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1 Introduction

The dynamics of fields with spin higher than two has an intricate structure. Their free
equations of motion are already quite complicated when they have a mass [1], but simplifies
in the massless case, where their equation of motion mimics that of spin two, using the
so-called Fronsdal operator F [2]. Their interactions have a highly constrained dynamics; for
reviews see for example [3–7]. It has long been surmised that they are important for theories
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of quantum gravity. String theory does have a tower of such fields, with masses related to
the string tension. On the other hand, theories of Vasiliev type describe massless higher
spins in (A)dS [8–12]. Their status as quantum theories is bolstered by their holographic
interpretation [13, 14], although some degree of non-locality emerges [15, 16]. Higher spin
fields and symmetries are expected more generally in holography, although most often in a
broken version [17]. Some versions of these theories can indeed be even obtained as limits of
string theory [18, 19]. Restrictions to local covariant massless higher spins in flat space were
found in [20–22]; more recently, progress has been made using light-cone approach [22, 23].

Finsler geometry is a natural generalization of Riemannian and pseudo-Riemannian
geometry; for some recent introductions see [24–26]. In the former case, instead of writing
the length of a curve as

∫
dτ

√
2g2, where g2 ≡ 1

2gµν ẋ
µẋν , one considers a more general∫

dτF (x, ẋ). The homogeneity rule F (x, λẋ) = λF (x, ẋ) is needed to ensure that such
a length does not depend on how the curve is parameterized, but this still leaves many
possibilities. A homogeneous analogue of a power series leads to a fairly general expression:1

F 2 = 2g2 +
ϕ4
g2

+ ϕ6
g2

2
+ . . . , ϕs ≡ 1

s!ϕµ1...µs ẋ
µ1 . . . ẋµs . (1.1)

So the first term in this expansion leads to the usual notion of distance; the others are new.
One can also think of this as a line element ds2 = ds2

0 +(2/ds2
0)ϕµνρσdxµdxνdxρdxσ + . . .,

where ds2
0 = gµνdxµdxν is of the customary (pseudo-)Riemannian type.

Analogues of the usual notions of connection and curvature have been studied for Finsler
geometry for a long time. These notions are most natural when F is considered as a function
on the tangent bundle TM ,2 with ẋµ now promoted to a coordinate yµ along the fiber.

Mathematically it looks natural to build a Finsler modification of general relativity (GR);
this has indeed been explored at length in the literature (see for example [27, 28] for reviews).
But from a physical point of view, no model of gravity can be considered to be well-motivated
unless it improves on Einstein gravity on the crucial issue of its quantum behavior. This
important issue appears to have been relatively unexplored.

In any case, the appearance of the symmetric tensors ϕµ1...µs in (1.1) suggests a relation
to higher-spin theories. Given the promising status of the latter as quantum theories, such a
link would also make Finsler geometry a lot more interesting physically. The

∫
dτF would

then be interpreted as a natural coupling of the ϕµ1...µs to a particle.
A version of (1.1) with s = 2 and one s > 2 was considered in this context [29, (5.8)], and

an approximate gauge transformation for the particle action was noticed. This was further
explored and generalized in [30, 31], in a line of research that led to a conformal theory

1Odd s can also be introduced, as we will discuss later.
2More precisely, because of the homogeneity constraint on F , one has to work either with the slit tangent

bundle TM−(zero section), or with the sphere bundle SM inside it, where each fiber is quotiented by overall
rescalings.
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of higher spins [32].3 In [35] an analogue of Finsler geometry (without the homogeneity
constraint) was used for W-gravity in low dimensions. Most relevant for us, (1.1) was found
in [36] for s = 4 and g2 = η2 (flat space) to be related to the spin-4 Fronsdal equation [2].

In this paper I will explore (1.1) more systematically, in the spirit of taking the ϕs to
be Finsler deformations around an ordinary (pseudo-)Riemannian geometry described by
g2 = 1

2gµνy
µyν . The first intriguing result is that the Fronsdal kinetic operator F(ϕs) appears

for all spins s > 2 and around any g2. Among the curvature tensors, one that we will call
ρ is the analogue of the ordinary Ricci tensor. We will see that

ρ ∼ R0
αβy

αyβ +
∑
s>2

g
1−s/2
2

(
−1
2F(ϕs) + αsd2ϕs−2

)
, (1.2)

to linear order in the ϕs. The first term contains the ordinary Ricci tensor of g2; the rest
is a series similar to (1.1). In a condensed notation to be fully explain below, d represents
the symmetrized derivative ∇(µ1ϕ

s−2
µ2...µs). The coefficient αs = 1

8(s − 4)(s +D − 4), where
D is the spacetime dimension, which we will leave unspecified throughout. A perhaps
deeper expression is

ρ ∼ R0
αβy

αyβ − 1
2F(δF 2) (1.3)

with an appropriate understanding of the action of F on arbitrary functions of y. This
is valid for Finsler deformations δF 2 around any (pseudo-)Riemannian geometry, without
even using the expansion (1.1).

A second interesting point is that the Finsler Ricci tensor is not linear in the ϕs; going
to higher orders gives rise to expressions that are more complicated but still manageable,
especially for low s. It is natural to interpret these as higher spin interactions, similar to the
graviton interactions appearing in the perturbative expansion of GR around Minkowski space.

Unfortunately there is also bad news. What makes the Fronsdal operator especially
important is that it admits gauge transformations: under δϕs = dλs−1, δF(ϕs) = 1

2d
3λ′s−1,

with λ′s−1 representing the trace λµ
µµ2...µs . Thus the traceless λs−1 give a large set of gauge

transformations.4 On the other hand, the double symmetrized derivative d2 in (1.2) is not
invariant. The two terms combine to transform as δ(F(ϕs) − 2αsd2ϕs−2) = d3(−1

4λ
′
s−1 +

αsλs−3). The gauge transformation of each field is “eaten” by that of a higher spin, in a
sort of Stückelberg mechanism. Unfortunately, the surviving transformations can be shown
to be a trivial rearrangement of fields that leaves the geometry unchanged. (An equivalent,
sleeker analysis is possible from (1.3).)

This essential lack of gauge transformations (beyond the usual diffeomorphisms) is
worrisome. We will see that the equations of motion for a Finsler analogue of GR, the

3These references use a Hamiltonian point of view, which was recently further explored in [33, 34] in the
context of self-dual higher spins [23]. I thank D. Ponomarev for insightful comments.

4This traceless condition is often viewed with suspicion; there is a way to get rid of it [37]. In the context
of Finsler geometry we will see that in a sense this condition is rather natural.
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simplest of which just reads ρ = 0, have many perturbative solutions that are not transverse
to the momentum, and thus would presumably create trouble upon quantization. These
solutions also have many free parameters; this might give hope that a gauge transformation
can indeed be defined for this system. Unfortunately I have found no such candidate, but
I have not excluded it either. These negative results are not entirely unexpected, in light
of some of the no-go results mentioned above. The spirit of this paper is that reexamining
an issue in a new light can lead to new insights. Overall, the idea of a Finsler higher spin
theory faces significant challenges. Nevertheless, in my opinion the present results make
it worth exploring further in the future.

In section 2 some aspects of higher spin field theory are reviewed, setting up notation.
Section 3 is a lightning introduction to Finsler geometry. In section 4 I connect the two,
showing that a linearization of the Finsler analogue ρ of the Ricci tensor contains infinitely
many Fronsdal operators, as promised above. In section 5 a partial analysis is given beyond
the linear order in the ϕs. Section 6 considers the physical issues of gauge transformations
and of perturbative solutions, with some details in appendix A.

2 Fronsdal equation

The Fronsdal equation [2] describes a massless free field in a totally symmetric representation.
We will give here a very basic review of some its features. There are many deeper discussions
in the literature [3–5].

2.1 Spin two

As a warm-up, let us recall the equation for a spin-two field. This can be obtained by applying
the vacuum equations of general relativity, Rµν = 0, to an infinitesimal perturbation gµν +hµν

of a background metric gµν . The connection is deformed by

δΓµ
νρ = gµσ

(
∇(νhρ)σ − 1

2∇σhνρ

)
(2.1)

and the Riemann tensor by

δRνρ = 2∇[µδΓ
µ
ν]ρ = −1

2∇
2hνρ +∇µ∇(νhρ)µ − 1

2∇ν∇ρh
′ , (2.2)

where h′ = gµνhµν . So setting the right-hand side to zero is the equation of motion for hµν .
Sometimes it can be useful to rewrite (2.2) in terms of the Lichnerowicz operator ∆:

δRνρ = −1
2∆δgνρ +∇(ν∇µδgρ)µ − 1

2∇ρ∇νδg
′ , (2.3a)

∆δgνρ ≡ ∇2δgνρ − 2R(ν
σδgρ)σ + 2Rµνρσh

µσ . (2.3b)

The gauge transformations of general relativity are infinitesimal coordinate changes;
if we take

δhµν = 2∇(µξν) , (2.4)
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(2.2) gives

δξRµν = ξρ∇ρRµν + 2∇(µξ
ρRν)ρ = LξRµν (2.5)

after using the familiar

[∇µ,∇ν ]vρ = Rρ
σµνv

σ (2.6)

and its generalization on tensors. If the original metric is a solution of the vacuum equation,
Rµν = 0, and so (2.2) is invariant.

2.2 Symmetric products

To set the stage for a generalization to higher spins, let us consider now a condensed
notation. A version of this formalism is used one way or another in much of the higher-spin
literature; see for example [3, (2.10)]. My definitions are adapted to Finsler geometry, so
some normalizations might be a bit unfamiliar.

We introduce a formal variable yµ (which will later acquire an interpretation as a velocity
vector). To a completely symmetric tensor ϕµ1...µs we associate a polynomial

ϕs ≡ 1
s!ϕµ1...µsy

µ1 . . . yµs ; (2.7)

this is of course similar to the notation in (1.1). It is convenient to also define

ϕs
µ ≡ ∂yµϕs = 1

(s− 1)!ϕµ2...µsy
µ2 . . . yµs ,

ϕs
µν ≡ ∂yµ∂yνϕs = 1

(s− 2)!ϕµ3...µsy
µ3 . . . yµs ,

(2.8)

and so on. The s is a label and can be written up or down as convenient, and will sometimes
be omitted when clear from the context. Notice that

yµϕs
µ = sϕs . (2.9)

The trace is defined as

ϕ′s ≡ ϕµ
s µ = gµν∂yµ∂yνϕs . (2.10)

A product of two polynomials ϕsψs′ represents in this language the symmetric product
(s+s′)!

s!s′! ϕ(µ1...µs
ψµs+1...µs+s′ ). We will often encounter products g2ϕs or more generally gk

2ϕs,
with g2 = 1

2gµνy
µyν and gµν a metric. It is useful to compute the trace of such objects:

(g2ϕs)′ = gµν∂yµ(yνϕs + g2ϕ
s
ν) = Dϕs + 2yµϕs

µ + g2ϕ
′
s = (D + 2s)ϕs + g2ϕ

′
s . (2.11)

One can rewrite this more abstractly by introducing the operators

t ≡ gµν∂yµ∂yν = ∂yµ∂yµ , deg ≡ yµ∂yµ , (2.12)
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so that tϕs = ϕ′s and degϕs = sϕs, respectively. With the usual commutator rules, it is
easy to work out

[t, g2·] = ∂yµyµ + yµ∂yµ = D + 2deg , (2.13)

where g2· is multiplication by g2. This reproduces (2.11).
Any ϕs can be written in terms of traceless tensors:

ϕs = ϕs,0 + g2ϕs,1 + . . . g
s/2
2 ϕs,s , ϕ′s,k = 0 . (2.14)

The degree (s − 2k) fields ϕs,k can also be written in terms of the iterated traces ϕ(j) (in
a notation where ϕ(1) = ϕ′, ϕ(2) = ϕ′′ and so on):

ϕs,0 = ϕs + ts1g2ϕ
′
s + ts2

g2
2
2 ϕ

′′
s + . . . , ϕs,j = (−)jts−j+1,j(ϕ(j))0 , (2.15)

where
ts1 ≡ − 1

D + 2s− 4 , ts,j ≡ − ts,j−1
D + 2s− 2j − 2 . (2.16)

2.3 Differential operators

The placeholder variable y is inert under derivatives. So ∇µϕs = 1
s!∇µϕµ1...µsy

µ1 . . . yµs . We
will often encounter the operator

d ≡ yµ∇µ . (2.17)

This name is inspired by d = dxµ ∧ ∂µ = dxµ ∧∇µ in exterior algebra, which represents an
antisymmetrized derivative, similar to how (2.17) represents a symmetrized derivative:

dϕs = 1
s!∇(µϕµ1...µs)y

µyµ1 . . . yµs . (2.18)

(Writing the symmetrizer on the indices is here of course optional, as the product of y’s
enforces it anyway.) A crucial difference is that the d in exterior algebra squares to zero,
while (2.17) does not.

In this language, the equation of motion Rµν = 0 from (2.2), namely 1
2∇

2hνρ−∇µ∇(νhρ)µ+
1
2∇ν∇ρh

′ = 0, can be rewritten by multiplying by yνyρ as

∇2h2 −∇µdhµ
2 + 1

2d
2h′ = 0 . (2.19)

The gauge transformation (2.4) reads

δh2 = dξ1 . (2.20)

We seem not to have gained much by this rewriting. However, the nice properties of (2.19)
now suggest to replace h2 in (2.19) by a polynomial ϕ in y, obtaining the equation of motion

F(ϕ) ≡ ∇2ϕ−∇µdϕµ + 1
2d

2ϕ′ = 0 (2.21)
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irrespectively of the degree of ϕ. This is the Fronsdal equation for massless totally symmetric
fields. It is much simpler than its explicit expression: for ϕ = ϕs as in (2.7),

∇2ϕµ1...µs − s∇µ∇(µ1ϕµ2...µs)
µ + s(s− 1)

2 ∇(µ1∇µ2ϕµ3...µs)µ
µ = 0 . (2.22)

We will see soon that this equation is invariant under a gauge transformation, but only
in maximally symmetric spaces.

We can also rewrite

F = ∇2 −∇µd∂yµ + 1
2d

2t = ∆− dd† + 1
2d

2t , (2.23)

with ∆ = ∇2 − Rµνy
µ∂yν + Rµρνσy

µyν∂yρ∂yσ as in (2.3b), recalling (2.12), and with the
definition

d† ≡ gµν∂yµ∇ν = ∂yµ∇µ . (2.24)

We note for later use:

[t, d] = 2d† , [t, d†] , [d†, g2·] = d , [d, g2·] = 0 , [d, d†] = −2∇2 +∆ . (2.25)

2.4 Flat space

We will now see that in flat space (2.21) inherits some of the nice properties of (2.19). So
in this subsection gµν = ηµν .

In flat space, a ϕs give a representation of the Lorentz group; it is irreducible if ϕ′s = 0.
Otherwise, (2.14) can be viewed as a decomposition into s irreducible representations.

Generalizing the gauge transformation (2.20), we take that of a field ϕ = ϕs to be

δϕs = dλs−1 . (2.26)

In components this reads δϕµ1...µs = s∂(µ1λµ2...µs). We find

δϕµ = ∂yµ(yα∂αλ) = ∂µλ+ dλµ , δϕµν = 2∂(µλν) + yα∂αλ
µν . (2.27)

(As in (2.21), when the equations don’t depend on the degree/spin we sometimes omit it,
to get more readable expressions.) So for the Fronsdal equation (2.21):

δF(ϕ) = F(dλ) = ∂2dλ− d∂µ(∂µλ+ dλµ) + 1
2d

2(2∂µλ
µ + dλ′)

= 1
2d

3λ′ .
(2.28)

In particular, F(ϕs) is invariant under λs−1 that are traceless:

λ′ = λα
α = 0 . (2.29)

Recall that more explicitly this means λα
αµ3...µs−1 = 0.
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Trying to write an action for the Fronsdal equation leads to a second constraint. Up
to integration by parts,

S =
∫

dDxϕG , G ≡ F(ϕ)− 1
2η2F ′(ϕ) . (2.30)

This action is in general not gauge invariant: δS =
∫
dDxλ∂µGµ ̸= 0. Fortunately, a few

more cancellations yield

∂µGµ = −1
4d

3ϕ′′ . (2.31)

We see that the action is invariant if we also impose that the double trace of the field vanishes:

ϕ′′ = ϕαβ
αβ = 0 . (2.32)

(Recall that more explicitly this means ϕαβ
αβµ5...µs = 0.) In this case ϕ consists of two

irreducible representations, its trace ϕ′ and its traceless part.
With this constraint, the variation δS =

∫
dDxδϕG = 0 now only imposes that the

double-traceless part of G vanishes. Fortunately, it is simple to see (just by counting the
number of available indices) that (2.32) in fact directly implies F ′′ = G′′ = 0. So the action
does imply G = 0. This in turn sets to zero G′, which is proportional to F ′. So the equation
of motion is indeed F = 0.

For spin two, the first constraint (2.29) was automatic because in that case λ1 was in fact
ξµ, which only has one index. (2.31) becomes the linearized flat-space version of the spin-two
identity ∇µ(Rµν − 1

2Rgµν) = 0, a consequence of the Bianchi identity. The double-trace
constraint (2.32) is also automatic, since the field only has two indices.

We conclude with a quick review of gauge fixing. First we notice

δ

(
∂µϕ

µ − 1
2dϕ

′
)
= ∂2λ ,

(
∂µϕ

µ − 1
2dϕ

′
)′

= −1
2dϕ

′′ = 0 . (2.33)

So we can always find a λ such that ∂µϕ
µ − 1

2dϕ
′ = 0, by inverting the operator ∂2. This

simplifies the Fronsdal equation to ∂2ϕ = 0. There is still a residual gauge invariance,
consisting of λ such that ∂2λ = 0 (and which are traceless).

We now go to momentum space, where we have p2ϕ(p) = 0, pµϕ
µ = 1

2p1ϕ
′, with p1 = yµpµ

as by now familiar. We pick a vector uµ such that uµpµ = 1. Using (2.27),

δ(uµϕµ) = λ+ uµy
αpαλ

µ =Mλ , M ≡ 1 + p1u
µ∂yµ . (2.34)

It can be shown that M is invertible, with inverse M−1 =
∑

l(−)l(pl
1/l!)∂yµ1 . . . ∂yµl . Moreover

M−1(−uµϕµ) =
∑

l(−)l(pl
1/l!)uµ1 . . . uµl

ϕµ1...µl can be shown to be traceless. So by picking
this λ we can set uµϕµ to zero. Since M is invertible, it has no kernel, and so there is
no residual gauge transformation. Finally, pµϕ

µ = 1
2p1ϕ

′ implies 2pνϕµν = pµϕ
′ + p1ϕ

′
µ;

contracting this with uµ we find now that ϕ′ = 0, and so also that pµϕ
µ = 0. This is the

analogue of the transverse traceless gauge for spin-two fields.
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2.5 Curved space

In curved space, the gauge transformation of ϕs is still (2.26), but it now represents δϕµ1...µs =
s∇(µ1λµ2...µs), with covariant derivatives. The transformation of (2.21) is more complicated:
some terms that canceled in (2.28) no longer do so, because of the non-commutativity of
covariant derivatives recalled in (2.6).

Besides the explicit indices, one also needs to take care of the tensor indices inside ϕs,
made explicit in (2.7). In this respect, the following identity is useful:

[∇µ,∇ν ]ϕ = −Rρ
σµνy

σ∂yρϕ . (2.35)

Using also the second Bianchi identity we obtain

δF(ϕ) = 1
2d

3λ′ − yαyβ(λν∇νRαβ + 2∇(αλ
νRβ)ν) + dρµνλ

µν + 2ρµνdλµν . (2.36)

We have introduced

ρµν ≡ Rµανβy
αyβ (2.37)

which will be useful later on. The parenthesis with the Ricci terms in (2.36) is reminiscent of
the Lie derivative LξRαβ = ξµ∇µRαβ+2∇(αξ

νRβ)ν , except that λµ = λµ
s−1 = 1

(s−1)!λ
µ

µ2...µs−1

has (s− 2) hidden indices. For s = 2 this expression does reduce to the Lie derivative in (2.5).
The appearance of the Riemann tensor in (2.36) is famously problematic [38]. We can

still take λ′ = 0 to make the first term disappear. The Ricci tensor appears in the ordinary
gravity equations, and in particular it simply vanishes for vacuum GR, so those terms can
also be reasonably set to zero. However, setting the Riemann tensor to any particular value
appears unjustified. So the gauge invariance of the Fronsdal equation is broken in general.

If one simply postulates that the background geometry is maximally symmetric, as
in AdSD or dSD, then

Rµνρσ = Λ
D − 1(gµρgνσ − gµσgνρ) . (2.38)

The constant is chosen so that Rµν = Λgµν . (2.36) now becomes the simpler

δF(ϕs) =
1
2d

3λ′s−1 +
4Λ

D − 1g2dλ′s−1 − Λµ2
sdλs−1 , µ2

s ≡ 2(s− 1)(D + s− 3)
D − 1 . (2.39)

(We reinstated the spin labels because now the equation does explicitly depend on s.) Recall
that g2 = 1

2gµνy
µyν , per our notation (2.7). This is still non-zero even if λ′ = 0. But

the modified equation

F(ϕs) + Λµ2
sϕs = 0 (2.40)

does have a gauge invariance.
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3 Finsler geometry

We will give here a relatively quick introduction to Finsler geometry. Some relatively recent
accounts are [24–26], in increasing order of detail.

3.1 Distance

In Riemannian geometry, the length γ of a curve is given by the integral
∫

γ dτ
√
gµν(x)ẋµẋν ,

with τ a coordinate on γ and ẋµ ≡ ∂τx
µ. The idea of Finsler geometry is to generalize this to∫

dτF (x, ẋ) (3.1)

with F (x, ẋ) any function of xµ, ẋµ that is homogeneous of degree one in velocity:

F (x, λẋ) = λF (x, ẋ) . (3.2)

This requirement is needed so that the length (3.1) of γ is invariant under τ → τ ′(τ) and
does not depend on how we parameterize it. Actually it is customary to call

ẋµ ≡ yµ (3.3)

the velocity variable, and we will do so. This can be viewed as a coordinate along the
fiber of the tangent bundle TM . In this sense, F can be viewed as a function on TM , a
fact that will be useful later.

Clearly there are many new options opened by the generalization (3.1), (3.2). Two
simple possibilities that have been considered in the mathematical literature are the Randers
choice F = ϕ1 +

√
2g2 and the s-th root choice F = (ϕs)1/s, with ϕs = 1

s!ϕµ1...µsy
µ1 . . . yµs

as in (2.7) and (1.1). That equation also shows infinitely many new possibilities, which
will be explored in section 4 below.

Most of the mathematical literature has been devoted to the case where F is positive,
thus defining a notion of distance that generalizes Riemannian geometry.5 In that case, F
is also taken to be smooth, and the fundamental tensor

gµν = 1
2∂yµ∂yνF 2 (3.4)

is required to be positive-definite for all x and y. When there is danger of confusion
between (3.4) and a Riemannian metric, I will call the latter g0

µν . Notice that (3.4) depends
on y, except if F 2 = 2g0

2 = g0
µν(x)yµyν , where gµν = g0

µν(x) is an ordinary Riemannian
metric. (3.4) is used to lower indices in Finsler geometry; given that it is positive-definite,
its inverse gµν is used to raise them.

For physics, we are more interested in generalizing pseudo-Riemannian spacetimes; for
this, we require instead (3.4) to have signature (− + ++). Now in spite of its name F 2

5Not all metric spaces are of this form, as pointed out in [39]. There exist even more general notions of
distance that cannot be obtained as integrals of a function F (x, ẋ).
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is no longer assumed to be positive, similar to how the symbol ds2 can have either sign
in ordinary pseudo-Riemannian geometry. We take

∫
dτ

√
F 2 to measure distances, and∫

dτ
√
−F 2 to measure proper time.

Even with the understanding that F 2 can have either sign, some choices are not defined
for all y. An example is the pseudo-Randers F 2 = ϕ1 +

√
−2g2, with gµν pseudo-Riemannian.

Another example is encountered when generalizing (1.1) to include odd s, with terms
ϕ3/

√
−g2 + ϕ5/(−g2)3/2 + . . .. Physically this appears to be fine as long as, for every x, F 2

is real above a cone in the tangent space TxM . Definitions in the mathematical literature
vary as to whether to impose F 2 to be defined for all y or not [40]. The rest of our discussion
in this section will be basically valid for either signature.

Before we proceed further, we note that the homogeneity condition (3.2) has several
interesting consequences. Recall the Euler theorem for a homogeneous function of degree k:

ϕ(λy) = λkϕ(y) ⇒ yµ∂yµϕ = kϕ . (3.5)

A monomial such as (2.7) is obviously homogeneous of degree s, as we saw in (2.9). If
ϕ = ϕ(x, y) is analytic around y = 0, it can be Taylor expanded in such a basis:

ϕ = ϕ0 + ϕµy
µ + 1

2ϕµνy
µyν + . . . . (3.6)

In this sense, such a function can be seen as a collection of completely symmetric ten-
sors ϕµ1...µs .

F 2 is homogeneous of degree two; moreover, each ∂yµ lowers the homogeneity degree by
one, so for example (3.4) has degree zero. This gives the following useful identities:

yµ∂yµF 2 = 2F 2 , yµgµν = 1
2∂yνF 2 , yµyνgµν = F 2 , yµ∂yµgνρ = 0 . (3.7)

3.2 Connection

Just like in ordinary (pseudo-)Riemannian geometry, a connection is needed in order to write
derivatives that transform well under coordinate changes. A first piece of information is ob-
tained by varying (3.1): this gives the familiar-looking geodesic equation ẍµ+γµ

νρẋ
ν ẋρ = 0 with

γµ
νρ = 1

2g
µσ(∂νgρσ + ∂ρgνσ − ∂σgνρ) . (3.8)

Recall however that g now also depends on yµ = ẋµ. The combination appearing in the
geodesic equation appears often enough that we give it a name, spray coefficients:

Gµ ≡ γµνρy
νyρ = 1

2(y
ν∂ν∂yµ − ∂µ)F 2 . (3.9)

The second equality uses (3.7). Recall that we are using here the fundamental tensor (3.4)
to lower indices.

We noticed earlier that F is a function on TM . It proves useful to also think of
the derivatives ∂µ and ∂yµ as vector fields on that bundle. Under a coordinate change
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xµ → x′µ = x′µ(x), the velocity variables should transform as yµ → y′µ = ∂x′µ

∂xν yν . If we now
view both formulas together as a coordinate change on TM , it follows that

∂µ → ∂′µ = ∂x′ν

∂xµ

∂

∂x′ν
+ ∂y′ν

∂xµ

∂

∂y′ν
= ∂x′ν

∂xµ
∂′ν + yρ ∂2x′ν

∂xµ∂xρ
∂y′ν , (3.10a)

∂yµ → ∂y′µ = ∂y′ν

∂yµ

∂

∂y′ν
= ∂x′ν

∂xµ
∂y′ν . (3.10b)

The ∂µ transform in a complicated fashion, but it turns out that the combination

δµ ≡ ∂µ −Nν
µ∂yν , Nν

µ ≡ 1
2∂yµGν (3.11)

transforms without the second term in (3.10a). A dual issue appears when considering forms:
on TM the dyµ transform in a complicated fashion, and this is solved by introducing

δyµ ≡ dyµ +Nµ
νdxν . (3.12)

To see the importance of (3.11), consider the case of (pseudo-)Riemannian geometry, F 2 =
2g0

2 = g0
µνy

µyν . The fundamental tensor is gµν = g0
µν , andNµ

ν = γµ
νρy

ρ.6 On each of the mono-
mials Ts = 1

s!Tµ1...µsy
µ1 . . . yµs appearing in (1.1), we obtain δµTs = 1

s!∇µTµ1...µsy
µ1 . . . yµs ,

where ∇ is the covariant derivative relative to the (pseudo-)Riemannian metric g0
µν . So for

ordinary (pseudo-)Riemannian geometry δµ coincides with the usual covariant derivative
∇µ, even when acting on objects that depend on y.

Returning to the general discussion, the importance of (3.11) suggests introducing the
Chern connection

Γµ
νρ = 1

2g
µσ(δνgρσ + δρgνσ − δσgνρ) . (3.13)

This has zero torsion, and satisfies

Dµgνρ ≡ δµgνρ − Γσ
µνgσρ − Γσ

µρgνσ = 0 . (3.14)

We define the operator Dµ on any tensor, with Γ acting on the indices in the way that is
familiar in (pseudo-)Riemannian geometry, and the partial derivative replaced by δ:7

DµT
µ1...µk
ν1...νl

= δµT
µ1...µk
ν1...νl

+ Γµ1
µρT

ρµ2...µk
ν1...νl

+ Γµ2
µρT

µ1ρµ3...µk
ν1...νl

+ . . .+ Γµk
µρT

µ1...µk−1ρ
ν1...νl

− Γρ
µν1T

µ1...µk
ρν2...νl

− Γρ
µν2T

µ1...µk
ν1ρν3...νl

− . . .− Γρ
µνl
Tµ1...µk

ν1...νl−1ρ .
(3.15)

Once again, this reduces to ∇µ in (pseudo-)Riemannian geometry, even if T depends on
y. In this sense, (3.14) is more natural than the analogous equality containing γµ

νρ and
ordinary partial derivatives.

At a more conceptual level, on TM there is no connection that preserves the metric
and has zero torsion; this is unlike in (pseudo-)Riemannian geometry, where (3.8) is the

6This is not true in general, because γµ
νρ depends on y. By using (3.7) one can show that ∂yνGµ = 2γµνρy

ρ,
but Nν

µ contains the derivative of Gµ with an upper index.
7In the literature this derivative is usually denoted by a “slash” at the end: Tµ1...µk

ν1...νl|µ.
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Levi-Civita connection and does have both properties. (3.8) and (3.13) both have zero torsion,
but both fail to respect the metric in the y directions of TM . If on TM we write the exterior
differential dT M ≡ dxµ∂µ + dyµ∂yµ = dxµδµ + δyµ∂yµ , (3.14) implies

dT Mgµν = δyρ∂yρgµν = 1
2δy

ρ∂yµ∂yν∂yρF 2 . (3.16)

This property is called almost compatibility with the metric of the Chern connection (3.13).
Other connections exist with nice properties, the most notable being the Cartan connection,
which also has components along the y coordinates; it is metric-compatible but has torsion [41,
Thm. 1.4.2].

The coefficients we introduced previously are related to the Chern connection:

Γµ
νρy

ρ = Nµ
ν , Nµ

νy
ν = Gµ . (3.17)

The second is a simple consequence of Gµ being homogeneous in y with degree two; the
first is a little more involved.

It is also useful to notice that

[∂yµ , δν ] = −∂yµNρ
ν∂yρ = −(Lρ

µν + Γρ
µν)∂yρ , Lρ

µν ≡ yσ∂yµΓρ
νσ . (3.18)

We introduced the Landsberg tensor Lρ
µν . As an application,

∂yµδνT = Dν∂yµT − Lρ
µν∂yρT (3.19)

on a function T = T (x, y). One can show that

yνLρ
µν = 0 , (3.20)

so in particular (3.19) implies

yν∂yµδνT = yνDν∂yµT = d∂yµT . (3.21)

In the last step we have defined

d ≡ yµDµ (3.22)

by analogy with the d in (2.17), to which it reduces in the (pseudo-)Riemannian case.
The contraction

Lµ = gνρLµ
νρ (3.23)

is called mean Landsberg tensor. On the other hand,

Lµ
µν = yρ∂yνΓµ

µρ = 1
2y

ρ∂yνδρ log det g = dIν , (3.24)

where
Iµ = 1

2∂yµ log det g , (3.25)

is called the mean Cartan tensor.
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3.3 Curvature

In view of (3.13), we now define

1
2R

µ
νρσ ≡ δ[ρΓ

µ
σ]ν + Γµ

[ρ|λΓ
λ
|σ]ν . (3.26)

It has many of the usual properties of the ordinary Riemann tensor: Rµ
ν(ρσ) = 0, Rµ

[νρσ] = 0.
However, it is not antisymmetric in the first two indices: rather, it is possible to show

R(µν)ρσ = −1
2∂yαgµνR

α
βρσy

β . (3.27)

A particular contraction of (3.26) with the y can be reexpressed in terms of Nµ
ν or of Gµ:

ρµ
ρ ≡ Rµ

αρβy
αyβ = 2yσδ[ρN

µ
σ] (3.28a)

= ∂ρG
µ − 1

4∂yρGν∂yνGµ − 1
2y

ν∂ν∂yρGµ + 1
2G

ν∂yν∂yρGµ . (3.28b)

(3.27) implies that ρµρ = ρρµ, ρµρ ≡ gµνρ
ν

ρ. We already encountered ρµν in (2.37) in the
(pseudo-)Riemannian case.8 The trace contains the Finsler extension of the Ricci tensor:

ρ ≡ ρµ
µ = R0

µνy
µyν (when F 2 = g0

µνy
µyν) . (3.29)

4 Linearized analysis

We would now like to obtain some formulas for infinitesimal deformations of Finsler structures,
inspired by (2.1), (2.2) in the ordinary (pseudo-)Riemannian case. As anticipated, this will
lead to the appearance of the Fronsdal operator.

4.1 Deformations

We first take a small detour and show a formula for a finite deformation. Given a F 2, consider
a second Finsler structure F̃ 2. It determines a new fundamental tensor, connection and
curvature; we will denote them all with a tilde. After recalling (3.11), one finds

G̃µ = Gµ + 1
2 g̃

µρ(yν∂yρδν − δρ)F̃ 2 . (4.1)

It can be shown [24, Thm. 3.3.1] that the geodesics of F̃ 2 coincide with those of F 2 iff
δνF̃ = yµ∂yνδµF̃ ; in this case G̃µ = Gµ + Pyµ, with P = F̃−1yνδνF̃ . The two Finsler F̃
and F are said to be projectively equivalent.

Coming now to the case of an infinitesimal deformation, (4.1) gives

δGµ = 1
2g

µρ(yν∂yρδν − δρ)δF 2 = 1
2g

µρ(d∂yρ − δρ)δF 2 . (4.2)

In the second step we have used (3.21), (3.22). (δF 2 is to be understood as δ(F 2).)
8In the literature on Finsler geometry, ρµ

ν is called (1/F 2)Rµ
ν . I have decided to change this notation in

order to avoid confusion with the Ricci tensor in (pseudo-)Riemannian geometry. Even more confusingly, ρµ
µ

is often called “Ricci scalar”; we will not follow this custom.
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Recall from (3.29) that ρ = ρµ
µ is the analogue of the Ricci tensor. So to obtain the

analogue of (2.2) we need δρ = δρµ
µ. We can use either (3.28a) or (3.28b) to obtain

δρ = DµδG
µ + Lµ

µνδG
ν − 1

2d∂yµδGµ . (4.3)

Combining with (4.2):

δρ = 1
2g

µν
(
Dµd∂yν −Dµδν − 1

2d
2∂yµ∂yν

)
δF 2

− 1
2d(L

ρ∂yρδF 2) + 3
2dIνδG

ν + 1
2IµdδGµ .

(4.4)

(4.3) and (4.4) are similar to the first and second step in (2.2).
These results hold for a general deformation of a Finsler structure F 2. If the latter is

in fact a (pseudo-)Riemannian geometry, (4.2) becomes

δGµ = 1
2(d∂yµ −∇µ)δF 2 . (4.5)

As for (4.4), since neither g nor Γρ
µν depend on y, we have Lρ

µν = 0 = Iµ, so the second line
in (4.4) vanishes. The last term on the first line contains gµν∂yµ∂yν ; we saw back in (2.10)
that this gives the trace operator t on monomials such as (2.7), and now we can consider it as
extending it on arbitrary (even non-polynomial) functions of y. This point will be crucial later.
With this understanding, the first line of (4.4) is nothing but the Fronsdal operator (2.21):

δρ = −1
2F(δF 2) , (4.6)

as anticipated in the introduction.
In the next subsection we will motivate the parameterization (1.1), and apply it to (4.6).

4.2 Parametrization

We will now justify the expansion (1.1). The idea is to start from a (pseudo-)Riemannian
geometry, and to deform it into the more general Finsler type.

(1.1) is not quite a series expansion, since F 2 should be homogeneous. In Euclidean
signature, one way to deal with this constraint is to think of it as a function on a sphere.
For fixed x, F 2(x, y) is a function on SD−1 ∼= RD/R+, where the quotient acts by rescaling.
A basis of functions on the round sphere is given by the spherical harmonics. These can
be viewed as polynomials of the type ϕs in (2.7) restricted to {2δ2 ≡ δµνy

µyν = 1}, or
alternatively as functions on RD made homogeneous of degree zero by dividing them by
an appropriate power of δ2:

1
s!

1
δ

s/2
2

ϕµ1...µs (4.7)

where s is any non-negative integer, and the tensors ϕµ1...µs are irreducible: ϕ′s = 0.
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This suggests that a good parameterization for F 2 can be obtained generalizing (4.7) by
replacing δ2 with g2 = 1

2g
0
µνy

µyν . More precisely, F 2 is homogeneous of degree two, not zero;
this can be repaired by multiplying by an overall g2. This leads us to

F 2 = 2g2 +
ϕ3√
g2

+ ϕ4
g2

+ . . . = 2g2 +
∑
s>2

g
1−s/2
2 ϕs . (4.8)

This extends (1.1) by including odd s. Actually their presence creates a possible issue in the
pseudo-Lorentzian case because of the roots, as we discussed at the end of section 3.1. It
becomes more sensible then to make F 2 defined above the light cone by changing (g2)s/2 →
(−g2)s/2. Our discussion in the following is not influenced by this issue.

As mentioned earlier, the ϕs should be irreducible for an expansion that is complete and
non-redundant. But no harm is done if the ϕs are not traceless and (4.8) is redundant. In
that case, F 2 is trivially invariant (even at a finite level) under

δκϕs0 = κs0 , δκϕs0+2 = −g2κs0 . (4.9)

This redundancy will provide useful cross-checks of our results. It can be fixed to make the
ϕs traceless again, or fixed only partially by enforcing a weaker constraint such as ϕ′′s = 0.
(This was imposed in (2.32), but only in order to obtain a gauge-invariant action for (2.21);
here we will not be using that action.) Alternatively one can proceed by expanding each ϕs

in (4.8) in terms of its traceless components as in (2.14), collecting powers of g2. This gives
an expansion like (4.8) whose degree s coefficient is now the traceless

∞∑
j=0

ϕs+2j,j . (4.10)

Similar to (4.9), there is an invariance where we deform

δg2 = κ2 , δϕs = (2− s/2)κ2gs−2 . (4.11)

One could even use this to connect higher spins around a curved space to higher spins around
flat space, at the price of making the ϕs maximally non-irreducible.

Strictly speaking, a complete parameterization would have included lower spins in (4.8);
we have not done so because of our focus on higher spins. A spin-one term ϕ1

√
g2 term

can be generated by changing ϕ3 → ϕ3 + g2ϕ1 in (4.8), or in other words (4.9) for s0 = 1.
A spin-zero term ϕ0g2 is equivalent to rescaling the first term in (4.8), or (after renaming
g2 → g2(1 + ϕ0)−1) to rescaling ϕs → (1 + ϕ0)s/2−1. In the future it might be interesting
to investigate the effect of including this scalar; I have not done so in what follows. It
would be especially intriguing to explore the limit in which ϕ0 → −1, and the first term
in (4.8) would disappear.

An alternative to (4.8) would be obtained by applying the same logic directly to F , leading
to F =

√
2g2 + f3/g2 + f4/g

3/2
2 + . . .. Adding the spin-one term to this parameterization

leads to a generalization of the Randers choice mentioned in section 3.1.
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We will use an expansion similar to (4.8) also for other y-dependent quantities, such
as the connection and curvature:

Gµ = γµ
0 αβy

αyβ +
∑
s>2

g
1−s/2
2 Gµ

s , ρµ
ν = Rµ

0 ανβy
αyβ +

∑
s>2

g
1−s/2
2 ρµ

s ν , (4.12)

where as usual a 0 denotes quantities associated to the (pseudo-)Riemannian metric g0
µν .

Notice that the coefficients in this expansion are typically not traceless even if the ϕs are.

4.3 Sum over spins

Let us take the ϕs to be small, and work at linear order in them. In this case we can use
the formalism developed in section 4.1. Namely, we take F 2 = 2g2 = gµνy

µyν to be of
(pseudo-)Riemannian type, and F̃ 2 to be (4.8).

Recall that both Dµ and δµ reduce to the usual covariant derivative ∇µ in the (pseudo-
)Riemannian case. In particular, these operators have trivial action on the powers of g2

in (4.12). On the other hand, the y derivatives do act nontrivially.
For Gµ, (4.5) gives

Gµ
L s = 1

2(dϕ
µ
s −∇µϕs) +

4− s

4 yµdϕs−2 . (4.13)

Here and later, the label L stands for “at linear order in the ϕs”. Recall that ϕs = 0 for
s < 2, so the last term in (4.13) is actually absent for Gµ

3 .
Gµ is related to the analogue of a connection, while (4.13) is a tensor.9 The first term in

its expansion (4.12) does contain a connection; the following terms are to be thought of as
deformations, and it is a familiar result that the difference of two connections is a tensor.

A similar application of (4.8) to (4.6) gives

ρL
s ≡ (ρL

s )µ
µ = −1

2F(ϕs) + αsd2ϕs−2 , αs ≡ 1
8(s− 4)(D + s− 4) , (4.14)

again with L denoting linear order in ϕs. (4.14) are tensors, as manifest from (4.4) but not
in (3.28). This result was anticipated in the introduction as (1.2).

It is instructive to check invariance under the trivial transformation (4.9). Since it does
not change F 2, it should not change the geometric quantities above; let us focus on (4.14).
From (2.27) (with ∂µ → ∇µ) we obtain the identity

F(−g2ϕs−2) = −g2F(ϕs−2) +
(
3− D

2 − s

)
d2ϕs−2 . (4.15)

Fixing a particular s0 > 4, there are two affected ϕs, which appear in a total of four terms:

δκρ
L = g

−s0/2
2 d2δκϕs0 + g

1−s0/2
2

(
−1
2F(δκϕs0) + αs0d2δκϕs0−2

)
− 1

2g
2−s0/2
2 F(δκϕs0−2)

= g
1−s0/2
2

(
−αs0+2 + αs0 +

1
2(s0 − 3) + D

4

)
d2κs0−2 . (4.16)

9One of the advantages of working with (4.5) is that it makes this property more or less manifest. It is of
course possible, but more laborious, to get the same results from (3.9).
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In the second step we have used (4.15). Imposing δκρ
L = 0 for all s0 gives a recurrence

relation for the αs, which is indeed satisfied by the value in (4.14). This also shows that
the d2ϕs−2 term in (4.14) is unavoidable.10

A more complicated computation also gives

(ρL
s )µ

ρ = − 1
2F

µ
ρ(ϕs) +

4− s

4
(
yµ∇ρdϕs−2 + gνρy

[νd∇µ]ϕs−2 −
1
2δ

µ
ρd2ϕs−2 − gνρy

(µd2ϕ
ν)
s−2

)
− 1

16(4− s)(6− s)yµyρd2ϕs−4 , (4.17)

where we introduced a Fronsdal “precursor”

Fµ
ρ(ϕs) = ∇ρ∇µϕs −∇ρdϕµ

s − gµνd∇[νϕ
s
ρ] +

1
2d

2ϕµ
s ρ (4.18)

whose trace is F(ϕs). Recall from (3.28) that ρµ
ν contains the Finsler analogue of the

whole Riemann tensor. We will actually not need it in this paper, but it might be useful
in further investigations.

Finally we record the perturbative expression for the mean Cartan (3.25)

IL s
µ = 1

4ϕ
′
s µ + 4− s

8
(
(D + s− 2)ϕs−2

µ + yµϕ
′
s−2

)
+ (4− s)(6− s)

16 (D+ s− 4)yµϕs−4 (4.19)

and for the Landsberg tensor (3.18):

LL s
µνρ = 1

4dϕ
s
µνρ +

3
8(4− s)

(
g(µνdϕs−2

ρ) + y(µdϕs−2
νρ)

)
(4.20)

+ 3(4− s)(6− s)
16

(
y(µyνdϕs−4

ρ) + y(µgνρ)dϕs−4
)
+ (4− s)(6− s)(8− s)

32 yµyνyρdϕs−6 .

Again here IL
ν =

∑
s>2 g

1−s/2
2 IL s

ν , LL
µνρ =

∑
s>2 g

1−s/2
2 LL s

µνρ.

5 Nonlinearities

We now go beyond the linear order in the ϕs. This quickly becomes complicated, but we will
at least try to make the structure clear in section 5.1. In section 5.2 we make the general
results more concrete for ρ4 and ρ6.

5.1 General expansion

In this section we raise and lower indices with the unperturbed (pseudo-)Riemannian metric,
now denoted by g0

µν to avoid confusion with the fundamental tensor (3.4) of Finsler geometry.
We expand the latter and its inverse as in (4.8), (4.12):

gµν = g0
µν +

∑
s>2

g
1−s/2
2 qs

µν , gµν = gµν
0 +

∑
s>2

g
1−s/2
2 ps

µν . (5.1)

10A curious possibility is to use (4.15) to express dϕs−2 in terms of Fronsdal operators, and to substitute
in (4.14). This results in ρL

s = − 1
2F(ψs), where ψs = αs+4

αs+4−αs+2
ϕs − αs

αs+2−αs
g2ϕs−2, thus getting rid of the

second term in (4.14). Inverting this relation one would naively seem to arrive at F 2 =
∑

g
1−s/2
2 ψs. However,

the last step only works by summing a series that does not really converge.
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(4.8) gives

qs
µν = 1

2ϕ
s
µν − s− 4

4 (ϕs−2g
0
µν + 2y(µϕ

s−2
ν) ) + 1

8(s− 4)(s− 6)yµyνϕs−4 . (5.2)

As usual, ϕs<3 is understood to be zero; so q3
µν = 1

2ϕ
3
µν , q4

µν = 1
2ϕ

4
µν , q5

µν = 1
2ϕ

5
µν − 1

4ϕ3g
0
µν −

1
2y(µϕ

3
ν), in the usual notation (2.8). The inverse gµν can be found by inverting (5.1). This

is formally similar to several familiar problems in QFT: the answer can be written a bit
implicitly as

pµν
s =

∑
(s1,...,sn)

partitions of s−2

(−1)n(qs1+2qs2+2 . . . qsn+2)µν . (5.3)

The parenthesis is explicitly gµµ1
0 qs1+2

µ1ν1 g
ν1µ2
0 qs2+2

µ2ν2 g
ν2µ3
0 . . . qsn+2

µnνn
gνnν

0 ; the partitions are to be
considered in all possible orders. The first two (5.3) are pµν

3 = −qµν
3 , pµν

4 = −qµν
4 + qµ

3 ρq
ρν
3 .

For Gµ, we can work with (4.1) instead of (4.5); it is still more convenient than the
original (3.9). The non-linearity in Gµ

s comes from the inverse gµν in (4.1); in terms of (4.13)
we can write

Gµ
s = Gµ

L s +
∑
s′>2

pµν
s′ G

s−s′

L ν , (5.4)

The curvature is quite a bit more complicated:

ρµ
s ρ = ∇ρG

µ
s − 1

2d∂yρGµ
s + s− 4

4 yρdGµ
s−2 +Qµ

s ρ . (5.5)

The term Qµ
s , quadratic in Gµ

s , is nastier and reads in general

Qµ
s ρ =

s−1∑
s′=3

(
−1
4(∂yρGν)s′(∂yνGµ)s−s′+2 +

1
2G

ν
s′(∂yν∂yρGµ)s−s′+2

)
;

(∂yρGµ)s = ∂yρGµ
s − s− 4

2 yρG
µ
s−2 , (5.6)

(∂yν∂yρGµ)s = ∂yν∂yρGµ
s − s− 4

2 (gνρG
µ
s−2 + 2y(ν∂yρ)G

µ
s−2) +

1
4(s− 4)(s− 6)yνyρG

µ
s−4 .

The expression (5.5) is only linear and quadratic in Gµ
s , but the ps appearing in (5.4) are

themselves very non-linear in the qs and hence in the ϕs. In particular we see that the
non-linearity grows with s.

5.2 Spin-six nonlinear equation

To illustrate the general results above, we now consider the case where only even s are
present, and give the first two ρs.

The first coefficients of the fundamental tensor and its inverse read

q4
µν = 1

2ϕ
4
µν , q6

µν = 1
2ϕ

6
µν − 1

2ϕ4g
0
µν − y(µϕ

4
ν) ;

pµν
4 = −1

2ϕ
µν
4 , pµν

6 = qµρ
4 q4ρ

ν − qµν
6 = 1

4ϕ
µρ
4 ϕ4ρ

ν + 1
2g

µν
0 ϕ4 + y(µϕ

ν)
4 − 1

2ϕ
µν
6 .

(5.7)
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The first spray coefficients are

Gµ
4 = 1

2(dϕ
µ
4 −∇µϕ4) , Gµ

6 = 1
2(dϕ

µ
6 −∇µϕ6)−

1
2y

µdϕ4 −
1
2g

µν
4 G4 ν . (5.8)

In particular, the s = 4 result coincides with the linear result (4.13).
As for the curvature, again the s = 4 result coincides with the linear (4.17), (4.18),

while for s = 6 a quadratic term appears:

ρµ
4 ρ = ∇ρG

µ
4 − 1

2d∂yρGµ
4 = (ρL

4 )µ
ρ , (5.9)

ρµ
6 ρ = ∇ρG

µ
6 − 1

2d∂yρGµ
6 + 1

2yρdGµ
4 − 1

4∂yρGν
4∂yνGµ

4 + 1
2G

ν
4∂yν∂yρGµ

4 = (ρL
6 )µ

ρ +Qµ
ρ(ϕ4) ,

where

Qµ
ρ(ϕ4) = −1

2∇ρ(ϕµν
4 G4

ν)+
1
4d(ϕ

µν
4 ρG

4
ν+ϕ

µν
4 ∂yρG4

ν)−
1
4∂yρGν

4∂yνGµ
4+

1
2G

ν
4∂yν∂yρGµ

4 . (5.10)

This Q now denotes the part that is quadratic in ϕ4 rather than in Gµ
4 , so it contains more

terms than the Q in (5.6).
Notice that the ρµ

s ρ are not symmetric if we lower the first index with g0
µν (as we are

doing in this section). Indeed the symmetric property advertised in 3.2 holds if we lower
the index with the full fundamental Finsler tensor, ρµρ ≡ gµνρ

ν
ρ. In our spin expansion,

the s = 4 term of this object reads g0
µνρ

ν
4 ρ + 1

2ϕ
4
µνR

ν
αρβy

αyβ; this can indeed be shown
to be symmetric using (2.6).11

Finally, taking the trace:

ρ4 = −1
2F(ϕ4) , ρ6 = −1

2F(ϕ6) +
1
4(D + 2)d2ϕ4 +Q(ϕ4) . (5.11)

Formally this looks like a cubic interaction among two s = 4 and one s = 6 fields.

6 Challenges for Finsler dynamics

Given the appearance of the Fronsdal operator in section 4, we now investigate whether a
Finsler action can indeed propagate degrees of freedom with higher spins. Unfortunately
this will give mixed results.

As commented in the introduction, there are strong arguments against a flat space local
covariant theory of massless higher spins. So the challenges we will find are not unexpected.
Nevertheless, we will start from flat space for simplicity. We will find later that the situation
does not seem to improve much for AdS.

6.1 Equations of motion

For pure GR, Einstein’s equations set to zero the Ricci tensor. This suggests to take for
pure Finsler gravity

ρ = 0 , (6.1)
11For the much more laborious s = 6 check, I used the software package xAct.
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sometimes called Rutz equation [42]. For us this has the advantage that we know it already
to be related to the Fronsdal operator. A natural variant is ρ− kF 2 = 0, for k a constant,
which is similar to pure GR with a cosmological constant.

On the other hand, it was argued in [43, 44] that this cannot be obtained from an action.
Another natural possibility is to write the closest possible analogue of the Einstein-Hilbert
action for pure GR. ρ also contain y variables, and to obtain an analogue of the Ricci
scalar we would like to somehow trace over them. This can be achieved by integrating
over them, leading to

S =
∫

dDx dD−1ŷ g
ρ

F 2 . (6.2)

(See [26, 11.3.1] and [45].) The measure is the product of the usual √gdDx and of √gdD−1ŷ

along the fiber of the sphere tangent bundle SM . The F 2 is included to make the integrand
of degree zero, so that it is defined on the fiber of that bundle. The variation of (6.2) gives

ρ = 1
D + 2F

2gµν
(
∂yµ∂yνρ+ 2DµdIν − 2dIµdIν + 2∂yµd2Iν

)
. (6.3)

We will see that (6.1) and (6.3) can be analyzed along similar lines.12

In the rest of this section we will analyze the classical solutions of this theory, perturba-
tively around Minkowski space. In the similar problem for GR, the equations of motion can be
approximated by taking (2.2) for gµν = ηµν . Crucially, the infinitesimal diffeomorphisms (2.4)
can be used to set ∂νhµν − 1

2∂µh = 0, after which the equation of motion reads simply

∂2hµν = 0 . (6.4)

So there are no massive excitations. Diffeomorphisms can be further used to restrict the
massless ones to ∂µhµν = uµhµν = 0, with u a timelike vector. These results avoid the
presence of modes with the wrong sign in the action, which would be problematic for
quantization. (While pure GR is ultimately not sensible quantum mechanically because of its
non-renormalizability, it can at least be used as a good effective quantum field theory.)

We thus expect the role of gauge transformations to be crucial. The presence of the
Fronsdal operator F in (4.6), (4.14) seems promising in that respect: F does have an
infinite-dimensional kernel, or in other words it has gauge transformations. In the next
subsection we examine whether these can be considered gauge transformations for our Finsler
equations of motion.

6.2 Broken Fronsdal gauge transformations

The appearance of the Fronsdal operator in (4.14) might give hope that gauge transforma-
tions of the form δϕs = dλs−1 can be introduced in Finsler geometry, at least for a small
perturbation around flat space F 2 = 2η2 (where (2.28) is valid). It is not clear why the F 2

12A third possibility was proposed in [46], which is however chosen in such a way that its classical solutions
coincide with those of ordinary GR. Thus we will not consider it here.
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parameterization (4.8) should be invariant under such a transformation.13 In other words,
the gauge transformations of Finsler geometry are only diffeomorphisms. A priori it might
be possible, however, that F 2 changes in a way that does not modify the geometry in a
physically relevant way. We would then declare such transformations to be additional gauge
transformations. This might perhaps be similar to the notion of projective equivalence
mentioned in section 4.1.14

However, the term d2ϕs−2 in (4.14) should give one pause. Including the Fronsdal term,
the total transformation for a Finsler deformation of Minkowski space reads

δρL
s = d3

(
−1
4λ

′
s−1 + αsλs−3

)
. (6.5)

One might try to cancel the two terms in the parenthesis against each other. The structure
looks similar to that of a Stückelberg mechanism, where a mass term locks together the gauge
transformations of two fields of different spin. It is also reminiscent of the compensator fields
in [37, 47–49], where an equation of the type F(ϕs) = d3Hs appears, with δHs = λ′s−1.15

Unfortunately, this combined gauge transformation is nothing but a particular case of the
trivial redundancy (4.9), which is only present when the ϕs are not traceless. This is easiest
to see when we only transform two spins, δϕs0 = dλs0−1, δϕs0−2 = dλs0−3, and the two only
contain the same irreducible spin-(s0−3) representation: λ0

s0−1 = 0, λ′′s0−1 = 0, and λ′s0−3 = 0.
Setting δρL to zero gives λs0−3 = λ′s0−1/(6−D − 2s), which upon taking d reduces to (4.9).

A faster way to proceed is to assemble all the λs into a single

Λ =
∑
s>1

g
1−s/2
2 λs−1 , (6.6)

so that now

δF 2 = dΛ . (6.7)

Notice that Λ is homogeneous in y of degree one, since F 2 is of degree two. When we
perturb around flat (pseudo-)Riemannian space, F 2 = 2η2, and use (4.6), the same steps
as in (2.28) give

δρ = −1
4d

3Λ′ , Λ′ = ηµν∂yµ∂yνΛ . (6.8)

The strategy above now corresponds to demanding Λ′ = 0. This is not simply the sum over
the individual λ′s−1, because the factors g1−s/2

2 in (6.6) also give a contribution when we take
13[29, (5.9)] notes that the invariance of proper time

∫
dτF can be approximately restored by simultaneously

changing the position xµ(τ) in a velocity-dependent fashion.
14The infinitesimal counterpart of (4.1) is δGµ = δPyµ with δP = (2g2)−1dδF = (2g3

2)−1/2dδF 2. From (4.3)
we now find δρ = (1 −D/2)dδP ; so ρ is not invariant under a projective equivalence.

15In the AdS case an extra term is present because of (2.39); we will deal with this at the end. For theories
of Vasiliev type, a certain boundary condition for the scalar can lead to a Higgs mechanism whose Goldstone
field is a bound state of higher spin fields [50].
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the derivatives with respect to yµ. (This is the subtlety alluded to above (4.6).) Rather:

Λ′ =
∑
s>1

g
1−s/2
2

(
λ′s−1 − 4αsλs−3

)
. (6.9)

The coefficients in this expansion are not necessarily traceless, so to set Λ′ = 0 we need to use
the logic leading to (4.10). This gives a relation λ0

s−3+λ1
s−1+ . . . = 0, which upon using (4.10)

gives Λ = 0. Alternatively, the discussion in section 4.2 tells us that the parameterization (6.6)
is redundant unless we impose that the λs−1 are irreducible:

λ′s−1 = 0 . (6.10)

In other words, this choice can be made without loss of generality. Notice that this is the
infamous traceless condition on the Fronsdal gauge transformations, which here appears
rather naturally. In view of (6.9), Λ′ = 0 implies λs−1 = 0 for all s.

An even nicer way of seeing the failure of this strategy is to notice that Λ′ = ηµν∂yµ∂yνΛ =
0 is demanding Λ to be a harmonic function of the y, while below (6.6) we observed it to be
homogeneous of degree one. These two demands are only met by a linear function Λ = λ1,
which corresponds to δg2 = dλ1, the familiar diffeomorphisms. Ignoring this possibility as
we did above, we recover that Λ′ = 0 implies Λ = 0.

We have concluded that we cannot set to zero the parenthesis in (6.5), or Λ′ in (6.8).
In other words, we have tried to find gauge transformations with an algebraic constraint
(similar to the traceless constraint for Fronsdal), and we failed. We could still hope that the
full (6.5) can somehow be made zero, by playing with the differential operators. However,
d3 has a finite-dimensional kernel, consisting of quadratic polynomials in the xµ. Thus we
also cannot find gauge transformations this way.16

We now also analyze this possibility using the parameterization in terms of sum over
spins. It is lengthier, but instructive, and also a good warm-up for the next subsection.
We earlier concluded that we can always fix λ′s−1 = 0. Moreover we recall from section 4.2
that ϕ′s = 0 can similarly be assumed without loss of generality. Since (dλ)′ = dλ′ + 2∂µλ

µ,
we also conclude (as in [51]) that

∂µλ
µ
s−1 = 0 . (6.11)

Setting δρL = 0 does not necessarily imply that the coefficients δρL
s of its g2 expansion

vanish. The latter are given by (6.5) and are not necessarily traceless; thus their trace
parts can mix in the total sum

∑
s>2 g

1−s/2
2 δρL

s . As discussed near (4.10), the series can be
16We can apply a similar argument to projective equivalence to flat space. The variation of (4.5) gives

δGµ
L = 1

2 d2∂yµ Λ. From below (4.1) we find δGµ = Pyµ. If we ignore the finite-dimensional kernel of d2, we
are led to postulate ∂yµ Λ = yµQ, with d2Q = 2P . This implies a “purely radial” dependence, Λ = Λ(η2), and
the homogeneity property lets us conclude Λ = λ0

√
η2, which would correspond to the gauge transformations

of a spin-1 field, had we included it in (4.8). This is compatible with [24, Prop. 3.4.8]; notice however that
many other Finsler metrics projectively equivalent to flat space are given in that book, not obtained by gauge
transformations of Fronsdal type.
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equivalently rewritten with coefficients
∑∞

j=0 δρ
L
s+2j,j (recalling the notation (2.15)), which are

now automatically traceless and can be set to zero. Given (6.10), (6.11) and recalling that we
are taking g2 = η2, we compute (d3λ)′ = 6d∂2λ, (d3λ)′′ = 0. So gauge invariance of ρL requires

[
αsd3λs−3 −

6αs+2
D + 2sd∂

2λs−1

]
0
= 0 . (6.12)

One might hope that the two terms can sum to zero; this would lead to a recursive law on
the λs−1. We now show that this cannot happen. The action of d can be diagonalized after
going to Fourier transform. Consider first p2 < 0. We can take pµ = (p0, 0, . . . , 0), so

d = −iy0p0 , d† = ip0∂y0 . (6.13)

(6.11) gives us ∂y0λs−1 = 0. The traceless projection in (6.12) adds a slight complication, which
is reviewed in appendix A. The two terms in (6.12) can be viewed (forgetting the constants)
as (zd)3λs−3 and (zd)λs−1, with zλ ≡ λ0 the traceless projector. On our y0-independent λ’s,
the action of (zd)j is proportional to multiplication by yj

0. This means that the two terms
in (6.12) have y0 dependence proportional to y3

0 and y0; thus the two cannot be equal, unless
they are both zero. In the case p2 = 0, the second term in (6.12) is directly zero. Moreover,
zd3 = (zd)3 is invertible, as also shown in appendix A. Thus there are no solutions to (6.12).

We can also try a similar analysis on a maximally symmetric space such AdS. This a
priori might look more promising, in light of the aforementioned no-go arguments. Here is
what changes. First, covariant derivatives don’t commute, and that complicates the trace
(d3λ)′, which is now (6d(2∇2 −∆)− 2[d,∇2])λs−1. Second, now δF ̸= 0 even if λ′s−1 = 0, as
we saw back in (2.39). Third, it makes sense to consider now the variant of (6.1) discussed
below it, ρ − kF 2 = 0. This however can be reabsorbed in (2.39) by redefining Λ. All
in all (6.12) is changed to

[
−1
2Λµ

2
sdλs−1 + αsd3λs−3 −

αs+2
D + 2sd(6∇

2 + γs)λs−1

]
0
= 0 . (6.14)

where γs = Λ(6(s− 1)(D + s− 3) +D + 2s− 3))/(D − 1). Now we cannot perform a Fourier
transform to analyze the resulting condition; we should work in a suitable eigenbasis for
AdS. I have not carried out this analysis, but the problem looks similar enough to (6.12)
that at small distances (where Fourier transform can be used at least approximately) it
should reduce to the one for flat space.

In this subsection we have concluded that in spite of (4.6), (4.14), the Fronsdal gauge
transformations δϕs = dλs−1 don’t survive in Finsler geometry except as the trivial redun-
dancies (4.9). It is still possible that there is some other gauge transformation, perhaps
obtained by complementing the Fronsdal ones by additional terms involving d† or other
operators. In any case, in the next subsection we will sketch a linearized analysis of the
Finsler equations of motion.
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6.3 Perturbations

Let us first consider (6.1). We use the power series parameterization (4.8), taking ϕ′s = 0. We
found the linearized ρL in (4.14). Just like for the earlier discussion of gauge transformations,
ρL = 0 does not necessarily imply that the ρL

s vanish. As discussed near (4.10), the series
can be equivalently rewritten with coefficients

∑∞
j=0 ρ

L
s+2j,j , which are now automatically

traceless and can be set to zero. Recalling again (2.14), we use (2.25) to compute

(d2ϕs)′′ = −4(Fϕs)′ = 8(d†)2ϕs , (Fϕs)′′ = 0 . (6.15)

So ρL
s only has single and double traces, and ρL

s+2j,j = 0 for j ⩾ 3. This leads to the
linearized equation of motion[

−1
2Fϕs + αsd2ϕs−2 + f3

s (Fϕs+2)′ + f4
s (d2ϕs)′

]
0
= 0 , (6.16)

where f3
s = (2(D + 2s))−1(1 − 4αs+4/(D + 2s + 2)), f4

s = −αs+2/(D + 2s).
We now turn to (6.3). The linearization of the second term is simply ρ′. Among the

terms involving Iµ, we can ignore the quadratic one; the others give

[gµν(DµdIν + ∂yµd2Iν)]L = (∇µd∂yµ + ∂yµd2∂yµ)tdF 2 = (2∇µd∂yµ + dd† + d2t)tδF 2 =

=
(
F − 1

2 td
2
)
tδF 2 . (6.17)

We used 1/2[t,d2] = ∇2 +∇µd∂yµ + dd†, which in turn follows again from (2.25). Overall
the linearized version of (6.3) reads(

F − 2
D + 2g2(tF − 4Ft+ 2td2t)

)
δF 2 = 0 . (6.18)

A lengthier computation gives an equation again of the form (6.16), with more complicated
coefficients.

Given this qualitative similarity, from now on we will focus on (6.16). We take the
pseudo-Riemannian geometry to be flat, g2 = η2. This simplifies (d2ϕs)′ = (2∂2 + dd†)ϕs.
Schematically the equation is now of the form [(∂2 +dd†)ϕs +d2ϕs−2 + (d†)2ϕs+2]0 = 0. This
can be clarified further by going to momentum space as in the previous subsection. The
simplest case is p2 < 0, corresponding to massive modes. In GR these are gauged away, as
reviewed near (6.4), but for Finsler we haven’t found a gauge transformation that can achieve
a similar result. We can use (6.13) and the explicit decomposition in appendix A, which
tackles the traceless projection in (6.16). Each ϕs is decomposed under the spatial SO(D− 1)
as a sum

∑
k Yskϕ̂

0
s,k, where ϕ̂0

s,k is traceless, degree k and y0-independent, while Ysk is a
polynomial whose highest-order y0 term is ys−k

0 . The operators zd and zd† (where z is the
traceless projector, zϕs = ϕs,0) are proportional to the identity on each Yskϕ̂

0
s,k.

For concreteness let us look at the lowest degrees in (6.16), keeping only even s. For s = 2,
the equation reads [(d†)2ϕ4]0 = 0. The ϕ̂4,4 and ϕ̂4,3 don’t appear, while ϕ̂4,k⩽2 = 0. For
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s = 4, schematically we have [(d†)2ϕ6 + (∂2 + dd†)ϕ4]0 = 0. Now ϕ̂6,6 and ϕ̂6,5 don’t appear,
while for k ⩽ 4, ϕ̂6,k ∝ (∂2 + c6,k)ϕ4,k, for c6,k some constants; in particular, ϕ̂6,k⩽2 = 0.
Continuing in this fashion we see that ϕ̂s,k⩽2 = 0, while the ϕ̂s,s and ϕ̂s,s−1 are free, and
determine the ϕ̂s,k with 3 ⩽ k ⩽ s − 2.

Massive modes would then exist for any mass, and they would depend on many free
variables. In particular there would be many ϕs not transverse to pµ. This would create issues
when trying to quantize this theory. The analysis for massless modes is more complicated,
but gives a similar result.

The result of this perturbative analysis is disappointing, but perhaps also expected.
Without a gauge transformation, the Finsler equations of motion would be problematic from
a perturbative QFT standpoint.

6.4 Discussion

The appearance of Fronsdal operators in the Finsler Ricci curvature is encouraging. But
the associated higher spin gauge transformations are broken.17 Finsler geometry only has
diffeomorphisms as gauge transformations.

A pessimistic conclusion would be that the Fronsdal operator appears only for purely
mathematical reasons, driven by its similarity with the spin-two situation.

More optimistically, perhaps some sort of gauge transformation can still be found. While
the most natural guess for gauge transformations was excluded in section 6.2, I am not
excluding that more exotic possibilities might work. Actually the presence of many free
parameters in the previous subsection seems to indicate that some sort of gauge transformation
should exist. It should be possible to find operators that have those free paramters as their
image. We would also like, however, for such a gauge transformation to have some sort of
geometrical interpretation. It would be difficult otherwise to imagine that it can survive
beyond the linear order. After all, the possibility of some natural interacting structure
is the most interesting possible advantage of using Finsler geometry for higher spins, as
illustrated in section 5.

While the Finsler Ricci ρ seems important in view of its connection to the Fronsdal
operator, another possibility is that it might have to be modified by additional terms.
Even more radically, one might have to modify the central tenets of Finsler geometry
altogether, as advocated in [35]. In a similar spirit, one might try to adapt the Hamiltonian
approach in [30, 31]. Its advantage is that higher-spin symmetries are manifest as canonical
transformations. It is possible to define a so-called “coFinsler” distance in this way, and it
would be interesting to see how the present results are modified in that language. One should
however recall that the results in [30, 31] were partially negative (see also [33, 34]).

17Holography indicates that higher spin gauge transformations are exactly preserved only in the Vasiliev
theory for a particular choice of boundary conditions [17]; even their weak breaking at the quantum level is
quite constrained [18, 50, 52, 53].
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It might be helpful to try and recast in terms of Finsler geometry the existing higher spin
theories such as those by Vasiliev [8–12], the simpler alternatives in three dimensions [54, 55],
or the more recent self-dual theories [22, 23, 56, 57].18 Finally, the higher spin symmetries
might be realized around a solution where all the higher spin fields are non-zero, rather than
around a (pseudo-)Riemannian geometry as attempted here.19

In any case, after finding a geometrical quantity that is invariant under a set of infinite
transformations that extends diffeomorphism invariance, we would declare such transforma-
tions to be additional gauge transformations, identifying different Finsler geometries that are
equivalent as far as physics is concerned. Time will tell whether any of this can be achieved.
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A More details on the symmetrized derivative

In this appendix we give a more explicit discussion of some properties of the operator
d = yµ∇µ.

We introduce

zϕ = (ϕ)0 , (A.1)

where the 0 denotes the traceless part as in (2.15). We now act with d on the decompo-
sition (2.14), and then we take the traceless part of the result. Since ϕ′s,k = 0, we have
(dϕs,k)′ = 2d†ϕs,k, (dϕs,k)′′ = 0. Then

(dϕs)0 = (dϕs,0)0 = dϕs,0 + 2ts+1,1g2d†ϕs,0 . (A.2)

We can also rewrite this as

[z, d]ϕs = 2ts+1,1g2d†zϕs . (A.3)

In particular it follows

[z, d]zϕs = 0 , (A.4)
18In a twistor-inspired approach to gravity, Finsler geometry appears rather naturally [58].
19We thank M. Montero and C. Pfeifer for this suggestion.
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which in turn implies

(zd)k = zdk , zdzd† = zdd† . (A.5)

We now specialize to flat space. Working in Fourier transform, there are two cases to
consider: pµ massive or massless. In the former case, by a Lorentz transformation we can
always take the momentum to be purely along time, p0 ̸= 0, pi = 0, i = 1, . . . , D − 1. Then
d = −iy0p0, d† = ip0∂y0 . A traceless ϕs,0 can be decomposed in SO(d− 1) representations as

ϕs,0 =
∑

k

Yskϕ̂
0
s,k(y⃗) , Ysk = ys−k

0 + a1skδ2y
s−k−2
0 + . . . (A.6)

where ϕ̂0
s,k is traceless and degree k; the s is kept only as a label. The hat denotes dependence

on the yi alone, ∂y0 ϕ̂s,k = 0, and the coefficients are explicitly

a1sk = (s− k)(s− k − 1)
D + 2k − 1 , ajsk = (s− k − 2j + 2)(s− k − 2j + 1)

j(D + 2j + 2k − 3) aj−1,sk . (A.7)

Here δ2 = 1
2δijy

iyj , and the coefficients are determined by (ϕs,0)′ = 0. (An expansion similar
to (A.6) can be found in [2].) One finds

(dYskϕ̂
0
sk)0 = −ip0

D + s+ k − 2
D + 2s− 2 Ys+1,kϕ̂

0
s,k , (d†Yskϕ̂

0
sk)0 = ip0(s− k)Ys+1,kϕ̂

0
s,k , (A.8)

reproducing for D = 4 formulas in [2]. Using (A.5) one can also find similar expressions
for (dkYskϕ̂

0
sk)0 = (zd)kϕ̂0

sk.
For massless momentum we can take p− = 0 = pi; now d = −iy−p−. (A.6) is replaced

by a decomposition in terms of SO(d − 2) representations:

ϕs,0 =
∑

k

Zj+skϕ̂
0
s,k(y⃗) , Zj+sk = y

j+
+ y

s−k−j+
− + b1skδ2y

j+−1
+ y

s−k−j+−1
− + . . . , (A.9)

where now δ2 is the transverse (D − 2)-dimensional metric, and the coefficients are given by

b1sk = j+(s− k − j+)
D + 2k − 2 , bjsk = (j+ − j)(s− k − j+ − j)

j(D + 2j − 4 + 2k) bj−1,sk . (A.10)

(A.8) is replaced by

(dZj+skϕ̂
0
sk)0 = 2ip−

D + 2k + 2j+
D + 2s Zj++1,s+1,kϕ̂

0
s,k . (A.11)

From (A.8), (A.11) it now follows that d has no kernel.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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