.

• Making MISO energy-efficient itself by selecting a

subset of ‘‘reliable’’ evaluations among all those

performed over all the sources. Only this subset is used

to fit a GP differently from the fused GP in Ghoreishi

and Allaire (2019).

• Demonstrating, empirically, the benefit provided by our

approach on an HPO task aimed at optimally tuning a

Support Vector Machine classifier on a large dataset.

2 Background

2.1 Gaussian processes

One way to interpret a Gaussian Process (GP) regression

model is to think of f as a latent function defining a dis-

tribution over functions, and with inference taking place

directly in the space of functions (i.e., function-space view)

(Williams and Rasmussen 2006). A GP is a collection of

random variables, any finite number of which have a joint

Gaussian distribution. A GP is completely specified by its

mean function lðxÞ and covariance function

cov f xð Þ; f x0ð Þð Þ ¼ k x; x0ð Þ:

l xð Þ ¼ E f xð Þ½ �
cov f xð Þ; f x0ð Þð Þ ¼ k x; x0ð Þ ¼ E f xð Þ � l xð Þð Þ f x0ð Þ � l x0ð Þð Þ½ �

ð2Þ

, and the GP will be written as:

f xð Þ�GP l xð Þ; k x; x
0

� �� �
ð3Þ

Usually, for notational simplicity, we will take the prior

of the mean function to be zero, although this is not

necessary.

As consequence, the function values f x1ð Þ; . . .; f xnð Þ
obtained at n different points x1; . . .; xn, are jointly Gaus-

sian. To see this, we can draw samples from the distribu-

tion of functions evaluated at any number of points; in

detail, we choose a set of input points X1:n ¼ ðx1; . . .; xnÞT
and then compute the corresponding covariance matrix

elementwise. This operation is usually performed by using

predefined covariance functions allowing to write covari-

ance between outputs as a function of inputs (i.e.,

cov f xð Þ; f x
0� �� �
¼ kðx; x0Þ). Finally, we can generate a

random Gaussian vector as:

f ðX1:nÞ�N ð0;KðX1:n;X1:nÞÞ ð4Þ

and plot the generated values as a function of the inputs.

This is basically known as sampling from prior.

Let X1:n ¼ xð1Þ; . . .; xðnÞ
� �

denote a set of n locations

into the search space X and y ¼ yð1Þ; . . .; yðnÞ
� �

the asso-

ciated function values, with yðiÞ ¼ f xðiÞ
� �

or, in the noisy

setting, yðiÞ ¼ f xðiÞ
� �

þ e with e�N 0; k2
� �

. Then, the GP’s

mean and variance are conditioned to the training set

X1:n; yð Þ as follows:

l xð ÞjðX1:n; yÞ ¼ k x;X1:nð Þ Kþ k2I
� 	�1

y ð5Þ

r2 xð ÞjðX1:n; yÞ ¼ k x; xð Þ � k x;X1:nð Þ Kþ k2I
� 	�1

k X1:n; xð Þ
ð6Þ

with k a kernel function, k x;X1:nð Þ a vector whose ith

component is k x; xðiÞ
� �

and K an n� n matrix with entries

Kij ¼ k xðiÞ; xðjÞ
� �

. Finally, k X1:n; xð Þ is the transposed ver-

sion of k x;X1:nð Þ.
In the following, a simple example of five different

samples is drawn at random from a GP prior and posterior,

respectively (Fig. 1). The posterior is conditioned on six

function observations.

A kernel function (aka covariance function) is the cru-

cial ingredient in a GP predictor, as it encodes assumptions

about the function to approximate. It is clear that the notion

of similarity between data points is crucial; it is a basic

assumption that points which are close are likely to have

similar target values y, and thus function evaluations that
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are near to a given point should be informative about the

prediction at that point. Under the GP view it is the

covariance function that defines nearness or similarity.

2.1.1 Squared Exponential (SE) kernel:

kSE x; x
0

� �
¼ e

�kx�x
0k2

2l2

With l known as characteristic length scale. A large

value of the length scale will map x to a narrower range of

values, while a small length-scale does the opposite.

Consequently, a large length-scale implies long-range

correlations, whereas a short length-scale makes function

values strongly correlated only if their respective inputs are

very close to each other. This kernel is infinitely differ-

entiable, meaning that the sample paths of the corre-

sponding GP are very ‘‘smooth.’’

Another way to look at l is through the expected number

of 0-upcrossings which is proportional to 1/l. Then l is

proportional to the expected length before crossing 0,

hence the name length scale.

SE is the most widely used kernel because it is easy to

code, relatively robust to misspecification and guarantees a

positive definite covariance regardless of input dimensions.

One must anyway bear in mind that it is particularly liable

to numerical ill conditioning of the kernel matrix. Other

widely adopted kernels are reported in Appendix of this

paper.

2.2 Acquisition functions

The acquisition function is the mechanism to implement

the trade-off between exploration and exploitation in BO.

More precisely, any acquisition function aims to guide the

search of the optimum toward points with potential low

values of objective function either because the prediction

of f ðxÞ, based on the probabilistic surrogate model, is low

or the uncertainty is high (or both). Indeed, exploiting

means to target the area providing more chance to improve

the current solution (with respect to the current surrogate

model), while exploring means to move toward less

explored regions of the search space where predictions

based on the surrogate model have a higher variance.

Confidence Bound—where Upper and Lower Confi-

dence Bound (UCB and LCB) are used, respectively for

maximization and minimization problems—is an acquisi-

tion function that manages exploration–exploitation by

being optimistic in the face of uncertainty, in the sense of

considering the best-case scenario for a given probability

value (Auer 2002).

For the case of minimization, LCB is given by:

LCB xð Þ ¼ l xð Þ � nrðxÞ

where n� 0 is the parameter in charge of managing the

trade-off between exploration and exploitation (n ¼ 0 is for

pure exploitation; on the contrary, higher values of n
emphasize exploration by inflating the model uncertainty).

For this acquisition function there are strong theoretical

results, originated in the context of multi-armed bandit

problems, on achieving the optimal regret derived by

Srinivas et al. (2012). For the candidate point xn we

observe instantaneous regret rn =f xnð Þ � f x	ð Þ. The

cumulative regret RN after N function evaluations is the

sum of instantaneous regrets: RN ¼
PN

n¼1 rn. A desirable

asymptotic property of an algorithm is to be no-regret:

lim
N!1

RN

N ¼ 0. Bounds on the average regret RN

N translate

bounding RN by a quantity sublinear in T , to convergence

rates: f xþð Þ ¼ min xn
Nf xnð Þ, in the first N function

evaluations, is no further from f ðx	Þ than the average

regret. Therefore,f xþð Þ � f ðx	Þ ! 0, with N !1 and so a

no regret algorithm will converge to a subset of the global

minimizers.

A wide analysis of the convergence rate of RN in the

case of Matérn kernel, for different values of d and m, is

given in Vakili et al. (2020).

Fig. 1 Sampling from prior vs sampling from posterior (for the sake of simplicity, we consider the noise-free setting)
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Figure 2 shows how the selected points change

depending on n.

Finally, the next point to evaluate is chosen according to

x nþ1ð Þ ¼ argmin
x2X

LCBðxÞ, in the case of a minimization

problem, or x nþ1ð Þ ¼ argmax
x2X

UCBðxÞ in the case of a

maximization problem.

From the perspective of BO a particularly interesting

bandit problem is the kernelized continuum armed bandit-

problem (Srinivas et al. 2010). Here, f is assumed to be in

the closure of functions on X expressible as a linear com-

bination of a feature embedding parametrized by a kernel k.

The properties of the functions in the resulting space

referred as the RKHS of k, are determined by the choice of

the kernel. For a SE kernel the RKHS contains only infi-

nitely differentiable functions.

The optimization of the acquisition function leads to the

next location to be queried, xðnþ1Þ; and, consequently, to a

sequence of locations generated xð1Þ; . . .; xðNÞ
� �

over the

BO process, with N the overall number of function eval-

uations at the end of the process. In this paper we use

Lower Confidence Bound, largely adopted in GP-based BO

and with a convergence proof under an appropriate

scheduling of the internal parameter bðnÞ (Srinivas et al.

2012) which balances between exploration and

exploitation:

LCB nð ÞðxÞ ¼ l nð ÞðxÞ �
ffiffiffiffiffiffiffiffi
bðnÞ

q
rðnÞ ð7Þ

where the apex related to the current iteration n has been

included to highlight that the value of b changes over BO

iterations, as well as the conditioned GP’s mean and

standard deviation. Confidence Bound has been success-

fully applied in MISO, such as in Kandasamy et al. (2016).

Wilson et al. (2018) point out that the shape of the

acquisition function may have large flat regions which, in

particular in high-dimensional spaces, make its optimiza-

tion problematic and propose a Monte Carlo evaluation of

acquisition function amenable to gradient-based optimiza-

tion and identify a family of acquisition functions,

including UCB, whose characteristics allow using greedy

approaches for their maximization.

A specific problem in MISO is related to the acquisition

function. According to Poloczek et al. (2017) and Ghor-

eishi and Allaire (2019), Knowledge Gradient, Entropy

Search and Predictive Entropy Search can be applied.

However, their computation and optimization are compu-

tationally expensive: for this reason, in this paper we

consider L/UCB and build on it a new acquisition function

specifically designed for MISO.

3 The proposed multi information source
optimization—augmented Gaussian
process (MISO-AGP)

3.1 Augmented GP

The MISO approach proposed in this paper is based on the

idea of training a GP on a ‘‘reliable’’ subset of all the

function evaluations performed so far over all the infor-

mation sources. We refer to this GP as Augmented Gaus-

sian Process (AGP) and consequently named our approach

MISO-AGP. The term ‘‘augmented’’ is used to highlight

that the set of function evaluations to train the AGP starts

from those performed on the most expensive source and

then it is ‘‘augmented’’ by selecting evaluations performed

on some other source. Before explaining how the selection

process is performed, we introduce some useful notations.

Let Ds ¼ x ið Þ; y
ðiÞ
s

� �n o

i¼1;...;ns
denote the ns function

evaluations performed so far on the source s. For each

source s a specific GP, Gs, is trained on the current Ds. Let

us introduce a model discrepancy measure, g x;G;G0ð Þ,
between two GPs. Differently from other papers, such as

Poloczek et al. (2017) and Ghoreishi et al. (2019), we

compute it simply as:

g x;G;G0ð Þ ¼ l xð ÞjDs � l0 xð ÞjDs0j j ð8Þ

Fig. 2 GP trained depending on seven observations (top), LCB with

respect to different values of n and min values corresponding to the

next point to evaluate (bottom)
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with l xð Þ and l0 xð Þ the conditioned mean functions of the

two GPs. It is also important to note that g x;G;G0ð Þ
depends on x. Indeed, in MISO we do not know a-priori the

fidelity of each source and it could be not constant over X .

Assume that f xð Þ can be queried at the highest cost, that

is f xð Þ ¼ f 1 xð Þ. Thus, the set of evaluations to train the

AGP consists of D1 ‘‘augmented’’ by:

~D ¼ ~x; ~yð Þ : 9z : ~x; ~yð Þ 2 Dzfg x;G1;Gð Þ\mr1 xð Þ
� �

ð9Þ

with m a technical parameter of the MISO-AGP algo-

rithm. We used m ¼ 1 (i.e., around 68% of observations

normally distributed are in the interval mean � standard

deviation). Thus, function evaluations on cheaper sources,

having a discrepancy lower than the threshold given in (9),

are considered ‘‘reliable’’ to be merged with those collected

on the most expensive source. Let bD denote the augmented

set of function evaluations, such that bD ¼ D1 [ �D, the

AGP bG is trained on bD, leading to blðxÞ and brðxÞ, com-

puted according to (5–6). An example is reported in Fig. 3.

3.2 Acquisition function in MISO-AGP algorithm

Following the training of the AGP, an acquisition function

must be used to choose the next pair source-location to

query, that is s
0
; x0

� �
. We consider the framework of U/

LCB:

s0; x0ð Þ ¼ argmax

x 2 X � Rd

s ¼ 1; . . .; S

yþ � bl xð Þ �
ffiffiffiffiffiffiffiffi
b nð Þ

q
br xð Þ

� �

cs 1þ g x; bG;Gs
� �� �

8
>><

>>:

9
>>=

>>;

ð10Þ

where n is the number of function evaluations into bD and

yþ ¼ min
x;yð Þ2bD

yf g is the best observed value into bD. The

numerator is the most optimistic improvement with respect

to the AGP’s LCB, penalized by the cost of the source s
and the model discrepancy between the AGP bG and Gs, at

the location x.

There is the chance that x0 could be too close to some

previous function evaluations on s0. This behaviour arises

when BO is converging to a (local/global) optimum and

leads to a well-known instability issue in GP training,

which is ill-conditioning in the inversion of the matrix

Kþ k2I
� 	

. This instability issue occurs even more fre-

quently and quickly in the noise-free setting (i.e., k ¼ 0).

To avoid this undesired behavior—leading to wasting

evaluations without obtaining any improvement and/or

risking occurring in the instability issue—we introduce the

following correction.

Given s0; x0ð Þ from (10), if

9 x ið Þ; y ið Þ� �
2 Ds0fx0 � x ið Þ2\d

s0  1 and x0 ¼ argmax
x2X�Rd

r1 xð Þ ð11Þ

with d[ 0 the second MISO-AGP’s technical parameter.

In other words, we set the acceptable level of approxima-

tion, d, in locating the optimizer and, in the case that x0 is

closer than d to another evaluation on s0, then we prefer to

‘‘spend our budget’’ in reducing uncertainty on the most

expensive source.

The MISO-AGP algorithm is summarized in the

following.

Fig. 3 An example of AGP on a one-dimensional MISO minimization

problem with two information sources. (Left) the two GPs trained on

each source; (right) the AGP: only three evaluations on the cheaper

source (around x ¼ 0:5, x ¼ 0:7 and x ¼ 0:8) are selected to

‘‘augment’’ the evaluations on the expensive one. This reduces, at

the same time, the uncertainty near the global minimum of f 1 and the

number of evaluations for training the AGP (six out of the 14 overall)
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3.3 Computational setting

All the experiments have been performed on a Microsoft

Azure virtual machine, H8 (High Performance Computing

family) Standard with 8 vCPUs, 56 GB of memory,

Ubuntu 16.04.6 LTS. The code has been developed in R:

all the code is available upon request from the authors.

4 Experimental setting

4.1 Test problems

To validate the proposed MISO-AGP approach, we have

first evaluated it on two test problems: the one-dmensional

Forrester test function (Forrester et al. 2007; Bartz-Beiel-

stein et al. 2015) and the two-dimensional Rosenbrock test

function, presented in Poloczek et al. (2017) as a MISO as

well as multi-fidelity optimization test case.

4.1.1 Forrester test problem

The Forrester test problem is characterized by the two

following sources:

f1 xð Þ ¼ f xð Þ ¼ 6x� 2ð Þ2sin 12x� 4ð Þ
f2 xð Þ ¼ 0:5f1 xð Þ þ 10 x� 0:5ð Þ þ 5

with associated costs c1 ¼ 1000 and c2 ¼ 1. The two

functions are considered black-box, and the search space is

the interval 0; 1½ �. The solution for this problem is x	 ¼
0:7572488 with associated function value

f x	ð Þ ¼ �6:02074.

4.1.2 Rosenbrock test problem

The Rosenbrock test problem is characterized by the fol-

lowing two sources:

f1 xð Þ ¼ 1� x 1½ �
� �2þ100 x 2½ � � x2

1½ �

� �2

f2 xð Þ ¼ f1 xð Þ þ 0:1 sin 10x 1½ � þ 5x 2½ �
� �

where x 1½ � and x 2½ � represent, respectively, the first and

second components of x. The associated costs for evalu-

ating the two sources are c1 ¼ 1000 and c2 ¼ 1. The two

functions are considered black-box and the search space is

�2; 2½ �2. The solution of this problem is x	 ¼ 1; 1ð Þ with

associated function value f x	ð Þ ¼ 0.
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4.2 C-support vector classification with radial
basis function kernel

To validate our MISO-AGP approach, we designed an

HPO task whose goal is to optimally and efficiently tune

the hyperparameters of a Support Vector Machine (SVM)

classifier on a large dataset. More precisely, we consider a

C-SVC with a Radial Basis Function (RBF) kernel and the

‘‘MAGIC Gamma Telescope’’ dataset.1

We chose C-SVC (i.e., C-Support Vector Classification,

where C is the hyperparameter managing the trade-off

between maximizing the margin and minimizing the clas-

sification error) due to its relative inefficiency on large

datasets: computational complexity for training a C-SVC,

on a given hyperparameters configuration, is the number of

instances raised the power of three. The C-SVC’s hyper-

parameters to optimize are the regularization term, C, and c

in the RBF kernel: kRBF x; x0ð Þ ¼ e�ckx�x
0k2

.

The MAGIC dataset is generated by a Monte Carlo

program (Heck et al. 1998), to simulate registration of high

energy gamma particles in a ground-based atmospheric

Cherenkov gamma telescope using the imaging technique.

The overall dataset consists of 19,020 instances: 12,332 of

the class ‘‘gamma (signal)’’ and 6,688 of the class ‘‘hadron

(background),’’ with each instance represented by ten

continuous features. We have performed a preprocessing

consisting in scaling all the dataset features in ½0; 1�.
Following the notation used in this paper, MISO-AGP

will be used to minimize f xð Þ. This is straightforward for

the two test problems, Forrester and Rosenbrock. As far as

the hyperparameter optimization of the C-SVC is consid-

ered, f xð Þ is the misclassification error computed on tenfold

cross validation on the MAGIC dataset. The search space

X is two-dimensional and box-bounded, spanned by the

two C-SVC’s hyperparameters C 2 10�2; 102
� 	

and

c 2 10�4; 104
� 	

. We adopt a logarithmic scaling of the

search space, a usual procedure suggested in AutoML for

hyperparameters varying within ranges of this scale.

We have defined two different sources: the first provides

the misclassification error obtained via tenfold cross-vali-

dation of a C-SVC configuration using the entire MAGIC

dataset (i.e., f 1 xð Þ ¼ f xð Þ). The second (i.e., f 2 xð Þ) per-

forms the same computation but using a smaller portion of

the data (just 5% through stratified sampling).

Energy required to perform tenfold cross validation is

basically associated with the computational time, which we

consider as a proxy for the sources’ costs. Since compu-

tational time can also depend on the values of C-SVC’s

hyperparameters, we have run a sample of ten hyperpa-

rameters configurations on both the two sources and used

the average computational times for estimating reference

values for c1 and c2. More precisely, computational time

required by f 1 xð Þ is, on average, 320 times that required by

f 2 xð Þ. Thus, we set c2 ¼ 1 and, consequently, c1 ¼ 320.

4.3 MISO-AGP setting

The kernel used to model the covariance function, for all

the GPs, including the AGP, is the Squared Exponential

kernel, whose hyperparameters are set via Maximum

Loglikelihood Estimation during the GP training. The

acquisition function (12) and, in case, the correction (11)

are both optimized via L-BFGS (Limited-memory Broy-

den–Fletcher–Goldfarb–Shanno algorithm) algorithm.

As initialization, three hyperparameters configurations

are sampled in X via Latin Hypercube Sampling (Hunt-

ington and Lyrintzis 1998). Then, 30 further function

evaluations are used by MISO-AGP to optimize over

sources. We decided not to set a limit on the cumulated

cost but to use this value to make considerations on the

efficiency of the proposed approach with respect to BO

applied only on the most expensive source. To mitigate the

effect of initial randomness, ten different runs of MISO-

AGP and BO have been performed and compared: at each

run, the two approaches share the same initialization.

As metrics, we consider the best function value observed

so far. It is usually named ‘‘best seen’’ in BO and simply

defined as y
ðnÞ
þ ¼ min

i¼1;...;n
yð1Þ; . . .; yðnÞ
� �

—because we are

considering the minimization of the misclassification error.

However, this definition is no more valid in the case of the

AGP. Suppose that, at a certain iteration, a function eval-

uation on a cheaper source is selected to fit the AGP and

that corresponds to the best seen up to that iteration. At the

next iteration, it could not be selected and, consequently, it

cannot be considered as the best seen any longer. More

formally, let byðnÞþ denote the ‘‘augmented best seen,’’

byðnÞþ ¼ min
i¼1;...;p

yð1Þ; . . .; yðpÞ
� �

, with p\n because only a

subset of the evaluations on all the sources is used to train

the AGP. In the case that

byðn�1Þ
þ 62 y 1ð Þ; . . .; y pð Þ� �

) byðnÞþ Sbyðn�1Þ
þ ; in other terms,

contrary to the common ‘‘best seen,’’ the ‘‘augmented best

seen’’ could not be monotone over the function evaluations.

5 Results

5.1 Results on test problems

In this section we summarize the results related to the two

test problems, namely Forrester and Rosenbrock. The
1 http://archive.ics.uci.edu/ml/datasets/magic?gamma?telescope.
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actual optimizer x	 is known for each one of the two test

problems, so we measured the distance between the opti-

mal solution identified by at the end of the BO and MISO-

AGP processes. Distances are reported in Table 1, as

average and standard deviation on the 30 different runs.

As expected, the overall cumulated cost for MISO-AGP

is significantly lower than performing BO on f 1 xð Þ ¼ f xð Þ
only.

With respect to the Forrester test problem, the solutions

identified by MISO-AGP are significantly closer to x	 than

those found by BO (Wilcoxon test, p value\ 0.01), with

approximately half of the cumulated cost. Results are less

exciting on the Rosenbrock test problem: BO solutions are

in this case closer to x	 than those found by MISO-AGP

(Wilcoxon test, p-value\ 0.001). However, MISO-AGP

cost is significantly lower than BO, around the 2%, on

average. Therefore, MISO-AGP has still margin to improve

by slighting increasing its cumulated cost.

5.2 Results on hyperparameter optimization
of C-SVC

Figure 4 summarizes the results obtained on a real-world

application related to hyperparameter optimization of a C-

SVC on the MAGIC dataset. In this case, the optimal

hyperparameters configuration (i.e., x	) is not known a

priori, as well as the associated function value f x	ð Þ. The

best value of the misclassification error is reported with

respect to the cost cumulated over the MISO-AGP and BO

iterations, separately. Solid lines represent the mean over

the ten independent runs, while shaded areas represent the

standard deviations. As a reference value, we have con-

sidered the best misclassification error registered, on the

entire MAGIC dataset, over all the experiments performed

(green dashed line). The cumulated costs—which are

actual and not the nominal c1 and c2 used in the acquisition

function—are also averaged on the ten independent runs.

The MISO-AGP approach proved to be both more

effective and efficient than traditional BO: the identified

hyperparameters configurations are associated with a lower

misclassification error, and within less than one-third of the

time required by BO. On average, 60% of the function

evaluations are performed on the cheaper source. Thus,

MISO-AGP has intelligently exploited the cheaper infor-

mation source, thanks to the proposed AGP, leading to an

energy-efficient and green HPO task.

6 Conclusions

The GP framework can be extended to deal with multiple

information sources. Relations among sources are captured

by a simplified and computationally cheap discrepancy

measure, which enables a sparsification strategy used to

select ‘‘reliable’’ evaluations to fit the proposed AGP. The

MISO-AGP has been empirically shown to solve a real

HPO task effectively while reducing significantly compu-

tational time and consequently energy usage.

Appendix

A: Other kernels

The following are some well-known and widely adopted

kernels in GP modeling.

Table 1 Distance from x	 and overall cumulated cost. Values are mean (standard deviation) on 30 independent runs. Standard deviation is not

applicable in the case of BO cost because BO uses only one source, that is f 1 xð Þ ¼ f xð Þ

Forrester Rosenbrock

Distance Cost [�1000� Distance Cost [�1000�

BO 0.093 (0.167) 30 (n.a.) 0.379 (0.067) 30 (n.a.)

MISO-AGP 0.031 (0.008) 16.833 (9.480) 0.978 (0.790) 0.633 (0.765)

Fig. 4 HPO of C-SVC on the MAGIC dataset. Comparison between

traditional BO-based HPO and MISO-AGP on two information

sources. Results refer to ten independent runs
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Matérn kernel:

kMat x; x
0

� �
¼ 21�m

CðmÞ
jx� x0j

ffiffiffiffiffi
2m
p

l

� �m

Km
jx� x0j

ffiffiffiffiffi
2m
p

l

� �

where m and l are two kernel’s hyperparameters and Km

is a modified Bessel function. Note that for m!1 we

obtain the SE kernel.

The Matérn covariance functions become especially

simple when m is half-integer: m ¼ pþ 1=2, where p is a

non negative integer. The formula can be rewritten as the

product of an exponential and polynomial terms of order

p� 1.

The advantages of the simplified covariance Matérn

function are that there are no Bessel functions, no sum of

factorials nor fraction of gammas as reported in Gramacy

(2020). This is important because the evaluation of the

Bessel function can be as computationally demanding as

the matrix inversion.

The most widely adopted versions, specifically in the

Machine Learning community, are m ¼ 3=2 and m ¼ 5=2:.

km¼3=2ðx; x
0 Þ ¼ 1þ x� x0j j

ffiffiffi
3
p

l

� �
e
� x�x0j j ffiffi3p

l

km¼5=2ðx; x
0 Þ ¼ 1þ x� x0j j

ffiffiffi
5
p

l þ ðx� x0Þ2

3l2

 !

e
� x�x0j j ffiffi5p

l

Choosing p = 0 one obtains the exponential family,

p = 0 implies v = 1/2 which is appropriate for rough

surfaces.

A sample path of latent f under a GP with Matérn will

be k-times differentiable iff m is larger than k.

One great advantage of Matérn is that at least for small

v it creates covariance matrices that are better conditioned

than SE.

The exponential kernel is also called the Laplace kernel

and has a strong link with Mondrian kernels which results

in Gaussian models conceptually close to Random Forests

(Lévesque et al. 2017).

Rational quadratic covariance function

kRQ x; x
0

� �
¼ 1þ ðx� x0Þ2

2al2

 !�a

where a and l are two hyperparameters. This kernel can

be considered as an infinite sum (scale mixture) of SE

kernels, with different characteristic length scales.

The aforementioned kernels are just the most widely

adopted in GP regression.

More details and a most comprehensive set of covari-

ance functions are reported in Williams and Rasmussen

(2006), and Gramacy (2020) including nonstationary ker-

nels and dot product kernels.

Some issues on kernel have been considered in recent

publications, such as: kernel composition, safe optimiza-

tion in relation to cognition (Schulz et al. 2018) as well as

kernel learning, adaptation and sparsity in order to deal

with functions that are smooth in a subset of their domain

and can vary rapidly in another as analyzed in Peifer et al.

(2019) from the viewpoint of computational complexity in

the framework of RKHS (Reproducing Kernel Hilbert

Spaces).

A space-temporal kernel has been proposed in Nyikosa

et al. (2018) to allow the GP to capture all the instances of

the function over time and track a temporally evolving

minimum.

B: Other improvement-based acquisition
functions

Confidence Bound, adopted in this paper is an optimistic

acquisition function. It belongs to the family of improve-

ment-based acquisition function, aimed at searching for the

optimum, y	, instead of the optimizer, x	 (the second

family of acquisition functions are known as entropy-

based). The Following are other two well-known and

widely adopted improvement-based acquisition functions.

Probability of Improvement (PI) was the first acquisition

function proposed in the literature (Kushner 1964):

PIðxÞ ¼ Pðf xð Þ
 f xþð Þ þ nÞ ¼ U
f xþð Þ � l xð Þ � n

rðxÞ

� �

where f ðxþÞ is the best value of the objective function

observed so far, l xð Þ and rðxÞ are mean and standard

deviation provided by (6) and square root of (7), and Uð�Þ
is the normal cumulative distribution function. The

parameter n is introduced to modulate the balance between

exploration and exploitation. More precisely, n ¼ 0 is

toward exploitation while n[ 0 is more toward

exploration.

The next point to evaluate is chosen according

to:xnþ1 ¼ argmax
x2X

PIðxÞ

Expected Improvement (EI), initially proposed in

Močkus (1975) and then made popular in Jones et al.

(1998), measures the expectation of the improvement on

f ðxÞ with respect to the predictive distribution of the

probabilistic surrogate model.

EI xð Þ ¼ f xþð Þ � l xð Þ � nð ÞU Zð Þ þ r xð Þ/ Zð Þ if r xð Þ[ 0ifr xð Þ[ 0

0 if r xð Þ ¼ 0



Z ¼
f xþð Þ � l xð Þ � n

r xð Þ
f xþð Þ � l xð Þ � n

r xð Þ ifr xð Þ[ 0

0 ifr xð Þ ¼ 0

8
<

:
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The parameter n in order to actively manage the trade-

off between exploration (larger values) and exploitation

(smaller) should be adjusted dynamically to decrease

monotonically with the function evaluations.

The next point to evaluate is chosen according to:

xnþ1 ¼ argmax
x2X

EIðxÞ
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