
University of Milano-Bicocca

Department of Physics G. Occhialini
PhD program in Physics and Astronomy – XXXVII cycle

Non-perturbative QCD at all temperatures:
Equation of State and Renormalization

Matteo Bresciani
Registration number 805396

Ph.D. Thesis

Tutor: Prof. Leonardo Giusti
Supervisor: Dr. Michele Pepe
Supervisor: Prof. Mattia Dalla Brida

Academic year 2023/2024





Contents

Introduction 8

List of publications 10

1 Quantum Chromodynamics 11
1.1 SU(3) Yang-Mills action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 QCD action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Chiral symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Flavour singlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Flavour non-singlet . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Renormalization group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1 The Λ-parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.2 Asymptotic freedom . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.3 RGI quark mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Chiral symmetry in QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.1 Chiral Ward Identities . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.6.2 Spontaneous symmetry breaking of axial generators . . . . . . . . . 25

1.7 Topology of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 QCD thermodynamics 30
2.1 Finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Thermodynamics from a moving frame . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Ward Identities in a moving frame . . . . . . . . . . . . . . . . . . 33
2.3 Thermal phases of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 SU(3) Yang-Mills theory . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Full QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Topology at high temperature . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Effective theory approach in thermal QCD . . . . . . . . . . . . . . . . . . 37

2.5.1 Hard and soft modes . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Soft and ultrasoft modes . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5.3 Scope of the effective theory . . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 The pressure of QCD in thermal effective theory . . . . . . . . . . 40

3



2.6 The EoS of QCD from thermal perturbation theory . . . . . . . . . . . . . 41
2.6.1 The Linde problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.2 Hard, soft, ultrasoft contributions . . . . . . . . . . . . . . . . . . . 41
2.6.3 Pressure of QCD up to g6 ln(g) . . . . . . . . . . . . . . . . . . . . 42
2.6.4 Entropy of QCD up to g6 ln(g) . . . . . . . . . . . . . . . . . . . . 43

3 QCD on the lattice 45
3.1 Lattice gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Fermions on the lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Naive lattice Dirac operator . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Wilson-Dirac operator . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Renormalization and continuum limit . . . . . . . . . . . . . . . . . . . . . 49
3.4 Scale-dependent renormalization . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Window problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.2 Step scaling for the running coupling . . . . . . . . . . . . . . . . . 52

3.5 Finite renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.1 Flavour-singlet vector current with Wilson fermions . . . . . . . . 53
3.5.2 PCAC with Wilson fermions . . . . . . . . . . . . . . . . . . . . . 54

3.6 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.1 Symanzik effective theory . . . . . . . . . . . . . . . . . . . . . . . 56
3.6.2 O(a)-improvement of the Wilson action . . . . . . . . . . . . . . . 57
3.6.3 O(a)-improvement of local fields . . . . . . . . . . . . . . . . . . . 59

3.7 Numerical simulations of lattice QCD . . . . . . . . . . . . . . . . . . . . 60
3.7.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7.2 Markov Chain sampling and autocorrelation . . . . . . . . . . . . . 62
3.7.3 Hybrid Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.4 Discretized Hybrid Monte Carlo . . . . . . . . . . . . . . . . . . . . 65
3.7.5 Pseudo-fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.6 Frequency splitting of the quark determinant . . . . . . . . . . . . 67
3.7.7 Hierarchical molecular dynamics . . . . . . . . . . . . . . . . . . . 68
3.7.8 Rational HMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Equation of State of QCD at high temperature 70
4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Perturbative computation . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Entropy density in the continuum . . . . . . . . . . . . . . . . . . . 73
4.2.2 Entropy density on the lattice . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Renormalization and lines of constant physics . . . . . . . . . . . . 75

4.3 Lattice parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4 Pure Yang-Mills contribution . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Integral in the bare coupling . . . . . . . . . . . . . . . . . . . . . . 77
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Quark contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4



4.5.1 Integral in the bare mass . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.2 Simulating at large mass . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.3 Variance reduction of the chiral condensate . . . . . . . . . . . . . 81
4.5.4 Optimization of the statistics . . . . . . . . . . . . . . . . . . . . . 82
4.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.6 Accuracy of Gauss quadratures . . . . . . . . . . . . . . . . . . . . 83

4.6 Perturbative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.6.1 Numerical computation . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Entropy of QCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7.1 Finite volume effects . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.2 Restricting to zero topology . . . . . . . . . . . . . . . . . . . . . . 86
4.7.3 Continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7.4 Parameterization of the entropy density . . . . . . . . . . . . . . . 92

4.8 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Thermal QCD and non-perturbative renormalization 95
5.1 Shifted and twisted boundary conditions . . . . . . . . . . . . . . . . . . . 95
5.2 Renormalization of the QCD flavour-singlet local vector current . . . . . . 97

5.2.1 Vector current in the continuum . . . . . . . . . . . . . . . . . . . 97
5.2.2 Vector current on the lattice . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3 Perturbative computation . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.4 Non-perturbative computation . . . . . . . . . . . . . . . . . . . . 99

5.3 Renormalization of the Energy-Momentum tensor in lattice QCD . . . . . 102
5.3.1 The Energy-Momentum tensor in the continuum . . . . . . . . . . 102
5.3.2 Renormalization of the Energy-Momentum tensor on the lattice . . 103
5.3.3 Renormalization strategy at work . . . . . . . . . . . . . . . . . . . 104
5.3.4 Integral in the twist phase . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.5 1-point functions of the bare EMT . . . . . . . . . . . . . . . . . . 106
5.3.6 Renormalization constants . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Conclusions 109

A Notation and conventions 111
A.1 SU(Nc) conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2 Dirac matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.3 Lattice derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B The QCD Energy-Momentum tensor 113
B.1 The Energy-Momentum tensor in the continuum . . . . . . . . . . . . . . 113
B.2 The Energy-Momentum tensor on the lattice . . . . . . . . . . . . . . . . 113

B.2.1 Decomposition in the hypercubic group . . . . . . . . . . . . . . . 114

5



C Details on the thermal effective theory of QCD 115
C.1 The Linde problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.2 Higher order contributions to the pressure in the effective theory . . . . . 116

D Thermodynamics and Lorentz invariance 118
D.1 Shifted boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 118
D.2 Generalized periodic boundary conditions . . . . . . . . . . . . . . . . . . 119
D.3 Shift and Lorentz invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 120
D.4 Finite volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.5 Proofs of Ward Identities on a moving frame . . . . . . . . . . . . . . . . . 122

D.5.1 Proof of equation (2.15) . . . . . . . . . . . . . . . . . . . . . . . . 122
D.5.2 Proof of equation (2.18) . . . . . . . . . . . . . . . . . . . . . . . . 123

E Entropy density in lattice perturbation theory 124
E.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E.1.1 Some relevant integrals . . . . . . . . . . . . . . . . . . . . . . . . . 125
E.2 Critical mass at 1-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
E.3 Free-energy at 1-loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
E.4 Infinite volume limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

E.4.1 Analytic infinite volume of B(0) . . . . . . . . . . . . . . . . . . . . 128
E.4.2 Analytic infinite volume of B(3)

µ . . . . . . . . . . . . . . . . . . . . 129
E.4.3 Analytic infinite volume of sG(0) . . . . . . . . . . . . . . . . . . . 130
E.4.4 Infinite volume extrapolation of sF (0) . . . . . . . . . . . . . . . . . 132
E.4.5 Infinite volume extrapolation of sG(1) . . . . . . . . . . . . . . . . . 132
E.4.6 Infinite volume extrapolation of sF (1) . . . . . . . . . . . . . . . . . 134

F Technical details on the computation of the QCD entropy density 137
F.1 Gaussian quadrature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

F.1.1 The formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
F.1.2 Accuracy of the Gaussian quadrature . . . . . . . . . . . . . . . . . 138

F.2 Perturbative exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
F.3 Bare parameters and collected statistics . . . . . . . . . . . . . . . . . . . 144
F.4 Systematic effects from the quadrature . . . . . . . . . . . . . . . . . . . . 144
F.5 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
F.6 Tuning of the HMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

F.6.1 Choice of Hasenbusch and RHMC parameters . . . . . . . . . . . . 150
F.7 Random sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
F.8 Variance reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

F.8.1 Hopping parameter expansion . . . . . . . . . . . . . . . . . . . . . 155
F.9 Optimization of the statistics . . . . . . . . . . . . . . . . . . . . . . . . . 157

F.9.1 Minimization of the cost . . . . . . . . . . . . . . . . . . . . . . . . 158
F.9.2 Optimization at work . . . . . . . . . . . . . . . . . . . . . . . . . 161
F.9.3 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . 163

F.10 Continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6



F.11 Systematic effects from topology . . . . . . . . . . . . . . . . . . . . . . . 165
F.11.1 Correlation with Q . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
F.11.2 Topological effects from Dirac spectrum . . . . . . . . . . . . . . . 167
F.11.3 Numerical checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

F.12 Finite volume effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

G Technical details on the non-perturbative renormalization of composite
operators 173
G.1 Perturbative computation of ZV . . . . . . . . . . . . . . . . . . . . . . . . 173
G.2 Renormalization constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
G.3 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7



Introduction

Understanding the origins of the Universe is one of the open questions that has always
fascinated physicists the most. Recently, significant technological and scientific advances
have given Cosmology a remarkable boost. Notably, the establishment of Gravitational
Waves (GWs) astronomy, combined with more traditional observational techniques, has
unlocked new ways to explore and characterize the Universe from its primordial stages. In
the future, several new space-based antennas (LISA [5], DECIGO [85]) designed to detect
primordial GWs are expected to become operational. Simultaneously, the continuous
improvement of collider experiments and the perspective of new accelerators like the
ILC [9] will enable increasingly accurate investigations of Dark Matter. This progress
will allow for a precise and quantitative study of cosmological phenomena that in the past
could not be scrutinized due to technological limitations and/or the lack of experimental
evidence.

This scenario enhances the interplay between Cosmology and High Energy Physics,
as many features of the Early Universe are determined by the thermodynamic properties
of the Standard Model (SM), one for all its Equation of State (EoS). For instance, it
is believed that the EoS played a crucial role in shaping the spectrum of primordial
GWs [136], as well as in influencing the abundance of Dark Matter candidates, such
as Weakly Interacting Massive Particles [135] and/or axions [20, 68]. This calls for a
continuous improvement of the accuracy and reliability of SM theoretical predictions,
also to keep pace with the advances in the field of Cosmology.

In particular, this is true for the thermodynamic properties of Quantum Chromo-
dynamics (QCD) and specifically for its EoS. On the theoretical side, the EoS has been
computed from first principles on the lattice up to 2 GeV forNf = 2+1 quark flavours [21,
13, 15], and up to 1 GeV for Nf = 2+1+1 flavours [20]. Related to this, the EoS of QCD
is crucial for the interpretation of the data of relativistic heavy-ion collision experiments
(e.g., ALICE [2], RHIC [71]), where the hot phase of QCD – the Quark-Gluon Plasma –
is probed at temperatures on the order of a few hundred MeV.

For cosmological purposes, the EoS is relevant at all temperatures up to the electro-
weak scale of approximately 100 GeV. Currently, the only results for the EoS above ∼ 1
GeV are obtained through a perturbative expansion within the thermal effective field
theory of QCD [7, 82]. However, this expansion is known to converge poorly across the
entire temperature range in question. This limitation represents a significant source of
uncertainty in the SM EoS, propagating to cosmological models and weakening their
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predictive capabilities.
The purpose of this thesis is to make a concrete step forward in the exploration

from first principles of strong thermodynamics at very high temperatures, using lattice
QCD. The main original contribution is the non-perturbative determination of the EoS
for Nf = 3 massless fermions in the previously unexplored temperature range of 3–160
GeV, with an accuracy in the continuum limit of around 1% or better. This result is
achieved through a completely new strategy that makes the very high temperature regime
accessible to non-perturbative lattice studies. Furthermore, this approach is fully general
and can be readily applied to QCD with five (massive) flavours.

The second main original contribution of this thesis addresses the technical aspect
of non-perturbative renormalization of (composite) fields in the lattice theory. Several
renormalization schemes have been proposed in the literature for this purpose [108, 110].
The key novelty of our approach is the use of finite temperature QCD – the same frame-
work used for computing the EoS – to carry out the renormalization program. This
framework has proven effective for the non-perturbative renormalization of the Energy
Momentum tensor of the pure SU(3) Yang Mills theory [61]. More recently, we employed
it for the first time in Nf = 3 lattice QCD for the non-perturbative renormalization
of the flavour-singlet local vector current [22]. We are currently working on the non-
perturbative renormalization of the QCD Energy-Momentum tensor [42] on the lattice.
After discussing the renormalization strategy, we will present some preliminary non-
perturbative results for the related renormalization constants.
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Chapter 1

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the sector of the Standard Model which describes
the strong interactions among quarks and gluons. It is a quantum field theory based on
the gauge invariance with respect to the Lie group SU(3), called colour group. The gluons
are represented as bosonic fields belonging to the algebra of SU(3), while the matter
content of the theory is given by the quarks, fermionic fields with a triplet structure in
colour space. QCD has Nf = 6 flavours of quarks.

In this Chapter we review the formulation of QCD in R4 spacetime with Euclidean
metric. Given the gauge group and the field content, the first step to define QCD is to
write the classical action of the theory. This is done by combining the fields and their
derivatives to form all the possible terms that are Lorentz scalar, gauge invariant and
have mass dimension ≤ 4. Following these principles, in Section 1.1 we will first derive
the action of the pure gauge theory, called SU(3) Yang-Mills (YM) theory. We then write
the QCD action in Section 1.2 by further considering the quark fields. In the limit of zero
quark masses the classical action of QCD enjoys a large symmetry group, called chiral
symmetry, discussed in Section 1.3. Given the classical action, two steps are required
for the proper formulation of the theory at the quantum level: the definition of the path
integral and the renormalization procedure (Sections 1.4 and 1.5). In Section 1.6 we will
discuss the role of chiral symmetry in the quantized theory, and the related properties of
QCD. Some of these properties have been explicitly checked in lattice QCD: throughout
the Chapter we will reference some relevant results obtained from this framework.

1.1 SU(3) Yang-Mills action

The gauge field Aµ(x) is a bosonic field in the algebra of the colour group SU(3),

Aµ(x) = Aaµ(x)T
a , (1.1)
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where T a are the generators of the group defined in Appendix A. A gauge transformation
on the field Aµ acts as follows,

A′
µ(x) = iΩ(x)Dµ(x)Ω

†(x)

= Ω(x)Aµ(x)Ω
†(x) + iΩ(x)∂µΩ

†(x) ,
(1.2)

where Ω ∈ SU(3) is an element of the group and we defined the covariant derivative

Dµ(x) = ∂µ − iAµ(x) . (1.3)

It is convenient to introduce the field strength tensor Fµν , defined through the commu-
tator of covariant derivatives,

Fµν(x) = i[Dµ(x), Dν(x)]

= ∂µAν(x)− ∂νAµ(x)− i [Aµ(x), Aν(x)] ,
(1.4)

which transforms in the adjoint representation of the gauge group,

F ′
µν(x) = Ω(x)Fµν(x)Ω

†(x) . (1.5)

Given these fields, there are only two terms that satisfy the properties of Lorentz and
gauge invariance, and have mass dimension d ≤ 4. The SU(3) Yang-Mills (YM) action
reads 1

SGθ [A] =

∫
d4x

[
1

2g20
tr {Fµν(x)Fµν(x)} − iθq(x)

]
, (1.6)

where q(x) is called topological charge density,

q(x) ≡ 1

32π2
εµνρσtr {Fµν(x)Fρσ(x)} , (1.7)

and tr {·} denotes the trace over colour. Notice that the structure of the YM action is
completely dictated by symmetries. In particular gauge invariance dictates how gluons
should interact among themselves, and forbids a mass term tr {AµAµ} for the gauge field.
The term containing the topological charge density, also called θ-term, was introduced
by Polyakov [129] and violates parity as well as CP. However, strong CP breaking has
not been observed yet in Nature. For instance, the neutron electric dipole moment
is a physical quantity sensible to CP breaking in the strong sector, and experimental
measurements [1, 70] give the strict upper bound |θ| ≲ 10−10. Given this constraint on
the parameter θ, we assume θ = 0 and throughout all this thesis the continuum YM
action will be

SG[A] =
1

2g20

∫
d4x tr {Fµν(x)Fµν(x)} . (1.8)

The only arbitrary parameter is the coupling constant g0, which is dimensionless. The
absence of dimensionful parameters makes the YM action invariant under a change of
energy scale: this is a symmetry of the classical action known as scale invariance.

1Unless otherwise stated, we use the convention that repeated indices are summed.
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1.2 QCD action

The matter content of QCD is given by the quark fields ψ(x), ψ(x), with fermionic
statistics. From the point of view of the Lorentz group, a quark is a spin-1/2 Dirac
spinor. In colour space, quarks are triplets transforming as follows under the gauge
group:

ψ′(x) = Ω(x)ψ(x) , ψ
′
(x) = ψ(x)Ω†(x) , Ω ∈ SU(3) . (1.9)

Finally, we consider Nf flavours of quarks, the physical case being Nf = 6. Therefore
a quark has Nf components in flavour space, 4 components in spinor space and Nc = 3
components in colour space. Using these fields we can write two new terms with mass
dimension d = 4 satisfying the properties of Lorentz invariance and gauge invariance,
which define the fermionic part of the QCD action:

SF [A,ψ, ψ] =

∫
d4xψ(x)

(
/D +M0

)
ψ(x) . (1.10)

Here /D = γµDµ and γµ are the Dirac matrices in spinor space defined in Appendix A.
Gauge invariance dictates how quarks and gluons interact. This interaction is governed
by the same coupling g0 of the gluon-gluon interaction. We denote by M0 the Nf ×
Nf real-valued matrix containing the bare masses of the quark flavours, which are free
dimensionful parameters of the theory. In QCD it is possible to define the quark fields
so that the matrix M0 is diagonal. Finally, the complete QCD action is the YM one in
equation (1.8) plus the fermionic part:

S[A,ψ, ψ] = SG[A] + SF [A,ψ, ψ] . (1.11)

Again, gauge invariance dictates how quarks and gluons interact. In the special case of
massless quarks, M0 = 0, the only free parameter is the dimensionless coupling constant
g0 as in the pure gauge theory. In this limit scale invariance holds for the QCD action
too.

1.3 Chiral symmetry

The representations of the Euclidean Lorentz group SO(4) are reducible to the direct
sum of two fundamental representations of SU(2) [153], called Weyl spinors, classified by
half integers, with an extra Z2 label called chirality. A Dirac spinor can be written as
(1/2, 0)⊕ (0, 1/2): the two Weyl spinors have spin 1/2 and opposite chirality. The chiral
projectors PR,L allow to extract the two chiral components, conventionally labeled with
right and left, from a Dirac spinor,

ψR,L = PR,Lψ , ψR,L = ψPL,R , (1.12)

where
PR,L =

1

2
(1± γ5) , P 2

R,L = 1 , PR,LPL,R = 0 , (1.13)
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and γ5 is introduced in Appendix A. In terms of chiral-projected fields the fermionic
action (1.10) becomes

SF =

∫
d4x
{
ψR(x) /DψR(x) + ψL(x) /DψL(x)

+ ψR(x)M0ψL(x) + ψL(x)M0ψR(x)
}
. (1.14)

In the massless case M0 = 0 the action SF is invariant under global unitary rotations
in flavour space of left and right components separately. This symmetry is called chiral
symmetry,

U(Nf )R ×U(Nf )L ∼ U(1)R ×U(1)L × SU(Nf )R × SU(Nf )L , (1.15)

whose action on the fields is

ψ′
R,L = VR,L ψR,L , ψ

′
R,L = ψR,L V

†
R,L (1.16)

where the matrices VR,L are elements of U(Nf )R,L. We also note that if a few flavors only
were massless we could write a smaller chiral symmetry group among them. Combining
left and right transformations, the chiral rotation on a Dirac spinor is

ψ′ = (VRPR + VLPL)ψ , ψ
′
= ψ(PLV

†
R + PRV

†
L) . (1.17)

We now discuss separately the various components of the chiral symmetry group.

1.3.1 Flavour singlet

We first focus on the Abelian part U(1)R×U(1)L : in this case the matrices of the chiral
rotations are just complex phases,

VR,L = eiε
0
R,L . (1.18)

Using eq. (1.17) at the infinitesimal level, the Dirac spinor transforms as

ψ′ =
[
(1 + iε0R)PR + (1 + iε0L)PL

]
ψ

=
(
1 + iε0V + iε0Aγ5

)
ψ ,

(1.19)

where in the second line we defined the coefficients

ε0V =
ε0R + ε0L

2
, ε0A =

ε0R − ε0L
2

(1.20)

for the flavour-singlet vector and axial transformations. Therefore, the generators of
the Abelian part of chiral symmetry can be rearranged to generate the U(1)V × U(1)A
symmetry acting on Dirac spinors. The singlet vector rotation is

ψ′ = eiε
0
V ψ , ψ

′
= ψ e−iε

0
V (1.21)

while the singlet axial is
ψ′ = eiε

0
Aγ5ψ , ψ

′
= ψ eiε

0
Aγ5 . (1.22)
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1.3.2 Flavour non-singlet

Concerning the non-Abelian part SU(Nf )L × SU(Nf )R of the chiral symmetry, the ma-
trices of the chiral rotation are

VR,L = eiε
a
R,LT

a

, T a ∈ su(Nf ) . (1.23)

An infinitesimal transformation on a Dirac spinor leads to

ψ′ = [(1 + iεaRT
a)PR + (1 + iεaLT

a)PL]ψ

=(1 + iεaV T
a
V + iεaAT

a
A)ψ ,

(1.24)

where in the second line we defined the coefficients

εaV =
εaR + εaL

2
, εaA =

εaR − εaL
2

(1.25)

and the vector and axial generators

T aV = T a, T aA = γ5T
a (1.26)

with a = 1, ..., Nf
2 − 1. The commutation relations of these generators are

[T aV , T
b
V ] = fabcT cV , [T aA, T

b
A] = fabcT cV , [T aA, T

b
V ] = fabcT cA . (1.27)

The vector generators T aV satisfy the correct commutation rules for building up a Lie
algebra. The related group is the flavour non-singlet vector group SU(Nf )V , whose
action on a Dirac spinor is

ψ′ = eiε
a
V T

a
ψ , ψ

′
= ψ e−iε

a
V T

a
. (1.28)

Instead, the N2
f − 1 non-singlet axial generators are not closed under the commutation

relation. Therefore they cannot be arranged in a Lie algebra and they do not generate a
Lie group. Under a non-singlet axial transformation the Dirac spinor changes as

ψ′ = eiε
0
Aγ5T

a
ψ , ψ

′
= ψ eiε

a
Aγ5T

a
. (1.29)

1.4 Quantization

Given the classical action we now proceed to quantize the theory. At this point a dis-
claimer is in order. In what follows we will work with the formal continuum notation of
QCD. However, the rigorous way to define QCD requires the theory to be discretized on
a lattice. We dedicate Chapter 3 to the lattice formulation of QCD, which is a foundation
of the original work presented in this thesis. Following the path integral formalism we
introduce the (Euclidean) partition function of QCD,

Z =

∫
DADψDψ e−S[A,ψ,ψ] , (1.30)
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where the integral is over all the field configurations, weighted by a Boltzmann-like factor,
and S is the QCD action. In order to properly reproduce the Fermi-Dirac statistics, quark
fields are (anti-commuting) Grassman variables (see for instance [115] for a textbook
treatment). Primary quantities in a Euclidean quantum field theory are correlation
functions of products of local composite operators Oi(x) = Oi[A(x), ψ(x), ψ(x)],

⟨O1(x1) · · · On(xn)⟩ =
1

Z

∫
DADψDψO1(x1) · · · On(xn)e−S[A,ψ,ψ] , (1.31)

that we can interpret in a statistical way as expectation values with respect to the path
integral distribution. It can be shown [153] that, in the limit of Euclidean time going
to infinity, these quantities are in one-to-one correspondence with vacuum expectation
values of time-ordered products of field operators,

⟨vac|T {Ô1(x1) · · · Ôn(xn)}|vac⟩ , (1.32)

which are the objects of interest in the canonical formalism of quantization.
The definitions (1.30) and (1.31) are completely formal expressions as they stand,

and some work is needed to make them meaningful. Computations in the bare path
integral in general give rise to divergent results. The procedure one follows to handle
these infinities is called regularization, and actually it can be thought as part of the
definition of the path integral. As anticipated, we are mainly interested in the lattice
regularization of QCD, which amounts to the discretization of the theory on a hypercubic
4-dimensional lattice with lattice spacing a. This is the only known regularization that
allows to rigorously define and compute non-perturbatively correlation functions in QCD,
without any further assumption on the strong dynamics (see Chapter 3).

Quantities computed in regularized QCD are finite functions of the regulator and of
the bare parameters of the theory, i.e. the bare coupling and quark masses. Now, the
regulator must be removed but we cannot do it in the naive way, at fixed bare parameters,
because this would give rise to physically meaningless divergencies. Consequently, the
bare parameters (which have no physical meaning) must acquire a specific dependence on
the regulator. This last step of the quantization of the theory is called renormalization,
and it is the procedure of removing the regulator while changing the bare parameters so
that the theory is matched to physics. This is achieved by imposing a set of renormal-
ization conditions, one for each bare parameter of the theory. In the limit of vanishing
quark masses, the renormalization condition is of the form

M(g0, a) =Mphys , (1.33)

whereM is a physical observable with the dimension of a mass. On the left it is computed
in the (lattice) regularized theory, while on the right its value in the physical world
appears. This equation defines implicitly the dependence of the bare coupling on the
regulator, g0 → g0(a). Further renormalization conditions must be imposed in a similar
way in presence of bare quark masses. The set of imposed renormalization conditions
define a renormalization scheme. We refer to Chapter 3 for the details on how the
described renormalization procedure is carried out non-perturbatively in lattice QCD.

16



An important consequence of the renormalization condition eq. (1.33) is that the
dimensionful quantityMphys is introduced as part of the definition of the quantum field
theory. Therefore both in the pure SU(3) gauge theory and in (massless) QCD the scale
invariance is explicitly broken by the quantization procedure, even though their classical
actions are scale invariant. This goes under the name of scale anomaly. Any dimensionful
quantity, that was not constrained by the renormalization scheme, is a prediction of the
renormalized theory and is proportional to the proper power of the scale Mphys. For
instance, hadron masses can be written as

Mhad = chad · Mphys , (1.34)

where chad is a non-perturbative, dimensionless geometric coefficient to be computed in
the renormalized theory.

1.5 Renormalization group

The renormalization procedure described above is enough to properly define and compute
all the physical observables of the theory. In a quantum field theory it is also possible to
introduce renormalized quantities which depend on a renormalization energy scale µ as
part of their definition. For example we can introduce the renormalized parameters of
the theory,

g2R = Zg(g0, aµ)g
2
0 , MR = ZM (g0, aµ)M0 , (1.35)

where Zg and ZM are dimensionless renormalization factors which depend on the renor-
malization scale and scheme, on the regulator (the lattice, in this case) and on the bare
coupling. In the definitions above a mass-independent renormalization scheme has been
chosen [152], so that the renormalization factors do not depend on the quark masses.

More generally, the renormalized counterpart of a bare composite field O is

OR =
∑

α

ZαOα , α : [Oα] ≤ [O] , (1.36)

the sum over α running on all the operators with the same symmetries of O and with
lower or equal mass dimension. Let’s consider a set of fields whose renormalization
pattern is simply Oi,R = ZiOi. When we insert these fields in a connected correlation
function, the latter is renormalized as

ΓR(p, gR,MR, µ) = ZΓ(g0, aµ) Γ0(p, g0, aM0) , (1.37)

where ZΓ =
∏
i Zi collects the renormalization factors of the inserted local fields, and p

denotes the set of 4-momenta flowing in the connected correlation function. The scale
dependence of ΓR is prescribed by the Callan-Symanzik equation, or Renormalization
Group Equation [54, 145, 27, 148]. This is a non-perturbative result following from equa-
tion (1.37) by exploiting the µ-independence of the bare correlation function, dΓ0/dµ = 0:

{
µ
∂

∂µ
+ β(gR)

∂

∂gR
+ γM (gR)MR

∂

∂MR
− γΓ(gR)

}
ΓR = 0 , (1.38)

17



where the functions

β(gR) = µ
∂

∂µ
gR , γM (gR) = µ

∂

∂µ
lnZM , γΓ(gR) = µ

∂

∂µ
lnZΓ (1.39)

are differential equations encoding the running of renormalized parameters and renormal-
ization constants with the scale µ. The function γM is called mass anomalous dimension,
while γΓ is the anomalous dimension of the renormalized correlation function, coming
from the multiplicative renormalization constant. Note that the β, γM and γΓ functions
must be independent from the regularization, since they appear in a differential equa-
tion (1.38) for a renormalized correlation function. Moreover, being dimensionless they
do not explicitly depend on the renormalization scale.

1.5.1 The Λ-parameter

From the definition of β(gR) in eq. (1.39) a special solution of the Callan-Symanzik
equation emerges. If we separate the variables µ and gR and integrate between g1 =
gR(µ1) and g2 = gR(µ2) the following relation is found:

µ1 exp

{
−
∫ g1

g

dx

β(x)

}
= µ2 exp

{
−
∫ g2

g

dx

β(x)

}
(1.40)

where for convenience we introduced a third value of the renormalized coupling g. This
equality tells us that the quantity appearing both sides is constant as the renormalization
scale changes. In order to write it better we would like to send g → 0. The perturbative
result for the β-function is usually written as

β(g) = −g3
∞∑

k=0

bkg
2k (1.41)

where the coefficients bk depend on the renormalization scheme but for the first two,
which are universal. For generic values of Nc and Nf we have

b0 =
1

(4π)2

(
11

3
Nc −

2

3
Nf

)
, b1 =

1

(4π)4

[
34

3
N2
c −

(
13

3
Nc −

1

Nc

)
Nf

]
. (1.42)

The perturbative result shows that β(g)→ 0 as g → 0. Before setting g = 0 in equation
(1.40) we can subtract both sides the divergent part of 1/β(x). The scale invariant
quantity finally reads

Λ/µ ≡[b0g2R(µ)]−b1/(2b
2
0)e−1/(2b0g2R(µ))

× exp

{
−
∫ gR(µ)

0
dx

[
1

β(x)
+

1

b0x3
− b1
b20x

]}
. (1.43)

This quantity is called Λ-parameter of the theory. The Λ-parameter is a completely
non-perturbative result that solves the Callan-Symanzik equation in the MR = 0 case
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Figure 1.1: Running of the Nf = 3 QCD coupling α = g2R/(4π) renormalized in the
Schrodinger functional and Gradient flow schemes, in comparison with perturbation the-
ory [25].

and in absence of anomalous dimensions. Such quantities are also known as RGI, renor-
malization group invariants. Even though it is a renormalization scheme dependent
object, it can be shown that the scheme dependence is exactly computable with a 1-loop
calculation [154]. The Λ-parameter is a constant mass scale arising directly from the
renormalization group of the QFT, even if the classical theory has no mass scales. This
fact goes under the name of dimensional transmutation, as equation (1.43) trades the
running of a dimensionless coupling gR with the dimensionful scale Λ.

The Λ-parameter can be computed non-perturbatively in lattice QCD, as well as the
β-function of a renormalized coupling and so the running of the coupling itself. This in
turn allows to define in a fully non-perturbative way the renormalization constant Zg in
equation (1.35). The determination of the running coupling from the lattice has been
achieved by employing renormalized couplings defined in finite volume schemes, such
as the Schrodinger functional coupling [108] or the Gradient flow coupling [110]. The
non-perturbative running of these couplings has been determined using the step scaling
procedure proposed in [103]. Recent results in Nf = 3 QCD (three massless flavours)
can be found in [45, 44, 28, 25], and have been obtained using the couplings mentioned
above, whose running with the scale is represented in Figure 1.1. The quoted result for
the Λ-parameter is

Λ
(3)

MS
= 341(12) MeV , (1.44)

where the conversion to the perturbatively defined MS scheme is done after the fully
non-perturbative computation.
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1.5.2 Asymptotic freedom

As we can see from Figure 1.1, when the energy scale increases the strong coupling of
QCD becomes smaller and smaller. This behaviour is known as asymptotic freedom [69],
and can be predicted analytically by solving the running of the renormalized coupling
in the small coupling regime. Using the perturbative result for the β-function (1.39), at
leading order one finds

g2R(µ2) =
g2R(µ1)

1 + 2b0g2R(µ1) ln(µ2/µ1)
. (1.45)

The 1-loop (universal) coefficient b0 of the β-function controls the behaviour of the cou-
pling as we change the scale. If b0 > 0, that is if

Nf <
11

2
Nc , (1.46)

then the coupling decreases as the energy scale increases (µ2 ≫ µ1). The physical case
(Nc = 3, Nf = 6) is included in this scenario. Therefore the perturbative regime of QCD
is the one at high energy. Note that the pure gauge theory (Nf = 0) is asymptotic-free
for any number of colours Nc > 0.

1.5.3 RGI quark mass

If massive quarks are considered then the RGI quark mass arises as a special solution of
the Callan-Symanzik equation (1.38), in a similar way as the Λ-parameter was derived:

MRGI ≡MR(µ)
[
2b0g

2
R(µ)

]−d0/(2b0)

× exp

{
−
∫ gR(µ)

0
dx

[
γM (x)

β(x)
− d0
b0x

]}
, (1.47)

where the perturbative expansion of γM is

γM (g) = −g2
∞∑

k=0

dkg
2k , d0 =

1

(4π)2
3(N2

c − 1)

Nc
. (1.48)

At variance of the Λ-parameter, MRGI is a universal (i.e. scheme-independent) quantity.
The RGI quark mass and the related running of the renormalized quark mass MR(µ)
can be determined non-perturbatively from the lattice [28, 128] adopting step scaling
techniques in analogy to the determination of the running coupling and the Λ-parameter.
This in turn allows to define in a non-perturbative way the mass renormalization constant
ZM of equation (1.35).
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1.6 Chiral symmetry in QCD

We showed in Section 1.3 that the massless classical action of QCD is invariant under
chiral symmetry, which is related to the freedom of redefining left-handed and right-
handed components of quarks up to U(Nf ) rotations in flavour space. At the quantum
level a large part of this symmetry is broken. To start with, the U(1)A subgroup is broken
by the chiral anomaly, due to the non-invariance of the path integral measure under this
symmetry. Massless QCD breaks chiral symmetry with the mechanism of spontaneous
symmetry breaking (SSB), triggered by the fact that the quantum vacuum of the theory is
not invariant under this symmetry. The broken generators are the non-singlet axial ones,
and the N2

f − 1 associated Goldstone bosons are the pions. QCD at physical point have
massive quarks, and this explicitly breaks chiral symmetry. The vector flavour subgroup
SU(Nf )V of chiral symmetry survives to non-zero quark masses if all the flavours have
the same mass. The special case Nf = 2 is called isospin symmetry, and in Nature it is
preserved at the percent level.

In the following Subsections we will focus in more details on the consequences of
chiral symmetry in QCD and its breaking pattern, together with some remarkable non-
perturbative numerical results which validate the theory.

1.6.1 Chiral Ward Identities

The consequences of chiral symmetry in QCD can be understood using the related Ward
Identities (WI). Given a transformation of the fields whose infinitesimal form is

ψ′ = ψ + δψ , ψ
′
= ψ + δψ , A′

µ = Aµ + δAµ , (1.49)

the WI is obtained by a change of variable in the path integral for the expectation value
⟨O⟩ of a given interpolating field O,

±⟨OTr δJ⟩ − ⟨OδS⟩+ ⟨δO⟩ = 0 . (1.50)

In this equation δS and δO are the variations of the action and of the interpolating field
O under the infinitesimal transformation, and J = 1 + δJ its near-identity Jacobian.
The trace Tr {·} includes the sum over spacetime. The signs ± are respectively for
transformations acting on bosonic or fermionic fields. Transformations for which the
path integral measure is not invariant (δJ ̸= 0) are called anomalous.

A particular case is when the transformation is a continuous global symmetry of the
classical action: the related Ward Identity can be found by first localizing the transfor-
mation. However, being a combination of the equations of motion, a Ward Identity is
a non-perturbative result of QCD holding independently from the actual realization of
the symmetry, although the breaking (either explicit or spontaneous) of the latter may
change some terms appearing in the Ward Identity itself.

In the following we will derive the Ward Identities related to the non-anomalous
(δJ = 0) part of chiral symmetry in the formal continuum theory. Strictly speaking we
should first regularize the theory, then derive the Ward Identities in the bare regularized
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theory and finally replace the bare operators and parameters with their renormalized
counterparts. However, it is possible to regularize QCD and then renormalize it so
that the form of the (bare) chiral Ward Identities is respected. Provided that, we are
authorized to formally derive them in the bare continuum theory. This is actually true
for all the generators of chiral symmetry but for the singlet axial group, U(1)A. This
is the only anomalous subgroup of chiral symmetry, because the integration measure of
the regularized theory is not invariant. A naive treatment in the bare continuum theory
would just overlook this.

Singlet vector Ward Identities

We consider a transformation of the quark fields under the U(1)V subgroup of chiral
symmetry, equation (1.21). The infinitesimal form reads

ψ′ = (1 + iε0V )ψ , ψ
′
= ψ(1− iε0V ) . (1.51)

We localize the transformation ε0V → ε0V (x) such that it vanishes for large distances (or,
in case of compact support, on the boundary of the support). The variation of the action
is

δS = −i
∫
d4z ε0V (z)∂

z
µVµ(z) , (1.52)

where we defined the flavour-singlet vector current Vµ ≡ ψγµψ. Given the local operator
O, we obtain the Ward Identity

−i
∫
d4z ε0V (z)

〈
∂zµVµ(z)O(y)

〉
=
〈
δε0V (y)O(y)

〉
, (1.53)

where on the right the variation of the local operator appears. We can choose the support
of the local variation to be a single point by setting ε0V (z) = ε0V δ(z − x) and, at physical
distance, we get

∂xµ⟨Vµ(x)O(y)⟩ = 0 , y ̸= x . (1.54)

This is sort of generalization of the Noether’s current conservation. If we integrate both
sides in d3x = dx1dx2dx3 we get

∂x0
〈
V (x0)O(y)

〉
= 0 , y0 ̸= x0 , V (x0) ≡

∫
d3xV0(x0,x) (1.55)

which states the conservation of the charge V , known as baryon number. Since the U(1)V
subgroup of chiral symmetry is respected in QCD regardless the value of M0, the baryon
number is conserved for any value of the quark masses.

Non-singlet vector Ward Identities

We move now to the SU(Nf )V subgroup of chiral symmetry, also called generalized
isospin. The infinitesimal transformation of the fields reads

ψ′ = (1 + iεaV T
a)ψ , ψ

′
= ψ(1− iεaV T a) . (1.56)
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Working as we did for the singlet case we can similarly derive the integrated Ward Identity

−i
∫
d4z εaV (z)

{〈
∂zµV

a
µ (z)O(y)

〉
−
〈
ψ(z)[M0, T

a]ψ(z)O(y)
〉}

=
〈
δεaV (y)O(y)

〉
(1.57)

where the (non-singlet) vector current V a
µ ≡ ψγµT

aψ was introduced. By choosing
εaV (x) = εaV δ(z − x), at physical distance we get

∂xµ
〈
V a
µ (x)O(y)

〉
=
〈
ψ(x)[M0, T

a]ψ(x)O(y)
〉
, y ̸= x . (1.58)

The commutator [M0, T
a] arises from the flavour structure of this transformation. In

order to have a conserved current (and charge) for the isospin symmetry the commutator
has to vanish, meaning that the Nf flavours must be degenerate (but not necessarily
massless). In case a few flavours only are degenerate, then the isospin symmetry holds
only among them. The breaking of isospin can thus be related to the difference of masses
of the flavours. For these reasons V a

µ is sometimes referred to as the partially conserved
vector current (PCVC).

Non-singlet axial Ward Identities

The infinitesimal transformation under the axial generators are

ψ′ = (1 + iεaAγ5T
a)ψ , ψ

′
= ψ(1 + iεaAγ5T

a) . (1.59)

Using the same machinery as before one can find the integrated Ward Identity

−i
∫
d4z εaA(z)

[〈
∂zµA

a
µ(z)O(y)

〉
−
〈
ψ(z)γ5{M0, T

a}ψ(z)O(y)
〉]

=
〈
δεaA(y)O(y)

〉
. (1.60)

Here we defined the (non-singlet) axial current Aaµ ≡ ψγµγ5T
aψ. We choose εaA(x) =

εaAδ(z − x) and we get

∂xµ
〈
Aaµ(x)O(y)

〉
=
〈
ψ(x)γ5{M0, T

a}ψ(x)O(y)
〉
, y ̸= x . (1.61)

At variance of the vector case, the presence of one extra γ5 leads to the anticommutator
of the mass matrix M0 with the generator T a. This means that a conserved axial current
is possible only if M0 = 0. The axial current is also called partially conserved axial
current (PCAC). A special case is when the Nf flavours have the same (bare) mass,
M0 = m01Nf

. In this case the PCAC relation becomes

∂xµ
〈
Aaµ(x)O(y)

〉
= 2m0⟨P a(x)O(y)⟩ , y ̸= x (1.62)

where we defined the pseudoscalar density P a ≡ ψγ5T aψ.
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Renormalization of currents and densities

The chiral Ward Identities allow to fix the renormalization of some of the currents and
densities we have already introduced in a non-perturbative way. Let us start from the
non-singlet vector current (isospin current). Recalling (1.36), its renormalization pattern
is simply 2

V a
µ,R = Zns

V V
a
µ (1.63)

as there is no other operator with mass dimension d ≤ 3 and same properties that could
mix under renormalization. We consider the WI in equation (1.57) with M0 = 0 (that is,
we choose a mass-independent renormalization scheme). We choose the operator to be
the vector current itself, O = V b

ν . It is easy to show that δεaV (y)V
b
ν (y) = εaV (y)f

abcV c
ν (y).

If we finally choose εaV (z) = εaV δ(z − x) we get

∂xµ

〈
V a
µ (x)V

b
ν (y)O(z)

〉
= iδ(y − x)fabc⟨V c

ν (y)O(z)⟩ , z ̸= x, y (1.64)

where we added the extra operator O to prevent correlation functions from vanishing. If
we now replace all the fields with their renormalized counterparts we get

∂xµ

〈
V a
µ,R(x)V

b
ν,R(y)OR(z)

〉
= Zns

V iδ(y − x)fabc
〈
V c
ν,R(y)OR(z)

〉
, z ̸= x, y (1.65)

and since the WI should hold for the renormalized quantities, we have to set Zns
V = 1

which means that V a
µ does not renormalize. The non-singlet axial current renormalizes

multiplicatively too,
Aaµ,R = ZAA

a
µ . (1.66)

Starting from the WI (1.60) with M0 = 0, and choosing O = Aaν one can proceed as we
did for the vector current, and the result is that the axial current does not renormalize
too: ZA = 1. The non-singlet pseudoscalar density renormalizes multiplicatively,

P aR = ZPP
a . (1.67)

We use the PCAC relation (1.62) with O = P b. The renormalized counterpart is

∂xµ

〈
Aaµ,R(x)P

b
R(y)

〉
= 2mR Z

−1
M Z−1

P

〈
P aR(x)P

b
R(y)

〉
, y ̸= x (1.68)

where we already set the axial current renormalization to unity. This relation tells us
that

ZMZP = 1 ⇒ ZP =
1

ZM
(1.69)

to preserve the WI for renormalized fields. We may also define the (non-singlet) scalar
density Sa ≡ ψT aψ, which belongs to the same chiral multiplet of P a (that is, they

2For later purposes in this thesis, we reserve the symbol ZV to the renormalization constant of the
flavour-singlet vector current.
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can be rotated one into the other by a chiral transformation) 3. Therefore they must
renormalize in the same way: ZS = ZP .

The flavour-singlet scalar density S0 ≡ ψψ requires some care. Being a mass-
dimension 3 scalar object, under renormalization it mixes with an infinite set of eventually
divergent terms like M0µ

2
cutoff , M3

0 , M4
0 /µcutoff ... such that the total mass dimension

is 3. Here, µcutoff is the cutoff scale provided by the regulator, for instance 1/a on the
lattice. Using the WIs we can still fix the overall renormalization factor Z0

S , thanks to the
fact that at zero quark masses all these extra additive terms do not appear. In eq. (1.60)
we choose O = P b, whose variation under the axial generators is

δεaA(y)P
b(y) = iεaA(y)

(
δab

Nf
S0 + dabcSc

)
. (1.70)

We then select εaA(y) = εaAδ(y−x) and the PCAC Ward Identity with degenerate masses
becomes

∂xµ

〈
Aaµ(x)P

b(y)
〉
= 2m0

〈
P a(x)P b(y)

〉
− δab

Nf
δ(y − x)

〈
S0(y)

〉
. (1.71)

We already set ⟨Sc⟩ = 0 coming from (1.70), because isospin symmetry is respected. If
we consider the chiral limit (m0 = 0) and we replace fields with renormalized ones we
get Z0

S = ZP . In conclusion, the flavour-singlet vector current renormalizes as

Vµ,R = ZV Vµ . (1.72)

Using equation (1.53) we see that also this current (and thus the baryon number) does
not renormalize: ZV = 1.

1.6.2 Spontaneous symmetry breaking of axial generators

As we anticipated, the N2
f − 1 non-singlet axial generators of the chiral symmetry group

are spontaneously broken in massless QCD. The order parameter for this symmetry is the
vacuum expectation value of the singlet scalar density

〈
S0
〉
, known as chiral condensate.

The density S0 is not invariant under the non-singlet axial transformation (1.59). The
massless action of QCD is invariant, therefore a non-zero value of the chiral condensate
signals the breaking of this symmetry by the vacuum of the theory. In presence of a
spontaneously broken symmetry the Goldstone’s theorem [67] states the existence of
one massless boson for each broken generator. These particles have the same quantum
numbers of the broken charges. In the case of QCD the Ward Identity (1.71) at zero
quark mass,

∂xµ

〈
Aaµ(x)P

b(y)
〉
= −δ

ab

Nf
δ(y − x)

〈
S0(y)

〉
, (1.73)

reveals that in presence of SSB of chiral symmetry the axial current is not conserved.
The associated broken charge is

A
a
0(x0) ≡

∫
d3xAa0(x0,x) =

∫
d3x (ψγ0γ5T

aψ)(x0,x) , (1.74)

3Being an ultraviolet property of the theory, the renormalization is not affected by the (spontaneous)
breaking of chiral symmetry, which is a vacuum (infrared) effect.
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meaning that the pions (the Goldstone bosons) are pseudoscalar mesons. Quark masses
break explicitly chiral symmetry. The Goldstone mechanism does not apply in physical
QCD, and the pions are massive particles. It is however interesting from the theoret-
ical point of view to verify non-perturbatively if massless QCD exhibits the expected
spontaneous breaking of chiral symmetry. Provided that, it can be shown that the pion
mass squared is proportional to the (renormalized) quark mass, so that when the chiral
limit is taken the pions become Golstone bosons. In the following we will review some
non-perturbative results about these two topics.

Non-perturbative tests of chiral SSB

The SSB of chiral symmetry in the massless theory was proven from first principles in
lattice QCD with Nf = 2 Wilson fermions [57, 49]. As we will discuss in Section 3.2,
the Wilson discretization of the fermionic action explicitly breaks chiral symmetry. As
a consequence the chiral condensate has power divergences that must be subtracted also
in the chiral limit. Alternatively the Banks-Casher relation [12] can be used,

lim
λ→0

lim
mR→0

lim
V→∞

ρ(λ,m) =
Σ

π
, (1.75)

which links the zero mass and infinite volume limit of the chiral condensate

Σ = − lim
mR→0

lim
V→∞

〈
S0
〉

Nf
(1.76)

to the value at the origin (λ → 0) of the average spectral density ρ(λ,m) of the Dirac
operator in the zero mass and infinite volume limit. The spectral density ρ renormalizes
multiplicatively, and it is not affected by power divergences. Through the Banks-Casher
relation (1.75) it is possible to properly define and compute efficiently from the lattice the
chiral condensate. This strategy was proven to work in [57], where the chiral condensate
at fixed lattice spacing was computed in QCD with Nf = 2 flavours of Wilson fermions,
at some values of the quark mass (see Figure 1.2a). The non-zero value in the chiral limit
extrapolation is the non-perturbative signal of the SSB of chiral symmetry.

Pion mass and GMOR relation

In the presence of quark masses, the relevant Ward Identity for understanding the break-
ing of the axial generators is again the PCAC equation (1.71) with non-zero (renor-
malized) quark mass (we assume degenerate flavours). Starting from this equation it is
possible to derive the Gell Mann-Oakes-Renner (GMOR) relation [55]:

lim
mR→0

(Mm
π )2(Fmπ )2

2mR
= −

〈
S0
〉

Nf

∣∣∣∣∣
mR=0

(1.77)

where Mm
π is the pion mass and Fmπ is the pion decay constant defined through

⟨0|Aa0(x0)|πb⟩ = iδabMm
π e

−Mπx0Fmπ , (1.78)

26



80 100 120

MR [MeV]

45

60

75

90

νR

mR = 46 MeV 

mR = 26 MeV 

mR = 13 MeV

0 10 20 30 40 50

mR [MeV]

2.5

3.0

3.5

4.0

   ΣR[fm-3]

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0  0.01  0.02  0.03  0.04  0.05

M
π

2
/(

4
π
F

)2
m

RGI
/(4πF)

Banks-Casher + GMOR
Continuum data

15

20

25

30

0 0.01 0.03 0.05

M
π

2
/(2m

RGI
F)

(b)

Figure 1.2: Left: Zero quark mass extrapolation of the chiral condensate of QCD at fixed
lattice spacing with Nf = 2 Wilson fermions. Plot from [57]. Right: Pion mass as a
function of the RGI quark mass in Nf = 2 QCD. The central line is the GMOR prediction
computed by taking the direct measure of the condensate with the Banks-Casher relation.
Plot from [49].

both at non-zero quark masses. For small quark masses this relation can be reshaped in

(Mm
π )2 = −2

〈
S0
〉

Nf (Fπ)2
mR +O(m2

R) , (1.79)

where the coefficient of mR is evaluated at zero quark mass. At leading order the pion
mass is related to the square root of the quark mass times a coefficient containing the
chiral condensate. As we take the chiral limit, the mass of the N2

f −1 pions vanishes and
we recover the Goldstone bosons.

A numerical test for this scaling was carried out in Nf = 2 QCD [49]. They computed
for decreasing quark mass the pion mass Mm

π , the matrix element Fmπ and the chiral
condensate (using the Banks-Casher relation) in the zero quark mass limit. Then they
compared the behavior of Mπ as a function of the quark mass with the prediction from
equation (1.79), finding perfect agreement (see Figure 1.2b). From equation (1.34) we
expect that, in general, hadron masses can be written as

Mhad ∼ f(mR/Mphys)Mphys , (1.80)

where f is a mild function of the quark mass. Pions are peculiar particles because they are
pseudo-Goldstone bosons. The GMOR relation (1.79) allows to specify the dependence
of the pion mass on the renormalized quark mass,

Mπ ∼
√
MphysmR , (1.81)
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which in turn predicts that these particles are lighter with respect to other mesons in
the QCD spectrum. This is actually observed in Nature, and can be interpreted as the
signal of the missed SSB of chiral symmetry due to non-zero quark masses.

1.7 Topology of QCD

The topological charge density q(x) we introduced in eq. (1.7) plays an important role in
characterizing the vacuum structure of QCD and pure YM theory. In the presence of pe-
riodic boundary conditions for the fields the spacetime integral of q(x), called topological
charge, is an integer number:

Q =

∫
d4x q(x) , Q ∈ Z . (1.82)

It can be shown that, at the classical level, the field space of a non-Abelian gauge theory
is factorized in topological sectors: gauge fields belonging to a sector have the same
topological charge Q. Solutions of the classical field equations with non-zero topology
are called instantons and constitute local minima of the action [16]. Moving to the
quantum theory, QCD has many local minima classified by their topological charge.
Therefore the partition function can be written as a sum of partition functions at fixed
topological charge:

ZQ =

∫
DADψDψ δQe

−S[A,ψ,ψ] . (1.83)

Sometimes it is convenient to leave the θ-term in the path integral as a source. Being Q
integer, the partition function can be written as

Z(θ) =
∑

Q∈Z

e−iθQZQ . (1.84)

This equation shows that the partition function is periodic in θ with period 2π. Under
a parity transformation the topological charge flips sign, therefore the partition function
is an even function of θ:

Z(θ) = Z(−θ). (1.85)

The cumulants of the topological charge distribution can be generated by taking deriva-
tives with respect to θ: assuming the theory is in a finite volume V ,

cn = − 1

V

(
∂

∂θ

)2n

lnZ(θ)
∣∣∣∣∣
θ=0

. (1.86)

Property (1.85) implies that odd derivatives are all zero. In particular the expectation
value of the topological charge, related to the first derivative, vanishes:

⟨Q⟩ = 1

Z

∫
DADψDψ

(∫
d4x q(x)

)
e−S[A,ψ,ψ] = 0 . (1.87)
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The n = 1 cumulant is the topological susceptibility and carries information on the fluc-
tuations of the topological charge:

χt ≡ c1 =
1

V

〈
Q2
〉
=

∫
d4x ⟨q(x)q(0)⟩ (1.88)

where in the second step we used translational invariance to set one of the densities in
x = 0. These cumulants are primary quantities for the study of the properties of the
distribution of the topological charge. In the infinite volume limit this distribution is
a Gaussian with width controlled by the topological susceptibility. The leading non-
Gaussianity correction is suppressed with the volume and it is related to the ratio c2/χt,
which was studied non-perturbatively in the pure gauge theory in [63].
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Chapter 2

QCD thermodynamics

In this Chapter we drift towards the main topic of this thesis, that is QCD at non-zero
temperature. There is a vivid interest in the physics community in studying the prop-
erties of QCD at high temperature, as it is relevant in understanding a broad spectrum
of phenomena from high-energy particle physics to the cosmological evolution of the
Universe. We are mainly interested in the equilibrium thermodynamics of a system of
interacting quarks and gluons at zero chemical potential, whose properties are summa-
rized by the QCD Equation of State (EoS). This is a characterizing property of QCD
given by the temperature dependence of (for instance) the pressure, the entropy density
and the energy density of QCD matter. In the first part of the Chapter we will review
the setup of QCD at non-zero temperature in the path integral formalism. Then we
will describe the main features of the high temperature phase of QCD and some related
numerical results from the literature. The second part of the Chapter is dedicated to the
thermal effective field theory (thEFT) of QCD, which is based on the factorization of
the degrees of freedom of QCD at the three energy scales ∼ πT , ∼ gT , ∼ g2T/π where g
is the QCD coupling. This effective theory can be employed to study phenomena at low
three-momentum (i.e. long distances) compared to the temperature. The thEFT is the
standard framework where perturbative computations in QCD at high temperature are
carried out [141, 35, 83, 150, 8, 161, 82]. We dedicate the last Section to the perturbative
determination of the QCD EoS: we will review and summarize the final expressions. This
is the state of the art of the knowledge of the EoS of QCD at temperatures higher than
∼ 1 GeV.

2.1 Finite temperature

At the quantum mechanical level, a thermal system of interacting quarks and gluons at
zero quark chemical potential is described by the partition function (kB = 1 in our units)

Z(T, µf ) = Tr
{
e−Ĥ/T

}
, (2.1)

30



where Ĥ is the Hamiltonian operator and T is the temperature of the thermal system.
The trace is taken over all the states in the Hilbert space on which to the Hamiltonian
Ĥ acts. The partition function (2.1) admits a representation in terms of a path integral
over the quark and gluon fields in Euclidean space. The expression is formally equivalent
to the one we have already introduced in eq. (1.30), but now the QCD action (1.11) is
replaced by

S[A,ψ, ψ] =

∫ 1/T

0
dx0

∫

V
d3x

[ 1

2g20
tr {Fµν(x)Fµν(x)}+ ψ(x)

(
/D +M0

)
ψ(x)

]
, (2.2)

where the integral over the Euclidean time is restricted to 1/T , and the fields satisfy
(anti)periodic boundary conditions in the temporal direction:

Aµ(x0 + 1/T,x) = Aµ(x0,x) ,

ψ(x0 + 1/T,x) = −ψ(x0,x) ,
ψ(x0 + 1/T,x) = −ψ(x0,x) .

(2.3)

If the theory is set up in a finite three-dimensional box of volume V = L1L2L3, then
gauge and quark fields satisfy periodic boundary conditions in the three spatial directions.

We may understand the physical meaning of the compact temporal direction as fol-
lows. Let’s rewrite the partition function (2.1) using a complete set of states in the
Hilbert space,

Z(T ) =
∑

n

⟨n|e−Ĥ/T |n⟩ =
∑

n

⟨n|n⟩ e−En/T , (2.4)

where Ĥ|n⟩ = En|n⟩. In the zero temperature limit, 1/T →∞, only the vacuum of the
theory contributes to the partition function. When the temperature is finite all the states
in the sum (2.4) contribute, each weighted with the proper Boltzmann factor ∼ e−En/T .
Given the partition function, we can now introduce the thermodynamic functions. In the
formulas below we assume that the thermodynamic limit V → ∞ is understood. The
free-energy density is related to the logarithm of the partition function,

f(T ) = −T
V

lnZ(T ) , (2.5)

where we make explicit the temperature dependence only, but in principle the free-energy
inherits from Z the dependence on all the parameters of the theory. Up to a sign, the
free-energy density gives the pressure:

p = −f . (2.6)

The derivative with respect to the temperature of lnZ is the energy density,

e(T ) =
T 2

V

∂

∂T
lnZ(T ) . (2.7)

Another quantity that will be relevant in the following is the entropy density,

s(T ) = − ∂

∂T
f(T ) . (2.8)
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Entropy density, energy density and pressure satisfy the following relation,

Ts = e+ p , (2.9)

and their temperature dependence gives the Equation of State.

2.2 Thermodynamics from a moving frame

We can take advantage of the invariance of QCD under the Euclidean Lorentz group
SO(4) to generalize the partition function defined in eq. (2.1) to a thermal system in a
moving reference frame (see [91], paragraph 2),

Z(L0, ξ) = Tr
{
e−L0(Ĥ−iξ·P̂ )

}
, (2.10)

where L0, Ĥ and P̂ are respectively the size of the compact direction of the system,
the Hamiltonian operator and the total momentum operator. The vector ξ = (ξ1, ξ2, ξ3)
represents the Euclidean boost of the system. The free-energy density in presence of a
non-zero shift can be defined as usual,

f(L0, ξ) = −
1

L0V
lnZ(L0, ξ) , (2.11)

where we explicitly indicate only the dependence on the temporal extension L0 and on
the shift ξ. The partition function eq. (2.10) is equivalent to an Euclidean path integral
with fields satisfying shifted boundary conditions in the temporal direction [60],

Aµ(x0 + L0,x) = Aµ(x0,x− L0ξ) ,

ψ(x0 + L0,x) = −ψ(x0,x− L0ξ) , (2.12)

ψ(x0 + L0,x) = −ψ(x0,x− L0ξ) ,

while in a finite three-dimensional volume V the fields satisfy periodic boundary condi-
tions in the spatial directions.

In the thermodynamic limit the following identity between free-energy densities holds
as a consequence of the Lorentz invariance of the theory [59]:

f(L0, ξ) = f(L0/γ,0) , γ = 1/

√
1 + ξ2 . (2.13)

This means that the thermodynamics in the ξ ̸= 0 frame, at temperature 1/L0, is directly
related to the thermodynamics in the ξ = 0 frame with a lower temperature T ,

T =
γ

L0
, γ =

1√
1 + ξ2

, (2.14)

or equivalently a compact direction longer by a factor
√

1 + ξ2. If we consider instead
the theory in finite spatial volume, it can be shown (see [59], and Appendix D.4) that
the identity (2.13) holds up to corrections exponentially suppressed as ∼ e−MgapLi in the
MgapLi → ∞ limit, where Mgap ∝ T is the mass of the lightest screening state of the
theory and Li, i = 1, 2, 3 is each of the spatial sizes.
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2.2.1 Ward Identities in a moving frame

Equation (2.13) generates interesting Ward Identities involving 1-point functions of the
total momentum and/or total energy operators, which would be trivial in presence of
standard (anti)periodic boundary conditions in the compact direction. In the following
we will discuss a few examples which are relevant for the original work of this thesis. For
further details and the proofs of the formulas we refer to Appendix D.

By differentiating once with respect to the shift ξk both sides of equation (2.13) we
can relate the entropy in the rest frame to the shift-derivative of the free-energy in the
moving frame,

Ts =
1 + ξ2

ξk

∂

∂ξk
f(L0, ξ) , T =

1

L0

√
1 + ξ2

, (2.15)

where we stress that the temperature T is the one in the frame at rest with the thermal
system. Using the quantum mechanical representation of the Euclidean thermal partition
function, eq. (2.10), and the mapping P̂k → −iT0k between the momentum operator and
the Energy-Momentum tensor Tµν (defined in Appendix B), it is immediate to show that

⟨T0k⟩ξ = − ∂

∂ξk
f(L0, ξ) , (2.16)

where the expectation value on the left is taken in the shifted frame. Combining this
result with equation (2.15) we get

Ts = −1 + ξ2

ξk
⟨T0k⟩ξ , (2.17)

which in principle provides a practical way to compute the entropy density from numer-
ical simulations, by measuring the relevant one-point function of the Energy-Momentum
tensor in a shifted setup. Another interesting Ward Identity is obtained from (2.13) if we
differentiate both sides with respect to L0. Assuming a non-zero shift in the component
ξk only we get

⟨T0k⟩ξ = ξk

(
⟨T00⟩ξ − ⟨Tjj⟩ξ

)
, j ̸= k , ξj = 0 . (2.18)

This Ward Identity will be relevant in the discussion of the non-perturbative renormal-
ization of the lattice QCD Energy-Momentum tensor, see Chapter 5.

2.3 Thermal phases of QCD

Here we review some established non-perturbative results about the high-temperature
regime of QCD. For the clarity of the presentation we discuss the pure SU(3) gauge
theory first, and then we consider dynamical quarks.
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2.3.1 SU(3) Yang-Mills theory

The action of the pure gauge theory is invariant under the global symmetry Z3, which is
the centre of the SU(3) group [130, 146]. Centre transformations are defined as

Ω(x0 + 1/T,x) = zΩ(x0,x) , z = e2πil/3 ∈ Z3 (l = 0, 1, 2) , (2.19)

where Ω is an element of SU(3). It is immediate to check that the centre-transformed
field A′

µ(x), see equation (1.2), satisfies the same boundary conditions of the original
field Aµ(x), eq. (2.3). In the quantum theory this symmetry can be exactly realized or
spontaneously broken. This is associated to two phases for the pure gauge theory, con-
nected by a first order transition [159] as the temperature increases. The low temperature
phase is called confined phase, with glueballs as degrees of freedom. The deconfined high
temperature phase is characterized by gluons as main degrees of freedom. The common
choice of the order parameter for this transition is the expectation value of the Polyakov
loop,

L(x) ≡ 1

Nc
tr
{
T e−i

∫ 1/T
0 dx0A0(x0,x)

}
, (2.20)

that is, the trace of the time-ordered exponential of the line integral of A0 along a path
wrapped around the compact direction. Under a Z3 transformation it becomes

L′(x) =
1

Nc
tr
{
Ω(1/T,x)

(
T e−i

∫ 1/T
0 dx0A0(x0,x)

)
Ω†(0,x)

}
= z L(x) , (2.21)

which means, as expected, that the Polyakov loop is not invariant under a centre trans-
formation. Below the critical temperature Tc ∼ 300 MeV the symmetry is respected, and
the order parameter vanishes: ⟨L⟩ = 0. Above Tc the symmetry is spontaneously broken
as signaled by a ⟨L⟩ ≠ 0 value.

2.3.2 Full QCD

Dynamical fermions explicitly break the Z3 centre symmetry. The breaking is easily
seen from the boundary conditions. When a centre transformation (2.19) is applied, the
transformed fields satisfy the boundary conditions

ψ′(x0 + 1/T,x) = Ω(x0 + 1/T,x)ψ(x0 + 1/T,x)

= −zΩ(x0,x)ψ(x0,x) = −z ψ′(x0,x) ,
(2.22)

with z ∈ Z3, while the original fields are antiperiodic in time. An analogous relation
holds for the antiquark field ψ. In QCD (at physical quark masses, see below) the phase
transition is replaced by a smooth crossover from the hadronic phase to the deconfined
phase, called Quark-Gluon Plasma (QGP).

It is interesting to study the critical behaviour of QCD in terms of the quark masses,
as shown in the Columbia plot in Figure 2.1a recently reviewed in [40]. We consider
the case of Nf = 2 + 1 QCD, with degenerate light quark masses. Let’s start from
the top-right corner of the plot, where quarks have very large masses. In this scenario
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Figure 2.1: Left: Columbia plot showing the order and nature of the phase transition
in QCD as functions of the light mu,d and strange ms quark masses. Each point is a
phase boundary with its own (pseudo-)critical temperature Tc(mu,d,ms). Plot from [40].
Right: Qualitative dependence on the quark mass of the topological susceptibility in
QCD at high temperature.

quarks are almost decoupled from the dynamics and effectively behave as static sources.
Thus QCD “falls back” to the pure YM theory: the Z3 centre symmetry holds at low
temperature and it is spontaneously broken at high temperature with a 1st order phase
transition. As we lower quark masses this phase transition becomes weaker and weaker
till it vanishes along a critical line of 2nd order transition. The light blue region of the
plot is characterized by the absence of phase transition. The low and high temperature
phases are smoothly connected by a crossover at some pseudo-critical temperature, which
is a function of the quark masses. Notice that the physical point (blue point) lies in
this regime. Near the chiral limit (bottom-left corner) the relevant symmetry is chiral
symmetry, and the natural order parameter is the chiral condensate. At the chiral point
(mu,d = ms = 0) the non-singlet axial generators of chiral symmetry are spontaneously
broken at zero temperature (see Section 1.6). This symmetry is expected to be restored
as the temperature increases through a 1st order phase transition for Nf ≥ 3 [127]. Some
numerical explorations [14] show that the chiral condensate is actually suppressed as
the temperature increases. Furthermore, the effective restoration of the non-singlet axial
chiral symmetry at high temperature is signaled by the degeneracy of the vector and axial
mesonic screening masses [46, 93] (left panel of Figure 2.2), as well as by the degeneracy
of the positive and negative parity channels of the nucleon screening mass [64].
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Figure 2.2: Plots from [93]. Left: degeneracy of vector-axial mesonic screening masses
due to the effective restoration of the non-singlet axial chiral symmetry at high temper-
ature. Right: Degeneracy of pseudoscalar-scalar mesonic screening masses due to the
effective restoration of the U(1)A symmetry at high temperature. These are continuum
extrapolated results, generated with Nf = 3 O(a)-improved Wilson fermions. ĝ2 is the
2-loop MS coupling. The temperature interval associated to the data is 1− 160 GeV.

2.4 Topology at high temperature

The topological susceptibility turns out to be suppressed as the temperature increases.
The instanton gas model predicts

χYM(T ) ∼ T−7 , T →∞ (2.23)

for the SU(3) pure gauge theory, while for QCD with Nf light flavours

χQCD(T ) ∼ mNf T−8 , T →∞ , m→ 0 . (2.24)

The suppression of χYM with the temperature has been numerically observed for instance
in [58]. There are also attempts with dynamical fermions to verify non-perturbatively
the temperature dependence of the topological susceptibility of QCD, eq. (2.24) [20, 10].
One consequence of this temperature suppression is the effective restoration of the singlet
axial subgroup U(1)A of chiral symmetry, that is anomalously broken in QCD at zero
temperature. At very high temperature this restoration shows off in the degeneracy of
the mesonic screening masses in the pseudoscalar and scalar channels [93], see the right
panel of Figure 2.2.

In parallel to the Columbia plot, Figure 2.1a, it is also interesting for the purposes
of this thesis to understand the dependence of the topological susceptibility with the

36



quark mass, at given (high) temperature T . Moving from the bottom left corner to the
top right corner of that plot the quark masses increase, fermions become more and more
static and in the limit m → ∞ they decouple. The theory approaches the pure gauge
theory and thus in this limit χQCD should plateau to χYM, which is expected to be higher
since the suppression at small quark mass is lost and the topological susceptibility in pure
gauge is less suppressed with the temperature than in QCD (compare equations (2.23)
and (2.24)). Figure 2.1b shows qualitatively the described dependence of χQCD on the
quark mass. These observations will be relevant in Chapter 4, when we will discuss the
strategy for the non-perturbative determination of the Equation of State of QCD at very
high temperature.

2.5 Effective theory approach in thermal QCD

We discuss now a commonly used theoretical framework to study strong interactions at
high temperature: the thermal effective theory of QCD (thEFT) [7]. At high tempera-
tures it is possible to classify the degrees of freedom of QCD in hard, soft and ultrasoft
modes, which contribute at the three energy scales πT ≫ gT ≫ g2T/π. Physics at
long distances with respect to the compact direction can be described by an effective
theory whose degrees of freedom are the soft and ultrasoft modes, while the hard modes
contribute through the matching coefficients. This effective theory is called Electrostatic
QCD. Following similar arguments, Electrostatic QCD can be further reduced to an ef-
fective theory for the ultrasoft modes only, called Magnetostatic QCD. Notice that the
thEFT can be defined non-perturbatively (in the weak coupling sense) and is well suited,
in principle, for numerical simulations [73, 125, 79, 116]. This said, the thEFT is the
standard framework were perturbative calculations at high temperature are carried out.

2.5.1 Hard and soft modes

We start with the classification of the degrees of freedom of QCD in the T →∞ limit in
the free theory case. The Fourier expansions for the quark and gluon fields are

Aµ(x0,x) = T
∑

n

∫
d3p

(2π)3
ei(ωnx0+p·x)Ãµ(ωn,p) , ωn = 2nπT , (2.25)

ψ(x0,x) = T
∑

n

∫
d3p

(2π)3
ei(ωnx0+p·x)ψ̃(ωn,p) , ωn = (2n+ 1)πT , (2.26)

and the same for ψ. The boundary conditions (2.3) replace the integrals in the com-
pact direction with sums, and the Fourier modes ωn with n ∈ Z are called Matsubara
frequencies. We consider the free actions in Fourier space for gluons and fermions,

SG,free =
1

2g20
T
∑

n

∫
d3p

(2π)3
Ãa,†µ (ωn,p)

[
(2nπT )2 + p2

]
Ãaµ(ωn,p) , (2.27)
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SF,free = T
∑

n

∫
d3p

(2π)3

Nf∑

f=1

ψ̃f (ωn,p)
[
i(2n+ 1)πTγ0 + ipkγk +m0,f

]
ψ̃f (ωn,p) , (2.28)

where the index f attached to the fermionic fields labels the Nf flavours. The inverse of
the quantities in square brackets are the free gluon and quark propagators. We further
assume that the three-momentum of the fields is small compared to the temperature,
|p| ≪ T . This is true if we are interested in the physics at large spatial distances
compared to size 1/T of the compact direction. We see that the fermionic modes are
suppressed by a non-vanishing thermal mass (2n + 1)πT , as well as the gluonic modes
with n ̸= 0 Matsubara frequencies. These are the hard modes, while the remaining
n = 0 modes of the gluonic field are the soft modes. The latter fields are static, i.e.
time-independent, and we denote them as follows:

Aµ(x0,x)→ Āµ(x) . (2.29)

As a consequence, the effective theory of soft modes is a three-dimensional theory, a
fact that goes under the name of dimensional reduction. Gauge transformations are
time-independent as well, and for the different fields read

Ā′
0(x) = Ω(x)Ā0(x)Ω

†(x) , (2.30)

Ā′
j(x) = Ω(x)Āj(x)Ω

†(x) + iΩ(x)∂jΩ
†(x) , (2.31)

F̄ ′
ij(x) = Ω(x)F̄ij(x)Ω

†(x) . (2.32)

We now move to the full (interacting) theory and we assume that the classification
of degrees of freedom remains valid also in this case. Given the field content of the
effective theory, the related action includes all the terms which satisfy gauge invariance,
Lorentz invariance and with mass dimension≤ 4. Defining for convenience the differential
operator DjĀ0 ≡ ∂jĀ0 − i[Āj , Ā0], we have

SEQCD =
1

g2E

∫
d3x

[
1

2
tr
{
F̄ijF̄ij

}
+ tr

{
DjĀ0DjĀ0

}

+m2
Etr

{
Ā2

0

}
+ λ(1)tr

{
Ā2

0

}2
+ λ(2)tr

{
Ā4

0

}
+ ...

]
, (2.33)

the dots standing for terms with higher mass dimension and thus suppressed with the
proper power of 1/T . This theory is known as Electrostatic QCD (EQCD). Notice that, as
a consequence of dimensional reduction, the component Ā0 is in the adjoint representation
of the gauge group and therefore admits a mass term. The parameter mE is the related
mass and it is called Debye mass. The dimensionful coupling g2E , the mass mE and the
parameters λ(1) and λ(2) need to be matched to the full theory so to reproduce QCD, up
to temperature-suppressed corrections due to the (infinitely many) higher dimensional
operators that are missing in the effective action. In particular, at leading order in the
effective theory g2E = g2T where g is the coupling of QCD and the temperature comes
from the integration over time of the time-independent effective action.
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T g/π (g/π)2

500 MeV 0.555 0.308
1 GeV 0.491 0.242
10 GeV 0.379 0.143
100 GeV 0.321 0.103
1 TeV 0.284 0.081
1 PeV 0.221 0.049

Table 2.1: Comparison of the values of the strong coupling at some temperatures. The
coupling g is taken to be the Nf = 3 MS coupling at 5-loop [11] computed at the scale
µ = 2πT .

2.5.2 Soft and ultrasoft modes

The Debye mass mE ∼ gT provides the “hard” energy scale of EQCD. Phenomena
at energies much smaller than gT can be studied in an even simpler effective theory,
obtained as a large-mE expansion of EQCD. The ultrasoft degrees of freedom of this
effective theory are the spatial components Āj(x) of the static gauge field, for which a
mass term is forbidden by gauge invariance. The heavy Ā0 mode instead contributes
through the matching coefficients. The action corresponding to this effective theory is

SMQCD =
1

g2E

∫
d3x

[
1

2
Tr
{
F̄ijF̄ij

}
+ ...

]
, (2.34)

where the dots stand for higher dimensional operators suppressed with the proper power
of 1/mE . The effective theory described by the action (2.34) is called Magnetostatic QCD
(MQCD). This is a confining theory and it is of non-perturbative nature. The only mass
scale that appears is g2E = g2T , meaning that, at the scales where this effective theory
holds, every dimensionful quantity is proportional to an appropriate power of g2T with
a non-perturbative coefficient.

2.5.3 Scope of the effective theory

The thEFT approach relies on the assumption that, at high temperature, the degrees
of freedom of QCD are factorized in hard, soft and ultrasoft modes. This is actually
achieved if the three related energy scales, respectively ∼ πT , ∼ gT and ∼ g2T/π,
satisfy the hierarchy

g2T/π ≪ gT ≪ πT . (2.35)

Normalizing by πT we convert this relation to a hierarchy for the coupling constant:
( g
π

)2
≪ g

π
≪ 1 . (2.36)

The coupling is a logarithmically decreasing function of the temperature, so we may
wonder at which temperature the relation (2.36) is actually respected. Table 2.1 shows

39



the values of the terms appearing in this relation, computed in perturbation theory, for
temperatures from 500 MeV to 1 PeV. The picture that emerges is that, for temperatures
T ≲ 100 GeV, no clear separation of the three scales is present. At the electro-weak scale
there might be some sign of hierarchy, with the soft and ultrasoft interaction strengths
being respectively ∼ 1/3 and ∼ 1/10 with respect to the hard scale. Notice that for
having the coupling g/π of the order of ∼ 0.1 we should push the temperature to scales
far above the ones considered.

2.5.4 The pressure of QCD in thermal effective theory

As a relevant example, we show how the pressure of QCD splits at the three scales of
the effective theory [82]. We consider the pressure in the thermodynamic limit. From
equation (2.6) it reads

p(T ) = lim
V→∞

T

V
ln

{∫
DADψDψ e−S[A,ψ,ψ]

}
(2.37)

where S is the thermal QCD action (2.2). From now on we will assume the infinite
volume limit and drop it from our equations. We also assume that p(T ) is defined so
that p(T = 0) = 0. We write the QCD pressure as

p(T ) = pE(T ) +
T

V
ln

{∫
DĀkDĀ0 e

−SEQCD

}
, (2.38)

where pE is the contribution of full QCD minus the pressure of EQCD, and it is a
coefficient to be matched to the full theory. The EQCD pressure can be further factorized
by extracting the contribution from MQCD,

T

V
ln

{∫
DĀkDĀ0 e

−SEQCD

}
= pM (T ) +

T

V
ln

{∫
DĀk e

−SMQCD

}
, (2.39)

where pM (T ) is a matching coefficient between EQCD and MQCD and represents the
difference of these two contributions to the pressure. We finally define the MQCD pres-
sure

pG(T ) =
T

V
ln

{∫
DĀk e

−SMQCD

}
, (2.40)

which cannot be computed in perturbation theory, as we have already commented. Sum-
ming up all the terms we get

p(T ) = pE(T ) + pM (T ) + pG(T ) , (2.41)

which contribute respectively at the scales πT (hard), gT (soft) and g2T/π (ultrasoft).
This result is the starting point for the next Section, where it is used in the context
of thermal perturbation theory for computing the perturbative Equation of State of the
Quark-Gluon Plasma.
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2.6 The EoS of QCD from thermal perturbation theory

In this Section we review the analytic results for the QCD pressure and entropy density
in thermal perturbation theory [141, 35, 83, 150, 8, 161, 82]. This is, at present, the
state of the art for the EoS of QCD for temperatures higher than ∼ 1 GeV. The com-
putation amounts to performing a weak coupling expansion in the thEFT, on top of the
large temperature expansion. Therefore this computation will hold up to higher order
corrections in both the expansions.

2.6.1 The Linde problem

Perturbation theory in the thEFT is intrinsically limited by the fact that, as discussed in
Subsection 2.5.2, the ultrasoft modes of MQCD cannot be treated perturbatively. This
is signaled by an infrared problem, called Linde problem [94], arising from the loops
involving the ultrasoft modes (see also Appendix C.1). The weak coupling expansion of
quantities in thEFT is thus possible only up to the perturbative order where the ultrasoft
modes do not contribute. The maximum order depends on the mass dimension d of the
observable: since the ultrasoft coupling g2T has mass dimension 1, and it is the only mass
scale of MQCD, ultrasoft modes will enter the perturbative expansion at order ∼ g2dT d.

The observable of interest is the pressure at leading order of the thEFT. Actually the
computation is performed on p/T , see eq. (2.37), which has mass dimension 3. Therefore
we expect the perturbative expansion to break at order ∼ g6T 3.

2.6.2 Hard, soft, ultrasoft contributions

The pressure in the thEFT is decomposed in hard, soft and ultrasoft terms as in equa-
tion (2.41). Using dimensional arguments we can predict at which orders each of the
scales will contribute [138].

• We start from the hard scale∼ πT . Parametrically, its contribution will be pE(T ) ∼
T ·(πT )3, and thus it will enter at all the usual even powers of g in the perturbative
expansion.

• The soft scale ∼ gT contributes through pM (T ) ∼ T · (gT )3, therefore it will enter
the perturbative expansion from g3 on including odd powers.

• The ultrasoft scale ∼ g2T/π enters through pG(T ) ∼ T · (g2T/π)3, so it contributes
starting from order ∼ g6 as anticipated. This contribution cannot be computed in
perturbation theory.

It is also interesting to understand the impact on the pressure of higher order contribu-
tions from the large temperature expansion, coming from terms in the effective action
suppressed with at least one power of 1/T . Actually it turns out (see Appendix C.2) that
the leading corrections from EQCD are of the order ∼ g7T 4, while the leading corrections
from MQCD are of the order ∼ g9T 4. They are both beyond the perturbative order ∼ g6
on which we are interested, and thus can be neglected.
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2.6.3 Pressure of QCD up to g6 ln(g)

We collect the results in thermal perturbation theory for the pressure of massless QCD
with generic numbers of colours Nc and flavours Nf . The pressure has been fully com-
puted up to order ∼ g5. The perturbative contribution from soft modes at order ∼ g6

is known, as well as the logarithmic divergence ∼ g6 ln(g) of the ultrasoft modes [82].
The missing terms at order ∼ g6 are the contribution of hard modes (see [117] for re-
cent results), and the finite contribution of the ultrasoft degrees of freedom which is a
non-perturbative coefficient. The expansion in powers of the strong coupling constant
αs = g2/(4π) reads [82]

p(T ) =
8π2

45
T 4

6∑

i=0

pi(µ)

(
αs(µ)

π

)i/2
, (2.42)

and p is µ-independent up to higher orders. We list the perturbative coefficients:

p0 = 1 +
21

32
Nf (2.43)

p1 = 0 (2.44)

p2 = −15

4

(
1 +

5

12
Nf

)
(2.45)

p3 = 30

(
1 +

1

6
Nf

)3/2

(2.46)

p4 = 237.2 + 15.96Nf − 0.4150N2
f

+
135

2

(
1 +

1

6
Nf

)
ln

[
αs
π

(
1 +

1

6
Nf

)]

−165

8

(
1 +

5

12
Nf

)(
1− 2

33
Nf

)
ln

µ

2πT
(2.47)

p5 =

(
1 +

1

6
Nf

)1/2
[
− 799.1− 21.96Nf − 1.926N2

f

+
495

2

(
1 +

1

6
Nf

)(
1− 2

33
Nf

)
ln

µ

2πT

]
(2.48)

p6 =

[
− 659.2− 65.89Nf − 7.653N2

f

+
1485

2

(
1 +

1

6
Nf

)(
1− 2

33
Nf

)
ln

µ

2πT

]
·

· ln
[
αs
π

(
1 +

1

6
Nf

)]
− 475.6 ln

αs
π

+qa(Nf ) ln
2 µ

2πT
+ qb(Nf ) ln

µ

2πT
+ qc(Nf ) . (2.49)
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The terms qa(Nf ), qb(Nf ), qc(Nf ) are αs-independent polynomials in Nf . Two of them,
qa(Nf ), qb(Nf ),are fixed requiring to cancel the µ-dependence arising from the terms of
orders αs(µ), α2

s(µ):

qa(Nf ) = −1815

16

(
1 +

5

12
Nf

)(
1− 2

33
Nf

)2

, (2.50)

qb(Nf ) = 2932.9 + 42.83Nf − 16.48N2
f + 0.2767N3

f . (2.51)

The third one, qc(Nf ), represents the proper ∼ g6 contribution that cannot be computed
in perturbation theory, and thus it is left as a free parameter.

2.6.4 Entropy of QCD up to g6 ln(g)

Given the pressure, the other thermodynamic quantities can be computed in perturbation
theory by applying standard thermodynamic relations. We are particularly interested in
the entropy density, that is related to the pressure through a derivative in the tempera-
ture:

s(T ) =
dp

dT
=

4p(T )

T
+

8π2

45
T 4

6∑

i=0

dpi
dT

(
αs(µ)

π

)i/2

=
8π2

45
T 3

6∑

i=0

(
4pi + T

dpi
dT

)(
αs(µ)

π

)i/2
. (2.52)

The nonzero derivatives of the pressure coefficients pi are

T
dp4
dT

=
165

8

(
1 +

5

12
Nf

)(
1− 2

33
Nf

)
, (2.53)

T
dp5
dT

= −495

2

(
1 +

1

6
Nf

)3/2(
1− 2

33
Nf

)
, (2.54)

T
dp6
dT

= −1485

2

(
1 +

1

6
Nf

)(
1− 2

33
Nf

)
ln

[
αs
π

(
1 +

1

6
Nf

)]

−2 qa(Nf ) ln
µ

2πT
− qb(Nf ) . (2.55)

Once pressure and entropy density are known, the energy density can be reconstructed
for instance using the relation Ts = e+ p.

In Figure 2.3 we see the perturbative result for the entropy density in the Nc = 3,
Nf = 3 case, as a function of the renormalized coupling g2. Different curves correspond
to perturbation theory at increasing order up to ∼ g6 ln g. We set qc = 0. The plot
shows the poor convergence rate of this perturbative expansion. As the order increases
an alternating sign behaviour emerges, which survives until the coupling drops to very
small values (that is, very high temperature). This is true in particular between ∼ 1
GeV, which is the highest temperature where the EoS of QCD has been determined from
lattice QCD [21, 20, 13, 15], and the electro-weak scale ∼ 100 GeV. The main purpose
of this thesis is to compute non-perturbatively for the first time the EoS of Nf = 3 QCD
in this relevant interval of temperatures.
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Figure 2.3: Perturbative result for the Nf = 3 entropy density in the thEFT, up to
the different perturbative orders. The coupling g is the MS coupling at 5-loop [11]. We
choose the value µ = 2πT for the renormalization scale, and the errorbands come from
varying the scale between 1.5πT and 2.5πT . A larger interval results in larger errorbands.
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Chapter 3

QCD on the lattice

In this Chapter we describe the lattice definition of QCD in the path integral formalism.
The lattice is introduced as the discretization of the 4-dimensional Euclidean spacetime
R4 on a grid with lattice spacing a. The resulting (infinite) hypercubic lattice is the set
of points {

xµ/a ∈ Z , µ = 0, 1, 2, 3
}
. (3.1)

We denote the lattice spacing with a, which is the distance between two neighboring sites
of the lattice. We also consider the lattice theory in finite volume with sizes L0, L1, L2,
L3. In Fourier space, the Brillouin zone associated to the spacetime lattice is defined
with momenta satisfying |p| ≤ π/a, and this provides naturally an ultraviolet regulator
to the theory.

In the discretized theory the fields are defined on the sites of the lattice. Thus QCD on
the lattice and in finite volume has a finite number of degrees of freedom, and the partition
function eq. (1.30) can be rigorously defined as the integral over all the independent
variables. QCD correlation functions are then defined as the continuum limit a→ 0 and
the thermodynamic limit of their lattice counterparts, after the proper renormalization
of the theory. In this sense the lattice regularization provides a theoretically sound way
to investigate the properties of QCD from first principles. In this regularization, the
Euclidean path integral can be computed using numerical simulations.

The Chapter is organized as follows. We first review the discretization of the QCD
path integral on the lattice, following Wilson’s prescription [155, 156]. Then we discuss
the renormalization of the lattice theory and the continuum limit. In conclusion we
overview the most common strategies for lattice QCD simulations, based on the Hybrid
Monte Carlo algorithm.

3.1 Lattice gauge theory

We discretize the gauge action following Wilson’s procedure [155]. On each site of the
lattice the gauge degrees of freedom are chosen to be elements of the gauge group SU(3),

Uµ(x) ∈ SU(3) , (3.2)
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called link variables. The link gauge-transforms as

U ′
µ(x) = Ω(x)Uµ(x) Ω

†(x+ aµ̂) , Ω ∈ SU(3) , (3.3)

meaning that the trace of closed loops of links is a gauge invariant quantity. The smallest
closed path on the lattice is a square of four links lying on one of the planes of the 4-
dimensional space,

Uµν(x) ≡ Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x) , (3.4)

and it is called plaquette field. The Wilson’s lattice gauge action [155] is the sum over all
the plaquettes on the lattice, in all the possible orientations 1:

SG =
1

g20

∑

x

∑

µ,ν

Re tr {1− Uµν(x)} . (3.5)

This is a proper discretization of the gauge action because in the classical a → 0 limit
it tends to the pure SU(3) Yang-Mills action. This can be seen by interpreting the link
Uµ(x) as the lattice counterpart of the continuum parallel transporter

Pe−ia
∫ 1
0 dzAµ(x+zaµ̂) ∈ SU(3) , (3.6)

defined on a straight line between the two points x, x+aµ̂. In this view, the link variable
can be written as

Uµ(x) = e−iaAµ(x+
a
2
µ̂) (3.7)

where Aµ is now a lattice version of the field appearing in eq. (3.6). If we replace in the
lattice gauge action (3.5) and we expand at order ∼ a4, we get the correct continuum
Yang-Mills action up to higher orders in the lattice spacing. We can see in Figure 3.1 a
representation of both the link field and the plaquette field on a hyperplane of the lattice.

The partition function for the discretized gauge theory is defined through the integral
over all the link variables,

Z =

∫
DU e−S

G[U ] , DU =
∏

x,µ

dUµ(x) , (3.8)

where dUµ(x) denotes the Haar measure for the SU(3) group integration. This measure
is invariant under left and right multiplication by elements of the group SU(3),

dU = d(V U) = d(UV ) , V ∈ SU(3) , (3.9)

and it satisfies the normalization condition
∫
dU = 1 . (3.10)

1We consider the case without θ-term: θ = 0.
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Figure 3.1: The lattice plane µ̂-ν̂, the elementary link variable Uµ(x), the closed path of
the plaquette Uµν(x).

Property (3.9) implies that the link integration measure is gauge invariant,

dUµ(x) = d
(
Ω(x)Uµ(x) Ω

†(x+ aµ̂)
)
, Ω ∈ SU(3) , (3.11)

a fact that, together with the gauge invariance of the action SG, guarantees the partition
function (3.8) to be gauge invariant. The integration measure on the lattice is finite and
gauge invariant thanks to the fact that the gauge variables are chosen in the compact
group SU(3). The convention adopted for perturbative computations in QCD is to define
the path integral over the fields Aµ(x) belonging to the algebra of the gauge group. In this
case a gauge-fixing procedure [50] is required for the proper definition of the integration
measure of the path integral.

3.2 Fermions on the lattice

Fermionic fields take values on the sites of the lattice. The lattice counterpart of the
Dirac action eq. (1.10) has the form

SF = a4
∑

x

ψ(x) [D(x) +M0]ψ(x) , (3.12)

where the operator D is a lattice realization of the continuum Dirac operator, see below.
The partition function of lattice QCD thus reads

Z =

∫
DUDψDψ e−(SG[U ]+SF [U,ψ,ψ]) , (3.13)

47



where the integration measure for the Grassman-valued fermions is

Dψ =
∏

x,f,α,a

dψ
a
f,α(x) , Dψ =

∏

x,f,α,a

dψaf,α(x) , (3.14)

the indices f , α, a labeling flavour, spin and colour components, respectively.
The choice of the lattice operator D is a delicate point because of the Nielsen-

Ninomiya no-go theorem [120, 122, 121, 51]. Calling D̃(p) the Fourier transform (see
Appendix E) of the lattice Dirac operator, the theorem states that the following proper-
ties cannot be satisfied simultaneously:

1. D̃(p) is a smooth function of p with period 2π/a ,

2. D̃(p) ∼ iγµpµ +O(ap2) as pµ → 0 ,

3. D̃(p) is invertible in the Brillouin zone ∀p ̸= (0, 0, 0, 0) ,

4. {D̃, γ5} = 0 .

Property 1 is necessary for the Dirac operator to be local in position space 2. Property 2
guarantees that the proper continuum Dirac operator is recovered when the lattice regu-
larization is removed. Property 3 implies that the propagator (that is, the inverse of the
Dirac operator) has one pole only, and thus it is associated to one fermion only. Finally,
if the Dirac operator satisfies property 4 then it preserves chiral symmetry.

The no-go theorem forces us to give up at least one of these properties. Our choice
is to follow Wilson’s prescription for the Dirac operator [155], which does not respect
property 4. It is instructive to introduce the Wilson-Dirac operator in two steps: we
consider first the naive discretization of the Dirac operator and discuss how the Nielsen-
Ninomiya theorem applies to it, and then we move to the Wilson’s discretization.

3.2.1 Naive lattice Dirac operator

As an example we consider the naive discretization of the Dirac operator,

Dnaive =
1

2
γµ(∇∗

µ +∇µ) , (3.15)

where the discrete forward and backward covariant derivatives are given in Appendix A.3.
In Fourier space, the naive fermionic action in the non-interacting limit reads

SF,freenaive =

∫ π/a

−π/a

d4p

(2π)4
ψ̃(p)

[
iγµ

1

a
sin(apµ)

]
ψ̃(p) . (3.16)

The inverse of the quantity in square brackets gives the free quark propagator, whose
poles are associated to the fermionic particles described by this theory. The naive free

2In general, a local lattice Dirac operator involves only next-neighbour interactions, or interactions
over a distance of a few lattice points, of the fermionic fields. However a more general notion of locality
can be defined [78].

48



propagator has poles where sin(apµ) = 0, that is at each of the 24 = 16 corners of
the Brillouin zone. This results in 16 species of fermions which remain also when the
regulator is removed. This effect is known as fermion doubling problem: the naive Dirac
operator does not respect property 3 of the no-go theorem.

3.2.2 Wilson-Dirac operator

Wilson’s prescription for the Dirac operator [155] adds to the naive discretization a
Laplacian multiplied by one power of the lattice spacing,

Dw =
1

2

[
γµ(∇∗

µ +∇µ)− a∇∗
µ∇µ

]
, (3.17)

and the related Wilson fermionic action reads

SF = a4
∑

x

ψ(x)

{
1

2

[
γµ(∇∗

µ +∇µ)− a∇∗
µ∇µ

]
+M0

}
ψ(x) . (3.18)

As for the naive action, we consider the Wilson fermionic action in the non-interacting
limit in Fourier space:

SF,free =

∫ π/a

−π/a

d4p

(2π)4
ψ̃(p)

[
iγµ

1

a
sin(apµ) +

2

a

∑

µ

sin2
(apµ

2

)]
ψ̃(p) . (3.19)

Again, the quantity in square brackets is the inverse of the free quark propagator. The
Wilson term modifies the naive propagator so that at fixed lattice spacing all the poles
disappear but the p = (0, 0, 0, 0) one. In a different perspective, the Wilson term gives
a mass of the order ∼ 1/a to the 15 spurious species of the naive Dirac operator, so
that in the continuum limit they decouple from the theory. The price to pay is that the
Wilson term explicitly breaks chiral symmetry, i.e. property 4. The absence of chiral
symmetry at non-zero lattice spacing is source of some extra work in the renormalization
of the theory, as we will discuss later. Chiral symmetry however is restored when the
continuum limit of the renormalized lattice theory is taken.

In conclusion we comment that there exist other discretizations of the Dirac operator
that, in addition to properties 1–3, respect also a lattice version of property 4, called
Ginsparg-Wilson relation [56, 98, 118, 119]. However these discretizations are typically
much more expensive to simulate compared to Wilson fermions.

3.3 Renormalization and continuum limit

The renormalization of lattice QCD needs to be carried out in a fully non-perturbative
way. The renormalization of the bare parameters requires to impose some conditions
on physical observables computed on the lattice, so that the bare parameters become
regulator-dependent. This prescribes how they should change while the continuum limit
a→ 0 is taken.
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We begin with the renormalization of the bare coupling g0. The conceptual procedure
is described in Section 1.4, and in particular the renormalization condition is given in
eq. (1.33). Since quantities measured on the lattice are naturally expressed in units of
the lattice spacing a, in practice the renormalization of the coupling is carried out by
determining the value of a in physical units as a function of g0,

a(g0) =
aM(g0, a)

Mphys
, (3.20)

where the dimensionless numerator is the output of the lattice calculation andMphys is
the physical quantity that defines the renormalization condition. Once the function (3.20)
is known other dimensionless quantities can be expressed in physical units. For this
reason the described procedure is also called scale setting [144]. This renormalization
scheme is known as hadronic scheme since the involved physical quantities are usually
hadronic masses or decay constants. The resulting function a(g0) can be inverted so to
obtain the dependence of the bare coupling on the lattice spacing, g0(aMphys). Given
this dependence, renormalization group considerations impose that, at leading order, the
coupling decreases logarithmically as the scale ∼ 1/a is pushed to the ultraviolet,

g20(a) = −
1

2b0 ln(aMphys)
, lim

a→0
g0(a) = 0 , (3.21)

where b0 is the universal leading order coefficient of the β-function, see eq. (1.41). In the
continuum limit the β-function of the coupling vanishes too, which means that the point
g0 = 0 is a fixed point of the renormalization group flow.

Quark masses are renormalized, at fixed g0, by imposing further renormalization
conditions. A popular choice is to match lattice-computed ratios of hadronic masses to
their physical value,

Mi

Mj

∣∣∣∣
g0, am1, ..., amNf

=
Mi

Mj

∣∣∣∣
phys

(3.22)

where i, j are different hadrons. Nf such conditions are needed to tune all the bare
masses. Note that mass ratios are pure numbers, so they do not introduce extra en-
ergy scales in the renormalized theory and are directly accessible to lattice calculations.
Usually the hadron masses ratios appearing in eq. (3.22) are conveniently chosen so that
each ratio is possibly more sensible to one of the quark masses to be renormalized, and
weakly dependent on all the others.

In practice, equations (3.20) and (3.22) are solved numerically for several values of
the bare coupling and quark masses. In this way several lattices can be renormalized
so that they represent the same physics but with finer resolutions (that is, decreasing
lattice spacing): this is the definition of a line of constant physics. Physical quantities
in QCD are then defined as the continuum limit a→ 0 of their discretizations measured
on lattices with bare parameters tuned along a line of constant physics. The continuum
limit is obtained by extrapolation at decreasing lattice spacing.

50



3.4 Scale-dependent renormalization

We now focus on renormalized quantities which depend on a renormalization scale. The
lattice discretization allows us to define these quantities non-perturbatively, and to de-
termine from first principles their running by solving the Renormalization Group Equa-
tion (1.38). An example is the computation from the lattice of the running coupling, as
anticipated in Subsection 1.5.1. In such a computation arises the technical difficulty of
accommodating on the same lattice the hadronic scale ∼ 200 MeV used for the renor-
malization of the lattice, and the energy scale where the running coupling needs to be
evaluated, that can be of the order of tens of GeV. This goes under the name of window
problem. In the following we will comment more on this aspect, given its general rele-
vance in designing lattice QCD simulations. Then we will discuss how the use of finite
volume renormalization schemes and the step scaling procedure [103] offer an elegant
solution to overcome this problem.

3.4.1 Window problem

Predictions from the lattice are obtained via continuum extrapolations. As a general
statement we can say that cutoff effects are small if the ultraviolet scale ∼ 1/a is much
higher than the typical energy scale of the observables under investigation. A constraint
comes from the bottom too, because lattice simulations are performed in a finite volume.
Being L the size of the lattice, the infrared energy scale 1/L should be much smaller than
the energy scale of the observables, otherwise finite volume effects may not be negligible.
Let us consider two energy scales, µ1 ≪ µ2, to be accommodated on the same lattice.
Then, the following hierarchy should be respected:

1/L≪ µ1 ≪ µ2 ≪ 1/a . (3.23)

We see that, given a lattice spacing a fine enough for the second inequality to be re-
spected, the number of lattice sites L/a should be large enough so that the first inequal-
ity is respected too. In other words, when we try to accommodate on the same lattice
observable at very different energy scales, the lattice should be at the same time very
fine and very large. In a typical lattice simulation the number of points in each direction
is L/a ∼ O(100), and thus the energy window that can be accommodated on a lattice
with controlled systematic effects and reasonable computational effort is fairly narrow.
The window problem occurs for instance when computing on the lattice the running of
scale-dependent renormalized quantities, where the renormalization scale µ needs to be
pushed to very high energies [103] compared, for instance, to the hadronic scale used
for the scale setting. Another relevant case is the study of QCD thermodynamics at
temperatures T ≫ 100 MeV [46] using lattice QCD. In this context µ ∼ T is the high
temperature of the thermal system.

A solution to overcome the window problem is to split the energy window in many
smaller intervals that can fit into separate lattice computations [41]. On each individual
lattice the window condition is easily respected because there are no largely separated
scales to accommodate, and the hadronic renormalization enters at low energy only. The
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concrete realization of this strategy is the step scaling procedure applied to a finite volume
renormalization scheme, as discussed in the following.

3.4.2 Step scaling for the running coupling

We consider a renormalized dimensionless observable Θ(L/Λ) defined in a finite box of
volume L4, such that L and the Λ-parameter are the only relevant scales as the notation
suggests 3. We introduce the finite volume renormalized coupling

g2FV(µ) ≡
Θ(L/Λ)−Θ(0)

Θ(1)
, µ = 1/L , (3.24)

where the coefficients Θ(0), Θ(1) are respectively the tree-level and 1-loop coefficients
in the perturbative expansion of the observable. Notice that the definition (3.24) is a
convenient choice such that g2FV → g20 in the g0 → 0 limit, but the renormalized coupling
remains fully non-perturbative. The renormalization scale µ is set to coincide with the
inverse of the size of the box. This means that the running of the coupling with µ is
defined through a finite volume effect. As it is common practice, we choose a mass-
independent renormalization scheme. We introduce the step scaling function [103]

σ(g2FV(µ), s) = g2FV(µ/s) , µ = 1/L , s > 1 , (3.25)

as the function that evolves the renormalized coupling from the scale µ to the scale µ/s.
The non-perturbative determination of the step scaling function proceeds as follows.
One first renormalizes the theory by imposing that the finite volume coupling assumes a
prescribed value,

g2FV(g
2
0, a/L) = g̃2 . (3.26)

Then, the corresponding value of the step scaling function is the coupling itself computed
on lattices at the bare couplings fixed by (3.26), but with lattice size sL/a. The full
procedure is repeated for many conveniently chosen values of g̃2. The advantage of this
approach is that only the scales 1/L, 1/(sL) matter, and the scale ratio s ∼ O(1) is
chosen so that both scales can be simulated with cutoff effects under control. With mild
assumptions, the knowledge of the step scaling function is equivalent to knowing the
β-function of the renormalized coupling. The running of the renormalized coupling can
be derived by recursively step scaling from some low-energy scale 1/Lmax up to the high-
energy scale 1/Lmin, where Lmin = Lmax/s

n ≪ Lmax and n is the number of steps in the
recursion. The low scale 1/Lmax can be converted to physical units using an hadronic
renormalization scheme as explained in Section 3.3. On the other end, if the scale 1/Lmin

is high enough, the non-perturbative running can be connected to perturbation theory
so to extend it for arbitrary high energies.

The first numerical computation of the running coupling in the SU(3) YM theory was
performed in [104] using a renormalized coupling in the Schrodinger functional scheme
[108]. The complete running, including the matching to perturbation theory and the

3Any other scale on which Θ may depend is assumed to be a uniquely specified function of L.
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determination of the Λ-parameter (using eq. (1.43)) was computed for the first time in
[29]. The first computation of the running coupling with dynamical quarks was done
in [6]. We refer to [25] for a recent determination, see also Figure 1.1 and the related
Λ-parameter in eq. (1.44).

3.5 Finite renormalization

Apart from the obvious SO(4) symmetry in Euclidean spacetime, the lattice regulariza-
tion may break also some internal symmetries of the theory. The related Ward Identities
are violated on the lattice and they need to be properly renormalized to restore the cor-
rect continuum limit. In the following we will first discuss the case of the singlet vector
subgroup U(1)V of chiral symmetry. This symmetry is respected on the lattice, and
thus the related WI for the conservation of the baryon number holds at non-zero lattice
spacing too. Then we will discuss the renormalization pattern for the PCAC WI, which
is broken by Wilson fermions.

3.5.1 Flavour-singlet vector current with Wilson fermions

The (massive) Wilson action is invariant under a singlet vector rotation of the fields,
eq. (1.51). We thus expect that the singlet vector current is conserved also on the lattice.
Indeed the lattice counterpart of the WI (1.54) is

〈
∂∗µV

c
µ (x)O(y)

〉
= 0 , x ̸= y , (3.27)

where ∂∗µ is the lattice backward derivative, and we defined the conserved lattice flavour-
singlet vector current

V c
µ (x) =

1

2

[
ψ(x+ aµ̂)U †

µ(x)(γµ + 1)ψ(x) + ψ(x)Uµ(x)(γµ − 1)ψ(x+ aµ̂)
]
. (3.28)

These expressions can be obtained as in the formal continuum theory (see equation (1.54)),
by applying equation (1.50) to the lattice path integral. In this example the regularized
theory produces a WI which is formally identical to the one derived in the continuum.
By following the very same arguments of Subsection 1.6.1, one can show that the vector
current (3.28) coincides with its renormalized version: ZV = 1. The definition (3.28) is
also called point-split lattice vector current. One may wonder what happens if on the
lattice we use a continuum-like definition of vector current, usually called local vector
current:

V l
µ(x) = ψ(x)γµψ(x) . (3.29)

The discrepancy can be quantified by taking the difference of the two,

V c
µ (x)− V l

µ(x) = aXµ(x) , (3.30)

where
Xµ =

1

2

[
ψ(x)(γµ − 1)∇µψ(x) + ψ(x)

←−∇µ(γµ + 1)ψ(x)
]

(3.31)
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is a dimension-4 operator [151] and the lattice derivative
←−∇µ is defined in (A.12). The

naive conclusion from eq. (3.30) would be that the two currents differ by lattice artifacts,
and thus in the continuum limit they will be the same. This argument however does not
take into account the renormalization of the operator Xa

µ, which according to eq. (1.36)
may mix with operators of lower or equal dimension. For symmetry and dimensional
reasons Xµ can mix with the vector current only. Specifically we have

Xµ,R = ZX

[
Xµ +

c(g0)

a
V l
µ

]
. (3.32)

The overall renormalization constant ZX is at most logarithmically divergent as ∼ ln a.
In a mass-independent renormalization scheme the coefficient c(g0) is mass-independent
as the notation suggests. Moreover, in [149] it was shown that this coefficient can’t
depend on a renormalization scale. The effect of the operator Xµ,R can be recast in a
redefinition of the local vector current, by replacing in eq. (3.30):

V c
µ = V l

µ(1− c(g0)) + a
Xµ,R

ZX
≡ Z lV (g0)V l

µ +O(a) . (3.33)

The last term is a “true” lattice artifact because the renormalized operator Xµ,R gives a
finite contribution when inserted in a on-shell correlation function, and ZX diverges at
most logarithmically with the lattice spacing. As a consequence, the local discretization
of the vector current has a finite renormalization Z lV (g0) = 1+c(g0) which tends to unity
as g0 → 0.

In presence of mass-degenerate flavours the non-singlet vector current is conserved
on the lattice too, and all these arguments apply also in that case. In particular we
can introduce a point-split or local version on the lattice, and the latter needs to be
renormalized with a finite renormalization constant.

We remark that finite renormalization factors like ZV must be taken into account
even if in the continuum they go to unity. The reason is that when the fields in a
correlation function are all renormalized, its lattice artifacts are integer powers of the
lattice spacing possibly corrected by ∼ ln a, terms which we collectively denote as O(a),
see equation (3.33). The presence of unrenormalized fields instead generates ∼ 1/ ln(a)
effects that would make the convergence to the continuum much slower.

3.5.2 PCAC with Wilson fermions

The fermionic Wilson action breaks chiral symmetry. The lattice analog of the PCAC
WI (1.62) with degenerate quark masses reads

〈
∂∗µA

a
µ(x)O(y)

〉
= 2m0⟨P a(x)O(y)⟩+ a⟨Xa(x)O(y)⟩ , x ̸= y , (3.34)

where the lattice point-split axial current is

Aaµ(x) =
1

2

[
ψ(x)Uµ(x)γµγ5T

aψ(x+ aµ̂) + ψ(x+ aµ̂)U †
µ(x)γµγ5T

aψ(x)
]

(3.35)
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and Xa is a dimension-5 operator. We are in the same circumstance of the WI (3.27),
when the local discretization of the vector current is employed. However, differently
from that case, the present operator Xa cannot be recast in the four-divergence of a
local field, and thus a lattice conserved axial current cannot be defined. As we discussed
before, the effect of the renormalization of the operator Xa can be taken into account
by renormalizing the fields and parameters appearing in eq. (3.34), up to discretization
effects. Specifically we can write

〈
∂∗µA

a
µ,R(x)O(y)

〉
= 2mR⟨P aR(x)O(y)⟩+O(a) , x ̸= y . (3.36)

In this equation, the axial current renormalizes multiplicatively, Aaµ,R = ZAA
a
µ , where

ZA(g0) is a finite renormalization constant which goes to 1 in the continuum limit. The
quark mass renormalizes additively and multiplicatively,

mR = Zmmq , mq = m0 −mcr , (3.37)

where mq is called the subtracted quark mass and mcr(g0) is the critical mass, while
the renormalization factor Zm(g0, aµ) depends on a renormalization scale. The lattice
pseudoscalar current renormalizes multiplicatively too, P aR = ZPP

a. Since the left-hand
side of equation (3.36) is finite, the right-hand side must be finite and this implies that
the product ZmZP is a finite number which goes to 1 in the continuum limit. Notice that
in a mass-independent renormalization scheme, the dependence on the bare parameters
of the renormalization constants above is only with respect to the bare coupling g0, and
not the quark masses.

It is convenient to introduce a definition of mass which renormalizes only multiplica-
tively, using the PCAC relation:

mPCAC ≡
〈
∂∗µA

a
µ(x)O(y)

〉

⟨P a(x)O(y)⟩ , mR = ZAZ
−1
P mPCAC . (3.38)

According to eq. (3.36), the choice of the operator O will affect the definition of the
PCAC mass only by O(a) lattice artifacts which vanish in the continuum limit. The
bare quark mass in practical lattice simulations may be tuned so that the renormalized
PCAC mass have some prescribed value. In particular, equation (3.38) can be employed
to compute the critical mass mcr, by looking at the value of the bare mass such that
mPCAC = 0 [37, 88].

On the lattice one can also introduce the local version of the axial current, defined
as the continuum one:

Al,aµ (x) ≡ ψ(x)γµγ5T aψ(x) . (3.39)

After proper renormalization, lattice correlation functions containing the local or con-
served axial current will converge to the same continuum limit but with different O(a)
effects. Notice that the renormalization constant Z lA of the local discretization, eq. (3.39),
is different from the one of the point-split definition (3.35): Z lA ̸= ZA.

In conclusion we mention that the finite renormalization constants can be determined
by imposing the validity of the Ward Identities at finite lattice spacing (up to cutoff
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effects), see for instance [19, 111, 112, 106, 77]. This in turn provides a practical way to
compute them non-perturbatively in lattice QCD. As part of the original contribution
of this thesis, in Chapter 5 we will see this renormalization program at work for the
non-perturbative renormalization of the flavour-singlet local vector current and for the
Energy-Momentum tensor of QCD. The Ward Identities for the latter are generated by
the invariance of the continuum theory under SO(4) spacetime transformations.

3.6 Improvement

In the previous Subsection we saw that the breaking of chiral symmetry by Wilson
fermions is source in general of O(a) lattice artifacts which may give large contribu-
tions to continuum limit extrapolations. The Symanzik continuum effective theory [147]
is a powerful tool which allows us to systematically improve the lattice theory in or-
der to reduce the lattice artifacts. In some sense, it can be viewed as an extension of
the renormalization of composite operators to include irrelevant operators, in order to
parameterize and subtract the leading discretization effects [143]. In the following, we
will review the Symanzik effective field theory and the procedure to O(a)-improve lattice
QCD with Wilson fermions, so that the leading discretization effects of lattice observables
are of order ∼ a2.

3.6.1 Symanzik effective theory

Near the continuum limit lattice QCD may be regarded as a high energy theory defined
at the cutoff scale ∼ 1/a, whose low energy behaviour can be described in terms of a
local effective theory in the continuum:

Slat → Seff =

∫
d4x

[
L0(x) + aL1(x) + a2L2(x) + ...

]
. (3.40)

In this expression, L0 is the continuum QCD Lagrangian while Lk, k ≥ 1, are local fields
with the symmetries of the lattice QCD action (which, in this context, is regarded as the
full theory) and mass dimension 4 + k.

We focus on the L1 term. In general, all the continuum gauge- and Lorentz-invariant
local fields with mass dimension 5 that respect the other symmetries of the Wilson action
are allowed. Notably, these terms can break chiral symmetry. We list here the operators
that contribute to the effective term L1 [96] :

L1,1 = ψiσµνFµνψ ,

L1,2 = ψDµDµψ ,

L1,3 = m0 tr {FµνFµν} ,
L1,4 = m0 ψγµDµψ ,

L1,5 = m2
0 ψψ ,

(3.41)

where Dµ is the (continuum) covariant derivative and integration by parts has been
used to reduce the number of terms. The matrix σµν is a combination of γ matrices,
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defined in Appendix A. We assume for simplicity mass-degenerate flavours, with bare
mass m0. These are operators in the continuum theory, but the coefficients of the linear
combination that defines L1 depend on the lattice details. The lattice local fields inserted
in correlation functions have an effective representation too:

Olat → Oeff = O0 + aO1 + a2O2 + ... (3.42)

As for the action, the field O0 is the continuum counterpart of Olat while Ok, k ≥ 1,
are continuum higher dimensional fields with the appropriate symmetries. We are now
interested in the representation of the lattice correlation function ⟨Olat⟩lat in the effective
theory. We will assume the correlation function to be properly renormalized and on-shell,
i.e. all the inserted fields are at a physical non-vanishing distance. Using equations (3.40)
and (3.42) at first order in the effective theory we get

⟨Olat⟩lat = ⟨O0⟩ − a (⟨O0S1⟩c − ⟨O1⟩) + O(a2) , (3.43)

where we defined Sk =
∫
d4xLk(x). We denote with ⟨·⟩lat correlation functions in the

lattice theory, while ⟨·⟩ stands for the continuum theory. The Symanzik effective theory
thus allows us to point out the sources of discretization effects in quantities computed
from the lattice.

3.6.2 O(a)-improvement of the Wilson action

The lattice theory is defined up to terms which vanish in the continuum limit. Lever-
aging on this arbitrariness we can add to the lattice action and fields some irrelevant
counterterms which mimic the terms appearing in the Symanzik effective theory, and
tune their coefficients so to cancel the corresponding effective contributions.

The O(a)-improvement of the Wilson theory thus requires to add to the lattice action
a discretized version of the operators listed in (3.41). Since we are considering correlation
functions with fields at physical distance, it is possible to use the equations of motion for
the fields and reduce the operator basis to 3 independent fields. We choose to keep L1,1,
L1,3 and L1,5 , and the counterterms to the action are

δS = a5
∑

x

[
c1L̂1,1 + c3L̂1,3 + c5L̂1,5

]
, (3.44)

where the hat means that the fields are on the lattice. This choice of operator basis is
convenient because we can discretize L̂1,3 and L̂1,5 so that they have the same structure of
the pure gauge action and of the mass term in the original lattice action. Their presence
can thus be absorbed in a redefinition of the coupling and quark mass:

g20 → g20(1 + bgamq) , amq → amq(1 + bmamq) . (3.45)

The coefficients bg, bm are g0-dependent improvement coefficients. They should be tuned
so to cancel O(amq) effects from on-shell quantities in presence of non-zero quark masses.
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µ̂

ν̂

x

Figure 3.2: Clover plaquette loops associated to Qµν(x).

The only operator left in our discussion is L̂1,1. The O(a)-improved Wilson action
for lattice QCD thus reads

S = SG + SF + a5
∑

x

1

4
csw(g

2
0)ψ(x)σµνF̂µν(x)ψ(x) , (3.46)

with F̂µν being the clover discretization of the field-strength tensor:

F̂µν(x) =
i

8a2

[
Qµν(x)−Qνµ(x)

]
. (3.47)

The sum of plaquettes represented by Qµν(x) is shown in Figure 3.2. The improvement
term is known as Sheikholeslami-Wohlert term [140]. The coefficient csw is a function
of the bare coupling and can be tuned appropriately so to cancel O(a) effects from
the theory. For lattice QCD with Wilson plaquette action and Wilson fermions, this
coefficient is known in perturbation theory up to 2-loop [157, 124], and it was determined
non-perturbatively for the Nf = 3 case in [160]:

csw(g0) =
1− 0.194785 g20 − 0.110781 g40 − 0.0230239 g60 + 0.137401 g80

1− 0.460685 g20
. (3.48)

This non-perturbative result was carried out by imposing the validity of the O(a)-
improved lattice PCAC relation up to corrections of order ∼ a2 [107, 81, 105].

58



3.6.3 O(a)-improvement of local fields

The O(a)-improvement of the action is enough to make spectral quantities 4 approach
the continuum limit with ∼ a2 discretization errors. However if one is interested in
matrix elements of some given fields, then the latter must be improved too. Again, the
improvement is done by adding irrelevant counterterms to the local fields so that the
corresponding O(a) terms in the Symanzik effective theory are removed. In the following
we consider the examples of the local vector current and of the axial current, in Wilson
lattice QCD with mass-degenerate quarks.

Improvement of the vector current

The improvement of the flavour-singlet vector current involves operators with mass di-
mension 4 and same properties of the vector current [17, 18]:

∂ν(ψσµνψ) , m0V
c,l
µ . (3.49)

The second term is proportional to the vector current itself, and it is responsible for a shift
in the renormalization constant by O(am) effects. The O(a)-improved and renormalized
vector currents thus read

(VI,R)
c
µ = (1 + bcV amq)

[
V c
µ + a ccV ∂ν(ψσµνψ)

]
,

(VI,R)
l
µ = ZV (1 + blV amq)

[
V l
µ + a clV ∂ν(ψσµνψ)

]
,

(3.50)

where now the derivatives and the improving field are discretized on the lattice. The
improvement coefficients bc,lV (g0), c

c,l
V (g0) depend on the bare coupling and can be tuned

so to remove O(a) lattice artifacts in on-shell correlation functions where the currents
are inserted.

Improvement of the axial current

We consider now the improvement of the axial current, which involves the operators

∂µP
a , m0A

a
µ , (3.51)

where P a = ψγ5T
aψ is the pseudoscalar density. Similarly as for the vector current we

write the improved and renormalized axial current as

(AI,R)
a
µ = ZA(1 + bAamq)

[
Aaµ + a cA ∂µP

a
]
, (3.52)

where the derivative and the pseudoscalar density on the right are meant on the lattice.
The improvement coefficients bA(g0), cA(g0) of the axial current and can be tuned so
to remove O(a) lattice artifacts in on-shell correlation functions where this current is
inserted. As a relevant example, the O(a)-improved axial current allows to define an
O(a)-improved version of the PCAC mass eq. (3.38) [105].

4We call spectral quantities all those observables that do not depend on the details of any operator,
such as particle masses or cumulants of the partition function.
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3.7 Numerical simulations of lattice QCD

Lattice regularized gauge theories have a finite (although very large) number of degrees
of freedom and thus are well suited for numerical simulations on HPC machines. Nu-
merical evaluations of the path integral are made possible by the parallelism between
the Euclidean theory and statistical systems. Indeed the path integral may be regarded
as a statistical partition function with field configurations sampled according to the
Boltzmann-like distribution ∼ e−S . The problem of numerical evaluation of the path
integral is thus equivalent to the problem of sampling field configurations according to a
prescribed probability distribution.

The fields involved in a lattice QCD simulations are the link field Uµ(x) and the
quark fields ψ(x), ψ(x). Fermionic fields are collections of Grassman (anti-commuting)
variables, whose direct sampling in a ordinary lattice QCD simulation is prohibitively
expensive from the computational viewpoint. The first step is to perform analytically
the functional integral over fermions, so that the resulting path integral is over the gauge
field only 5. For Nf flavours we have

Z =

∫
DUDψDψ e−S

G[U ]−SF [U,ψ,ψ] =

∫
DU

Nf∏

i=1

(detDi[U ]) e−S
G[U ] , (3.53)

where Di[U ] is the massive Wilson-Dirac operator of the i-th flavour. The link field thus
follows the normalized probability distribution

P [U ] =
1

Z

Nf∏

i=1

(detDi[U ]) e−S
G[U ] , (3.54)

and a generic Euclidean correlator ⟨O⟩ can be interpreted as the statistical expectation
value of the field O with respect to the distribution P [U ], after the integration of the
fermionic degrees of freedom:

⟨O⟩ = 1

Z

∫
DUDψDψO[U,ψ, ψ] e−SG[U ]−SF [U,ψ,ψ] =

∫
DU P [U ]O[U ] . (3.55)

The probability distribution (3.54) is well defined as far as the product of determinants
is real and positive. If the lattice Dirac operator is γ5-hermitian (as it is for the Wilson-
Dirac operator), then its determinant is real:

detD = det(γ5D
†γ5) = (detD†) = (detD)∗ . (3.56)

In this case the positiveness is obvious if an even number of degenerate flavours is consid-
ered. With an odd number of flavours positiveness is not automatically guaranteed. In
particular, it is not in the case of a single flavour in the Wilson (improved) discretization.

The usual approach for sampling gauge configurations according to P [U ] is to em-
ploy Markov Chains, as discussed in the following Subsections. Assuming that we can

5The drawback of the analytic integration of fermions is that the theory looses manifest locality.
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sample P [U ], the expectation value of a local field ⟨O⟩ can be approximated through the
statistical estimator

O =
1

N

N∑

i=1

Oi , Oi = O[Ui] , ⟨O⟩ ≈ O +O(1/
√
N) , (3.57)

where Ui areN configurations of the gauge field, and the scaling∼ N−1/2 of the statistical
error is guaranteed by the central limit theorem in the N →∞ limit.

3.7.1 Markov Chains

A Markov Chain (MC) is a stochastic process based on generating a sequence of config-
urations

U0
T−→ U1

T−→ · · ·Un T−→ · · · (3.58)

according to the transition probability T (U ′|U) [53, 97]. The transition probability is
defined on the space of all configurations, and it is the conditional probability of sampling
the new configuration U ′, given the current configuration U . The transition probability
thus depends on the configuration, but not on the index of the configuration along the
chain, called Markov time. This property is referred to as time-homogeneity. Transition
probabilities are non-negative for any choice U ′, U and satisfy the completeness condition

∑

U ′

T (U ′|U) = 1 , (3.59)

where the sum is over all the configuration space. If the transition probability satisfies

T (U ′|U) > 0 ∀U,U ′ , (3.60)

then the MC is called ergodic. In view of sampling configurations according to a chosen
distribution, ergodicity is a fundamental property for a MC. Calling P0[U ] the initial
probability distribution of the configurations, at Markov time t = 0, it can be shown
that ergodicity is a sufficient condition such that the limit

lim
t→∞

Pt = lim
t→∞

T tP0 = Peq (3.61)

exists, is unique and does not depend on the starting distribution.
We have to understand now how to define an ergodic MC so that the equilibrium

distribution Peq is the desired one. Given a target probability distribution P [U ], it
is possible to show [134] that, if the MC is ergodic and satisfies the detailed balance
condition,

T (U ′|U)P [U ] = T (U |U ′)P [U ′] , (3.62)

then P [U ] is the (unique) fixed point for chain of probability distributions sampled by
the MC:

lim
t→∞

Pt = P . (3.63)
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From this equation we see that the MC eventually samples the target distribution after a
certain number of steps in Markov time. The initial phase where the MC looses memory
of the original distribution and stabilizes to P [U ] is called thermalization.

A simple way to build a transition probability T that satisfies the detailed balance
with respect to the probability distribution P is the Metropolis-Hastings algorithm [113,
76]. We split the transition probability in two steps,

T (U ′|U) = Pacc(U
′|U)Pprop(U

′|U) , (3.64)

where Pacc stands for the acceptance probability, and Pprop for proposal probability. At
each update of the MC, a new configuration U ′ is proposed with probability Pprop, and
accepted as new sample of the chain with probability Pacc. If rejected, the starting
configuration U is kept as new element of the MC. A transition probability defined
through the following acceptance probability satisfies the detailed balance with respect
to the target distribution P ,

Pacc(U
′|U) = min

{
1,
Pprop(U |U ′)P [U ′]

Pprop(U ′|U)P [U ]

}
= min

{
1,
P [U ′]

P [U ]

}
, (3.65)

where second equality holds if the proposal probability is symmetric: Pprop(U
′|U) =

Pprop(U |U ′). Notice in particular that only the relative target probability enters the def-
inition of Pacc, and therefore the normalization of the target distribution is not required.

The last ingredient for the definition of the MC is the proposal distribution Pprop

which is not constrained by the Metropolis-Hastings and is in principle independent from
the target distribution. Usually the proposal probability is chosen in order to maximize
the acceptance probability and thus the efficiency of the MC sampling in exploring the
phase space of configurations.

3.7.2 Markov Chain sampling and autocorrelation

Configurations sampled with MCs are in general correlated, because the transition proba-
bility to a new configuration depends on the current configuration. Therefore the samples
Oi are correlated along the Markov time, i.e. they exhibit autocorrelation. This propa-
gates to the estimation of the uncertainty of O of eq. (3.57), as discussed in the following.
The (squared) statistical uncertainty of O is given by [158, 97]

σ2O = ⟨⟨
(
O − ⟨O⟩

)2⟩⟩ = 1

N2

∑

i,j

⟨⟨OiOj⟩⟩ − ⟨O⟩2 , (3.66)

where ⟨⟨·⟩⟩ denotes the average over independent MCs, while the indices i, j are as usual
for the Markov time on a given chain. With this notation it also holds that ⟨⟨O⟩⟩ = ⟨O⟩.
The samples Oi, Oj are correlated along a chain, therefore ⟨⟨OiOj⟩⟩ ̸= ⟨⟨Oi⟩⟩⟨⟨Oj⟩⟩. After
some manipulations, the squared statistical uncertainty of O can be rewritten as

σ2O =
var [O]
N

2 τOint , (3.67)
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where we defined the variance of the operator O as

var [O] = ⟨O2⟩ − ⟨O⟩2 (3.68)

while τOint is the integrated autocorrelation time of the observable O,

τOint =
1

2

[
1 + 2

N−1∑

t=1

ΓO(t)

ΓO(0)

]
, (3.69)

and ΓO is the autocorrelation function

ΓO(t) = ⟨⟨O0Ot⟩⟩ − ⟨O⟩2 . (3.70)

If the MC is homogeneous in the Markov time, then the average ⟨⟨·⟩⟩ is invariant under
translations along the MC and thus the autocorrelation function depends only on the
distance t in Markov time, as suggested by the notation. Equation (3.67) tells us that
the autocorrelation reduces the number of samples to the effective number N/(2τOint) of
independent samples.

Many strategies are available for properly taking into account the autocorrelation
along a Markov chain. The Γ-method [158] estimates the error on ensemble averages
as in equation (3.67), by explicitly computing the integrated autocorrelation time. The
computation of τint requires the knowledge of the autocorrelation function Γ(t), estimated
as

ΓO(t) =
1

N − t
N−t∑

i=1

(
Oi+t −O

) (
Oi −O

)
. (3.71)

It can be shown that this function is exponentially suppressed for t → ∞, while its
relative error increases exponentially at large Markov time. The Γ-method estimates
the integrated autocorrelation time by cutting the integral of eq. (3.69) to some chosen
Markov distance W [158],

τO,Wint =
1

2

[
1 + 2

W∑

t=1

ΓO(t)

ΓO(0)

]
, (3.72)

and the error with respect to (3.69) is exponentially suppressed as ∼W .
Other popular strategies for taking into account autocorrelation are the so-called bin-

ning methods. The idea is to exploit the exponential suppression of the autocorrelation
function in Markov time, by grouping samples in bins which are averaged separately.
The autocorrelation of binned samples will be exponentially suppressed with the size of
the bins. If the latter is large enough (a few τOint, say), then the statistical analysis on
the bins can be carried out assuming they are independent samples.

3.7.3 Hybrid Monte Carlo

In the following we will describe the Hybrid Monte Carlo algorithm [48], which is a
realization of Markov Chains for simulating lattice QCD. We will also introduce some
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of the strategies which are commonly employed in its practical implementation, most of
them dealing with the proper treatment of quarks on the lattice. We refer for instance
to [97] for further details, and also to the documentation of openQCD [99], the package
adopted for the numerical simulations in this thesis.

We are interested in sampling link fields for QCD following the distribution

P [U ] =
1

Z e
−S[U ] , S[U ] = SG[U ]−

Nf∑

i=1

Tr {lnDi[U ]} , (3.73)

where the quark determinants have been included in the action S[U ] which therefore may
be a non-local function of the link field.

Following the Metropolis-Hastings prescription discussed of Subsection 3.7.1, each
new configuration in the MC is first generated with a proposal distribution Pprop, and
then accepted with probability Pacc. On one hand, the acceptance probability is uniquely
specified by the target distribution (3.73). Notice in particular that the (unknown)
normalization 1/Z of the latter is not required for the evaluation of Pacc.

On the other hand, in the HMC the new configuration is generated from the old one
through the fictitious time evolution of an auxiliary Hamiltonian system, using classical
Hamilton’s equations. This procedure is called molecular dynamics. The molecular
dynamics requires to extend the link variables of the gauge field to a 5-dimensional
space,

Uµ(x)→ Uµ(x, τ) , (3.74)

where the τ -direction is the (fictitious) time for the Hamiltonian evolution. We then
introduce the auxiliary su(3)-valued momenta πµ(x, τ) = πaµ(x, τ)T

a, conjugated to the
link variables. The fictitious Hamiltonian of the system is thus

H[U, π] =
1

2
(π, π) + S[U ] , (π, π) ≡

∑

x

πaµ(x, τ)π
a
µ(x, τ) , (3.75)

and the related partition function
∫
DπDU e−H[π,U ] = const.×

∫
DU e−S[U ] (3.76)

coincides with the original one up to an irrelevant constant coming from the Gaussian
integration over the momenta. In particular, the target probability distribution (3.73)
generalizes to

P [π, U ] =
1

ZπZ
e−H[π,U ] . (3.77)

The evolution of the fields along τ is governed by the Hamilton’s equations




d

dτ
πµ(x, τ) = −Fµ(x, τ)

d

dτ
Uµ(x, τ) = πµ(x, τ)Uµ(x, τ)

, Fµ(x, τ) =
δS[U ]

δUµ(x)

∣∣∣∣
τ

(3.78)
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which are usually called molecular dynamics (MD) equations. The MD equations are
deterministic, and their solution is uniquely determined by the initial configuration of
the fields. Crucially, the Hamiltonian (3.75) is conserved along the MD trajectory. This
means that

Pacc = min
{
1, e−(H[U(τmax),π(τmax)]−H[U(0),π(0)])

}
= 1 , (3.79)

and thus the proposed gauge configuration is always accepted. Therefore each HMC step
works as follows:

1. The initial gauge field is Uµ(x, 0) = Uµ(x), Uµ(x) being the last link configuration,
while the momenta are extracted according to a Gaussian distribution: π(x, 0) ∼
e−

1
2
(π,π). The Gaussian initialization of the momenta sets a random value of the

kinetic energy of the Hamiltonian system, and thus randomly selects a hyper-surface
at given energy in the (π, U) configuration space.

2. Fields are evolved according to the MD equations from time τ = 0 to time τ =
τmax. The MD evolution makes the system flow on the fixed-energy hyper-surface,
changing globally the link configuration.

3. The field Uµ(x, τmax) at the end of the molecular dynamics is taken as new element
of the chain. The auxiliary momentum field is always resampled at the beginning
of a MD trajectory.

3.7.4 Discretized Hybrid Monte Carlo

In practical QCD simulations the MD equations are numerically integrated using finite-
step techniques, in which the MD time τ is discretized in many steps of size δτ . The
infinitesimal form of the MD equations is




πµ(x, τ + δτ) = πµ(x, τ)− δτFµ(x, τ) + O((δτ)2)

Uµ(x, τ + δτ) =
[
1 + δτπµ(x, τ)

]
Uµ(x, τ) + O((δτ)2)

(3.80)

and this suggests to define the infinitesimal time evolution operators

Iπ(δτ) : π, U → π − δτF, U
IU (δτ) : π, U → π, eδτπU

(3.81)

where the spacetime position x and the Lorentz index µ are understood. Combining
powers of these elementary operators it is possible to define different discretized evolution
operators,

I(τ,N) = F(Iπ, IU , τ,N) , (3.82)

which evolve the initial fields configuration along the MD trajectory with total time τ in
N elementary steps. For instance the leapfrog integrator is the operator

ILPFR(τ,N) =

[
Iπ
(
δτ

2

)
IU (δτ) Iπ

(
δτ

2

)]N
, δτ =

τ

N
. (3.83)
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The leapfrog is a so-called symplectic integrator, meaning that it is exactly time-reversible
and respects Liouville’s theorem. However symplectic integrators do not conserve the
Hamiltonian (3.75) by errors proportional to powers of the integration step δτ , the power
depending on the order of the integrator. The leapfrog is a 2nd order integrator, and so
the energy violation is of the order of ∼ (δτ)2. Another popular scheme is the Omelyan
2nd integrator [123], which is optimized so that the coefficient multiplying the ∼ (δτ)2

violation is minimized. Finally, we mention the Omelyan 4th order integrator, with energy
violations proportional to ∼ (δτ)4. We notice that the use of symplectic integrators is
mandatory for the correctness of the HMC sampling [134].

In contrast with the theoretical formulation of the HMC of Subsection 3.7.3, the fact
that now the Hamiltonian in not exactly conserved renders non-trivial the accept-reject
step prescribed by the Metropolis-Hastings procedure. We may thus reformulate the
HMC loop as follows:

1. The initial gauge field is Uµ(x, 0) = Uµ(x), Uµ(x) being the last link configuration,
while the momenta are extracted according to a Gaussian distribution: π(x, 0) ∼
e−

1
2
(π,π).

2. Fields are evolved according to the discretized MD equations from time τ = 0
to time τ = τmax, using some finite-step symplectic technique. The MD evolution
makes the system flow on the (almost) fixed-energy hyper-surface, changing globally
the link configuration.

3. The accept-reject step is performed on the proposed configurations Uµ(x, τmax),
πµ(x, τmax), with acceptance probability

Pacc = min
{
1, e−(H[U(τmax),π(τmax)]−H[U(0),π(0)])

}
, (3.84)

where we stress that now the variation of the Hamiltonian in general is non-zero. If
rejected, the proposed configuration is discarded and the original link field Uµ(x, 0)
is taken as new element of the chain. The auxiliary momentum field is always
resampled at the beginning of a MD trajectory.

Typically the HMC is efficient when the acceptance probability Pacc is high. This is
achieved by reducing the energy loss ∆H along the molecular dynamics. The parameters
which define the HMC (the total MD time τmax, the integration step δτ , the integration
scheme) are in principle arbitrary and can be optimized to maximize the acceptance while
keeping the computational effort under control.

3.7.5 Pseudo-fermions

Let us consider for now QCD with Nf = 2 (degenerate) flavours of fermions discretized
with the Wilson prescription. The related probability distribution

P [U ] =
1

Z |det(D[U ])|2 e−SG[U ] (3.85)

66



is real and positive, and requires to take into account the determinant of the Dirac
operator. The Dirac operator is a square matrix with indices over spin, colour, flavour and
lattice sites. The direct computation of its determinant is thus not practical. A solution
to this problem is to take advantage of the properties of bosonic Gaussian integrals. By
introducing the fictitious complex bosonic field ϕ, the contribution of the determinant
can be included through an additional term in the action in the following way,

|det(D[U ])|2 ∝
∫
Dϕe−S

pf [U,ϕ] , Dϕ =
∏

x,f,α,a

dϕaf,α(x)dϕ
a
f,α(x)

∗ ,

Spf [U, ϕ] = (D−1[U ]ϕ,D−1[U ]ϕ) ,

(3.86)

where (·, ·) is the scalar product for the field ϕ. This auxiliary field has the same indices of
a quark field: for this reason it is called pseudo-fermion. At the beginning of the HMC,
the pseudo-fermion field is sampled according to the probability distribution ∼ e−S

pf .
This is a Gaussian-like distribution and thus can be sampled with standard methods [97].
Then in the molecular dynamics the field ϕ stays unchanged, but Spf contributes to the
evolution of the momenta with the force term

F pf
µ (x) =

δSpf

δUµ(x)
. (3.87)

The evaluation of this force requires the solution of the Dirac equation, which is the most
expensive part in terms of numerical effort in lattice QCD simulations.

3.7.6 Frequency splitting of the quark determinant

It is often useful to split the fermionic force in the molecular dynamics so to separate the
contributions from different parts of the Dirac spectrum. This can be achieved with the
Hasenbusch factorization [75, 74]

| det(D)|2 = det(DD† + µ2)× det

(
DD†

DD† + µ2

)
, (3.88)

and consequently the pseudo-fermion action becomes

Spf [U, ϕ1, ϕ2] =
(
ϕ1, (DD

† + µ2)−1ϕ1
)
+
(
ϕ2, ϕ2 + µ2(DD†)−1ϕ2

)
(3.89)

where ϕ1, ϕ2 are two independent auxiliary pseudo-fermion fields. In this way the sea
quarks contribute to the evolution with two forces F1, F2 so that F1 mostly depends
on the eigenvalues of the Dirac spectrum higher than the “mass” parameter µ2, while
F2 on the lower eigenvalues. Notice that in the two contributions to the action (3.89),
the inversion of the matrix (DD† + µ2) in the first term is faster than the inversion of
(DD†) in the second, because µ2 acts as an infrared regulator. The spitting (3.88) can
be performed multiple times if needed, with more pseudo-fermions and more force terms.

The advantages of the splitting are twofold. On one side, two (or more) forces tend
to fluctuate less along the molecular dynamics, than one force only [75, 74]. This allows
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to have a coarser MD integration without affecting the acceptance rate too much. On
the other side, with some tuning of µ2 it is possible to make the most expensive force F2

small compared to F1. In combination with a multiple step integration this results in an
important speed up of HMC simulations for QCD, see the next Subsection.

3.7.7 Hierarchical molecular dynamics

In lattice QCD simulations it often happens that the forces contributing to the molecular
dynamics evolution have different magnitude. For instance, the force coming from sea
quarks are usually smaller than the force F0 from the gauge action. In addition, in the
previous subsection we discussed that the Hasenbusch splitting allows to further separate
the quark contribution in two (or more) terms possibly of different magnitudes. When
a hierarchy in the magnitude and cost of forces emerges it may be convenient to have
different MD step sizes, so that smaller forces are treated with coarser integrations [139].
For example, assume that the three forces discussed above are in the relative relation
F2 ≪ F1 ≲ F0, F1, F2 being respectively the high- and low-mode quark forces. We define
the level-1 integrator

I1(τ,N1) = F(IF2
π , I0, τ, N) (3.90)

which evolves the fields for the total MD time τ in N steps, with step size δτ = τ/N .
Notice that only the force F2 is considered for the evolution of momenta, while the kernel
for the evolution of the gauge field is replaced by the level-0 integrator I0. The latter is
defined as

I0(δτ,N0) = F(IF0,F1
π , IU , δτ, N0) (3.91)

and evolves the fields for the total time δτ in N0 steps, considering the forces F0, F1.
In this way each time the force F2 is integrated at level-1 with the step δτ , the forces
F0, F1 are integrated N0 times at level-0 with the finer step δτ/N0. The hierarchy in
computational time of the forces is the opposite to that in the magnitude, with the
expensive low-mode quark force F2 as smaller contribution to the evolution. After a
proper tuning of the parameters, this two-level integration has very good chances to
speed up the HMC algorithm, roughly by a factor N0 compared to the plain single level
integration.

3.7.8 Rational HMC

We come now to the strategy for simulating one single quark flavour. As we said, in
general for (improved) Wilson fermions we cannot theoretically exclude that the quark
determinant is negative for a given gauge configuration. However if the single flavour has a
large mass (e.g. the strange or charm quark) then the subset of exceptional configurations
where the determinant is negative is expected to have a very small measure, so that its
contribution to the path integral can be assumed to be negligible 6. In this circumstance

6More generally, this statement is true when the Dirac operator has a large gap in its spectrum. This
may also be related to dynamical effects, such as when the theory is simulated at finite temperature.

68



we can replace the Wilson-Dirac operator D with the positive operator

|Q| =
√
Q2 , Q = γ5D . (3.92)

The operator |Q| is well defined but not directly accessible and it can be computed only
by approximation. If we call R some approximation for 1/

√
Q2, then we can write the

determinant of |Q| as

det(|Q|) = det(|Q|RR−1) = det(|Q|R) det(R−1) . (3.93)

The relevant part det(R−1) can be represented using pseudo-fermions,

det(R−1) ∝
∫
Dϕe−(ϕ,Rϕ) . (3.94)

The term det(|Q|R) is expected to be close to identity and weakly dependent on the
gauge configuration, if the approximation R is good enough. It is usually estimated
stochastically and included in the observables as a reweighting factor [100]. The operator
R is in principle any good approximation to the function 1/

√
x. We focus on the rational

HMC (RHMC) [86], which employs the Zolotarev (n, n)-order rational approximation in
the interval [ε, 1],

1√
x
≈ Rn,ε(x) = A

(x+ a1) · · · (x+ a2n−1)

(x+ a2) · · · (x+ a2n)
, (3.95)

where A, a1, ..., a2n are known and the error is guaranteed to be at most

δ = max
x∈[ε,1]

∣∣1−√xRn,ε(x)
∣∣ (3.96)

if the approximation is applied in the defining interval. In our case, calling [ra, rb] an
interval that includes all the eigenvalues of |Q|, we define

R ≡ rbRn,ε(r−2
b Q2) , ε = (ra/rb)

2 (3.97)

where the degree n of the Zolotarev polynomial (that is, the number of its poles) is a
tunable parameter. Assuming ra, rb to be known, n should be set so that the error on the
approximation drops below some chosen threshold. In practice, the spectral range [ra, rb]
of the operator Q can be measured in a dedicated set of simulations, for instance using
a power method algorithm. The poles of the rational approximation can be ordered
according to the magnitude of the related forces. This naturally leads to a frequency
splitting where the different subsets of poles give rise to different force contributions.
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Chapter 4

Equation of State of QCD at high
temperature

This Chapter is devoted to the numerical computation of the QCD Equation of State
(EoS) at zero chemical potential and for temperatures between 3 GeV and 160 GeV. This
is the main original contribution of this thesis. To set the stage we first review the state
of the art in the computation of the QCD EoS, both in terms of results and methodology.
After a summary of the the main novelties of our approach, we show the details of the
numerical computation.

4.1 State of the art

The standard technique adopted in literature for the computation of the EoS in lattice
QCD is called integral method. The primary quantity that is determined from the lattice
is the trace anomaly I of the Energy-Momentum tensor,

I = e− 3p = −T
V

d lnZ
d ln a

, (4.1)

where T is the temperature, V the spatial volume, Z the QCD partition function and a
the lattice spacing. The ultraviolet power divergence of this quantity is usually removed
by subtracting the trace anomaly itself computed at the low reference temperature Tref :

∆I(T ) = I(T )− I(Tref) . (4.2)

The trace anomaly I is computed at many temperatures on the lattice, and then the
pressure is obtained from the integral

p(T )

T 4
− p(Tref)

T 4
ref

=

∫ T

Tref

dT ′ ∆I(T ′)

(T ′)5
. (4.3)

Finally, the entropy and energy densities can be computed through standard thermo-
dynamic relations. The reference pressure p(Tref) may be set to zero or approximated
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Figure 4.1: Left: comparison of the Nf = 2+1 QCD EoS between two computations with
different discretizations of staggered fermions [21, 13]. Plot from [13]. Right: entropy
density of Nf = 2 + 1 QCD computed in [15] with staggered quarks. Filled markers are
continuum extrapolated results, empty markers are continuum estimated results. The
comparison with 3-loop HTL and weak coupling expansion in the thermal effective theory
is shown. The bands correspond to a variation of the renormalization scale µ = 2πT by
the factors 1/2 and 2.

using a low energy model such as the hadron resonance gas [84]. Using this strategy,
the QCD EoS has been determined for temperatures up to ∼ 500 MeV [13, 21] with
Nf = 2+1 flavours of staggered quarks in two different discretizations. The comparison
of the results is shown in Figure 4.1a. More recently, calculations up to 2 GeV were
presented for Nf = 2 + 1 staggered quarks [15]. The resulting entropy density is shown
in Figure 4.1b, compared to the Hard Thermal Loop (HLT) prediction [72] and the weak
coupling expansion in the thermal effective theory [89]. Finally, the EoS is known up to
1 GeV for Nf = 2 + 1 + 1 staggered quarks [20].

4.1.1 Perturbative computation

For temperatures above ∼ 1-2 GeV, the EoS in QCD is currently known only from a
perturbative expansion in the strong coupling g within the framework of thermal ef-
fective theory of QCD [89, 82], as discussed in Chapter 2. There is however evidence
from lattice QCD that the perturbative expansion struggles to reproduce the properties
of QCD matter up to temperatures of the order of the electro-weak scale [62, 46, 64].
Figure 4.2 shows the entropy of the pure gauge theory computed in Ref. [62], in the
temperature interval from the critical point Tc up to ∼ 230Tc. The perturbative result
is also shown for increasing loop orders: it is clear that, by its own, perturbation theory
cannot describe in a satisfactory way the non-perturbative results even at the highest
temperatures. The perturbative expansion at order ∼ g6 has an unknown coefficient, qc,
coming from the non-perturbative ultrasoft dynamics. In Figure 4.2 the light blue curve
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Figure 4.2: Entropy density in the pure SU(3) Yang-Mills theory, compared to pertur-
bation theory. Data from [62]. The coupling g is the 5-loop MS coupling.

represents the perturbative series where qc has been fitted using the points at highest
temperatures (highlighted in blue in the plot), where the effective theory is expected
to work better. Only after this constrain has been imposed there is some agreement
between the perturbative expansion and lattice data, apparently also at lower tempera-
tures. However, the fitted ∼ g6 term contributes by ∼ 50% of the total of the interaction
at the highest temperature considered. Similar conclusions have been drawn in QCD
in Refs. [46] and [65], where the mesonic and baryonic screening masses were computed
non-perturbatively in the temperature interval 1 GeV – 160 GeV.

4.2 Strategy

In this Section we describe our strategy for the determination of the entropy density of
QCD at very high temperatures. Our method relies on two key novelties with respect
to standard procedures. First, we use shifted boundary conditions to directly access the
entropy density of QCD [59, 42] without the need of the zero-temperature subtraction.
Second, we abandon the hadronic scheme and instead we determine the lines of constant
physics by imposing that a renormalized coupling, defined non-perturbatively, assumes
a prescribed value [46]. This allows us to overcome the window problem that could arise
when accommodating both the high temperature and the hadronic scale on the same
lattice.
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4.2.1 Entropy density in the continuum

We start from continuum chiral QCD in infinite spatial volume, at finite temperature
and in a moving reference frame. We recall from Section 2.2 that the latter is realized by
imposing shifted boundary conditions for the fields along the compact direction, of size
L0 :

Aµ(x0 + L0,x) = Aµ(x0,x− L0ξ) ,

ψ(x0 + L0,x) = −ψ(x0,x− L0ξ) , (4.4)

ψ(x0 + L0,x) = −ψ(x0,x− L0ξ) ,

where ξ = (ξ1, ξ2, ξ3) is the shift vector. The entropy density of QCD can be written as

s

T 3
=

1 + ξ2

ξk

1

T 4

∂

∂ξk
f(L0, ξ) , T =

1

L0

√
1 + ξ2

, (4.5)

where T is the temperature of the thermal system at rest, and f is the free-energy
density. We explicitly indicate only the dependence on L0 and ξ, even though the free-
energy depends also on all the other parameters of the theory. The power divergence
resulting from the mixing of the free energy with the identity is removed by the derivative
in the shift, so that the entropy in eq. (4.5) is well defined when the parameters of the
theory are renormalized.

With the numerical computation in mind, it is convenient to rewrite the free-energy
density as follows:

f(L0, ξ) = f(L0, ξ)|m0→∞ +
[
f(L0, ξ)− f(L0, ξ)|m0→∞

]

= f∞(L0, ξ)−
∫ ∞

0
dm0

∂

∂m0
f(L0, ξ) .

(4.6)

In the first line we added and subtracted the free-energy f∞ of QCD at infinite bare
quark mass. In the second line we replaced the last term with the integral in the bare
quark mass of the derivative with respect to m0 of f(L0, ξ). The derivative gives the
expectation value of the scalar density operator (referred to as chiral condensate in the
following),

〈
ψψ
〉
ξ
=

∂

∂m0
f(L0, ξ) , (4.7)

and this leads to

∂

∂ξk
f(L0, ξ) =

∂

∂ξk
f∞(L0, ξ)−

∫ ∞

0
dm0

∂

∂ξk

〈
ψψ
〉
ξ,m0

. (4.8)

We now focus on the the m0 → ∞ contribution. In this limit, the free-energy of QCD
is equivalent to the free-energy density of the Nf = 0 theory, i.e. the pure Yang-Mills
theory at the same bare parameters. Following [61, 62] we can assume that, within the
interval of temperatures relevant for our study, the shift-derivative of the free-energy in
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pure gauge is a smooth function of the bare coupling. We take the derivative with respect
to the bare coupling,

d

dg20

(
∂

∂ξk
f∞(L0, ξ)

)
= − 1

g20

∂

∂ξk

〈
SG
〉YM

ξ
, (4.9)

where on the right appears the expectation value of the gauge action SG, computed in
the pure gauge theory with shifted boundary conditions. We obtain the desired quantity
by adding to the free case fG(0) the integral in the bare coupling of eq. (4.9) from g20 = 0
up to the desired value of g20, in formulas

∂

∂ξk
f∞(L0, ξ) =

∂

∂ξk
fG(0)(L0, ξ)−

∫ g20

0
du

1

u

∂

∂ξk

〈
SG
〉YM

ξ,u
. (4.10)

We finally write the entropy of QCD as
s

T 3
=
s∞
T 3

+
χ

T 3
, (4.11)

where

s∞ = sG(0) − 1 + ξ2

ξk

1

T

∫ g20

0
du

1

u

∂

∂ξk

〈
SG
〉YM

ξ,u
(4.12)

is computed in the pure Yang-Mills theory but at the bare parameters of QCD, and

χ = −1 + ξ2

ξk

1

T

∫ ∞

0
dm0

∂

∂ξk

〈
ψψ
〉
ξ,m0

(4.13)

is computed in QCD.

4.2.2 Entropy density on the lattice

On the lattice shifted boundary conditions for the gauge field are enforced on the link
variables,

Uµ(x0 + L0,x) = Uµ(x0,x− L0ξ) , (4.14)

while equation (4.4) sets the boundary conditions for the discretized quark fields. The
lattice theory is formulated in the finite volume V = L1L2L3, and periodic boundary
conditions are imposed on the fields in the spatial directions:

Uµ(x0, xk + Lk) = Uµ(x0, xk) ,

ψ(x0, xk + Lk) = ψ(x0, xk) , (4.15)

ψ(x0, xk + Lk) = ψ(x0, xk) ,

with k = 1, 2, 3. We now reconsider on the lattice the formulas we derived in the contin-
uum. We use the same symbols for continuum and lattice quantities, since any ambiguity
is resolved by the context. The entropy density is given by

s

T 3
=

1 + ξ2

ξk

1

T 4

∆

∆ξk
f(L0, ξ) , (4.16)
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where
∆

∆ξk
f(L0, ξ) =

L0

4a

[
f

(
L0, ξ +

2a

L0
k̂

)
− f

(
L0, ξ −

2a

L0
k̂

)]
(4.17)

is the 2-point discrete symmetric derivative of the free-energy with respect to the k-th
component of the shift 1. The lattice version of equation (4.11) is formally the same,

s

T 3
=
s∞
T 3

+
χ

T 3
, (4.18)

with s∞ given by

s∞ = sG(0) + g20 s
G(1) −

∫ g20

0
du

(
1 + ξ2

ξk

1

uT

∆

∆ξk

〈
SG
〉YM

ξ,u
+ sG(1)

)
(4.19)

where for later convenience we subtracted the entropy density at 1-loop order, and

χ = −1 + ξ2

ξk

1

T

∫ ∞

0
dm0

∆

∆ξk

〈
ψψ
〉
ξ,m0

. (4.20)

The discrete shift-derivatives of the gauge action and of the chiral condensate are defined
analogously to eq. (4.17). In order to take the continuum limit, the quantities (4.19)
and (4.20) must be summed at the same values of g20 and L0/a defined by a line of
constant physics in QCD.

4.2.3 Renormalization and lines of constant physics

We determine the lines of constant physics by fixing, at finite lattice spacing, the value of a
renormalized coupling defined non-perturbatively. We choose the Schrödinger functional
(SF) coupling g2SF(µ), whose non-perturbative running with the renormalization scale µ
is known precisely in the continuum [25, 28]. The renormalization condition reads

g2SF(g
2
0, aµ) = g2SF(µ) , aµ≪ 1 , µ ∼ T , (4.21)

where g0 is the bare coupling and the renormalization scale µ is identified with the
temperature T . This condition fixes the dependence of the bare coupling constant g20 on
the lattice spacing, for values of a at which the scale µ and therefore the temperature can
be easily accommodated. As a consequence, each temperature can be simulated at several
lattice resolutions and the continuum limit can be performed with confidence at moderate
computational effort. The chosen values of the temperature and the corresponding values
of the renormalized SF coupling are reported in Table 4.1. We refer to Appendix B of
Ref. [46] for all the technical details.

4.3 Lattice parameters

We discretize QCD with the Wilson plaquette gauge action and Nf = 3 flavours of mass-
less O(a)-improved Wilson fermions. This is the same setup employed in Refs. [25, 28]

1We use the two-point discrete derivative due to constraints related to the simulation software.
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T ḡ2SF(µ = T
√
2) T (GeV)

T0 1.01636 164.6(5.6)
T1 1.11000 82.3(2.8)
T2 1.18446 51.4(1.7)
T3 1.26569 32.8(1.0)
T4 1.3627 20.63(63)
T5 1.4808 12.77(37)
T6 1.6173 8.03(22)
T7 1.7943 4.91(13)
T8 2.0120 3.040(78)

Table 4.1: Values of the Schrödinger functional coupling in Nf = 3 QCD with Wilson
action used to renormalize the bare parameters at the physical temperatures considered
in this work, reported in the last column.

for the non-perturbative determination of the running coupling, that we use to define the
lines of constant physics. In our study we consider the 9 temperatures of Table 4.1. Being
suppressed as ∼ (m/T )2, the effect of the light quark masses is completely negligible at
these temperatures. At each temperature the line of constant physics is defined at the res-
olutions L0/a = 4, 6, 8, 10 following the renormalization procedure outlined above. Given
the lines of constant physics, the critical mass mcr is determined by requiring that the
PCAC mass, computed in a SF setup, vanishes [37, 46]. The values of inverse bare cou-
pling β = 6/g20, the critical hopping parameter κcr = 1/(2amcr+8) and the improvement
coefficient csw at given temperature and given L0/a are reported in Table F.3. The sizes
of the lattice in the spatial directions are fixed to L/a = L1/a = L2/a = L3/a = 144.
The aspect ratio TL of our lattices thus ranges between 10 and 25. The choice of the
shift ξ is in principle arbitrary within the range

− Lk
2L0

≤ ξk ≤
Lk
2L0

, k = 1, 2, 3 (4.22)

due to periodic boundary conditions in spatial directions. Following [43, 22, 46] we set
ξ = (1, 0, 0), which turns out to make discretization effects milder. We compute the
shift-derivatives with the 2-point symmetric discretization at the values

ξ± = (1± 2a/L0, 0, 0) , z± = (L0 ± 2a, 0, 0) , (4.23)

where for convenience we introduced the vector z = L0ξ which gives the displacement
in space due to the shift. With these choices, ∆ξ1 = 4a/L0.

4.4 Pure Yang-Mills contribution

In this Section we discuss the computation of the contribution s∞ defined in eq. (4.19).
Using the shift vectors of eq. (4.23), the explicit expression for the discrete derivative
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appearing in (4.19) is

∆

∆ξ1

〈
SG
〉YM

ξ
=
L0

4a

(〈
SG
〉YM

ξ+
−
〈
SG
〉YM

ξ−

)
. (4.24)

At fixed lattice spacing we estimate the integral in the bare coupling using numerical
quadratures. This requires the determination from the lattice of the derivative in equa-
tion (4.24) at the values of the bare coupling uniquely prescribed by the chosen quadrature
recipe, in the interval [0, g20]. Notice that the two expectation values come from inde-
pendent numerical simulations at the two shifts. We opt for splitting the integration in
many terms evaluated with different quadratures, as described in the following.

4.4.1 Integral in the bare coupling

At given L0/a, we first compute the integral appearing in eq. (4.19) for the value of g20
associated to the temperature T1. We split the integration in intervals as follows:

∫ g20 |T1

0
du (· · · ) =

∫ 6/15

0
du (· · · ) +

∫ 6/9

6/15
du (· · · ) +

∫ g20 |T1

6/9
du (· · · ) , (4.25)

where g20|Ti is the value of the bare coupling at temperature Ti given the lattice resolution
L0/a, and the dots stand for the integrand function. In the first interval g20 ∈ [0, 6/15] the
integral is computed with a 2-point trapezoidal rule (3-point Simpson rule for L0/a = 4).
The interval g20 ∈ [6/15, 6/9] is covered with a 3-point Gauss quadrature. The third
interval, g20 ∈ [6/9, g20|T1 ], is computed with another 3-point Gauss quadrature. For the
resolutions L0/a = 4, 6 there is also another quadrature in the interval g20 ∈ [6/9, g20|T0 ],
computed with a 3-point Gauss quadrature for L0/a = 4 and with the midpoint rule for
L0/a = 6. At the lower temperatures Ti, i > 1, the value of the integral is obtained by
adding to the Ti−1 result the integral in the interval g20 ∈ [g20|Ti−1 , g

2
0|Ti ],

∫ g20 |Ti

0
du (· · · ) =

∫ g20 |Ti−1

0
du (· · · ) +

∫ g20 |Ti

g20 |Ti−1

du (· · · ) , (4.26)

where the second integral is estimated with a 3-point Gauss quadrature for i = 2, 3, 4, 5, 6,
and a 5-point Gauss quadrature for i = 7, 8. The entire recursion is summarized in
Table 4.2.

4.4.2 Results

The pure gauge ensembles for the computation of s∞ have been generated in Monte Carlo
simulations where the basic sweep is a combination of heatbath and over-relaxation [3]
updates of the link variables, using the Cabibbo–Marinari scheme [26, 39, 38]. The values
of bare couplings simulated and the number of measurements of the pure gauge action are
reported in Table F.4. Figure 4.3 shows a representative case for the integrand function
in g20. The vertical lines are the upper bounds to the integrals at different temperatures,
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interval quadrature

0 ≤ g20 ≤ 6/15
{ 3 (Simpson) L0/a = 4

2 (trapezoid) L0/a = 6, 8, 10

6/15 ≤ g20 ≤ 6/9 3 (Gauss)

6/9 ≤ g20 ≤ g20|T0
{ 3 (Gauss) L0/a = 4

1 (midpoint) L0/a = 6

6/9 ≤ g20 ≤ g20|T1 3 (Gauss)

g20|Ti−1 ≤ g20 ≤ g20|Ti
{ 3 (Gauss) 1 < i < 7

5 (Gauss) i = 7, 8

Table 4.2: Sequence of quadratures for the computation of the integral in g20 appearing
in eq. (4.19).

interval value
0 ≤ g20 ≤ 6/15 0.007(18)

6/15 ≤ g20 ≤ 6/9 −0.020(17)
6/9 ≤ g20 ≤ g20|T1 −0.0315(16)
g20|T1 ≤ g20 ≤ g20|T2 −0.0340(10)
g20|T2 ≤ g20 ≤ g20|T3 −0.0486(12)

interval value
g20|T3 ≤ g20 ≤ g20|T4 −0.0766(17)
g20|T4 ≤ g20 ≤ g20|T5 −0.1255(21)
g20|T5 ≤ g20 ≤ g20|T6 −0.2075(20)
g20|T6 ≤ g20 ≤ g20|T7 −0.4232(27)
g20|T7 ≤ g20 ≤ g20|T8 −1.066(11)

Table 4.3: Contributions to the integral in g20 shown in Figure 4.3, computed from 6×1443
lattices. Each line corresponds to one quadrature, see Table 4.2.

see equations (4.25) and (4.26). For the data in Figure 4.3 we report in Table 4.3 the
various contributions from the quadratures. Notice in particular that the integral in the
interval g20 ∈ [0, 6/15] is well compatible with zero, meaning that we can safely connect
to the 1-loop perturbative result. At each temperature, the accuracy on s∞ is ∼ 0.5%
for L0/a = 4, 6, ∼ 1% for L0/a = 8 and ∼ 1.5% for L0/a = 10. The final results for s∞
at fixed lattice spacing are reported in Table 4.7.

4.5 Quark contribution

In this Section we describe the computation of the integral in the bare mass which
defines the contribution χ, eq. (4.20), to the QCD entropy density. We first note that,
with Wilson fermions, the expression (4.20) for χ is formally the same with the bare
quark mass replaced by the bare subtracted quark mass mq = m0 −mcr(L0/a, g

2
0) :

χ = −1 + ξ2

ξk

1

T

∫ ∞

0
dmq

∆

∆ξk

〈
ψψ
〉
ξ,mq

. (4.27)
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Figure 4.3: Plot of the integrand function of the g20 integral, computed on 6 × 1443

lattices. The vertical lines denote the integration bounds for obtaining the integral at
the indicated temperature.

The integrand function is the shift-derivative of the chiral condensate. With the notation
introduced in Subsection 4.3, we explicitly write it as

∆

∆ξ1

〈
ψψ
〉
ξ
=
L0

4a

(〈
ψψ
〉
ξ+
−
〈
ψψ
〉
ξ−

)
. (4.28)

At given L0/a and g20 we estimate the integral in the bare quark mass with an opti-
mized combination of Gauss quadratures. At each value of bare mass prescribed by the
quadrature recipe, we perform two simulations of QCD with Nf = 3 degenerate massive
flavours at the two shifts for the computation of the discrete derivative, see eq. (4.28).
In the following we give more details on the integration procedure.

4.5.1 Integral in the bare mass

After the change of variable m̃q = mq/T , we split the integral χ in three parts:

χ = −2
(∫ m̃1

0
dm̃q +

∫ m̃2

m̃1

dm̃q +

∫ ∞

m̃2

dm̃q

)
∆

∆ξk

〈
ψψ
〉
ξ,m̃q

≡ χpeak + χtail + χres .

(4.29)

In χres we further change variable to the hopping parameter κ = 1/(2am0 + 8), so that
the integration interval becomes compact. The conversion with m̃q is

κ =
1

2(aTm̃q + amcr + 4)
, m̃q =

1

aT

(
1

2κ
− 4− amcr

)
(4.30)
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m̃q value L0/a

m̃1 5.0 4, 6, 8, 10

m̃2

{ 35.0 4
20.0 6, 8, 10

(a)

integral interval points
χpeak m̃q ∈ [0, m̃1] 10 (Gauss)
χtail m̃q ∈ [m̃1, m̃2] 7 (Gauss)
χres κ ∈ [0, κ2] 3 (Gauss)

(b)

Table 4.4: Left: choice of the masses m̃1, m̃2 used to split the integral in the mass. Right:
quadratures used for integrating the three contributions to χ.

and leads to
χres = −

2

aT

∫ κ2

0

dκ

2κ2
∆

∆ξk

〈
ψψ
〉
ξ,κ
, κ2 = κ(m̃2) . (4.31)

Notice that the values of κ in the conversion (4.30) depend on L0/a and g0 through the
critical mass.

The choice of the masses m̃1, m̃2 is arbitrary in principle. Using perturbation theory
as a guideline, we fixed m̃1, m̃2 so that the integral χpeak gives the bulk of the result,
χtail contributes by ∼ 20% and the last χres is a subdominant term which estimates the
asymptotic behaviour of the integral for very large values of the mass. The chosen values
are reported in Table 4.4a. See also Appendix F.2 for further details on the exploratory
perturbative study. Table 4.4b summarizes the definition of the three contributions to
χ, together with the chosen number of points for the Gauss quadratures. χpeak is the
main contribution and we integrate it with a n = 10 Gauss quadrature. We use 10 more
points for the computation of the rest of the integral, divided in a n = 7 quadrature for
χtail and a n = 3 quadrature for χres, the last performed with the hopping parameter as
integration variable. We can finally list the steps for the numerical computation of χ.

• At given L0/a and g20, determine the 20 points for the Gauss quadrature using
Tables 4.4.

• At the values of bare mass corresponding to the Gauss points, compute the chiral
condensate

〈
ψψ
〉

in two lattice QCD simulations at the two shifts for the discrete
derivative (4.28).

• Estimate the three contributions χpeak, χtail, χres using the quadrature formula

χa,b = −2
L0

4a

n∑

i=1

ω
(a,b,n)
i

(〈
ψψ
〉
ξ+
−
〈
ψψ
〉
ξ−

)∣∣∣
i
, (4.32)

where χa,b is the integral with support in [a, b], and the index i runs over the
different Gauss points. The coefficients ω(a,b,n)

i are uniquely fixed by the quadrature
recipe and depend on the integration interval and on the degree of the quadrature,
see Appendix F.1 for the notation.

At given L0/a and g20, the computation of χ requires in total 20× 2 simulations. Taking
advantage of the peculiarities of the quantity of interest, we managed to highly optimize
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the numerical approach so that the computation was feasible with moderate computa-
tional effort. We summarize these aspects in the following. Further details can be found
in the related Appendices.

4.5.2 Simulating at large mass

The simulations for the computation of χ have bare quark masses with values ranging
from mq = 0 to infinity. Notice that, as a consequence of the Gauss quadrature, simu-
lations at the exact chiral point are not required. The heavier the quarks, the less they
contribute to the dynamics: in particular, their forces in the molecular dynamics become
weaker and thus can be treated with coarser integrators. Furthermore, the gap in the
spectrum of Dirac operator increases with the quark mass, and this makes the Dirac
operator well conditioned. These observations suggest that a proper tuning of the simu-
lation parameters as the quark mass increases may really speed up the computation of
the integral χ. The detailed description of the tuning procedure and of the final choices
for the algorithms can be found in Appendix F.6. As a result, simulations with hopping
parameter κ ≲ 0.10 turned out to be up to 10 times cheaper than the ones near the chiral
limit.

In our simulations we employed a version of the package openQCD-1.6 [99] modified
for including shifted boundary conditions. Further details on the computational setup
and on the generation of our ensembles can be found in Appendix F.5.

4.5.3 Variance reduction of the chiral condensate

The chiral condensate is the primary observable for the computation of the integral χ. On
a given gauge configuration, we estimate stochastically the trace of the quark propagator
using U(1) random sources, see Appendix F.7. Calling O the stochastic estimator, its
variance is given by the sum of the variances coming from the Markov Chain of gauge
configurations and from the random sources,

var [O] = var [O]U +
1

Ns
var [O]η , (4.33)

where the latter is suppressed with the number of sources sampled at fixed gauge configu-
ration. The hopping expansion of the two contributions reveals that they scale differently
at small κ,

var [O]U ∼ κ6 , var [O]η ∼ κ4 , κ→ 0 . (4.34)

This would eventually make the contribution from the variance due to the random sources
dominant in simulations at large bare quark mass. The naive, and computationally
expensive, solution would be to increase the number of sampled sources with ∝ κ−2 as the
hopping parameter decreases. Following Ref. [66] we introduced an improved estimator
Õ for the chiral condensate, built by subtracting the quark propagator by its leading
order in the hopping parameter expansion. Clearly, the central value of the estimator is
not affected by the subtraction, i.e. ⟨Õ⟩ = ⟨O⟩, while the total variance var[Õ] of the
improved operator scales as ∼ κ6. As a result, at the smallest values of κ the variance
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temp χpeak/T
3 χtail/T

3 χres/T
3 χ/T 3 σχ/χ

T1 12.826(19) 2.852(21) 0.031(22) 15.71(4) 0.23%
T3 12.944(23) 2.672(24) 0.08(3) 15.70(5) 0.29%
T5 13.192(20) 2.420(21) 0.104(29) 15.72(4) 0.26%
T7 13.648(27) 2.27(4) 0.27(3) 16.18(5) 0.34%

Table 4.5: Selection of results of the three contributions to the bare mass integral, on a
lattice 6× 1443.

on the improved chiral condensate is more than one order of magnitude smaller than the
unimproved counterpart. The details of the subtraction and the numerical tests can be
found in Appendix F.8.

4.5.4 Optimization of the statistics

The error squared of the estimated integral χ, from equation (4.32), is the sum in quadra-
ture of the errors on the chiral condensates, weighted by the square of the Gauss weights.
The latter are maximum in the middle of the integration interval and decrease symmet-
rically towards the boundaries. This means that the Gauss points contribute differently
to the error of χ, with the central points contributing the most. This suggests that
the statistics of the points can be tuned so to minimize the computational cost at fixed
target accuracy for χ. In this optimization we also considered that points at high mass
are cheaper to simulate and that the variance of

〈
ψψ
〉

decreases for increasing mass.
This led to the optimized number of measurements of the chiral condensate reported
in Table F.8. The tuning was performed for a target relative error on χ of ∼ 0.5% for
L0/a = 4, 6, 8, and ∼ 1% for L0/a = 10. Appendix F.9 contains the detailed descrip-
tion of the minimization problem, and some numerical checks on the effectiveness of this
optimization.

4.5.5 Results

In this Subsection we show some representative results of the computation of the integral
in the bare mass χ at fixed bare parameters. Figure 4.4 shows the shape of the integrand
function from lattices of size 6 × 1443, at the temperatures T1, T3, T5, T7. For better
readability the plot shows points up to m̃q ≈ 15. The points are interpolated with a
spline, and the errors are smaller than the markers. Each point in the plot is a combi-
nation of data coming from simulations of QCD at two shifts in order to compute the
discrete derivative of the chiral condensate. The contributions χpeak, χtail, χres related
to the data shown in Figure 4.4 are reported in Table 4.5. As commented, the dominant
contribution comes from the peak of the integrand function, followed by the tail contri-
bution and finally the residual, which is of the order of a ∼ 1.5 sigma of the full result.
The statistics for this computation was tuned according to Table F.8. The precision of
these data is a few permille, even better than the target accuracy of 0.5%.
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Figure 4.4: Plot of the integrand function of the mass integral at 6 × 1443 and shown
temperatures.

4.5.6 Accuracy of Gauss quadratures

The Gauss quadrature of order n integrates exactly polynomials up to order 2n − 1.
When used to estimate the integral of a generic function, a systematic effect may be
introduced because of the underlying polynomial interpolation of the function itself. In
order to estimate this systematics, at some selected bare parameters we improved the
computation of the integral χ using the Kronrod extension of the Gauss quadrature,
which allows us to increase the accuracy by adding points to the Gauss quadrature. This
check is reported in Appendix F.4, and we find perfect agreement.

4.6 Perturbative results

We discuss the perturbative computation of the entropy density at 1-loop on the lattice.
We will use these results for the 1-loop improvement of the non-perturbative data. We
consider lattice perturbation theory with Nf flavours of mass-degenerate O(a)-improved
Wilson fermions. Notations and conventions are reported in Appendix E. We write the
1-loop expansion of the entropy density in bare lattice perturbation theory as follows,

s = s(0) + g20 s
(1) , s(i) = sG(i) + sF (i) , i = 0, 1 , (4.35)

where both the tree-level and 1-loop orders are separated in two contributions labelled
as gluonic and fermionic. In the presence of shifted boundary conditions each term of
this expansion can be computed from the discrete derivative with respect to the shift of
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the corresponding term in the perturbative expansion of the free-energy density. For the
latter we write the 1-loop expansion in lattice perturbation theory as [42]

f(L0, ξ) = f (0) + g20f
(1) , (4.36)

where the non-interacting case is

f (0) = (N2
c − 1)fG(0) +NcNff

F (0) (4.37)

while at 1-loop we have

f (1) = (N2
c − 1)

{
Ncf

G(1,Nc) +
1

Nc
fG(1, 1

Nc
) +Nf

[
fF (1,Nf ) + FF1 + FF2

+
∂fF (0)

∂am0

(
amcr

(1,Nc) + δamcr
(1,Nc,0) +Nfδamcr

(1,Nc,1)
)]}

.

(4.38)

The terms FF1 and FF2 represent the contributions from the improvement in the Wilson
action. We explicitly added the 1-loop corrections due to the critical mass amcr , and
the counterterms δamcr

(1,Nc,0), δamcr
(1,Nc,1) are the corresponding lattice artifacts. The

expansion of the critical mass at 1-loop in lattice perturbation theory can be found in
Appendix (E.2). The coefficients of the free-energy density up to 1-loop, appearing in
equations (4.37)-(4.38), are collected in Appendix E.3.

Given the perturbative result for the free-energy, the entropy density is computed as

s(0)

T 3
=

1 + ξ2

ξk

1

T 4

∆f (0)

∆ξk
,

s(1)

T 3
=

1 + ξ2

ξk

1

T 4

∆f (1)

∆ξk
. (4.39)

More explicitly, the gauge and fermionic components at tree-level are

sG(0)

T 3
= (Nc

2 − 1)
1 + ξ2

ξk

1

T 4

∆

∆ξk
fG(0) , (4.40)

sF (0)

T 3
= NcNf

1 + ξ2

ξk

1

T 4

∆

∆ξk
fF (0) , (4.41)

while at 1-loop

sG(1)

T 3
= (Nc

2 − 1)
1 + ξ2

ξk

1

T 4

∆

∆ξk

(
Ncf

G(1,Nc) +
1

Nc
fG(1, 1

Nc
)

)
, (4.42)

sF (1)

T 3
=(Nc

2 − 1)Nf
1 + ξ2

ξk

1

T 4

∆

∆ξk

[
fF (1,Nf ) + FF1 + FF2

+
∂fF (0)

∂am0

(
amcr

(1,Nc) + δamcr
(1,Nc,0) +Nfδamcr

(1,Nc,1)
)]

.

(4.43)
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L0/a sG(0)/T 3 sF (0)/T 3 sG(1)/T 3 sF (1)/T 3

4 8.362055 24.759901 −1.0064 −3.1652
6 7.483779 16.646853 −0.7572 −1.5690
8 7.259770 14.812035 −0.7055 −1.0643
10 7.167555 14.304311 −0.6879 −0.9279

Table 4.6: Entropy density for Nc = 3, Nf = 3 at 1-loop in lattice perturbation theory,
in the thermodynamic limit and at given values of L0/a.

4.6.1 Numerical computation

We computed numerically the values of the 1-loop coefficients of the entropy density in
lattice perturbation theory, at fixed L/a and in the infinite volume limit. The lattice
parameters have been tuned as described in Subsection 4.3. We considered lattices with
temporal sizes L0/a = 4, 6, 8, 10, while the spatial size, common to the three spatial
directions, ranged between L/a = 48 and L/a = 288. We adopted several strategies to
safely extrapolate to the infinite volume limit. Here we summarize the main results, see
Appendix E.4 for a detailed discussion.

The tree-level gluonic entropy sG(0) can be expressed analytically to the infinite vol-
ume limit. The computation is still numerical but no extrapolation is needed for it. The
integrals for the tree-level fermionic entropy sF (0) and the mass counterterm entering at
1-loop involve the tree-level quark propagator only, and show exponentially suppressed
finite volume effects. We therefore took their values on the largest lattice as an estimate
of the infinite volume limit. The coefficients sG(1), sF (1) contain integrals with more than
one loop momentum. We computed them numerically in coordinate space [102] using
a Fast Fourier Transform algorithm for the gluonic and fermionic propagators. At the
larger volumes we used quadruple precision to keep the numerical accuracy under control.
The 1-loop coefficients of the entropy density approach the infinite volume limit as slowly
as ∼ a/L, and this would require to compute them at very large spatial volumes for a
safe extrapolation to the thermodynamic limit. However, we managed to improve the
convergence rate by explicitly subtracting the slowest varying finite volume effects. The
residual effects are of the order of ∼ (a/L)3 and they are sufficiently small that we can
quote the values at the largest volume L/a = 288 as an estimate for the thermodynamic
limit. The results for the entropy density up to 1-loop in the thermodynamic limit and
at fixed L0/a are reported in Table 4.6.

4.7 Entropy of QCD

In this Section we combine the contributions s∞ and χ to determine the entropy density of
QCD, and extrapolate to the continuum limit the 1-loop improved data. The uncertainty
of the continuum results is mostly of statistical nature and any source of systematic effects
gives a subdominant contribution, as we comment in the following.

85



4.7.1 Finite volume effects

The entropy density is the derivative with respect to the shift of the free-energy density
of QCD. Following Ref. [59], in Appendix D.4 we show that the free-energy density has
exponentially suppressed finite size effects with MgapL, Mgap being the lightest mass in
the screening spectrum of the theory. According to the effective theory of thermal QCD,
see Section 2.5, this mass is proportional to the temperature. Therefore finite volume
effects for the entropy are expected to be exponentially suppressed with exponent ∝ TL,
where 10 ≲ TL ≲ 25 in our simulations. We explicitly checked that finite volume effects
are negligible with respect to our statistical accuracy, by comparing results for the entropy
from simulations with spatial sizes L/a = 144 and L/a = 288 at the temperatures T1 and
T8 (see Table 4.1) and at some selected bare parameters. The quantitative description
of this test is reported in Appendix F.12.

4.7.2 Restricting to zero topology

At high temperatures we expect the topological charge distribution to be strongly peaked
in the trivial topological sector, where the topological charge Q = 0. In the instanton gas
model, the topological susceptibility scales as ∼ T−8m3 for thermal QCD with three light
quarks and as ∼ T−7 for the pure SU(3) Yang-Mills theory. At the temperatures 3 GeV
≲ T ≲ 160 GeV considered in this study, the Q = 0 sector of the QCD phase space gives
by far the dominant contribution to the path integral, so that for all practical purposes
we can restrict our study to the trivial topology sector. The systematics introduced by
neglecting the non-zero topology phase space is much below the statistical accuracy of
our numerical results.

This said, at the largest values of g20 and resolutions L0/a = 4, 6 we observed some
topological activity in our pure gauge ensembles. In QCD simulations, Q ̸= 0 sectors were
sampled only at temperature T8 and at the largest values of bare quark masses, where the
topological susceptibility is less suppressed. By comparing results for the gauge action
and chiral condensate projected at given topological sectors, we explicitly checked that
topological fluctuations give a negligible effect within our statistical accuracy. This result
is in agreement with other studies in the literature [15]. However we decided to enlarge
the errors of

〈
SG
〉

to a conservative 1-2% for data at L0/a = 4, 6 and g20 ≳ 0.9 in order
to safely take into account any systematic effect due to topology. Further details and the
numerical checks can be found in Appendix F.11.

4.7.3 Continuum limit

The results for the entropy density s/T 3 at finite lattice spacing of Table 4.7 need to
be extrapolated to the continuum limit at fixed temperature. Our lattice action is non-
perturbatively O(a)-improved, and since the entropy density is a spectral quantity we
expect its cutoff effects to start at the order ∼ a2. We performed the 1-loop improvement
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T L0/a β = 6/g20 s∞/T
3 χ/T 3 s/T 3

T0
4 8.7325 7.7511(77) 22.7717(77) 30.523(11)
6 8.9950 7.070(25) 15.811(52) 22.881(58)

T1

4 8.3033 7.6890(77) 22.6784(91) 30.367(12)
6 8.5403 7.017(25) 15.709(36) 22.726(44)
8 8.7325 6.806(29) 14.320(80) 21.126(85)
10 8.8727 6.851(86) 13.92(15) 20.77(17)

T2

4 7.9794 7.6279(77) 22.588(10) 30.216(13)
6 8.2170 6.967(25) 15.801(39) 22.768(46)
8 8.4044 6.754(29) 14.356(71) 21.111(77)
10 8.5534 6.803(86) 13.85(16) 20.65(18)

T3

4 7.6713 7.5523(77) 22.523(12) 30.076(14)
6 7.9091 6.901(25) 15.696(45) 22.597(52)
8 8.0929 6.686(29) 14.244(78) 20.930(83)
10 8.2485 6.741(86) 13.80(16) 20.54(18)

T4

4 7.3534 7.4479(77) 22.465(11) 29.913(13)
6 7.5909 6.806(25) 15.711(41) 22.517(48)
8 7.7723 6.585(29) 14.349(80) 20.934(85)
10 7.9322 6.642(86) 14.13(17) 20.77(19)

T5

4 7.0250 7.2931(77) 22.387(12) 29.680(14)
6 7.2618 6.659(25) 15.716(41) 22.375(48)
8 7.4424 6.433(29) 14.547(89) 20.980(94)
10 7.6042 6.502(87) 13.89(19) 20.40(21)

T6

4 6.7079 7.0626(77) 22.385(13) 29.447(15)
6 6.9433 6.429(25) 15.865(48) 22.294(54)
8 7.1254 6.192(29) 14.535(71) 20.726(77)
10 7.2855 6.268(87) 14.35(19) 20.62(21)

T7

4 6.3719 6.6319(77) 22.512(18) 29.144(20)
6 6.6050 5.979(25) 16.184(54) 22.164(60)
8 6.7915 5.725(30) 14.98(12) 20.70(12)
10 6.9453 5.778(87) 14.72(16) 20.49(18)

T8

6 6.2735 4.885(27) 17.034(68) 21.919(74)
8 6.4680 4.637(31) 16.02(13) 20.65(13)
10 6.6096 4.571(88) 15.51(19) 20.09(21)

Table 4.7: Results for the contributions s∞ and χ to the entropy, and the total value s,
at fixed lattice spacing.
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of the bare data at given L0/a and g20 as follows,

s(L0/a, g
2
0)→ s(L0/a, g

2
0) ·

s(0) + g20 s
(1)

s(0)(a/L0) + g20 s
(1)(a/L0)

, (4.44)

where at the denominator appears the 1-loop result on the lattice for the entropy density
discussed in Section 4.6, see in particular Table 4.6, while at the numerator there is the
entropy density at 1-loop in continuum perturbation theory [82]. We report here the two
coefficients for reference:

s(0)/T 3 =
32π2

45
+

7π2

15
Nf , s(1)/T 3 = −2

3
− 5

18
Nf . (4.45)

The 1-loop improvement subtracts cutoff effects up to order ∼ g2 at all orders in the
lattice spacing. This means that the leading discretization effects are expected to be
∼ a2g3. The 1-loop improved data are represented in the top panel of Figure 4.5. In this
plot points at different temperatures are shifted downward for better readability.

We extrapolated the results to the continuum limit using a global fit that parametrizes
the temperature dependence of the discretization effects in terms of polynomials of a
renormalized coupling. The natural choice in our setup is the non-perturbative Schrödinger
functional coupling used to define the lines of constant physics. The general functional
form we used for the extrapolations is

f(g, a/L0) = p(g) +

(
a

L0

)2 (
p23 g

3 + p24 g
4
)
+

(
a

L0

)3 (
p33 g

3 + p34 g
4
)
, (4.46)

where p(g) is non-zero only at the values gi = gSF(
√
2Ti) of the coupling listed in Ta-

ble 4.1. These values represent the continuum limits at the temperatures T0, T1, ..., T8,
and for convenience we define them as pi ≡ p(gi), i = 0, ..., 8. The coefficients pij instead
parametrize the cutoff effects across all the temperatures.

We explored a variety of parameter combinations to assess the discretization effects
and ensure that systematic uncertainties were well-controlled. At first sight, the data
can be fitted with pure (a/L0)

2 corrections, i.e. p33 = p34 = 0, with a good fit quality.
However these fits are primarily influenced by the L0/a = 4 data, which are significantly
more accurate than data from finer lattices. This results in very small errors for the
continuum limits pi of the entropy (of the order of ≲ 0.1%). The high accuracy of the
coarsest data arises from their intrinsically smaller variance compared to finer lattices,
and the necessity of generating sufficiently long Monte Carlo histories for a sensible es-
timation of the errors.

To avoid being overly constrained by the coarsest lattice data, we considered fits in
which the uncertainty for the L0/a = 4 points was increased to the one of the L0/a = 6
points. We utilized these modified fits as a consistency check for other extrapolations
and to gain a better understanding of the cutoff effects. Inflating the error of the coarsest
points increases the uncertainty of the fit parameters. For the simple ∼ (a/L0)

2 fits, a
∼ 1 sigma effect can also be observed in the central values. To stabilize these fits, we
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Figure 4.5: Top: plot of the 1-loop improved entropy density at fixed lattice spacing
a/L0 and for all the temperatures Tn, n = 0, ..., 8. The points at temperature Tn have
been shifted downward by n for better readability. The three fits of Table 4.8 are shown
as the shadowed bands. The fit id9 is performed with L0/a = 6, 8, 10 data, but has
been extended up to (1/4)2. Bottom: Comparison of the entropy in the continuum
limit extrapolated according to the three fits id3, id7 and id9. The entropy is plotted
as a function of the MS coupling at 5-loop [11] computed at the renormalization scale
µ = 2πT . The points have been spaced horizontally by 0.015 for better readability.
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id3 id7 id9 (best fit)
T (GeV) 4I 4I N4
164.6(5.6) p0 20.152(49) 20.21(13) 20.20(10)
82.3(2.8) p1 20.088(39) 20.15(12) 20.115(83)
51.4(1.7) p2 20.094(37) 20.17(12) 20.163(79)
32.8(1.0) p3 20.004(38) 20.09(11) 20.039(77)
20.63(63) p4 19.980(36) 20.09(10) 20.037(73)
12.77(37) p5 19.909(37) 20.04(10) 19.981(73)
8.03(22) p6 19.850(44) 20.01(11) 19.936(77)
4.91(13) p7 19.794(64) 20.00(16) 19.93(11)
3.040(78) p8 19.658(77) 19.94(26) 19.83(17)

p23 -1.7(40) 6(47) 1(14)
p24 -0.7(33) -13(37) -4(11)
p33 -29(155)
p34 42(123)

χ2/d.o.f 0.636 0.568 0.643

Table 4.8: Parameters of the selected representative fits shown in Figure 4.5. The param-
eters p1–p8 are the continuum limit extrapolations of the entropy for the temperatures
T0–T8, at the temperatures reported in the first column. The coefficients p23, ..., p34
parametrize the cutoff effects of the continuum limit extrapolation. The label 4I indi-
cates the dataset where the errors of L0/a = 4 data have been enlarged to the ones of
L0/a = 6 data. The label N4 is for the dataset without L0/a = 4 points.

added ∼ (a/L0)
3 corrections represented by the coefficients p33 and/or p34. These fits

are basically unaffected by the error inflation.
Given that fits including L0/a = 4 points require (a/L0)

3 terms for stability, we also
attempted to extrapolate to the continuum using data with resolutions L0/a = 6, 8, 10
and only quadratic terms in the fit function. These fits proved to be stable under vari-
ations of the powers of g, and those including both g3 and g4 were more conservative in
the determination of the fit parameters.

A complete list of all combinations of fits considered can be found in Appendix F.10
From this investigation, we selected three fits as the most representative. The corre-
sponding coefficients are reported in Table 4.8. The fits are labeled as id3, id7, and
id9, and are classified based on the dataset used for the extrapolation. The dataset 4I
includes all the data, with the uncertainty for the L0/a = 4 data enlarged as discussed
above. The N4 dataset excludes the L0/a = 4 points. The quality of all fits is good, as
indicated by the χ2/dof values in the last row of the Table.

The three selected fits are displayed in the top panel of Figure 4.5. The comparison
of the continuum extrapolated entropy density in these three cases can be seen in the
bottom panel of the same Figure. The fits id3 and id7 represent the most aggressive
and conservative ways, respectively, to incorporate all the available data. Notably, they
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Figure 4.6: Stability of the best fit id9 under logarithmic corrections ∼ [α(π/a)]γ

to the leading cutoff effects ∼ a2, for the three values of γ given in the legend.

exhibit a systematic ∼ 1 sigma tension in their central values. Conversely, fit id9 does not
include the (error-inflated) L0/a = 4 points, rendering it insensitive to any systematics
arising from these coarse data. The central values of its parameters interpolate between
those of the id3 and id7 fits, with uncertainties sufficiently conservative to be compatible
with both. The extrapolation at T0 in fit id9 is particularly influenced by the other
temperatures because one point only is considered. However, p0 is perfectly compatible
with the analogous parameter from fit id7, and this makes us confident in the statistical
significance of this extrapolation.

Therefore we have selected id9 as the best fit. The related parameters p0–p8 listed in
Table 4.8 provide the entropy density s/T 3 of QCD in the continuum limit at temper-
atures T0–T8. The values at temperatures T0 through T7 have an accuracy of approxi-
mately 0.4%, while the entropy at the lowest temperature T8 shows a precision of around
0.8%. The covariance matrix of these fit parameters is reported in Table F.12.

In conclusion, we explicitly checked that no logarithmic corrections to the leading
cutoff effects [80] can be seen within our statistical accuracy. To this aim, we modified
the fit function for id9 to include an effective description of the logarithmic corrections
by means of powers of the coupling evaluated at the cutoff scale π/a,

f(g, a/L0) = p(g) + [α(π/a)]γ
(
a

L0

)2 (
p23 g

3 + p24 g
4
)
, (4.47)

where α = g2/(4π). The extrapolations turned out to be very stable under the variation
of the (effective) anomalous dimension γ in the interval [−1, 1]. Figure 4.6 shows the
comparison among the continuum extrapolations with γ = −1, 0, 1.
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Figure 4.7: Continuum extrapolated entropy density as a function of the 5-loop MS cou-
pling g2. The bands are two different fit forms, the blue one being our final interpolation.

4.7.4 Parameterization of the entropy density

The last column of Table 4.8 contains our best estimation of the QCD entropy density
in the continuum limit, at the different values of the temperature. These data are shown
in Figure 4.7 as function of the 5-loop MS coupling g, evaluated at the scale µ = 2πT .
Notice that for our purposes this is only a convenient way to parametrize the tempera-
ture dependence the non-perturbative data, which makes comparison with perturbation
theory easier. We chose to parametrize the continuum extrapolated results with a poly-
nomial in the coupling g. The simplest choice is a straight line in the coupling squared,
s/T 3 = c0 + c2 g

2, where both the intercept and the slope are free parameters. We ob-
tain the coefficients c0 = 20.72(24), c2 = −0.53(18), with χ2/d.o.f.= 0.7. Notably, the
intercept is perfectly compatible with the Stefan-Boltzmann value s(0) = 20.836. The
parameter c2 is not compatible with the 1-loop value, but this is somehow expected be-
cause it effectively includes the contributions from all the higher orders. This fit is shown
in Figure 4.7 as the orange shadowed band. We have selected as final parameterization
of the entropy density in the interval of temperatures covered by our data the following
polynomial,

s/T 3 = s(0) + c2 g
2 + c3 g

3 ,

c2 = −0.95(47) , c3 = 0.28(40) ,
(4.48)

where the intercept is fixed to the Stefan-Boltzmann value while c2, c3 come from the fit
(χ2/d.o.f.= 0.7). The covariance of the two coefficients is c23 = −0.1873. Notice that the
slope c2 is also compatible with the perturbative result s(1) = −1.5, even though with a
large error. This fit is shown in Figure 4.7 as the blue shadowed band.
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4.8 Discussion of the results

We have tried to fit the numerical data using as a guideline the perturbative result for
the entropy density from the thermal effective theory, equation (2.52). The slope quoted
in eq. (4.48) is compatible with the 1-loop result. We fixed it to s(1) and fitted the data
with two higher order terms, c3 g3 and c4 g

4. Proceeding in this way, we progressively
increased the order of the fit polynomial leaving the two highest order coefficients as
free parameters, to be determined from the fit. All the lowest coefficients were set to
the perturbative result. If the quality of the fit was good, and if the fit parameters were
compatible with perturbation theory, we fixed them to the perturbative result and moved
to the next order.

It turned out that the fit parameters are compatible within ∼ 1 sigma with the
perturbative coefficients. After constraining all the known perturbative expansion, we
could finally fit from our data the unknown coefficient qc encoding the non-perturbative
contribution from the ultrasoft modes at O(g6). We obtained the value qc = −2033(191),
with a good fit quality (χ2/d.o.f. = 0.9). This result is however expected to include
contributions from higher orders in the coupling. We investigated the stability by fitting
the data including a ∼ g7 correction. The fit (χ2/d.o.f. = 0.7) returns qc = −4722(1864)
and c7 = 0.25(17), so both with a ∼ 50% uncertainty. The two fits deviate from each
other at low temperatures, but in the interval of our numerical data and up to the Stefan-
Boltzmann limit they appear to be in good agreement, see the top panel of Figure 4.8.

The fit with qc as the only free parameter is also shown in the bottom panel of
Figure 4.8, where it is extended to lower temperatures to compare with other lattice
determinations of the entropy density from the literature [21, 13, 15]. Perturbation
theory by its own is of little help in describing the temperature dependence of the entropy
density, in particular in the temperature interval 3 GeV–160 GeV considered in this study.
Conversely, the perturbative expansion constrained with our numerical data apparently
reproduces the lattice results down to ∼ 500 MeV. Notice however that at the highest
temperature T ≃ 160 GeV the contribution to the interaction from the fitted g6 term is
still ∼ 30% of the total.

As a check of consistency, we fitted our data together with the weighted average of the
lattice results at T = 400 MeV using all the known perturbative expansion supplemented
by the qc term at g6, and the higher order correction c7 g7. This fit is the purple shadowed
band in the bottom panel of Figure 4.8. The resulting coefficients are qc = −2606(583),
c7 = 0.05(4) and χ2/d.o.f. = 0.82. The additional point at low temperature forces the
coefficient c7 to vanish, while qc remains compatible with the previous estimate within
errors.
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Figure 4.8: Top: entropy density in the continuum versus g2. The light blue fit includes
all the known perturbative orders, with qc as free parameter at order ∼ g6. The same for
the orange fit, with the additional free parameter p7 at order ∼ g7. Bottom: comparison
of our numerical data (black points) with the unconstrained perturbation theory and
lattice results at lower temperatures from Refs. [21, 13, 15]. The light blue shadowed
band represents the perturbative expansion with qc fitted from our data. The purple
shadowed band is the fit of the perturbative expansion with qc and a ∼ g7 term. We
included in this fit the weighted average of the points at T = 400 MeV.
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Chapter 5

Thermal QCD and non-perturbative
renormalization

The definition of QCD on the lattice requires the determination of renormalization con-
stants of (composite) fields, such that their renormalized correlation functions approach
the correct limit when extrapolated to the continuum. The renormalization of a bare
operator depends on the ultraviolet properties of the operator itself, and it is not sen-
sible to the infrared details of the theory (on the lattice, up to discretization effects).
This allows us to define non-perturbative renormalization schemes in convenient lattice
setups, possibly with reduced systematic effects and easy to simulate. A popular choice
that is employed to this purpose is, for instance, the Schrödinger functional scheme [96,
108, 105].

In this thesis we explore the use of QCD at finite temperature with shifted and
twisted (for quarks only) boundary conditions as a non-perturbative renormalization
scheme for some lattice composite operators. This setup is a generalization of the one
described in Section 2.2 to include an imaginary chemical potential. This renormalization
scheme proved to be successful for the non-perturbative renormalization of the Energy-
Momentum tensor in pure gauge theory [61]. We have applied this new strategy for
the first time in full QCD for the non-perturbative renormalization of the flavour-singlet
local vector current [22], as described in Section 5.2. The ultimate goal is to use thermal
QCD with shifted and twisted boundary conditions for the non-perturbative renormaliza-
tion of the EMT in lattice QCD, where the features of this framework can be exploited
at their full potential [42]. In Section 5.3 we discuss the renormalization strategy for
the EMT and show some preliminary non-perturbative results for the renormalization
constants [23].

5.1 Shifted and twisted boundary conditions

In this Section we generalize the discussion of Section 2.2 to take into account an imagi-
nary chemical potential. The partition function of thermal QCD in a moving frame and
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with an imaginary chemical potential µI reads [42]

Z(L0, ξ, µI) = Tr
{
e−L0(Ĥ−iξ·P̂−iµIN̂)

}
, (5.1)

where L0 is the size of the compact direction, ξ = (ξ1, ξ2, ξ3) is the Euclidean boost and
the operators Ĥ, P̂ and N̂ are respectively the Hamiltonian of the system, the total
momentum operator and the quark number operator. The trace is over the states of the
Hilbert space. The partition function (5.1) is equivalent to a Euclidean path integral
where fields satisfy shifted boundary conditions in the compact direction, supplemented
by twisted boundary conditions for fermionic fields,

Aµ(x0 + L0,x) = Aµ(x0,x− L0ξ) ,

ψ(x0 + L0,x) = −eiθ0ψ(x0,x− L0ξ) , (5.2)

ψ(x0 + L0,x) = −e−iθ0ψ(x0,x− L0ξ) ,

where we defined the twist phase θ0 = −L0µI . The results of Section 2.2 generalize
straightforwardly in presence of a non-zero imaginary chemical potential. We define the
free-energy density as

f(L0, ξ, θ0) = −
1

L0V
lnZ(L0, ξ, θ0) (5.3)

where we explicitly indicate the dependence on L0, ξ and θ0. The free-energy density is
even and periodic in θ0, with period 2π/3 [133], because of the interplay of the twist phase
with the centre Z3 of the gauge group SU(3). The SO(4) invariance of the free-energy in
the thermodynamic limit now reads

f(L0, ξ, θ0) = f(L0/γ,0, θ0) , γ = 1/

√
1 + ξ2 , (5.4)

where the parameter θ0 does not change because the conserved quark number is a Lorentz
invariant quantity. The shift lowers the temperature from 1/L0 to T = γ/L0 in the rest
frame. The same holds for the chemical potential, which is γµI in the rest frame. We
can now reformulate some of the Ward Identities we already derived in Section 2.2. The
one-point function of the time-space component of the EMT is formally the same but for
the θ0-dependence,

⟨T0k⟩ξ,θ0 = − ∂

∂ξk
f(L0, ξ, θ0) , (5.5)

while the expression for the entropy in eq. (2.17) generalizes to

Ts = −1 + ξ2

ξk
⟨T0k⟩ξ,θ0 − iµI⟨V0⟩ξ,θ0 , (5.6)

where Vµ = ψγµψ is the flavour-singlet vector current. The θ0-dependence of the free-
energy is related to the expectation value of the temporal component of the vector current,

⟨V0⟩ξ,θ0 = −iL0
∂

∂θ0
f(L0, ξ, θ0) , (5.7)
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which is an odd function of θ0. Combining equations (5.5) and (5.7) it can be shown that

⟨T0k⟩ξ,θA0 − ⟨T0k⟩ξ,θB0 =
i

L0

∫ θB0

θA0

dθ0
∂

∂ξk
⟨V0⟩ξ,θ0 , (5.8)

which gives the dependence of the one-point function ⟨T0k⟩ξ,θ on the parameter θ0. Fi-
nally, the Ward Identity (2.18) becomes

⟨T0k⟩ξ,θ0 = ξk

(
⟨T00⟩ξ,θ0 − ⟨Tjj⟩ξ,θ0

)
, j ̸= k , ξj = 0 . (5.9)

These Ward Identities will be crucial in the discussion of the non-perturbative renormal-
ization of the Energy-Momentum tensor in lattice QCD.

5.2 Renormalization of the QCD flavour-singlet local vector
current

We first applied thermal QCD with shifted and twisted boundary conditions to the non-
perturbative determination of the renormalization constant for the lattice flavour-singlet
local vector current, as described in the following.

5.2.1 Vector current in the continuum

In continuum QCD, the flavour-singlet vector current

Vµ(x) = ψ(x)γµψ(x) (5.10)

is the conserved current associated to the invariance of the theory under the U(1)V
subgroup of chiral symmetry. The bare flavour-singlet vector current coincides with its
renormalized version as discussed in Section 1.6. If we consider QCD at finite tempera-
ture with shifted and twisted boundary conditions (5.2), this property becomes manifest
through equation (5.7). Indeed the free-energy is a spectral quantity with an additive
power-divergent term: its derivative in the twist parameter θ0 is thus finite and renor-
malized once the bare parameters of the theory have been renormalized.

5.2.2 Vector current on the lattice

We consider for definiteness lattice QCD with Nf = 3 flavours of O(a)-improved Wilson
fermions, and Wilson plaquette action. The U(1)V symmetry is respected by the lattice
regularization, therefore at non-zero lattice spacing there exists a definition of the vector
current that is conserved and coincides with its renormalized version (see also Section 3.5):

V c
µ (x) =

1

2

[
ψ̄(x+ aµ̂)U †

µ(x) (γµ + 1)ψ(x) + ψ̄(x)Uµ(x) (γµ − 1)ψ(x+ aµ̂)
]
. (5.11)

However, other discretizations of this current can also be considered like, for instance,
the local vector current,

V l
µ(x) = ψ(x)γµψ(x) , (5.12)
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which closely resembles on the lattice the corresponding continuum expression. The use
of the local vector current requires the computation of its finite renormalization con-
stant ZV (g20). On the other hand, the local vector current has the numerically appealing
feature of involving only fields at a single lattice point. This often implies smaller statis-
tical fluctuations of correlators where the vector current is inserted, and smaller lattice
artifacts.

On the lattice, shifted and twisted boundary conditions for the fermionic fields have
the analogous expression of the continuum case, eq. (5.2), while the conditions for the
link field are obtained by replacing Aµ with Uµ, see also eq. (4.14). In the three spatial
directions, each of size L, all the fields satisfy standard periodic boundary conditions.
At finite temperature and in presence of twisted boundary conditions for the fermions,
the one-point functions ⟨V c

0 ⟩ξ,θ0 ,
〈
V l
0

〉
ξ,θ0

of the conserved and local currents do not
vanish. Moreover they coincide with the one-point functions of the O(a)-improved vector
currents [17],

V̂ c,l
µ (x) = V c,l

µ (x)− a

4
cc,lV (∂ν + ∂∗ν)

(
ψ(x) [γµ, γν ]ψ(x)

)
, (5.13)

because the expectation value of the O(a) terms vanish due to translational invariance.
These observations suggest to define the renormalization constant as

ZV (g
2
0) = lim

a/L0→0
Z(g20, a/L0) , Z(g20, a/L0) =

⟨V c
0 ⟩ξ,θ0〈
V l
0

〉
ξ,θ0

∣∣∣∣∣
g20 ,L0/a

, (5.14)

where the expectation values are in the thermodynamic limit. Notice that thanks to the
spectral gap due to the finite temperature we can impose the renormalization condition
at zero subtracted quark mass. In this definition the limit is taken at fixed bare coupling
g20, that is at fixed lattice spacing. Since in the continuum the vector current does not
need any renormalization, the ratio of one-point functions depends on the twist phase θ0
and on the shift ξ only by means of lattice artifacts which vanish when the a/L0 → 0
limit is taken. The residual O(a2) discretization effects are part of the definition of the
renormalization constant. They will be removed when taking the continuum limit of
correlation functions with the renormalized flavour-singlet local vector current inserted.

5.2.3 Perturbative computation

As a first exploration of the strategy, we computed the renormalization constant ZV
in lattice perturbation theory at 1-loop. This computation is also instrumental for the
1-loop improvement of the lattice data. At fixed lattice spacing we expand ZV as follows,

ZV (g
2
0, a/L0) = Z

(0)
V (a/L0)

[
1 +

N2
c − 1

Nc
Z

(1)
V (a/L0) g

2
0

]
+O(g40) , (5.15)

where the tree-level Z(0)
V and 1-loop Z

(1)
V coefficients, extrapolated to the infinite spa-

tial volume limit, can be found in Appendix G.1. The tree-level value Z(0)
V (a/L0) is
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Figure 5.1: The lattice artifacts of the renormalization constant of the flavour-singlet
local vector current at tree-level in perturbation theory as a function of θ0. Values for
various sizes L0/a of the lattice in the temporal direction are shown: the left panel
refers to the case of periodic boundary conditions (no shift) and the right one to shifted
boundary conditions with shift ξ = (1, 0, 0).

shown in Figure 5.1 as a function of θ0, for several values of a/L0 and for the two shifts
ξ = (0, 0, 0) (left panel) and ξ = (1, 0, 0) (right panel). When a/L0 becomes smaller and
smaller, Z(0)

V (a/L0) approaches the asymptotic value of 1 quadratically in a/L0. Dis-
cretization effects turn out to be more than one order of magnitude smaller for the shift
ξ = (1, 0, 0) with respect to the case of standard periodic boundary conditions, a fact
which is confirmed also at the next order in the perturbative expansion. For this reason
we have chosen the shift ξ = (1, 0, 0) for carrying out the non-perturbative calculation.
A similar reduction of lattice artifacts for ξ = (1, 0, 0) was observed in the computation
of the entropy density in the SU(3) Yang-Mills theory [61, 62] and of the QCD mesonic
screening masses [46]. The plots also show that the dependence of discretization effects
on θ0 is very mild. The free-energy density is even in θ0, therefore the interval of non-
trivial values is half of the period: θ0 ∈ [0, π/3]. For the non-perturbative computation
we have chosen the value θ0 = π/6, in the middle of this interval.

5.2.4 Non-perturbative computation

For our choice ξ = (1, 0, 0) of the shift, in the continuum the expectation value of the
vector current in the moving frame is related to the one in the rest frame by the SO(4)
transformation 




⟨V0⟩ξ,θ0 = γ
(
⟨V0⟩0,θ0 − ⟨V1⟩0,θ0

)

⟨V1⟩ξ,θ0 = γ
(
⟨V1⟩0,θ0 + ⟨V0⟩0,θ0

) , (5.16)

where the expectation value ⟨·⟩0,θ0 is computed in the rest frame. This suggests to
combine the components µ = 0, 1 of the vector currents on the lattice to effectively
increase the statistics. Furthermore, by exploiting the perturbative result we can improve
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β = 6/g20 L0/a = 4 L0/a = 6 L0/a = 8 L0/a = 10

5.3000 0.8082(20) 0.761(7) 0.762(5) 0.761(7)
5.6500 0.8389(22) 0.787(6) 0.792(6) 0.784(7)
6.0433 0.8826(21) 0.820(5) 0.820(5) 0.803(7)
6.6096 0.9126(18) 0.842(5) 0.841(6) 0.839(6)
7.6042 0.9459(22) 0.871(5) 0.869(6) 0.871(6)
8.8727 0.9774(17) 0.898(6) 0.884(5) 0.890(6)
11.500 1.0078(18) 0.934(4) 0.917(5) 0.923(6)

Table 5.1: Values of the ratio of one-point functions in eq. (5.17), obtained from Monte
Carlo simulations at θ0 = π/6 and shift ξ = (1, 0, 0) on lattices with size (L0/a)× 963.

at 1-loop our definition of ZV so to mitigate cutoff effects. We thus replace ZV (g20, a/L0)
of equation (5.14) with the new definition

ZV (g
2
0, a/L0) =

⟨V c
0 ⟩ξ,θ0 + ⟨V

c
1 ⟩ξ,θ0〈

V l
0

〉
ξ,θ0

+
〈
V l
1

〉
ξ,θ0

+ 1 + c1g
2
0 − Z(0)

V (a/L0)

[
1 +

8

3
Z

(1)
V (a/L0) g

2
0

]
,

(5.17)

where the 1-loop coefficient c1 is [52, 142]

c1 =
1

12π2

[
− 20.617798655(6) + 4.745564682(3) csw + 0.543168028(5) c2sw

]
, (5.18)

and the improvement coefficient is csw = 1 + 0.26590(7)g20 [95]. We computed non-
perturbatively the ratio of vector currents in equation (5.17) from lattice QCD simula-
tions at the 7 values of the inverse bare coupling squared β = 6/g20 given in Table 5.1.
Details on the algorithm used can be found in Appendix G.3. For the determination of
the critical hopping parameter we refer to Appendix B of Ref. [46]. For each value of
β, we simulate the 4 lattice resolutions L0/a = 4, 6, 8, 10 with a statistics of 100 mea-
surements at L0/a = 4, 6, 400 measurements at L0/a = 8, and 1000 measurements for
L0/a = 10. The spatial sizes of the lattice are fixed to L/a = 96. Our observables exhibit
autocorrelation times always less than 2 trajectories, and they are taken into account by
a proper binning of the data. We explicitly checked finite volume effects by performing
simulations at some selected bare parameters on lattices with spatial size 2883, and as
expected no effects were found within our statistical accuracy. Table 5.1 reports the raw
results from lattice simulations of the ratio of vector currents in eq. (5.17).

The left plot in Figure 5.2 shows the 1-loop improved numerical results at all the
considered values of β, as functions of (a/L0)

2. In the a/L0 → 0 limit we can parametrize
the lattice artifacts of ZV as follows,

ZV (g
2
0, a/L0) = ZV (g

2
0) + C1 · (a/L0)

2

+ C2 · (aΛQCD) · (a/L0) + C3 · (aΛQCD)
2 + ... ,

(5.19)
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β = 6/g20 ZV (g
2
0)

5.3000 0.768(7)
5.6500 0.794(7)
6.0433 0.809(7)
6.6096 0.833(7)
7.6042 0.864(7)
8.8727 0.878(7)
11.500 0.918(6)

Table 5.2: Values of ZV (g20) obtained by extrapolating to a/L0 → 0 the perturbatively
improved definition in eq. (5.17) for the data in Table 5.1.

where we expect the leading power to be ∼ a2 because of O(a) improvement, and the
dots stand for higher order terms in the lattice spacing. The term C2 is present and
separate from others because we are not taking a continuum limit. However, aΛQCD is a
small factor at the values of β considered. The (aΛQCD)

2 term is part of the definition
of ZV , and vanishes quadratically in the lattice spacing when a renormalized correlator
involving the flavour-singlet vector current is extrapolated to the continuum limit.

We performed two extrapolations to the a/L0 → 0 limit, considering first both the
C1, C2 terms of equation (5.19), and then the C1 term only. The extrapolated values are
compatible, and this confirms that the residual linear dependence in a/L0 in equation
(5.19) is negligible for all the values of β = 6/g20 we considered. To be conservative,
we average the two extrapolations at each β, and we take the largest error as the final
uncertainty. The errors we obtain are less than 1% and are fully dominated by statistics.
The extrapolated numbers at fixed β are reported in Table 5.2, and plotted in the right
panel of Figure 5.2 where they are compared to the perturbative prediction for the renor-
malization constant up to 2 loops [142]. The final result of this study is the polynomial
interpolation

Zfit
V (g20) = 1− c1 g20 − c2 g40 + c3 g

6
0 (5.20)

where we enforce the value of the coefficients c1 and c2 to be the 1-loop and 2-loop
results [52, 142], while the coefficient of the additional g60 term is fitted to describe the
mild bending of the data at larger values of the bare coupling. As a result

c1 = −0.1294299254732376 ,
c2 = −0.04683170849543621 ,
c3 = −0.016(3) ,

(5.21)

with c1 from eq. (5.18) by inserting csw = 1, c2 from [142], and c3 from the fit (χ2/d.o.f.
= 0.31). The fit is shown as the red shadowed band in the right panel of Figure 5.2.
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5.3 Renormalization of the Energy-Momentum tensor in
lattice QCD

In the study of the QCD thermodynamics, a central role is played by the Energy-
Momentum tensor (EMT) of QCD. Its correlation functions encode many physical prop-
erties of QCD at finite temperature, see Ref. [114] for a recent review. For instance, the
one-point function in a shifted frame is related to the entropy density, see eq. (2.17).
These quantities can be computed from first principles on the lattice once the discretized
EMT has been properly renormalized. In the following we discuss a numerical strategy
to determine the renormalization constants of the EMT non-perturbatively, based on
considering QCD with shifted and twisted boundary conditions [61, 132]. As part of the
original contribution of this thesis we will also show some preliminary numerical results,
which bode well for the feasibility of the full computation.

5.3.1 The Energy-Momentum tensor in the continuum

We consider the symmetric and gauge-invariant definition of the QCD EMT Tµν [92, 33],
see also Appendix B for the notation. In the continuum the EMT splits into a singlet and
a 9-dimensional representation of the SO(4) group. Under renormalization, the singlet
component mixes with the identity operator, while there are no other fields of mass
dimension ≤ 4 which may mix with the non-singlet representation. Moreover, the bare
and renormalized non-singlet EMT components coincide because the latter is related to a
conserved current associated to the invariance of the theory under the group of spacetime
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translations. This property becomes manifest if we formulate QCD at finite temperature
with shifted and twisted boundary conditions in the compact direction for the fields, see
equation (5.2). The spacetime components of the EMT satisfy the identity [42]

⟨T0k⟩ξ,θ0
= −∂fξ,θ0

∂ξk
, (5.22)

where fξ,θ0
is a shorthand notation for the free-energy (5.3) where only the shift ξ and

twist θ0 dependence are explicit. The free-energy density is a spectral quantity with
an additive power-divergent term. Its derivative with respect to the shift is thus finite,
once the bare parameters of the theory have been renormalized. Therefore T0k and all
the other non-singlet components of the EMT are finite too. For later convenience we
introduce the definition

VAB0,k = − i

L0

∫ θB0

θA0

dθ0
∂

∂ξk
⟨V0⟩ξ,θ0 , (5.23)

where Vµ is the flavour-singlet vector current and L0 is the size of the compact direction.
In combination with eq. (5.8), this leads to

VAB0,k = ⟨T0k⟩ξ,θB0 − ⟨T0k⟩ξ,θA0 , (5.24)

a relation that turns out to be convenient to exploit on the lattice.

5.3.2 Renormalization of the Energy-Momentum tensor on the lattice

The lattice regularization breaks the SO(4) symmetry down to its discrete hypercubic
subgroup SW4. The non-singlet EMT components split into the sextet and triplet repre-
sentations of this discrete group [33]. These two representations renormalize separately,
and no other lattice field is involved in their renormalization. Since only discrete space-
time translations are allowed, the bare non-singlet EMT is not a conserved current. As
a consequence, the fields in each representation require a finite renormalization whose
Z-factors depend only on the bare coupling g20. We focus on the non-perturbative def-
inition of the sextet and triplet representations of the lattice EMT, which follow the
renormalization pattern

TR,{i}µν = Z
{i}
G TG,{i}µν + Z

{i}
F TF,{i}µν , i = 3, 6 , (5.25)

where TG,{i}µν and T
F,{i}
µν are the dimension-4 gauge-invariant lattice operators in the i-

dimensional representation of the hypercubic group [33, 42], see Appendix B. We will fix
the renormalization constants by imposing that the lattice fields (5.25) satisfy a set of
Ward Identities which are satisfied by the EMT in the continuum, up to cutoff effects
(see also Section 3.5).

We consider on the lattice the shifted and twisted setup introduced in Sections 5.1
and 5.2. Using the definition (5.25) together with equation (5.22) at two values of the
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twist phase, θA0 and θB0 , and exploiting equation (5.24), we can write our master formula
for the computation of the renormalization constants of the sextet representation:




⟨TG,{6}0k ⟩
ξ,θA0

⟨TF,{6}0k ⟩
ξ,θA0

⟨TG,{6}0k ⟩
ξ,θB0

⟨TF,{6}0k ⟩
ξ,θB0







Z
{6}
G

Z
{6}
F


 =




−
∆fξ,θA0
∆ξk

−
∆fξ,θA0
∆ξk

+ VAB0,k




+O(a2) . (5.26)

The partial derivative in the shift has been replaced by finite differences up to discretiza-
tion effects and it is give in eq. (4.17). Then, the lattice counterpart of the Ward Identity
(5.9)

⟨TR,{6}0k ⟩
ξ,θ0

= ξk⟨TR,{3}0j ⟩
ξ,θ0

(j ̸= k, ξj = 0) (5.27)

gives access to the renormalization constants of the triplet representation. In full analogy
to the case of ZV , see equation (5.19), by dimensional arguments the leading lattice
artifacts of the renormalization constants for a→ 0 are

Z
(
g20, aT

)
= Z(g20) + C1 · (aT )2 + C2 · (aΛQCD)aT + C3 · (aΛQCD)

2 + ... . (5.28)

In this equation, Z is a shorthand notation for any of the Z-factors in eq. (5.25), and
T = 1/(L0

√
1 + ξ2) is the temperature of the thermal system. We include a T → 0 limit

at fixed g20 in the definition of the renormalization constants, so that the leading dis-
cretization effects C1, C2 are suppressed. All the residual lattice artifacts will disappear
when a renormalized correlator of the lattice EMT will be extrapolated to the continuum
limit.

5.3.3 Renormalization strategy at work

In the following we give some details on the lattice determination of the quantities ap-
pearing in the master equation (5.26). Although the strategy is general, we choose the
Wilson formulation of lattice QCD with Nf = 3 flavours of massless O(a)-improved
Wilson fermions. The derivative in the shift of the free-energy density appearing in
equation (5.26) can be computed, at fixed g20 and L0/a, following the procedure exten-
sively discussed in Chapter 4 and in Appendix F in the context of the non-perturbative
determination of the QCD entropy density at high temperature. The result we obtained
is reported in Table 5.3, and has an accuracy of few permille. We thus focus on the
lattice computation of the integral VAB0,k and of the bare matrix elements of the EMT.
For this exploratory computation of the renormalization constants we generated ensem-
bles on 6 × 963 lattices, at inverse bare coupling squared β = 6/g20 = 8.8727 and shift
ξ = (1, 0, 0). This setup is analogous to the one adopted for the computation of the QCD
EoS, and we refer to Chapter 4 for any unexplained detail.
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1

T 4

∆fξ,θA0
∆ξ1

VAB0,k /T
4

-11.381(24) 2.9286(71)

Table 5.3: Numerical results for the shift-derivative of the free-energy density and the θ0-
integral defined in equation (5.29). The lattice parameters are given in Subsection 5.3.3.
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6× 963, β = 8.8727

1loop

data

Figure 5.3: Integrand function of eq. (5.29) sampled at the values of the twist phase
θ0 prescribed by the Gauss quadrature. For comparison, the 1-loop result in lattice
perturbation theory is shown.
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5.3.4 Integral in the twist phase

On the lattice, the integral VAB0,1 in equation (5.26) can be written as

VAB0,1 = − i

L0

∫ θB0

θA0

dθ0
∆

∆ξ1

〈
V R
0

〉
ξ,θ0

= − i

L0

∫ (θB0 )2

(θA0 )2
dθ20

1

2θ0

∆

∆ξ1

〈
V R
0

〉
ξ,θ0

, (5.29)

where the discrete derivative in the shift of the one-point function of the vector current
reads

∆

∆ξ1

〈
V R
0

〉
ξ,θ0

=
L0

4a

(〈
V R
0

〉
ξ+,θ0

−
〈
V R
0

〉
ξ−,θ0

)
. (5.30)

The derivatives are taken in direction k = 1 with a 2-point symmetric discretization,
at the shifts ξ± = (1 ± 2a/L0, 0, 0), see also Section 4.3. In place of V R

0 we may use
the conserved current V c

0 , or the renormalized local current ZV V l
0 . For this study, we

choose the former. At fixed lattice spacing we estimate the integral with a 3-point Gauss
quadrature, after performing a change of variable from θ0 to θ20. The change of variable
is convenient because the integrand function is odd in θ0, meaning that a polynomial
representation of it, like the Gauss quadrature, would contain odd powers of θ0 only.
With the change to θ20 we effectively halve the degree of the polynomial, so that with
a 3-point quadrature we obtain the same accuracy that we would get with a 6-point
quadrature of the original integral. The periodicity and symmetry properties of the free-
energy in θ0 suggest to choose the values θA0 = 0 and θB0 = 3π/10. These values cover the
most of the allowed interval [0, π/3] and thus maximize the signal on VAB0,1 . This results
in better precision because the statistical error of ⟨V0⟩ is mostly independent from θ0.
At given g0 and L0/a, the numerical estimation requires to simulate lattices at the 3
values of θ0 prescribed by the Gauss quadrature and at the two shifts for the discrete
derivative (6 independent simulations in total). Details on the algorithm employed for the
simulations can be found in Appendix G.3. Figure 5.3 shows the numerically determined
integrand function, compared with its 1-loop result at finite L0/a. The resulting value
of the integral is reported in Table 5.3, and its accuracy is of the order of a few permille.

5.3.5 1-point functions of the bare EMT

The 1-point functions of the bare EMT appearing in the matrix on the left-hand side of
equation (5.26) are computed as they stand from numerical simulations. Table 5.4 shows
some preliminary numerical results at the chosen bare parameters for this exploratory
study. Data at θ0 = 0 come from ensembles with L/a = 288 while data at θ0 = 3π/10
from ensembles with L/a = 96. The 1-point functions are averaged over the volume, and
the number of measurements is tuned so as to reach a comparable statistical precision
in the two ensembles. The relative error on the

〈
TF
〉

components is a few permille,
while on the

〈
TG
〉

components is about 1%. Finite volume effects are exponentially
suppressed with the mass of the lightest screening state [59], which is proportional to
the temperature. Considering the results of Appendix F.12, we expect that finite volume
effects are negligible within the accuracy of this explorative study.
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θA0 = 0

⟨TF,{6}01 ⟩/T 4 -6.343(15) 0.24%

⟨TG,{6}01 ⟩/T 4 -2.822(22) 0.78%

⟨TF,{3}02 ⟩/T 4 -6.846(12) 0.17%

⟨TG,{3}02 ⟩/T 4 -3.130(44) 1.39%

L/a = 288, ntrj = 100

θB0 = 3π/10

⟨TF,{6}01 ⟩/T 4 -4.0535(88) 0.22%

⟨TG,{6}01 ⟩/T 4 -2.677(34) 1.26%

⟨TF,{3}02 ⟩/T 4 -4.375(16) 0.36%

⟨TG,{3}02 ⟩/T 4 -2.862(54) 1.88%

L/a = 96, ntrj = 2000

Table 5.4: Preliminary results for the 1-point functions of the sextet and triplet bare
EMT. The bare parameters are L0/a = 6, β = 8.8727.

Sextet (i = 6) Triplet (i = 3)

Z
{i}
G 1.349(61) 1.37(10)

Z
{i}
F 1.194(29) 1.037(51)

Table 5.5: Preliminary results for the renormalization constants, computed at β = 8.8727.

5.3.6 Renormalization constants

Using in equation (5.26) the results described so far, we obtain a first estimation of
the renormalization constants of the sextet components of the EMT. Then, equation
(5.27) leads to the renormalization constants of the triplet components. The resulting
preliminary values can be found in Table 5.5. The accuracy on the renormalization
constants ranges between 2% and 7%, and the error is largely dominated by the one of
the 1-point functions

〈
TG
〉
, see Figure 5.4. The reason can be traced back to the fact that

the solution of the master equation (5.26) requires differences like
〈
TG
〉
ξ,θB0
−
〈
TG
〉
ξ,θA0

,
see also Appendix G.2. These 1-point functions are weakly dependent on θ0, therefore the
signal mostly cancels while the errors, which are basically independent from the value of
θ0, sum in quadrature. This is expected because the twist phase is a sea quark effect for
gluonic observables. Within this precision, the contributions to the variance coming from
the integral in the mass and the integral in the twist phase are completely subdominant.

5.3.7 Outlook

We plan to extend the computation of the renormalization constants of the EMT for
several values of bare coupling and L0/a in order to perform the extrapolation in eq. (5.28)
with confidence at each chosen value of g20. This will allow us, in particular, to provide a
functional dependence of the renormalization constants with respect to the bare coupling,
as we did for ZV in Section 5.2. To assess the feasibility of the calculation we have to
take into account the scaling with L0/a of the statistical error of the one-point functions
of the vector current and of the tensor. However, these encouraging preliminary results
suggest that a final accuracy of a few percent or better may be achievable. In conclusion,
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Figure 5.4: Breakdown of the contributions to the variance of the renormalization con-
stants.

we notice that our program for the renormalization of the EMT of QCD is in large
overlap with the determination of the QCD Equation of State. Actually the renormalized
sextet component of the EMT is directly related to the entropy of QCD, see for instance
equation (5.5) at zero imaginary chemical potential.
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Conclusions

The thermodynamic properties of strongly interacting particles are of fundamental inter-
est for describing many phenomena, from particle physics to cosmology. The Equation
of State (EoS) of QCD is a key quantity with direct impact, for instance, in the analy-
sis of data from heavy-ion collision experiments [2, 71], as well as in understanding the
physics of the Early Universe. In the latter case, the EoS is needed up to temperatures
of the order of the electro-weak scale. The advent of gravitational wave astronomy, along
with advancements in precision Dark Matter searches at colliders, opened a new era for
cosmology that demands increasingly accurate predictions from theoretical physics [136,
135]. This is especially true for the EoS of QCD, for which non-perturbative lattice
calculations are available in the literature only up to temperatures of 1–2 GeV [21, 13,
15].

The main original result of this thesis is the first non-perturbative calculation on the
lattice of the EoS at 9 temperature values covering the range from 3 GeV to 160 GeV.
This result was obtained by employing a completely new strategy that allowed us to
simulate QCD at very high temperatures. At every temperature, the entropy density
has been computed at several lattice spacings to achieve solid continuum extrapolations,
which have accuracies of the order of 1% or better. The computation has been carried out
considering Nf = 3 massless flavours of O(a)-improved Wilson fermions, but our method
is fully general and can be applied without further conceptual difficulties to QCD with
five (massive) flavours.

The continuum results for the entropy exhibit a linear behaviour in the strong cou-
pling constant squared, pointing straight to the Stefan-Boltzmann limit. Despite the
very high temperature, this behaviour is not captured by perturbation theory [82] alone.
This observation confirms a trend noted for the EoS of the pure SU(3) Yang-Mills the-
ory [62], and more recently observed for the screening spectrum of thermal QCD [46,
64]. When the known perturbative series, supplemented by effective higher order inter-
actions, is constrained with the numerical results, some agreement is observed also at
lower temperatures down to ∼ 500 MeV, where results to compare with are available
from the literature.

The second main contribution of this thesis is the exploration of the use of thermal
QCD with shifted and twisted boundary conditions for the non-perturbative renormal-
ization of composite operators. We discussed the renormalization of the flavour-singlet
local vector current [22], which was the first application in lattice QCD of this renor-
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malization framework. We also presented preliminary non-perturbative results for the
renormalization constants of the lattice Energy-Momentum tensor. The renormalization
constants of the non-singlet components have been determined for one value of the lattice
spacing with a precision of a few percent at a moderate computational effort. Being a
notoriously challenging renormalization problem, these results are very promising for a
more extensive and precise determination.
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Appendix A

Notation and conventions

A.1 SU(Nc) conventions

The special unitary group SU(Nc) is the Lie group of unitary Nc × Nc matrices with
unit determinant. Its generators Ta ∈ su(Nc), a = 1, ..., N2

c − 1 are hermitian traceless
matrices chosen to satisfy the normalization condition

tr {TaTb} =
1

2
δab . (A.1)

Their commutation and anti-commutation relations read

[Ta, Tb] = ifabcTc , {Ta, Tb} =
1

Nc
1Ncδab + dabcTc (A.2)

where the structure constants fabc are completely anti-symmetric, while dabc is completely
symmetric. In the physical case Nc = 3, that is the one in interest in this thesis, The
generators can be represented as Ta = λa/2, a = 1, ..., 8 where the matrices λa are the
3× 3 Gell-Mann matrices.

A.2 Dirac matrices

In 4-dimensional Euclidean space and in chiral representation, the Dirac matrices are
given by

γ0 =

(
0 −12

−12 0

)
, γk =

(
0 −iσk
iσk 0

)
, k = 1, 2, 3 , (A.3)

where σ1, σ2, σ3 are the Pauli matrices. The γ-matrices are hermitian, γ†
µ = γµ, and

satisfy the anti-commutation relation

{γµ, γν} = 2δµν 14 . (A.4)

We define the fifth matrix γ5 = γ0γ1γ2γ3, with the properties

γ†
5 = γ5 , γ25 = 14 , {γµ, γ5} = 0 . (A.5)
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The trace of the product of an odd number of γ-matrices vanishes. Useful identities are

tr {γµγν} = 4δµν , (A.6)

tr {γµγνγργσ} = 4 (δµνδρσ − δµρδνσ + δµσδνρ) , (A.7)

tr{γµ1γµ2γµ3γµ4γµ5γµ6} = δµ1µ2tr {γµ3γµ4γµ5γµ6}
− δµ1µ3tr {γµ2γµ4γµ5γµ6}+ δµ1µ4tr {γµ2γµ3γµ5γµ6}
− δµ1µ5tr {γµ2γµ3γµ4γµ6}+ δµ1µ6tr {γµ2γµ3γµ4γµ5} .

(A.8)

We also introduce the hermitian matrices

σµν =
i

2
[γµ, γν ] . (A.9)

A.3 Lattice derivatives

We collect here the definitions of lattice covariant derivatives.

a∇µψ(x) = Uµ(x)ψ(x+ aµ̂)− ψ(x) (A.10)

a∇∗
µψ(x) = ψ(x)− U †

µ(x− aµ̂)ψ(x− aµ̂) (A.11)

aψ(x)
←−∇µ = ψ(x+ aµ̂)U †

µ(x)− ψ(x) (A.12)

aψ(x)
←−∇∗
µ = ψ(x)− ψ(x− aµ̂)Uµ(x− aµ̂) (A.13)

We also introduce the notation ←→∇ µ = ∇µ −
←−∇µ (A.14)

←→∇ ∗
µ = ∇∗

µ −
←−∇∗
µ (A.15)
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Appendix B

The QCD Energy-Momentum tensor

In this Appendix we give the notation and conventions on the definition of the Energy-
Momentum tensor (EMT) of QCD in use in this thesis, both in the continuum and on
the lattice.

B.1 The Energy-Momentum tensor in the continuum

The EMT is the conserved current associated to the invariance of continuum QCD under
the SO(4) group. We consider the symmetric and gauge invariant definition of the EMT
of QCD [92, 33]. We may write it as the sum of the two components

Tµν = TGµν + TFµν , (B.1)

where

TGµν =
1

g20

{
F aµαF

a
να −

1

4
δµνF

a
αβF

a
αβ

}
(B.2)

and

TFµν =
1

4

{
ψγµ
←→
D νψ + ψγν

←→
D µψ

}
− 1

4
δµνψ

{
1

2
γα
←→
D α +M0

}
ψ . (B.3)

The differential operator
←→
D µ is defined as

←→
D µ = Dµ −

←−
Dµ ,

←−
Dµ =

←−
∂ µ + iAµ , (B.4)

and Dµ is the covariant derivative (1.3).

B.2 The Energy-Momentum tensor on the lattice

We consider the Wilson lattice regularization of QCD. We discretize the EMT by re-
placing the fields and the derivatives appearing in the continuum expressions with their
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lattice counterparts. We use the same notation of the continuum, as any ambiguity will
be resolved by the context. We define [33, 32, 31, 30]

Tµν = TGµν + TFµν , (B.5)

where
TGµν =

1

g20

{
F aµαF

a
να −

1

4
δµνF

a
αβF

a
αβ

}
, (B.6)

with
F aµν = 2 tr

{
F̂µνT

a
}
, Fµν = F aµνT

a , (B.7)

and with F̂µν being the clover discretization of the field strength tensor, see equa-
tion (3.47). The fermionic part reads

TFµν =
1

8

{
ψγµ

[←→∇ ∗
ν +
←→∇ ν

]
ψ + ψγν

[←→∇ ∗
µ +
←→∇ µ

]
ψ

}

− 1

4
δµνψ

{
1

4
γα

(←→∇ ∗
α +
←→∇ α

)
+M0

}
ψ ,

where
←→∇ µ and

←→∇ ∗
µ are defined in equations (A.14) and (A.15).

B.2.1 Decomposition in the hypercubic group

The lattice regularization breaks the SO(4) symmetry of the continuum theory to its
hypercubic subgroup SW4. The lattice EMT splits in the singlet, triplet and sextet
representations of this group. The sextet components are

TG,{6}µν = (1− δµν)
1

g20

{
F aµαF

a
να

}
, (B.8)

TF,{6}µν = (1− δµν)
1

8

{
ψγµ

[←→∇ ∗
ν +
←→∇ ν

]
ψ + ψγν

[←→∇ ∗
µ +
←→∇ µ

]
ψ
}
, (B.9)

the triplet components are

TG,{3}µν =
1

g20

{
F aµαF

a
µα − F aναF aνα

}
, (B.10)

TF,{3}µν =
1

4

{
ψγµ

[←→∇ ∗
µ +
←→∇ µ

]
ψ − ψγν

[←→∇ ∗
ν +
←→∇ ν

]
ψ
}
, (B.11)

and finally the singlet components read

TG,{1}µν = δµν
1

4g20
F aαβF

a
αβ , (B.12)

TF,{1a}µν = δµν
1

16
ψ
{
γα

(←→∇ ∗
α +
←→∇ α

)}
ψ , (B.13)

TF,{1b}µν = δµνψψ . (B.14)
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Appendix C

Details on the thermal effective
theory of QCD

C.1 The Linde problem

Perturbation theory at finite temperature suffers from a convergence problem that was
pointed out by Linde [94]. Any quantity can be computed only up to to some perturbative
order, since beyond that all the diagrams contribute at the same order and the expansion
breaks down. The maximum order is in general quantity-dependent, and this problem
holds no matter how weak the coupling g is.

To sketch the problem let’s consider the perturbative computation of the free-energy
density, equation (2.5). The contributing diagrams are all the possible vacuum bubbles.
Following the argument by Linde [94] 1 we consider the diagram in figure C.1, with N
vertices, N + 1 loops and 2N gluon propagators. The associated integral has the form

∼ g2N
N+1∏

i=1

(
T

∫
d3pi
(2π)3

)
1

p2
1 +m2

N∏

i=2

(
1

p2
i +m2

)2 1

p2
N+1 +m2

, (C.1)

where we restricted to the zero Matsubara modes and we introduced a mass m as infrared
regulator. The integral has a mass dimension equal to 3(N+1)−2−4(N−1)−2 = 3−N ,
and once solved the mass m is the only quantity that can carry this dimensionality.
Therefore the result will have the parametric form

∼ g2N TN+1

π3N+3
m3−N =

1

π2N

( g
π

)6
T 4

(
g2T

πm

)N−3

. (C.2)

The obvious comment is that massless particles develop worse and worse IR divergences
as the loop order increases. However we know that the thermal medium screens the
particles and this translates in an effective IR regulator, which arises naturally in the
context of thermal effective theory. The following scenarios may happen [90]:

1See also Philipsen’s lectures [126].
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Figure C.1: Loop diagram contributing to the free-energy density of QCD at order g2N ,
where N is the number of vertices.

• The loop lines contain heavy fields with thermal mass m ∼ πT , like the fermions or
the non-zero Matsubara frequencies of the gauge field. The weak coupling expansion
makes sense provided g2T ≪ π2T , that is (g/π)2 ≪ 1. In this case diagrams are
always IR-safe and the contribution is computable in perturbation theory, giving
rise to the usual expansion in even powers of the coupling.

• The loop lines contain the soft field Ā0, whose thermal mass is m ∼ mE ∼ gT
(the Debye mass). The perturbative expansion is still computable as far as g2T ≪
πgT → g/π ≪ 1, and odd powers of the coupling appear as a characterizing feature.

• The loop lines contain the ultrasoft chromo-magnetic field, whose energy scale is
∼ g2T/π. In this case the contributions (C.2) are all of the same order ∼ g6,
independently from the number of loops N . This generates an infinite tower of
Feynman diagrams that in general cannot be resummed, breaking the perturbative
approach.

The last scenario is known as Linde problem and signals that MQCD cannot be treated
in perturbation theory. Therefore the weak coupling expansion of a QCD observable in
thermal perturbation theory makes sense only up to the loop order where MQCD does
not contribute. For the pressure, this happens at order ∼ g6.

C.2 Higher order contributions to the pressure in the effec-
tive theory

It is interesting to estimate the contributions to the pressure coming from higher order
operators in the thermal effective theory. The hope is that their contribution is beyond
the maximum perturbative order we are interested in, that is ∼ g6.

Following [82], we start from the higher order contributions to Electrostatic QCD.
The next operators to be added are dimension 6 terms that have been classified in [34]
and, parametrically speaking, they are the 4-dimensional operators we already considered
with two extra powers of the covariant derivative Dk or of the field Ā0. The diagrams
generated by these operators encode the interactions with the hard scales of the full
theory that have been integrated out, and thus they should contain at least one extra
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power of g2 and they are suppressed with (πT )2. Therefore these diagrams generate
contributions to the pressure of the order

∼ T · g2 1

(πT )2
DjDk LEQCD ∼ g7 T 4 , (C.3)

where we used the fact that covariant derivatives have mass dimension 1 and the relevant
mass scale is mE ∼ gT . The Electrostatic Lagrangian has mass dimension 3, so that
LEQCD ∼ (gT )3. As hoped, higher order operators in EQCD can be omitted as their
contribution to the perturbative expansion starts at order ∼ g7.

We repeat the same analysis for Magnetostatic QCD. The next higher order operators
which correct the MQCD action (2.34) are of mass dimension 6, and they encode the
interaction of ultrasoft modes with the soft modes of EQCD that in this context is the
“full” theory. Proceeding as before we can quote the contribution from the generated
diagrams:

∼ T · g2E
1

(gT )2
DjDk

mE
LMQCD ∼ g9 T 4 . (C.4)

At variance of eq. (C.3), here we have the coupling g2E because now EQCD is the complete
theory. For the same reason the cutoff scale is the soft scale mE ∼ gT , and the relevant
dynamical mass scale is ∼ g2T . The magnetostatic Lagrangian contributes as LMQCD ∼
(g2T )3. One extra power of mE appears at the denominator for dimensional reasons (the
full contribution must be of mass dimension 4). The contribution of higher dimensional
operators starts at order ∼ g9 in perturbation theory. Also in this case the conclusion is
that we can neglect them if we restrict to order ∼ g6.
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Appendix D

Thermodynamics and Lorentz
invariance

In this Appendix we report some theoretical details on the framework of thermal field the-
ory with shifted boundary conditions, whose main properties are discussed in Section 2.2.
We refer to that Section for all the unexplained notations.

D.1 Shifted boundary conditions

In this Section we proof that the partition function eq. (2.10) for a thermal system on
a moving frame is equivalent to an Euclidean path integral with fields satisfying shifted
boundary conditions in the compact temporal direction [60] of size L0. For simplicity
consider a system with one scalar bosonic field ϕ. We write the propagation in time from
an initial state |ϕ(0,x)⟩ to the final state |ϕ(L0,x)⟩ as

⟨ϕ(L0,x)|e−L0(Ĥ−iξ·P̂ )|ϕ(0,x)⟩ , (D.1)

where Ĥ is the Hamiltonian of the system and ξ is the Euclidean Lorentz boost. The
total momentum operator P̂ generates translations in space,

|ϕ(0,x)⟩ = ϕ̂(0,x)|0⟩ = e−ix·P̂ ϕ̂(0,0)eix·P̂ |0⟩
= e−ix·P̂ ϕ̂(0,0)|0⟩ , (D.2)

where |0⟩ is the thermal vacuum of the theory. Using this property in the equation above
we get

⟨ϕ(L0,x)|e−L0(Ĥ−iξ·P̂ )|ϕ(0,x)⟩ = ⟨ϕ(L0,x)|e−L0Ĥ |ϕ(0,x− L0ξ)⟩ . (D.3)

The path integral is the trace over the Hilbert space, meaning that the final state must
be identified with the initial one. This enforces the boundary condition

ϕ(L0,x) = ϕ(0,x− L0ξ) (D.4)

on the bosonic field ϕ. The proof is the same for fermionic fields, with an extra −1
entering when the trace over the Grassmann-valued fields is taken.
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D.2 Generalized periodic boundary conditions

We now consider a thermal quantum field theory in a finite volume of sizes L0, L1, L2,
L3. In general, we may formalize the boundary conditions on fields as follows [59]. In R4

we introduce the primitive vectors as a set of linearly independent vectors. We collect
these vectors in a primitive matrix V ∈ GL(4,R), whose columns are the components of
the primitive vectors in an orthonormal basis of R4. For example we may consider the
following primitive matrices:

Vpbc =




L0 0 0 0
0 L1 0 0
0 0 L2 0
0 0 0 L3


 , Vsbc =




L0 0 0 0
ξ1L0 L1 0 0
ξ2L0 0 L2 0
ξ3L0 0 0 L3


 . (D.5)

The boundary conditions are imposed by identifying the fields at the positions xµ and
xµ+Vµνmν , mµ ∈ Z, up to a sign if the field is fermionic. Therefore Vpbc is associated to
periodic boundary conditions, and Vsbc to shifted boundary conditions along time plus
periodic in space. In this second case we also have the constraint on the shift

− Lk
2L0

< ξk ≤
Lk
2L0

(D.6)

due to the spatial periodicity. The finite volume theory is finally obtained by restricting
the fields to a subset of R4 called primitive cell :

C =
{
x ∈ R4 |xµ = Vµνtν , 0 ≤ tµ ≤ 1

}
. (D.7)

The partition function of the finite volume theory depends on the primitive matrix, in
addition to all the parameters of the infinite volume theory. In a Lorentz invariant theory
the (Euclidean) rotation

V → RV , R ∈ SO(4) (D.8)

leaves the theory unchanged. In addition, the finite volume partition function is invariant
under a transformation of the primitive matrix under the discrete group SL(4,Z). This
allows to replace the primitive vectors by linear combinations among themselves with
integer coefficients.

Summarizing, the primitive matrices V , V ′ are associated to the same finite volume
partition function (even though with different boundary conditions) if they can be related
by a SO(4) and/or SL(4,Z) transformations:

V ′ = RVM , R ∈ SO(4) , M ∈ SL(4,Z) . (D.9)

This establishes an equivalence relation V ′ ∼ V between the two primitive matrices.
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D.3 Shift and Lorentz invariance

In this Section we use the formalism we introduced to proof the Lorentz invariance in
the thermodynamic limit of the free-energy density, eq. (2.13), which we report here for
convenience:

f(L0, ξ) = f(L0/γ,0) , γ = 1/

√
1 + ξ2 . (D.10)

We also refer to the original literature for further details [59]. We start from the finite
volume theory and assume ξ = (ξ, 0, 0). The primitive matrix with shifted boundary
conditions (see eq. (D.5)) becomes

Vsbc =




L0 0 0 0
ξL0 L1 0 0
0 0 L2 0
0 0 0 L3


 (D.11)

and it is associated to the partition function

Z(Vsbc) = Tr
{
e−L0(Ĥ−iξP̂1)

}
(D.12)

where we write explicitly the dependence on the primitive matrix to stress that we are
in finite volume. As first step we rotate to the rest frame by applying a Lorentz trans-
formation to the primitive vectors:

RVsbc =




L0/γ L1γξ 0 0
0 L1γ 0 0
0 0 L2 0
0 0 0 L3


 , R =




γ γξ 0 0
−γξ γ 0 0
0 0 1 0
0 0 0 1


 . (D.13)

For better interpreting the rotated matrix, we further transform it under the SL(4,Z)
group so to make it resemble the structure of the original matrix Vsbc :

V1 =M−1RVsbcM =




γL1 0 0 0
−ξγL1 L0/γ 0 0

0 0 L2 0
0 0 0 L3


 , M =




0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1


 . (D.14)

According to the equivalence (D.9), Vsbc ∼ V1 and the finite volume partition functions
are the same: Z(Vsbc) = Z(V1). In parallel to equation (D.12), we may interpret Z(V1)
as the partition function of a thermal system with screening Hamiltonian H̃, whose
eigenstates propagate along the direction given by the first column of the primitive matrix
V1,

Z(V1) = Tr
{
e−γL1(H̃+iξω̃)

}
, (D.15)

where ω̃ is the momentum operator generating the translations along the second primitive
vector. The theory has shifted boundary conditions along the first column and periodic

120



boundary conditions in the sub-volume L0/γ × L2 × L3. Note that the temperature is
still the inverse of the “short” direction, T = γ/L0, even though it is along the second
primitive vector.

Assuming that the Hamiltonian H̃ has a translationally invariant vacuum and a mass
gap, in the L1 → ∞ limit the partition function Z(V1) will become insensitive to the
phase ξω̃. It can be shown that the effect of the phase is suppressed exponentially with
the lightest mass in the spectrum of H̃, see also below. Therefore, in this limit the
following identity among free-energies holds,

lim
L1→∞

f(V1) = lim
L1→∞

f(Vdiag) , (D.16)

where we introduced the diagonal primitive matrix

Vdiag =




L1γ 0 0 0
0 L0/γ 0 0
0 0 L2 0
0 0 0 L3


 , (D.17)

which is associated to periodic boundary conditions. The limits L2, L3 →∞ can be taken
as well, and in conclusion the primitive matrices Vsbc and Vdiag describe the same thermal
system in the thermodynamic limit, but for the fact that the temperature changes from
1/L0 to T = 1/(L0

√
1 + ξ2). The invariance of the infinite volume theory under 3d

rotations allows to generalize the result to any vector ξ. This completes the proof of
equation (2.13).

D.4 Finite volume

We address here the finite volume corrections [59, 46] to the Lorentz invariance of the
free-energy density, equation (2.13), in the first direction (so in the limit L1 → ∞) and
assuming shift ξ = (ξ, 0, 0). Referring to the notation introduced in Subsection D.3, we
focus on the free-energy f(V1) associated to the partition function (D.15),

f(V1) = −
1

L0V
lnZ(V1) = −

1

L0V
ln

(∑

n

⟨n|e−γL1(H̃+iξω̃)|n⟩
)

= − 1

L0V
ln

(∑

n

e−γL1(E0+∆En+iξωn)

)
,

(D.18)

where the states |n⟩, n ≥ 0 of the Hilbert space are simultaneously eigenstates of the
screening Hamiltonian H̃ and of the momentum operator ω̃. These states live in the
sub-volume L0/γ × L2 × L3 with primitive matrix

V 1 =



L0/γ 0 0
0 L2 0
0 0 L3


 , (D.19)
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which encodes periodic boundary conditions. We call ∆En the energy gap of the state
n above the energy E0 associated to the vacuum state |0⟩ of the screening Hamiltonian,
and ωn the Matsubara frequencies of the momentum operator. Since in the L1 → ∞
limit only the vacuum contributes, the free-energy in that limit is given by E0. We may
separate the vacuum term,

f(V1) =
1

L0V
· L1γE0 + I1 , (D.20)

where

I1 = −
1

L0V
ln

(
1 +

∑

n>0

e−γL1(∆En+iξωn)

)
(D.21)

is the finite volume correction to the free-energy. Thermal effective theory arguments
(see Section 2.5) allow to say that, at asymptotically high temperatures T , the lightest
exited states above the vacuum have a mass-gap Mgap ∝ T . The heaviest scale in the
effective approach is the fermionic one ∼ πT . Therefore we expect the lightest eigenstates
to be purely gluonic 1-particle states with mass equal to Mgap and energies≪ πT . These
states give the leading contributions to the finite volume effects,

I1 ≈ −
1

L0V

∑

1−particle
states

e−γL1(∆E+iξp1) + · · · , (D.22)

where we defined

∆E =
√
M2

gap + p2 , p =

(
γ
2πn1
L0

,
2πn2
L2

,
2πn3
L3

)
, n1, n2, n3 ∈ Z (D.23)

the energy of the states and the allowed momenta in the box with V 1 as primitive matrix.
Equation (D.22) shows that finite volume effects on f(V1) decay exponentially as

MgapL1 →∞:
f(V1)− lim

L1→∞
f(V1) = I1 + · · · ∼ e−MgapL1 . (D.24)

Since f(Vsbc) = f(V1), the same holds for f(Vsbc). The result generalizes to arbitrary
shift ξ and to the other limits L2,3 →∞.

D.5 Proofs of Ward Identities on a moving frame

In this Section we prove the relations reported in Subsection 2.2.1.

D.5.1 Proof of equation (2.15)

We differentiate once with respect to the shift ξk both sides of equation (2.13):

∂

∂ξk
f(L0, ξ) =

∂

∂ξk
f(T,0) , T =

1

L0

√
1 + ξ2

. (D.25)
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On the right-hand side, we exchange the derivative in the shift with a derivative in the
temperature,

∂

∂ξk
f(T,0) =

∂T

∂ξk

∂

∂T
f(T,0) =

ξk

1 + ξ2
Ts , (D.26)

where we introduced the entropy density of the system through its thermodynamic defini-
tion (2.8). Therefore, the entropy in the not-shifted frame can be related to the derivative
in the shift of the free-energy in the shifted frame,

Ts =
1 + ξ2

ξk

∂

∂ξk
f(L0, ξ) , T =

1

L0

√
1 + ξ2

, (D.27)

where we stress that the temperature T is the one in the frame at rest with the thermal
system. This completes the proof.

D.5.2 Proof of equation (2.18)

Another interesting Ward Identity is obtained from (2.13) We differentiate both sides of
equation (2.13) with respect to L0:

L0
∂

∂L0
f(L0, ξ) = L0

∂

∂L0
f(T,0) , T =

1

L0

√
1 + ξ2

. (D.28)

From the left-hand side we obtain

L0
∂

∂L0
f(L0, ξ) = −f(L0, ξ)− ⟨T00⟩ξ −

∑

i

ξi⟨T0i⟩ξ , (D.29)

where the correspondence Ĥ → −T00 between the total energy operator and the Energy-
Momentum tensor (defined in Appendix B) has been used. From the right-hand side we
get

L0
∂

∂L0
f(L0/γ,0) =

∂T

∂L0

∂

∂T
f(T,0) = Ts , (D.30)

with T = L0/γ temperature in the frame at rest with the thermal system. Using equa-
tion (2.17) we get a Ward Identity involving only quantities measured in the frame where
the thermal system is moving:

f(L0, ξ) + ⟨T00⟩ξ +
∑

i

ξi⟨T0i⟩ξ =
1 + ξ2

ξk
⟨T0k⟩ξ . (D.31)

We may assume that the shift is not zero in the component ξk only. Using the mapping
f(L0, ξ)→ −⟨Tjj⟩ξ, with j ̸= k, we get the desired relation

⟨T0k⟩ξ = ξk

(
⟨T00⟩ξ − ⟨Tjj⟩ξ

)
, j ̸= k , ξj = 0 . (D.32)
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Appendix E

Entropy density in lattice
perturbation theory

E.1 Notation

The notation follows Appendix E of Ref. [42], from which we retrieve the relevant results
which are instrumental for our discussion. We consider lattice QCD with Nf flavours of
mass-degenerate O(a)-improved Wilson fermions, on a lattice with compact size L0 and
spatial sizes L1, L2, L3.

Bosonic fields

We introduce the Fourier transform of the field Aµ as

Aµ(x) =

∫

p
ξ

Ãµ(p) e
ip(x+a

2
µ̂) , (E.1)

where the notation
∫
p
ξ

stands for

∫

p
ξ

f(p) =
1

L0L1L2L3

∑

n

f(p) (E.2)

and, in presence of shifted and twisted boundary conditions, the momenta in the bosonic
Brillouin zone are

p0 =
2πn0
L0
−

3∑

k=1

pkξk , pk =
2πnk
Lk

(E.3)

where nµ = 0, 1, ..., Lµ/a − 1. In the infinite spatial volume limit the integral (E.2)
becomes ∫

p
ξ

f(p)
Li→∞−−−−→ 1

L0

∑

n0

∫

BZ

d3p

(2π)3
f(p) , (E.4)
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where BZ stands for the Brillouin zone. In momentum space the free gluonic propagator
reads

Dab
µν(p) =

δabδµν
DG(p)

, DG(p) =
3∑

µ=0

p̂2µ , p̂µ =
2

a
sin
(apµ

2

)
. (E.5)

Fermionic fields

The Fourier transform for fermionic fields is

ψ(x) =

∫

p
ξ,θ

ψ̃(p) eipx , ψ(x) =

∫

p
ξ,θ

ψ̃(p) e−ipx , (E.6)

where the integral
∫
p
ξ,θ

is defined as in eq. (E.2). In presence of shifted and twisted
boundary conditions, the momenta in the fermionic Brillouin zone are

p0 =
2πn0
L0

+
θ0
L0

+
π

L0
−

3∑

k=1

pkξk , pk =
2πnk
Lk

+
θk
Lk

(E.7)

where nµ = 0, 1, ..., Lµ/a− 1. The fermionic propagator is

S(p) =
−iγµpµ +m0(p)

DF (p)
, (E.8)

where

DF (p) =
3∑

µ=0

p2µ +m2
0(p) , m0(p) = m0 +

a

2

3∑

µ=0

p̂2µ , pµ =
1

a
sin(apµ) . (E.9)

E.1.1 Some relevant integrals

We report a collection of integrals that appear in tree-level and 1-loop calculations in
lattice perturbation theory. We define the notation cµ = cos(apµ).

B(0) =

∫

p
ξ

1

DG(p)
(E.10)

B(3)
µ =

∫

p
ξ

cµ(p)

DG(p)
(E.11)

F (4)
µν =

∫

p
ξ,θ

p̄µcν(p)

DF (p)
(E.12)

F (5)
µ =

∫

p
ξ,θ

m0(p)p̄µ
DF (p)

(E.13)

F (6)
µν =

∫

p
ξ,θ

m0(p)p̄µcν(p)

D2
F (p)

(E.14)

F (7)
µ =

∫

p
ξ,θ

m2
0(p)p̄µ
D2
F (p)

(E.15)

F (8) =

∫

p
ξ,θ

m0(p)

DF (p)
(E.16)
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L0/a δam
(0)
cr × 103 δam

(1,Nf ,0)
cr × 103 δam

(1,Nf ,1)
cr × 103

4 -1.5131 1.7730 0.9087
6 -0.6384 0.0380 0.0851
8 -0.3209 0.0026 0.0196
10 -0.1835 0.0008 0.0072
12 -0.1145 0.0009 0.0034
14 -0.0761 0.0008 0.0019
16 -0.0531 0.0007 0.0011

Table E.1: Cutoff effects to the 1-loop critical mass for the O(a)-improved theory (csw =
1), obtained from Table 7.1 of Ref. [88].

E.2 Critical mass at 1-loop

We consider the critical mass mcr computed requiring the PCAC mass to vanish in the
Schrodinger functional setup [88, 124]. At 1-loop

amcr = am(0)
cr + δam(0)

cr + g20

(
am(1)

cr + δam(1,0)
cr +Nfδam

(1,1)
cr

)
, (E.17)

where am(0)
cr = 0 and we define

am(1)
cr =

N2
c − 1

Nc
am(1,Nc)

cr , (E.18)

δam(1,0)
cr =

N2
c − 1

Nc
δam(1,Nc,0)

cr , (E.19)

δam(1,1)
cr =

N2
c − 1

Nc
δam(1,Nc,1)

cr , (E.20)

with [124]

am(1,Nc)
cr =− 0.16285705871085(1) + csw 0.04348303388205(10)

+ c2sw 0.01809576878142(1) .
(E.21)

At this order, the improvement coefficient is csw is either 0 or 1 for the unimproved or
improved theory. The quantities δam(0)

cr , δam(1,Nc,0)
cr , δam(1,Nc,1)

cr are the cutoff effects in
the determination of the critical mass in lattice perturbation theory, therefore they have
a dependence on the lattice spacing. Their values for csw = 1 are reported in Table E.1.
In our perturbative calculations at 1-loop, the proper chiral limit is thus obtained by
setting the bare quark mass to the tree-level value of E.17.
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E.3 Free-energy at 1-loop

In this section we collect the computation of the free-energy density in lattice perturbation
theory. Results are taken from Appendix F of Ref. [42]. At tree-level we have

fG(0) =

∫

p
ξ

ln
[
a2DG(p)

]
, fF (0) = −2

∫

p
ξ

ln
[
a2DF (p)

]
. (E.22)

The 1-loop gluonic contributions are

fG(1,Nc) =
{
(B(0))2 − 1

2

∑

σ

[
B(0) −B(3)

σ

]2
+
1

2
a2K1+

1

24
a4K2−

1

2a2
B(0)

}
, (E.23)

fG(1, 1
Nc

) =
1

2

{∑

σ

[
B(0) −B(3)

σ

]2
+

1

8a4

}
, (E.24)

where we defined the integrals

K1 =

∫

p
ξ
;q

ξ
;k

ξ

δ̄(p+ q + k)

DG(p)DG(q)DG(k)

∑

µ

p̂2µ q̂
2
µ , (E.25)

K2 =

∫

pξ;qξ;kξ

δ̄(p+ q + k)

DG(p)DG(q)DG(k)

∑

µ

p̂2µ q̂
2
µ k̂

2
µ (E.26)

and the delta function is

δ(p) = (2π)4δ(4)(p) = a4
∑

x

eipx . (E.27)

The fermionic term at 1-loop is

fF (1,Nf ) = B(0)

[
1

a2
− a (am0 + 4)F (8)

]
+

∫

q
ξ
;p

ξ,θ
;k

ξ,θ

δ̄(p− q − k)
DG(q)DF (p)DF (k)

×
[
am0(k)

∑

σ

r̄σp̄σ + am0(p)
∑

σ

k̄σ r̄σ −m0(k)m0(p)
∑

σ

cσ(r) +
∑

σ

p̄σk̄σ (cσ(r)− 3)

]
,

(E.28)
where r = p + k. The contributions at 1-loop FF1 and FF2 come from the improving
term of the Wilson action are

FF1 = −acsw
2

∫

q
ξ
;p

ξ,θ
;k

ξ,θ

δ̄(p− q − k)
DG(q)DF (p)DF (k)

{
a
∑

σρ

[
(p̄ρ + k̄ρ)q̄σ(p̄σk̄ρ − k̄σp̄ρ)

]

−
∑

σ

{
q̄σ
[
m0(k)p̄σ −m0(p)k̄σ

]∑

ρ ̸=σ

[
cρ(p) + cρ(k)

]}
}
, (E.29)
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FF2 =
a2c2sw
8

∫

q
ξ
;p

ξ,θ
;k

ξ,θ

δ̄(p− q − k)
DG(q)DF (p)DF (k)

{
m0(p)m0(k)

∑

σ

{
q̄2σ

[
3 +

∑

ρ ̸=σ
cρ(q)

]}

+ 2
∑

σρ

k̄σ q̄σp̄ρq̄ρ

(
2−cσ(q)+

∑

λ ̸=ρ
cλ(q)

)
−
∑

σρ

k̄σp̄σ q̄
2
ρ

(
1−2cσ(q) +

∑

λ ̸=ρ
cλ(q)

)}
. (E.30)

In conclusion, the 1-loop mass counterterm enters through the derivative in the bare
mass of the tree-level fermionic free-energy:

∂fF (0)

∂am0
= −4F (8) . (E.31)

E.4 Infinite volume limit

We discuss the infinite volume limit of the integrals that appear in the perturbative
expansion of the free-energy (see Section E.3), which are relevant for our study. For the
simplest integrals it is possible to express the infinite volume limit analytically. Instead,
we compute the 1-loop integrals numerically in finite volume, and then we extrapolate
to the thermodynamic limit. Taking advantage of the analytic results, we managed to
subtract the leading finite volume effects and thus speed up the convergence to the infinite
volume limit.

E.4.1 Analytic infinite volume of B(0)

For this computation we assume for simplicity that the shift is in the first direction only:
ξ = (ξ, 0, 0). To keep the notation lighter we will also assume that all dimensionful
quantities are multiplied by the proper power of the lattice spacing a so to become
dimensionless; for instance, pµ → apµ, Lµ → Lµ/a. The momenta in the Brillouin zone
are given by equation (E.3) and, in particular, p0 mixes with p1 only. It is convenient to
define the not-shifted zero momentum

p̃0 =
2πn0
L0

, n0 = 0, ..., L0 − 1 , (E.32)

and the inverse of the gluon propagator can be written as

DG(p) =
∑

µ

p̂2µ = 2
∑

µ

(1− cos pµ) = 8− 2

[
cos(p̃0 − ξp1) +

3∑

i=1

cos pi

]
. (E.33)

In the infinite volume limit Li →∞ the integral B(0) becomes

B(0) Li→∞−−−−→ B(0)
∞ ≡ 1

L0

∑

n0

∫ π

−π

d3p

(2π)3
1

8− 2 [cos(p̃0 − ξp1) +
∑

i cos pi]
, (E.34)
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where we replaced the discrete sums over p1, p2, p3 with (continuum) integrals over the
Brillouin zone. Using the Schwinger representation

1

A
=

∫ +∞

0
dα e−αA (E.35)

our integral becomes

B(0)
∞ =

1

L0

∑

n0

∫ π

−π

d3p

(2π)3

∫ +∞

0
dα e−8αe2α[cos(p̃0−ξp1)+

∑
i cos pi] . (E.36)

The integration over the momentum components p2, p3 has the following structure:

1

2π

∫ π

−π
dp e2α cos p =

1

π

∫ π

0
dp e2α cos p = I0(2α) (E.37)

where I0 is a modified Bessel function. Back to our computation, we change variable
α = x/2 and we arrive to the final expression

B(0)
∞ =

1

L0

L0/a−1∑

n0=0

1

2

∫ +∞

0
dx

{
[
e−xI0(x)

]2

×
∫ π

−π

dp1
2π

ex[cos(ap̃0−ξap1)+cos(ap1)−2]

}
,

(E.38)

where for definiteness we inserted the proper powers of the lattice spacing a. In this ex-
pression the momentum integral over p1 and the integral over x still need to be computed
numerically, but the final result is exactly in infinite volume. Note that in the ξ = 0
case the integral

∫
dp1 “collapses” in one extra factor of [e−xI0(x)], as expected since the

symmetry in the three spatial directions is restored.

E.4.2 Analytic infinite volume of B
(3)
µ

Using the same conventions of the previous Subsection E.4.1, we write the infinite volume
limit of B(3)

µ as follows:

B(3)
µ,∞ ≡

1

L0

∑

n0

∫ π

−π

d3p

(2π)3
cos pµ

8− 2 [cos(p̃0 − ξp1) +
∑

i cos pi]
. (E.39)

We focus separately on the four components µ = 0, 1, 2, 3. B
(3)
0,∞ and B

(3)
1,∞ can be

computed in full analogy to what we did for B(0)
∞ . The results are

B
(3)
0,∞ =

1

L0

L0/a−1∑

n0=0

1

2

∫ +∞

0
dx

{
[
e−xI0(x)

]2

×
∫ π

−π

dp1
2π

cos(ap̃0 − ξap1) ex[cos(ap̃0−ξap1)+cos(ap1)−2]

}
,

(E.40)
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B
(3)
1,∞ =

1

L0

L0/a−1∑

n0=0

1

2

∫ +∞

0
dx

{
[
e−xI0(x)

]2

×
∫ π

−π

dp1
2π

cos(ap1) e
x[cos(ap̃0−ξap1)+cos(ap1)−2]

}
,

(E.41)

where we inserted the proper powers of the lattice spacing.
For the other two components B(3)

2,∞ and B
(3)
3,∞ the calculation is similar: after using

the Schwinger representation (E.35) and change variable α = x/2, we have to compute
the momentum integral

∫ π

−π
dpi cos pi e

x(cos pi−1) = e−x
d

dx
I0(x) = e−xI1(x) , (E.42)

where i = 2, 3 (but the result is the same). Inserting the proper powers of the lattice
spacing we finally get

B
(3)
2,∞ = B

(3)
3,∞ =

1

L0

L0/a−1∑

n0=0

1

2

∫ +∞

0
dx

{
[
e−xI0(x)

] [
e−xI1(x)

]

×
∫ π

−π

dp1
2π

ex[cos(ap̃0−ξap1)+cos(ap1)−2]

}
.

(E.43)

The integrals over the momentum
∫
dp1 and over the auxiliary variable

∫
dx can be

computed numerically.

E.4.3 Analytic infinite volume of sG(0)

The tree-level gluonic component of the entropy density is given in equation (4.40) as
the discrete derivative in the shift of the tree-level gluonic component of the free-energy
density, fG(0). The latter is given in equation (E.22) and the computation of its infi-
nite volume limit is similar to the computations for B(0)

∞ and B
(3)
µ,∞, although slightly

more involved because of the logarithm in the integrand function. Adopting the usual
conventions of Subsection E.4.1 we define the infinite spatial volume integral

fG(0)
∞ ≡ 1

L0

∑

n0

∫ π

−π

d3p

(2π)3
ln

(
8− 2 cos(p̃0 − ξp1)− 2

∑

i

cos pi

)
. (E.44)

We start with the following one-dimensional integral prototype,
∫ π

−π

dp

2π
ln (M − 2 cos p) =

1

π

∫ π

0
dp ln (M − 2 cos p) , (E.45)

where M is a constant with respect to p. Integrating by parts, using the Schwinger
representation and integrating again by parts it is possible to show that

∫ π

−π

dp

2π
ln (M − 2 cos p) = lnM +

∫ ∞

0
dx

1

x
e−xM/2 [1− I0(x)] . (E.46)
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Our integral (E.43) is a multidimensional version of the prototype (E.45), with three
nested integrations over the spatial components of the momentum. We start from the
integral in dp3, and we define

M3 = 8− 2 cos(p̃0 − ξp1)− 2 cos p1 − 2 cos p2 (E.47)

which is constant with respect to the integration over the third component of the mo-
mentum. From equation (E.46) we immediately get

fG(0)
∞ =

1

L0

∑

n0

∫ π

−π

dp1dp2
(2π)2

{
lnM3 +

∫ ∞

0
dx

1

x
e−xM3/2 [1− I0(x)] .

}
(E.48)

Proceeding iteratively, we focus on the dp2 integral and we define

M2 = 8− 2 cos(p̃0 − ξp1)− 2 cos p1 (E.49)

so that M3 = M2 − 2 cos p2. The first piece of (E.48) in terms of M2 and p2 is again
the integral prototype, while in the second another factor of the Bessel function I0(x)
emerges. In conclusion, the final result is

fG(0)
∞ =

1

L0

L0/a−1∑

n0=0

{∫ π

−π

dp1
2π

ln [8− 2 cos(ap̃0 − ξap1)− 2 cos(ap1)]

+

∫ +∞

0
dx

1

x
e−2x

[
1− I20 (x)

] ∫ π

−π

dp1
2π

ex[cos(ap̃0−ξap1)+cos(ap1)−2]

} (E.50)

where we introduced the proper powers of the lattice spacing. The integrals
∫
dp1 and∫

dx can be computed numerically.
One may be worried that the ∼ 1/x in the second integral spoils the convergence near

the x = 0 integral boundary. We thus study the x → 0 limit of the integrand function.
The relevant leading quantity is

1− I20 (x)
x

=
[1− I0(x)][1 + I0(x)]

x
≈ −1

2
x+O(x3) (E.51)

where we used the x→ 0 Taylor expansion of the Bessel function:

I0(x) ≈ 1 +
1

4
x2 +O(x4) . (E.52)

Therefore the
∫
dx does not diverge for x → 0. However, in a numerical computation

the ∼ 1/x may give rise to numerical instabilities. A solution could be to regularize the
integral by splitting ∫ +∞

0
dx =

∫ ε

0
dx+

∫ +∞

ε
dx , (E.53)

and use the Taylor expansion of the integrand function in the [0, ε] integral. It must be
said that if the numerical integration is carried out with a Gaussian-type quadrature then
the integrand function is not evaluated at the boundaries and the numerical problem is
circumvented. Using this result we can compute the related entropy sG(0). Results for
values of L0/a relevant to our study are reported in Table 4.6.
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Figure E.1: Left: Infinite volume extrapolation of the integral K1 at given lattice param-
eters. The comparison with the subtracted case is shown. The former is fitted linearly
in a/L, the latter in (a/L)3. Right: Infinite volume extrapolation for the subtraction
coefficient cK1 .

E.4.4 Infinite volume extrapolation of sF (0)

The tree-level fermionic entropy density in lattice perturbation theory is defined in equa-
tion (4.41) as the derivative in the shift of the tree-level fermionic free-energy fF (0),
eq. (E.22). We take the infinite volume limit by extrapolation. At fixed L0/a, we com-
pute numerically fF (0) at two shifts and combine them so to obtain sF (0). We fix the
lattice parameters as described in 4.3. We repeat the computation for increasing values
of L/a which is taken to be the same in all the special directions, from L/a = 96 to
L/a = 288. The convergence at infinite volume is very fast: this is expected because
fermions at finite temperature have a mass gap ∝ πT and finite-volume effects are expo-
nentially suppressed with ∼ TL [59]. The infinite volume values reported in Table 4.6
are the ones at the largest volume.

E.4.5 Infinite volume extrapolation of sG(1)

The 1-loop gluonic contribution to the entropy density is given in equation (4.42) in
terms of the discrete derivative in the shift of the free-energy components fG(1,Nc) and
fG(1, 1

Nc
), shown in equations (E.23) and (E.24). The latter can be computed analyti-

cally in the thermodynamic limit, as well as part of fG(1,Nc), using the results of Subsec-
tions E.4.1, E.4.2. However the integrals K1, K2 defined in eqs. E.25, E.26 and appearing
in fG(1,Nc) have to be extrapolated to infinite volume, as we discuss in the following. For
definiteness, we adopt the choice of parameters relevant for our study and described in
Section 4.3.
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Figure E.2: Left: Infinite volume extrapolation of the integral K2. Right: Infinite volume
extrapolation of the integral B(0).

Infinite volume limit of K1, K2

To start with, we may try to naively extrapolate in the a/L→ 0 limit the two integrals.
The left panel of Figure E.1 shows (blue circle markers) the infinite volume extrapolation
for K1, at the indicated lattice parameters. The volumes range between spatial sizes
L/a = 96 and L/a = 288. The convergence to thermodynamic limit is as slow as ∼ a/L.
On the contrary, from Figure E.2a we see that K2 approaches the infinite volume limit
with the faster power ∼ (a/L)3, so that for all practical purposes we can take the value
at the largest lattice size L/a = 288 as the infinite volume result. The slow convergence
of K1 can be traced back to the fact that in its integrand function, see eq. (E.25), the
powers of momenta from the gluon propagators are not all balanced by the powers of
momenta in the numerator (compare for instance with K2 in eq. (E.26), where this
balance occurs). Therefore whenever the unbalanced momentum k goes to zero the
integral has the effective behaviour

K1 ∼
∫

kξ

1

DG(k)
= B(0) , k → 0 , p, q ̸= 0 (E.54)

whose approach to the infinite volume limit is ∼ a/L, see Figure E.2b. This observation
gives us the handle to speed up the convergence. We replace K1 with the subtracted
integral

K1 →K1 − cK1B
(0) + cK1B

(0)
∞

=

∫

p
ξ
;q

ξ
;k

ξ

[
δ̄(p+ q + k)

∑
µ p̂

2
µ q̂

2
µ

DG(p)DG(q)DG(k)
− cK1

DG(k)

]
+ cK2B

(0)
∞ ,

(E.55)
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where cK1 is the residual at the pole 1/DG(k) of the integrand function when k → 0,
that is on the momenta hyperplane p+ q = 0 constrained by the delta function:

cK1 =

∫

pξ

∑
µ p̂

4
µ

D2
G(p)

. (E.56)

This coefficient is easily computed numerically, see the right panel of Figure E.1. The
expected effect is that the ∼ a/L volume effects are removed from K1, so that the
subtracted integral converges to the infinite volume limit faster. Then, the subtracted
term can be added in the infinite volume by computing B(0)

∞ . The left panel of Figure E.1
shows the comparison of K1 with its subtracted version (E.55)(orange square markers).
The scaling of the latter is ∼ (a/L)3, so that its finite volume effects are negligible
compared with the not-subtracted integral. In practice we can just use the result at the
larger lattice L/a = 288 as infinite volume result. We repeat the whole procedure at
the two shifts required for the computation of sG(1). The resulting values are reported
in Table 4.6. In conclusion, we notice that the large finite volume effects ∼ a/L do
not cancel when we take the derivative in the shift, therefore the described procedure is
necessary also for the infinite volume limit of the entropy density.

E.4.6 Infinite volume extrapolation of sF (1)

This contribution is defined as the discrete derivative of the fermionic 1-loop terms of
the free-energy density, see equation (4.43). The building blocks are the terms fF (1,Nf ),
FF1 and FF2, whose expressions can be found in equations (E.28), (E.29) and (E.30)
respectively. In the following we consider separately the infinite volume computation of
these terms. The infinite volume values of sF (1), relevant for our purposes, are reported
in Table 4.6.

Infinite volume limit of fF (1)

This term is given in equation (E.28). We can express it analytically in infinite volume
but for the integral

If =

∫

q
ξ
;p

ξ
;k

ξ

δ̄(p− q − k)
DG(q)DF (p)DF (k)

[
am0(k)

∑

σ

r̄σp̄σ + am0(p)
∑

σ

k̄σ r̄σ

−m0(k)m0(p)
∑

σ

cσ(r) +
∑

σ

p̄σk̄σ (cσ(r)− 3)

] (E.57)

which has to be extrapolated to the thermodynamic limit. Working as for the integral K1

in Subsection E.4.5, we first note that a naive infinite volume extrapolation is plagued by
∼ a/L finite volume effects, see the blue circle data in the lest panel of Figure E.3. We
note that in the q → 0 limit the integrand function in (E.57) behaves like ∼ 1/DG(q).
This suggests to replace If with the subtracted integral

If → If − cIfB(0) + cIfB
(0)
∞ , (E.58)
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Figure E.3: Left: Infinite volume extrapolation of the integral If . The comparison with
the subtracted case is shown. The former is fitted linearly in a/L, the latter in (a/L)3.
Right: Infinite volume extrapolation for the subtraction coefficient cIf .

where the coefficient cIf is the residual at the pole 1/DG(q) of If , on the momentum
hyperplane q = p− k = 0:

cIf =

∫

pξ

1

DF (p)2

[
2am0(p)

∑

σ

(2p)σpσ −m2
0(p)

∑

σ

cσ(2p) +
∑

σ

p2σ (cσ(2p)− 3)

]
.

(E.59)
This integral can be easily computed numerically and its finite volume effects are expo-
nentially suppressed and negligible (right panel of Figure E.3). The subtraction (E.58)
effectively removes the ∼ a/L finite volume effects from If , and the convergence to the
thermodynamic limit becomes as fast as ∼ (a/L)3. We see the subtracted data in the left
panel of Figure E.3, orange square markers. We can safely take the value at the largest
lattice as the infinite volume limit.

Infinite volume limit of FF1, FF2

These integrals need to be computed numerically. Following the discussion we did so
far, we expect that the improvement terms FF1 and FF2 in equations (E.29) and (E.30)
approach the infinite volume limit with corrections of the order ∼ (a/L)3, since the
momentum of the gluon propagator is balanced at the numerator. The data actually
show this behaviour, see Figure (E.4). We take the value at the largest lattice, L/a = 288,
as an estimation of the infinite volume limit.

Infinite volume limit of the mass counterterm

We compute numerically the mass counterterm in equation (E.31) at increasing values
of the lattice volume, with sizes from L/a = 96 to L/a = 288. The finite-volume effects
are exponentially suppressed. We quote the value at the largest volume as an estimation
of the infinite volume result.
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Appendix F

Technical details on the
computation of the QCD entropy
density

F.1 Gaussian quadrature

We collect in this Appendix some relevant theoretical aspects of the Gaussian quadrature.

F.1.1 The formula

Given the definite integral

I[−1,1][f ] ≡
∫ 1

−1
dx f(x) (F.1)

the n-point Gaussian quadrature approximates it with the sum

I[−1,1][f ] ≈
n∑

i=1

ω
(n)
i f(r

(n)
i ) (F.2)

and it is exact if f is a polynomial of degree ≤ 2n− 1. The r(n)i , i = 1, ..., n are the roots
of the n-th Legendre polynomial Pn(x), while the coefficients ω(n)

i are given by

ω
(n)
i =

2
[
1− (r

(n)
i )2

] [
P ′
n(r

(n)
i )
]2 (F.3)

The Legendre polynomials can be obtained from the recursion

nPn(x) = 2nxPn−1(x)− (n− 1)Pn−2(x) , n ≥ 2 (F.4)

with starting conditions P0(x) = 1, P1(x) = x. The set of polynomials generated in this
way satisfies the orthogonality relation

∫ 1

−1
dxPm(x)Pn(x) = 0 if n ̸= m (F.5)
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We can generalize to definite integrals in the generic interval [a, b] as follows. We consider
the change of variable

x =
b− a
2

y +
b+ a

2
, y ∈ [−1, 1]→ x ∈ [a, b] (F.6)

which allows us to cast the integral on [a, b] to an integral on the standard domain:

I[a,b][f ] ≡
∫ b

a
dx f(x) =

b− a
2

∫ 1

−1
dy f

(
b− a
2

y +
b+ a

2

)
(F.7)

We can finally apply equation (F.2) to the last integral in this chain of equalities:

I[a,b][f ] ≈
n∑

i=1

ω
(a,b,n)
i f(x

(a,b,n)
i ) (F.8)

where

ω
(a,b,n)
i =

b− a
2

ω
(n)
i , x

(a,b,n)
i =

b− a
2

r
(n)
i +

b+ a

2
(F.9)

are the weights and the sample points for the approximation of the integral in a generic
bounded interval.

F.1.2 Accuracy of the Gaussian quadrature

We give some theoretical ground on which the Gaussian quadrature is founded.

Lagrange polynomials

Given n points x0, ..., xn−1, we define the Lagrange polynomials as follows:

l
(n−1)
j (x) =

∏

0≤i≤n−1
i ̸=j

x− xi
xj − xi

, j = 0, ..., n− 1 . (F.10)

Note that the Lagrange polynomials have degree n − 1. They satisfy lj(xk) = δjk,
therefore they can be used as a basis for expanding polynomials of degree < n given
their values at the points x0, ..., xn−1.

Example. We consider three points x0, x1, x2, thus n = 3. The associated Lagrange
polynomials are

l
(2)
0 (x) =

x− x1
x0 − x1

x− x2
x0 − x2

, l
(2)
1 (x) =

x− x0
x1 − x0

x− x2
x1 − x2

, l
(2)
2 (x) =

x− x0
x2 − x0

x− x1
x2 − x1

.

(F.11)

138



Gaussian quadrature theorem

We consider a family of orthogonal polynomials {L} in the interval [a, b] with weight
function ω: ∫ b

a
dxω(x)Lm(x)Ln(x) = cmδmn . (F.12)

We call r0, ..., rn−1 the roots of the polynomial Ln, which has degree n.
Given a polynomial P of degree < 2n, it holds that

∫ b

a
dxω(x)P (x) =

n−1∑

j=0

ωjP (rj) , ωj =

∫ b

a
dxω(x)l

(n−1)
j (x) , (F.13)

where l(n−1)
j are the Legendre polynomials associated to the points r0, ..., rn−1.

Proof. We first assume that degP < n. For x ∈ [a, b] we can expand the polynomial in
the Lagrange basis built with the n roots r0, ..., rn−1 of Ln:

P (x) =

n−1∑

j=0

P (rj)l
(n−1)
j (x) . (F.14)

Then it is immediate to prove that

∫ b

a
dxω(x)P (x) =

n−1∑

j=0

P (rj)

∫ b

a
dxω(x)l

(n−1)
j (x) =

n−1∑

j=0

ωjP (rj) . (F.15)

We move to the case n ≤ degP < 2n. We rewrite the polynomial as follows,

P (x) = Q(x)Ln(x) +R(x) , (F.16)

and the integral becomes

∫ b

a
dxω(x)P (x) =

∫ b

a
dxω(x)Q(x)Ln(x) +

∫ b

a
dxω(x)R(x) . (F.17)

Since degQ < n, we can expand Q in the basis {L} without the element Ln. The first
integral thus vanishes for the orthogonality condition (F.12).
Since degR < n, we can expand it in the same Legendre basis as we did before for P :

∫ b

a
dxω(x)R(x) =

n−1∑

j=0

ωjR(rj) . (F.18)

However, P (rj) = Q(rj)Ln(rj) +R(rj) = R(rj) because rj is a root of Ln.
We conclude that equation (F.13) holds for any polynomial P with degP < 2n.
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Polynomial approximation of a function

Let’s consider a function f(x), x ∈ [a, b], and choose n points x0, ..., xn−1 ∈ [a, b]. We
introduce a polynomial P that interpolates the function in these points: P (xi) = f(xi)
for i = 0, ..., n− 1 . Then, ∀x ∈ [a, b] there exists a point ξ(x) ∈ [a, b] such that

f(x)− P (x) = 1

n!
f (n)(ξ(x))

n−1∏

i=0

(x− xi) (F.19)

where f (n) is the n-th derivative of f .

Proof. We pick a value x̃ ∈ [a, b] and we define the function

g(x) ≡ f(x)− P (x)−Q(x)
f(x̃)− P (x̃)

Q(x̃)
, Q(x) =

n−1∏

i=0

(x− xi) . (F.20)

The function g(x) has n+ 1 zeros, at the points

x̃, x0, ..., xn−1 ∈ [a, b] . (F.21)

Assuming f (and thus g) to be enough differentiable, Rolle’s theorem guarantees that its
k-th derivative has at least n+1−k roots in [a, b]. Therefore the n-th derivative has one
root only, let’s call it ξ(x̃) ∈ [a, b]. By differentiating g n times and evaluating in ξ(x̃)
we get

0 = g(n)(ξ(x̃)) = f (n)(ξ(x̃))− n! f(x̃)− P (x̃)
Q(x̃)

. (F.22)

Dropping the ∼ and solving for f(x)− P (x) leads to equation (F.19).

Gaussian quadrature of a function

The quadrature theorem tells that with the n roots of a polynomial Ln belonging to some
orthogonal basis {L} we can compute exactly the integral of a polynomial with degree
degP < 2n.

The n-th order Gaussian quadrature can be used for a generic function f too, as
follows:

• interpolate the function f with a polynomial P of degree < 2n, such that

P (ri) = f(ri) , i = 0, ..., n− 1 , ri roots of Ln . (F.23)

Note that the polynomial is in general not uniquely determined, because the sam-
ples are in principle less than its degree.

• Integrate the polynomial P (x) using Gaussian quadrature. This requires to know
the polynomial only at the points ri.

140



The polynomial interpolation of the function introduces approximation errors in the
Gaussian quadrature of f , with respect to the exact integral. In order to estimate the
error we have to reload the previous theorem to the present case, as follows.

Given a polynomial P of degree degP < 2n which interpolates a function f in n
sample points x0, ..., xn−1 ∈ [a, b], the error on the approximation is

∀x ∈ [a, b] ∃ξ(x) ∈ [a, b] |

f(x)− P (x) = 1

(2n)!
f (2n)(ξ(x))Q2(x) , Q(x) =

n−1∏

i=0

(x− xi) .
(F.24)

Proof. The proof is similar to the previous one. We first observe that the definition (F.20)
does not work now, because the polynomial P has order up to 2n and thus the n-th
derivative of g may not vanish.

We build g so that it has 2n+ 1 roots by taking

g(x) ≡ f(x)− P (x)−Q2(x)
f(x̃)− P (x̃)

Q2(x̃)
(F.25)

where x̃ ∈ [a, b]. We now take the 2n-derivative of g and call ξ(x̃) ∈ [a, b] the root of
g(2n) in the interval, whose existence is guaranteed by Rolle’s theorem:

0 = f (2n)(ξ(x̃))− (2n)!
f(x̃)− P (x̃)

Q2(x̃)
(F.26)

Equation (F.24) is obtained by dropping ∼ and solving for f(x)− P (x).

A special case of this theorem is when we take the n sample points to be the roots
r0, ..., rn−1 of the n-th order orthogonal polynomial Ln defined in the interval [a, b] with
weight function ω, see equation (F.12). The approximation formula thus reads

f(x) = P (x) +
1

(2n)!
f (2n)(ξ(x))L2

n(x) (F.27)

for some ξ(x) ∈ [a, b]. The polynomial P has degree degP < 2n and interpolates f in
the roots Ln.

The n-order Gaussian quadrature allows to approximate the following integral of f ,
∫ b

a
dxω(x)f(x) =

n−1∑

i=0

ωif(ri) + EGn [f ] , (F.28)

where we inserted equation (F.27) and we used the Gaussian quadrature for a polynomial,
equation (F.13). The error on the estimation of the n-th order Gaussian quadrature is

EGn [f ] =
1

(2n)!

∫ b

a
dxω(x)f (2n)(ξ(x))L2

n(x) . (F.29)

In our case, we choose the Legendre polynomials as orthogonal basis. They are defined in
the interval [−1, 1] with weight function ω(x) = 1. By a change of variable, it is possible
to extend the quadrature to any compact interval.

141



F.2 Perturbative exploration

In this Section we report the results of the preliminary exploration in lattice perturbation
theory at tree-level for the computation of the mass integral χ. These studies served as a
guideline for the non-perturbative computation. In particular, the choice of the Gaussian
quadratures were inspired from the tree-level results. At this order in perturbation theory
we can calculate χ exactly through the shift derivative of the fermionic free-energy at
tree-level (4.37). We call it χ̃(0):

χ̃(0)/T 3 = NcNf
1 + ξ2

ξk

1

T 4

∆

∆ξk
fF (0) . (F.30)

However we can also compute it emulating what we do non-perturbatively, that is through
the integral in the quark mass of the shift-derivative of the chiral condensate at tree-level
(see Section 4.5):

χ(0)/T 3 = −1 + ξ2

ξk

1

T

∫ ∞

0
dm̃q

∆

∆ξk

〈
ψψ
〉(0)
ξ,m̃q

, (F.31)

where m̃q = mq/T and mq is the tree-level subtracted bare quark mass (E.17). We
can thus study the bounty of the Gaussian quadrature approximation applied to (F.31)
by comparing it to the exact value from equation (F.30), at given L0/a. The tree-
level fermionic free energy (4.37) is a purely fermionic integral, and as discussed in
Section E.4 its finite volume effects are exponentially suppressed. The same holds for the
chiral condensate at tree-level, which is related to the derivative in the bare mass of the
free-energy density (E.31): 〈

ψψ
〉(0)

= −4NcNfF
(8) . (F.32)

We can thus safely work in finite volume with spatial sizes L/a = 144. We start from
the plot of the integrand function sampled at tree-level, see Figure F.1. The very smooth
dependence on the subtracted mass m̃q makes us confident that the polynomial recon-
struction underlying the Gaussian quadrature will work excellently. The mild peaked
structure suggests to split the integration in three intervals: the peak itself χ(0)

peak, which

gives the bulk of the area, the tail χ(0)
tail up to some conveniently chosen value of the mass,

and a residual term χ
(0)
res to estimate the contribution from the asymptotic behaviour at

large mass. This last term is integrated in the hopping parameter κ, so that the inte-
gration interval is compact. We call m̃1, m̃2 the two masses that split the integration
interval. We choose them so that ∼ 80% of the integral falls in χ(0)

peak, ∼ 20% is given by

χ
(0)
tail and the residue χ(0)

res is of the order of less than one sigma in the target relative error
of ∼ 0.5% on the non-perturbative integral. Note that towards the continuum limit
the integrand function appears to go to zero faster at large mass, which means that χ(0)

res

becomes less and less important. Table F.1 shows the contributions at tree-level com-
puted as in eq. (F.30), and the chosen values for the split masses. The mass m̃1 = 5.0 is
common to all the lattice resolutions, while m̃2 = 35.0 for L0/a = 4 and m̃2 = 20.0 for

142



0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
mq/T

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−
2
L

0

4a

( 〈
ψ̄
ψ
〉tr

ee
ξ

+
−
〈ψ̄
ψ
〉tr

ee
ξ
−

) /T
3

L0/a = 4

L0/a = 6

L0/a = 8

L0/a = 10

Figure F.1: Integrand function of χ at tree-level in lattice perturbation theory. The
function has been sampled in many points and then interpolated.

L0/a χ̃
(0)
peak/T

3 m̃1 χ̃
(0)
tail/T

3 m̃2 χ̃
(0)
res/T 3 χ̃(0)/T 3 0.5% χ̃(0)/T 3

4 15.938 5.0 8.755 35.0 0.067 24.760 0.124
6 11.915 5.0 4.666 20.0 0.066 16.647 0.083
8 11.200 5.0 3.595 20.0 0.017 14.812 0.074
10 11.155 5.0 3.142 20.0 0.007 14.304 0.072

Table F.1: Contributions to the mass integral χ at tree-level in lattice perturbation
theory. The computation is carried out with the derivative in the shift of the tree-level
fermionic free-energy.

L0/a = 6, 8, 10 to take into account the slower asymptotic decrease at large mass of the
coarsest lattice. For comparison, the table shows the 0.5% of the central value in lattice
perturbation theory, as an estimation for the target non-perturbative error. As discussed,
the residual term is half sigma for L0/a = 4, and it drops to ∼ 1/10 sigma at L0/a = 10.
We are left with the choice of the order of the three Gaussian quadratures. This is related
to the number of points where the integrand function has to be sampled. We explored
different setups and at the end we opted for a total of 20 points, 10 of which for the peak
and 7 and 3 for the tail and residue respectively. In table F.2 we see the relative error on
this Gauss approximation with respect to the exact value. The systematics introduced
by the Gaussian quadratures is completely negligible with respect to the target accuracy
∼ 0.5% on the integral.
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L0/a χ(0)/T 3 |χ̃(0) − χ(0)|/χ̃(0) (%) χ̃(0)/T 3

4 24.76028 0.002 24.75990
6 16.63858 0.050 16.64685
8 14.80506 0.047 14.81204
10 14.29978 0.032 14.30431

Table F.2: Second column: integral χ computed with Gaussian quadratures at tree-level
in lattice perturbation theory. To be compared with the last column, where the same
quantity is computed as in equation (F.30). Third column: relative percentile systematic
error of the quadrature. To be compared with the target accuracy ∼ 0.5%.

F.3 Bare parameters and collected statistics

Table F.4 reports the values of the bare couplings g20 = 6/β that were simulated for
the computation of the Gauss quadratures for the determination of s∞ in eq. (4.16).
The spatial volume of the simulations is L/a = 144. At each value of L0/a and g20 we
generated two Monte Carlo streams at the two shifts ξ+, ξ− of eq. (4.23). The observable
of interest from these simulations is the gauge action SG, and in the Table F.4 the number
of measurements at the two shifts is also reported.

In full QCD simulations the main observable is the chiral condensate
〈
ψψ
〉
, for the

computation of the integral χ in eq. (4.16). The analogous table for QCD simulations
would have 40 entries at each of the 36 couples of L0/a, β of Table F.3, and thus would
be unpractical. However, at given couple L0/a, g20 the simulated values of the hopping
parameter κ can be uniquely computed with the Gauss quadrature scheme described
in Table 4.4 and related main text. Then, the number of measurements of the chiral
condensate is given by the optimized statistics in Table F.8 and it is the same at the two
shifts. As the temperature decreases, we incremented the statistics up to a factor 2 at
T8, so to keep roughly constant the target relative error of Table F.8.

F.4 Systematic effects from the quadrature

We checked the systematics induced by the numerical Gaussian quadrature using the
Gauss-Kronrod rule. This quadrature improves the precision of a Gaussian quadrature
by adding points to the already evaluated Gauss points, although the gain in precision
is less than a pure Gaussian quadrature with more points. On the other end, a higher
order Gaussian quadrature would require the re-evaluation of all the points, which is more
expensive. Given the n-th order Gaussian quadrature based on Lagrange polynomials,
the related Kronrod rule adds n+ 1 points and it is exact for polynomials up to degree
3n+ 1 if n is even, 3n+ 2 if n is odd [131].

We use preliminary data at bare parameters 6 × 483, β = 8.8727. We focus on
the computation of the peak part of the integral, in the interval of bare mass am0 ∈
[amcr, 0.5]. We check the consistency of a n = 5 Gaussian quadrature with a n = 5 + 6
Gauss-Kronrod quadrature, which requires the numerical determination of 6 extra points.
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T L0/a β κ
(W )
cr c

(W )
sw

T0
4 8.7325 0.131887597685602 1.224666388699756
6 8.9950 0.131885781718599 1.214293680665697

T1

4 8.3033 0.132316223701646 1.244443949720750
6 8.5403 0.132336064110711 1.233045285565058
8 8.7325 0.132133744093735 1.224666388699756
10 8.8727 0.131984877002653 1.218983546266290

T2

4 7.9794 0.132672230374640 1.262303345977765
6 8.2170 0.132690343212428 1.248924515099129
8 8.4044 0.132476707113024 1.239426196162344
10 8.5534 0.132305706323476 1.232451001338001

T3

4 7.6713 0.133039441274476 1.282333503658225
6 7.9091 0.133057201010874 1.266585617959733
8 8.0929 0.132831173856378 1.255711356539447
10 8.2485 0.132638399517155 1.247267216254281

T4

4 7.3534 0.133449711446233 1.307002958449583
6 7.5909 0.133469338865844 1.288146969458134
8 7.7723 0.133228362183550 1.275393611340024
10 7.9322 0.133013578229002 1.265160978064686

T5

4 7.0250 0.133908723921720 1.338089264736139
6 7.2618 0.133933679858703 1.315030958783770
8 7.4424 0.133674531074371 1.299622821237046
10 7.6042 0.133438165920285 1.287166774665371

T6

4 6.7079 0.134386271436463 1.375352693193284
6 6.9433 0.134421953633166 1.346919223092444
8 7.1254 0.134141768774467 1.327878356622864
10 7.2855 0.133888442235086 1.312909828079458

T7

4 6.3719 0.134926677491050 1.425561566301377
6 6.6050 0.134982857878749 1.389385004928746
8 6.7915 0.134676613758678 1.364706438701718
10 6.9453 0.134412950133538 1.346697162567041

T8

4 6.0433 0.135481632961481 1.489790983990814
6 6.2735 0.135571353236717 1.442967721668930
8 6.4680 0.135236172024848 1.409845308468962
10 6.6096 0.134976206524104 1.388734449325687

Table F.3: Lines of constant physics for simulations performed with the Wilson plaquette
action, and Nf = 3 flavours of O(a)-improved Wilson fermions. At each temperature the
values of L0/a and bare coupling β = 6/g20 are reported, together with the critical hopping
parameter κcr and the improvement coefficient csw for the Sheikholeslami-Wohlert term
in the lattice action.
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L0/a = 4 L0/a = 6 L0/a = 8 L/a = 10

β ξ− ξ+ β ξ− ξ+ β ξ− ξ+ β ξ− ξ+

start 30.0000 5648 4057
15.0000 1734 1829 15.0000 4314 4442 15.0000 42944 30249 15.0000 31539 31627

start
13.9517 1083 1095 13.9517 1856 2035 13.9517 25631 25339 13.9517 34320 33560
11.2500 3036 3052 11.2500 2412 2513 11.2500 28930 30007 11.2500 15356 15963
9.4249 3115 3104 9.4249 1486 1530 9.4249 21371 21709 9.4249 15932 16353

T0

8.9690 3094 2721
8.8642 3118 3026 8.9975 2270 1787
8.7618 3098 3026

T1

8.9157 1725 1680 8.9457 2546 2100 8.9690 8047 6338 8.9855 8497 10122
8.6376 1682 1646 8.7641 3151 3159 8.8642 8108 7958 8.9359 9922 10828
8.3764 2061 1993 8.5897 2568 2589 8.7618 6053 6839 8.8869 9475 9449

T2

8.9157 2934 3064 8.5026 4453 4141 8.6942 7201 7331 8.8355 8270 8916
8.6376 2850 2967 8.3755 4900 4966 8.5653 9387 7149 8.7101 7933 8946
8.3764 2981 2972 8.2522 2470 2454 8.4401 7337 7375 8.5882 8444 9431

T3

8.2655 2064 2009 8.1811 2597 4103 8.3681 10827 10709 8.5179 8571 9623
8.1381 2103 2060 8.0601 3210 3223 8.2457 10669 7397 8.3982 8653 9213
8.0146 2038 2069 7.9426 2598 2607 8.1268 10452 10716 8.2818 8631 9546

T4

7.3149 1236 1223 7.8719 1218 2525 8.0555 9235 9001 8.2116 8245 6943
7.1854 2380 2327 7.7467 2417 2457 7.9294 10595 13126 8.0873 8509 9765
7.0605 1232 1235 7.6255 1181 1189 7.8072 8998 10287 7.9666 8678 9686

T5

6.9878 1326 1310 7.5523 1036 1181 7.7337 8451 7935 7.8938 8676 9771
6.8628 2649 2575 7.4227 1708 2020 7.6038 5111 5885 7.7647 8760 9710
6.7422 1321 1324 7.2975 1997 1034 7.4782 8054 6391 7.6398 8749 9599

T6

6.6683 1226 1213 7.2245 1330 1327 7.4053 10428 10594 7.5669 8811 8716
6.5356 2359 2292 7.0990 2539 2617 7.2805 10504 10442 7.4414 8856 9981
6.4081 1224 1225 6.9778 1315 1209 7.1598 10867 10667 7.3201 8854 7909

T7

6.6913 1544 1527 6.9267 1230 1273 7.1090 11175 11058 7.2688 8876 9974
6.6273 2667 2619 6.8622 2357 2920 7.0455 11205 12196 7.2041 5943 10005
6.5356 1784 1753 6.7699 2247 1485 6.9544 11232 12225 7.1113 4506 5067
6.4464 2580 2656 6.6801 1865 1944 6.8657 11235 10746 7.0210 8927 10052
6.3869 1493 1554 6.6201 1264 535 6.8065 11251 11160 6.9605 5362 8912

T8

6.3557 1840 1884 6.5887 2749 1736 6.7756 2384 2364 6.9288 6249 7127
6.2929 1930 1895 6.5254 3483 1547 6.7140 2374 2359 6.8648 6236 7147
6.2033 2455 2381 6.4350 2759 2224 6.6258 2385 2298 6.7733 6311 7168
6.1161 1866 1923 6.3470 2827 3465 6.5399 1982 2368 6.6842 6306 7189
6.0580 1276 1248 6.2883 2751 3476 6.4825 2113 2379 6.6246 6277 7112

Table F.4: First column: values of β = 6/g20 where
〈
SG
〉

is sampled in pure gauge.
Second and third columns: number of measurements at the two shifts of the observable.
Rows are separated according to the quadrature scheme of Table 4.2. The same structure
for all the L0/a.
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k quad nms integrand interp
0.13180 GK 500 4.10(32) 2.0(3)
0.13085 G 500 12.54(29)
0.12902 GK 500 25.16(27) 25.43(24)
0.12651 G 500 31.68(21)
0.12363 GK 500 29.30(24) 29.25(22)
0.12066 G 500 22.51(22)
0.11783 GK 500 16.24(17) 16.14(19)
0.11532 G 500 11.89(16)
0.11332 GK 500 9.01(14) 9.19(15)
0.11194 G 500 7.26(15)
0.11125 GK 500 6.54(13) 6.12(17)

Table F.5: Exploratory results for 6×483, β = 8.8727. The last column shows the values,
at the Kronrod points, obtained from the Lagrange interpolation of the Gauss points.
The Kronrod points in the first and last rows are outside the interval of definition of the
Gaussian quadrature.

quad value
G 13.655(69)

GK 13.679(49)
diff 0.024(50)

Table F.6: Comparison between the integral computed with Gaussian quadrature and
Gauss-Kronrod quadrature. The data used are the ones in Table F.5. The last row
contains the correlated difference of the two integrals.

The resulting quadrature is exact for polynomials of order ≤ 17. The numerical values
are stored in Table F.5, where we denote by G the original Gauss points, and with GK
the added Gauss-Kronrod points. The number of measurements per point is reported.
The Gauss rule we use relies on approximating the integrand function with Lagrange
polynomials. The reconstruction of the integrand function is robust if the Lagrange
interpolation of the Gauss points can predict the position of some other points, such as
the Kronrod points. The last column of Table F.5 stores the values of the integrand
function at the Kronrod points obtained from the interpolation as described above. We
see that, within the interval of the Gauss points (i.e. excluding the first and last rows),
the interpolated values are in perfect agreement with the numerical Kronrod values. The
points and the Lagrange interpolation are shown in Figure F.2. The direct check of the
integration is in Table F.6, where the integrals computed with the Gauss and Gauss-
Kronrod quadratures are compared. The correlated difference is compatible to zero, and
it is half of the smallest sigma. Since in the final simulations we estimate the peak with
a n = 10 quadrature, we expect this difference to become negligible.
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Figure F.2: 6 × 483, β = 8.8727. Integrand function for the mass integral. The points
are labelled as Gauss or Kronrod. Errorbars are smaller than markers. The Lagrange
interpolation of the Gauss points is shown.

F.5 Simulation details

We have simulated lattice QCD using the HMC algorithm, see also Section 3.7. Our
code is based on the package openQCD-1.6 [99], modified for including shifted boundary
conditions. We employed even-odd preconditioning for all the Nf = 3 flavors [97]. The
strange quark has been included with the RHMC algorithm. The solution of the Dirac
equation in the molecular dynamics trajectory was performed with a standard conjugate
gradient with chronological inversion. In the following, we focus on the thermalization
procedure of our ensembles. We discuss the parameters of the algorithm in the dedicated
Section F.6.

Simulations at each set of bare parameters {L0/a, g20, κ, ξ} were first generated on
lattices with spatial extensions L/a = 48, with a statistics of 500-1000 trajectories of 2
MDUs each. We proceeded from high to low temperatures, and the last configuration of
each ensemble was used as starting point for the ensemble at the same shift and closest
hopping parameter at the next lower temperature. These small volume runs served both
as a thermalization for larger volumes, and for checks on the algorithm performance. At
selected values of the bare mass we measured the spectral range of the Dirac operator,
which is needed for the optimal tuning of the Hasenbusch masses and of the RHMC. We
always monitored the components of the Energy-Momentum tensor as well as the Monte
Carlo history of the Wilson-flowed plaquette and topological charge. In our simulations
we also paid attention to the phase of the Polyakov loop measured on the generated
gauge configurations especially at large bare quark mass, where the theory is sensible to

148



the Z3 center symmetry.
The target lattices with L/a = 144 were generated by tripling the L/a = 48 ones

in the spatial directions, after checking that the starting small volume configuration was
in the trivial topology sector and had null Polyakov phase. At the lowest temperatures
and largest masses, where the topological activity is less suppressed, we further refined
the thermalization procedure considering two steps: from L/a = 24 lattices to L/a = 72
ones and finally to the target volume by duplicating the spatial directions. This allowed
us, in the last step, to anti-periodically extend the L/a = 72 lattice to the L/a = 144
so to start with exactly zero topology on the target lattice. We finally measured our
observables on the L/a = 144 lattices after 50-100 trajectories of thermalization. The
same checks on Energy-Momentum tensor, topology, plaquette and Polyakov loop were
performed on the final ensembles too.

F.6 Tuning of the HMC

In the following we describe our algorithmic choices to optimize the QCD simulations.
See Table F.7 for a schematic summary. We performed the tuning of the simulation
parameters on 6× 483 lattices at the inverse bare coupling β = 8.8727, and for forward
shift z/a = (8, 0, 0). We started from a high-mass (low-κ) ensemble and we progressively
decreased the bare mass. At the different values of hopping parameter κ we tried many
algorithmic setups. We defined a performance estimator given by the ratio of the com-
putational time over acceptance rate: the best algorithm is the one that minimizes this
estimator (with a lower bound of ∼ 90% on the acceptance). We also monitored the
spectrum of the Dirac operator so to optimally tune the Hasenbusch twisted-masses and
the RHMC. In particular as the quark masses decrease the spectrum shifts downwards:
the interval for the rational approximation has to be accordingly tuned, and the number
of poles increased to keep the approximation error under control.

We start from small values of the hopping parameter and describe how the algorithm
becomes progressively more and more elaborate towards the chiral limit. At the smallest
values of hopping parameter, we used a plain 2-level algorithm where the gauge force is at
the finest level and the fermionic forces at the coarsest. These included the contributions
from the light doublet and from the RHMC for the strange quark. Both levels have
been integrated with a 4th order Omelyan-Mryglod-Folk scheme [123], the finer with 1
step and the coarser with a tunable number of steps. By looking at the performance
estimator and the acceptance, we saw that the Hasenbusch preconditioning of the light
doubled determinant is not required up to κ ∼ 0.1. In the interval 0.10 ≲ κ ≲ 0.12 this
simple algorithm has been refined with one Hasenbusch twisted-mass chosen as suggested
in [74]. For κ ≳ 0.12, we opted for a frequency splitting of the RHMC in two terms, and
we added a third integration level to profit from the hierarchy of the two contributions.
The outermost level has been integrated with a 2nd order Omelyan scheme with a tunable
number of steps, while the two finer levels with 1 step. More refined algorithms were not
competitive up to κ ≳ 0.126, where we further split the light determinant with one extra
Hasenbusch twisted-mass. We tried many setups, including a generalization of the rule
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level integrator κ < 0.098 0.098 < κ < 0.120 0.120 < κ < 0.126 κ > 0.126

0 OMF4 G G G G
1 OMF4 L[0] L[0, µ0] L[0, µ0] L[0, µ1]

S[1, d] L[µ0] L[µ0] L[µ1, µ2]
S[1, d] S[1, 5] L[µ2]

S[1, 5]
2 OMF2 S[5, d] S[5, d]

algorithm A0 A1 A2 A3

Table F.7: Algorithms used to simulate QCD for increasing κ (decreasing quark mass).
Capital G denotes the gauge force. Capital L denotes the (frequency-split) light quark
force, with the relative Hasenbusch twisted-masses in square brackets. Capital S is the
(frequency-split) strange quark force, with the associated RHMC poles in square brackets
(d is the degree of the rational approximation). See main text for details.

proposed in [74] to the two twisted-mass case. At the end we found that two twisted-
masses equally spaced in the spectrum of the Dirac operator was a valuable choice in
terms of performance. In all the chosen integration schemes for the molecular dynamics,
the coarsest level has been discretized with a number of steps increasing from 7 to 15 for
decreasing bare mass and temperature.

F.6.1 Choice of Hasenbusch and RHMC parameters

We describe the tuning of the Hasenbusch and RHMC parameters as the bare quark
mass changes. We follow the notation of Table F.7. At given bare lattice parameters
(L0/a, g

2
0, ξ, κ), we call ra,m and rb,m the measured spectrum of the Dirac operator. These

measurements has been performed on gauge configurations produced under some guessed
values of the parameters. Then, we chose the optimized Hasenbusch twisted-masses as

µi =





√
ra,m · rb,m i = 0

ra,m + 1
3(rb,m − ra,m) i = 1

rb,m − 1
3(rb,m − ra,m) i = 2 .

(F.33)

The i = 0 case of algorithms A1, A2 has been chosen as prescribed in [74], so that the
pseudofermion propagator split in two operators with the same condition number. The
values µ1, µ2 were used in the algorithm A3 and they are equally spaced in the spectral
range [ra,m, rb,m].

In the RHMC algorithm we have to specify the interval [ra, rb] and the degree of the
rational approximation d, which is also the number of poles of the rational function. We
chose

ra = 0.7 · ra,m rb = 1.2 · rb,m (F.34)

so that the measured spectrum was safely contained in the approximation interval. We
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tuned the degree d so to make the approximation error smaller than a chosen threshold,

12V δ2 ≲ 10−5 , (F.35)

where δ is the maximum theoretical error of equation (3.96) and the factor 12V counts
the fermionic degrees of freedom. In our simulations, d ranged between 3 and 10.

At given L0/a and g20 we had to tune the parameters for all the values of κ needed for
the Gauss quadratures. Instead of measuring the Dirac spectrum at all κ, we simplified
the work by noticing that, roughly speaking, when the mass changes the spectrum of
the Dirac operator gets shifted of the same amount. Therefore if the spectrum is known
at some reference value κ̃, a reasonable guess of the spectrum at another value can be
obtained by shifting it of the difference of the respective bare masses,

ra,m(κ) = ra,m(κ̃) + ∆am0 , rb,m(κ) = rb,m(κ̃) + ∆am0 , (F.36)

where the mass shift amounts to

∆am0 =
1

2κ
− 1

2κ̃
. (F.37)

In practice, at given L0/a and g20, we measured the spectrum at some selected values of
κ starting from the highest value (lightest quark mass), and we predicted the spectrum
at the other values of hopping parameter using equation (F.36).

F.7 Random sources

On the lattice, we consider the one-point function

a3
〈
ψΓψ

〉
= −

∫
DU detDa−1Tr {ΓS} e−SG

∫
DU detDe−SG = −a−1⟨Tr {ΓS}⟩U , (F.38)

where in the second step we performed the analytical integration over Grassmann vari-
ables, and in the last step we defined the expectation value on the gauge field ⟨·⟩U . The
operator S is the quark propagator, and the matrix Γ stands for any possible spinor
and/or flavour structure of the local field. In numerical simulations, for each gauge
configuration we have to compute the trace

Tr {ΓS} =
∑

x

tr {ΓS(x, x)} , (F.39)

whose direct evaluation is very demanding from the computational point of view. The
trace can also be estimated stochastically, as reviewed for instance in [66]. We introduce
a set of random auxiliary fields called random sources, obeying the relation

⟨ηiα ηjβ⟩η = δijδαβ , (F.40)

where α, β are collective labels for all the possible indices (in particular spinor, colour
and spacetime) and i, j label the random source “configuration”. The expectation value

151



⟨·⟩η is taken with respect to the probability distribution of the random sources. It is
straightforward to prove that

⟨η ΓS η⟩η = Tr {ΓS} , (F.41)

and if we consider a finite set of Ns random sources, a valid stochastic estimator of the
trace is

Tr {ΓS} ≈ O[U, η, η] ≡ 1

Ns

Ns∑

i=1

ηiα(ΓS)αβη
i
β (F.42)

where we explicitly wrote the index contractions (repeated letters are summed). There-
fore, at fixed gauge configuration we can estimate the trace by sampling Ns random
sources and using equation (F.42). The variance of the stochastic estimator (F.42) con-
tains an effect due to the random sources, in addition to the usual noise from the gauge
configurations. The computation of this variance involves the 4-point function of the
random sources. We thus specialize to U(1) random sources, which is the choice for our
simulations., and the 4-point function reads [87]

〈
ηαηβηγηδ

〉
η
= δαβδγδ + δαδδβγ − δαβγδ . (F.43)

The variance of our estimator is

var [O] = ⟨⟨O2⟩η⟩U − ⟨⟨O⟩η⟩
2

U
(F.44)

where we explicitly indicate the nature of the expectation value, i.e. over random sources
and over gauge configurations. This gives

var [O] =
〈〈 1

N2
s

∑

i,j

ηiα(ΓS)αβη
i
β η

j
γ(ΓS)γδη

j
δ

〉
η

〉
U

−
〈〈 1

Ns

∑

i

ηiα(ΓS)αβη
i
β

〉
η

〉2
U
,

(F.45)

and after computing the contractions we get

var [O] = var [O]U +
1

Ns
var [O]η (F.46)

where we separated the two contributions coming respectively from the gauge noise and
the random sources noise:

var [O]U =
〈
Tr2{ΓS}

〉
U
− ⟨Tr {ΓS}⟩2U , (F.47)

var [O]η =
〈
Tr
{
(ΓS)2

}〉
U
−
〈∑

α

[(ΓS)aa]
2
〉
U
. (F.48)

Notice that, given a matrixM , Tr
{
M2
}
=
∑

αβMαβMba ̸=
∑

α(Mαα)
2. Equation (F.46)

shows that, in addition to the usual variance, the random sources give a contribution that
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is suppressed with their number Ns. In practice, Ns is tuned so that the variance from
the sources is subdominant compared to gauge variance.

It may be useful to disentangle the two contributions so to have control on them
separately. In equation (F.45) the variance contribution from the random sources comes
entirely from the 4-point function of the sources themselves, as well as the connected part〈
Tr2{ΓS}

〉
U

of the gauge variance. We observe that, if we consider two independent sets
of noise sources η, η and ϕ, ϕ, we can define two independent observables P[U, η, η] and
Q[U, ϕ, ϕ] as in equation (F.42). Then, the quantity

⟨⟨PQ⟩η,ϕ⟩U =
〈
Tr2{ΓS}

〉
U

(F.49)

involves 2-point functions only of the random sources, leading to the desired connected
part of the gauge variance without the sources terms. In practice, since each noise source
is independent from the others, we can split the noise sources in two sets (the first half and
the second half, say) and average them separately. The disconnected part of the gauge
variance can be computed in the standard way. This procedure, known as diluition,
allows to compute the gauge variance alone. The variance of the sources is then obtained
by subtraction from the full result.

F.8 Variance reduction

On a gauge configuration, we estimate the chiral condensate by computing stochastically
the trace of the propagator as discussed in Appendix F.7. Calling η, η the U(1) random
sources, the estimator reads

O[U, η] = 1

Ns

Ns∑

i=1

∑

x

ηi(x)S[U ]ηi(x) , (F.50)

where S = (D+M0)
−1 is the quark propagator and Ns is the number of random sources

generated for the estimation. The gauge and random sources components of the variance
of O can be written using equations (F.47), (F.48),

var [O]U =
〈
Tr2{S}

〉
U
− ⟨Tr {S}⟩2U , (F.51)

var [O]η =
〈
Tr
{
S2
}〉

U
−
〈∑

α

(Sαα)
2
〉
U
, (F.52)

and in the last equation the index α runs over all the indices of the quark propagator:
spacetime, flavour, spin and colour. Since we have to compute the chiral condensate
at large masses, that is small hopping parameter κ, the hopping expansion of these
quantities may shed some light on their behaviour in this regime. The computation can
be found in Subsection F.8.1. At leading order the variances scale as follows:

var [O]U ∼ κ6 , var [O]η ∼ κ4 , κ→ 0 , (F.53)
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Figure F.3: Behaviour of the variance of the chiral condensate on a representative ensem-
ble. The variance, improved variance (i.e. hopping subtracted) and the gauge variance
only are compared for several values of the hopping parameter κ.

meaning that the decreasing of the variance from random sources is slower than the
gauge variance, by a factor κ2. Naively, this slower decreasing may be compensated by
increasing the number of sources as Ns ∝ κ2, even though this makes the computation
more and more demanding as κ → 0. Instead, following [66] we consider an improved
version of the estimator,

O[U, η]→ Õ[U, η] = 1

Ns

Ns∑

i=1

∑

x

ηi(x)
(
S[U ] + 4κ2a2H[U ]

)
ηi(x) , (F.54)

where we subtracted the leading order in the hopping expansion of the quark propaga-
tor. The operator H contains the hopping and improvement parts of the O(a)-improved
Wilson-Dirac operator, and its expression is given in Subsection F.8.1. The central value
of the estimator is not affected because the operator H is traceless. However, the sub-
traction has the effect of removing the leading terms in the hopping expansion of the
random sources variance, so that the whole variance of the improved operator scales as
var[Õ] ∼ κ6 for κ → 0. The effect of the improvement can be seen in Figure F.3. On a
representative set of data at different κ, we show the variance of the chiral condensate in
comparison with the variance of the hopping-improved estimator as functions of the hop-
ping parameter. The variance of the improved estimator is smaller in the whole interval of
κ. As expected, the gain is particularly evident at the smallest values of hopping param-
eter, where the variance is reduced by more than one order of magnitude. For reference
we also compare with the gauge variance, extracted by diluition (see Appendix F.7).
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In conclusion, since we are ultimately interested in the computation of the mass
integral χ, see eq. (4.32), it is also relevant to notice that the signal of the integrand
function at small hopping parameter scales as

〈
ψψ
〉
ξ+
−
〈
ψψ
〉
ξ−
∼ κ3 , κ→ 0 . (F.55)

Therefore, its signal-to-noise ratio using the hopping-subtracted chiral condensate is con-
stant in the large mass limit.

F.8.1 Hopping parameter expansion

We compute here the large mass (hopping) expansion of the variance of the chiral con-
densate. For convenience we rewrite the fermionic O(a)-improved Wilson-Dirac action
as

SF = a4
∑

x

ψ(H +M)ψ , H = DH + aDsw , (F.56)

where we defined the hopping term

DHψ(x) ≡
1

2a

∑

µ

[
(γµ − 1)Uµ(x)ψ(x+ aµ̂)− (γµ + 1)U †

µ(x− aµ̂)ψ(x− aµ̂)
]

(F.57)

and the parameter M ≡ M0 + 4/a contains the bare quark mass. In this notation the
usual O(a)-improved Wilson-Dirac operator is

D +M0 = H +M = DH + aDsw +M0 + 4/a . (F.58)

We expand the quark propagator for M →∞:

Sαβ =

(
1

H +M

)

αβ

=

(
1

M(1 +H/M)

)

αβ

=
1

M

(
δαβ −

Hαβ

M
+

(H2)αβ
M2

− (H3)αβ
M3

+
(H4)αβ
M4

+O(M−5)

)
. (F.59)

The labels α, β stand for any index attached to the operator. We also introduce the
convenient notation

Tn ≡ Tr {Hn} =
∑

α

(Hn)αα (F.60)

for the trace of the n-th power of the operator H.
We now discuss the large mass expansion of the gauge and random sources variances

of equations (F.51), (F.52). We compute separately the various ingredients.

Tr {S} = 1

M

(
T0 +

1

M2
T2 −

1

M3
T3 +

1

M4
T4 +O(M−5)

)
(F.61)
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〈
Tr2{S}

〉
U
=

1

M2

[
T 2
0 +

2

M2
T0⟨T2⟩U −

2

M3
T0⟨T3⟩U

+
1

M4

(
2T0⟨T4⟩U +

〈
T 2
2

〉
U

)
+O(M−5)

]
(F.62)

⟨Tr {S}⟩2U =
1

M2

[
T 2
0 +

2

M2
T0⟨T2⟩U −

2

M3
T0⟨T3⟩U

+
1

M4

(
2T0⟨T4⟩U + ⟨T2⟩2U

)
+O(M−5)

]
(F.63)

Then the gauge variance at leading order is

var [O]U =
〈
Tr2{S}

〉
U
− ⟨Tr {S}⟩2U

=
1

M6

(〈
T 2
2

〉
U
− ⟨T2⟩2U

)
+O(M−7) .

(F.64)

For the variance of the random sources we need
〈
Tr
{
S2
}〉

U
=

1

M2

[
T0 +

3

M2
⟨T2⟩U −

4

M3
⟨T3⟩U +

5

M4
⟨T4⟩U +O(M−5)

]
(F.65)

and
〈∑

α

(Sαα)
2
〉
U
=

1

M2

[
T0 +

1

M2

(〈∑

α

(Hαα)
2
〉
U
+ 2⟨T2⟩U

)
+O(M−3)

]
(F.66)

The random source variance reads

var [O]η =
〈
Tr
{
S2
}〉

U
−
〈∑

α

(Sαα)
2
〉
U

=
1

M4

(
⟨T2⟩U −

〈∑

α

(Hαα)
2
〉
U

)
+O(M−5)

(F.67)

In terms of the hopping parameter, the gauge variance (F.64) decreases with ∼ κ6 as
κ→ 0, while the random sources variance with the slower power ∼ κ4.

Hopping subtraction

We introduce the (generalized) improved estimator for the chiral condensate,

Õ[U, η] = 1

Ns

Ns∑

i=1

∑

x

ηi†(x) S̃ ηi(x) , (F.68)

where S̃ is the subtracted propagator

S̃ ≡ S − 1

M

(
1− c0 −

1− c1
M

H

)
(F.69)
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and c0, c1 are tunable parameters. Its large mass expansion is

S̃αβ =
1

M

(
c0δαβ − c1

Hαβ

M
+

(H2)αβ
M2

− (H3)αβ
M3

+
(H4)αβ
M4

+O(M−5)

)
. (F.70)

The gauge part of the variance of Õ coincides with the one of the unimproved operator
for any value of c0, c1:

var[Õ]U = var [O]U . (F.71)

Instead, the random sources variance is

var[Õ]η =
〈
Tr{S̃2}

〉
U
−
〈∑

α

(S̃αα)
2
〉
U

=
c21
M4

[
⟨T2⟩U −

〈∑

α

(Hαα)
2
〉
U

]

− 2c1
M5

[
⟨T3⟩U −

〈∑

α

Hαα(H
2)αα

〉
U

]

+
1

M6

[
2c1

(
⟨T4⟩U −

〈∑

α

Hαα(H
3)αα

〉
U

)

+ ⟨T4⟩U −
∑

α

(H2)αα(H
2)αα

]

+O(M−7) .

(F.72)

If we choose c1 = 0, both the ∼M−4 and ∼M−5 orders disappear and ∼M−6 becomes
the leading power, as for the gauge variance. This result does not depend on the coef-
ficient c0, and we set it to c0 = 1 so that the central value of the subtracted operator
coincides with the unimproved one. The final definition of the subtracted propagator is
thus

S̃ = S + 4κ2a2H (F.73)

where for definiteness we used the hopping parameter κ = 1/(2aM).

F.9 Optimization of the statistics

In this Section we describe the optimization procedure we developed to minimize the
computational cost for the numerical determination of the integral in the mass χ. The
Gauss quadrature estimates the integral by a linear combination of samples of the in-
tegrand function, weighted by prescribed coefficients, see eq. (4.32). These coefficients
have symmetric values in the integration interval, with the minima at the boundaries and
the maximum in the middle. In our case the integrand function is sampled from lattice
simulations, and therefore the sample points are known with a statistical error. The error
squared of the estimated integral χ is the linear combination of the errors squared of the
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sample points, weighted by the square of the Gauss quadrature coefficients. This estab-
lishes a hierarchy among the samples, with the points in the middle of the integration
range contributing more to the error on χ than the points near the boundaries.

However, there are other hierarchies that should be taken into account. The compu-
tational time widely changes with κ, so that it may be preferable to produce more data
at small values of the hopping parameter. On the other side, the bulk of the contribution
to the integral comes from lower values of κ. In addition the variance of the chiral con-
densate decreases with the hopping parameter, see Figure F.3. Furthermore it may be
convenient to change the number of random sources with κ. On top of all that, a lower
bound comes from the fact that every point should be sampled enough for the statistical
analysis to be meaningful.

To take into account all these effects we set up an optimization problem: at given
L0/a and g20 we look for the number of trajectories and random sources for each point
of the Gauss quadrature, so that the total computational cost for estimating the integral
is minimized under the condition that the target relative error on the integral σχ/χ is
fixed. This problem can be solved in closed form using Lagrange multipliers, see the next
Section F.9.1 for further details. The results are reported in Table F.8. We choose a
target relative accuracy for the integral in the bare mass of 0.5% at L0/a = 4, 6, 8 and
1.0% at L0/a = 10. In practice, for simplicity we fix a flat statistics for L0/a = 4, 6 and
use the optimization for the two finest lattices. At each point of the Gauss quadratures
is associated one row of the table, where the number of trajectories to be generated is
reported (the bare quark mass increases from top to bottom). The number of trajec-
tories within each quadrature χpeak, χtail, χres is almost symmetric with respect to the
middle of the interval, as expected since the Gaussian weights are symmetric. The mild
breaking of this pattern is due to the emerging of other effects such as the decreasing
of the variance of the chiral condensate with κ, which tends to cluster the statistics at
higher values of the hopping parameter as it is evident in χres. The quoted statistics in
Table F.8 is used for both shifts.

The number of random sources turns out to depend much more mildly on κ, and
thus for convenience we fix it to Ns = 100 for all the simulations. This tuning was
performed using the data at the temperature T1, combining the results at the two shifts.
For the other temperatures we consider the same optimized statistics and scale it from
temperature to temperature according to the resulting relative precision on χ.

F.9.1 Minimization of the cost

Given the target relative error σtarget on the integral in the mass χ at given L0/a and
g20, we would like to tune the number of trajectories per integrand point, and the number
of random sources per trajectory so to minimize the computational cost. This can be
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L0/a = 4 L0/a = 6 L0/a = 8 L0/a = 10

σχ/χ 0.5% 0.5% 0.5% 1.0%

χpeak

50 100 50 50
50 100 150 100
50 100 150 100
50 100 200 200
50 100 150 250
50 100 150 250
50 100 150 200
50 100 150 150
50 100 100 100
50 100 50 50

χtail

50 100 250 300
50 100 400 600
50 100 450 700
50 100 400 700
50 100 300 500
50 100 150 350
50 100 150 150

χres

50 100 1400 2400
50 100 1200 2100
50 100 150 300

Table F.8: Number of measurements for each L0/a optimized to obtain the target relative
accuracy on χ reported in the first row at the temperature T1 and L/a = 144. Each row
corresponds to one Gauss point where the integrand function of χ has to be sampled.
The bare mass increases from top to bottom.
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achieved by solving the constrained minimization problem




Ng
j , N

s
j :

nG∑

j=1

Ng
j

(
tgj +N s

j t
s
j

)
is minimized

nG∑

j=1

ω2
j 2τj

Ng
j

(
vgj +

1

N s
j

vsj

)
= σ2target

(F.74)

where the index i = 1, 2, ..., nG labels all the Gauss points for the quadrature of χ.
Specifically, in our case nG = 20. The first equation is the total computational cost,
while the second is the total variance of χ fixed to a prescribed target value. At the i-th
point of the quadrature, the other quantities are as follows:

• Ng
i is the number of measurements (gauge configurations),

• N s
i is the number of random sources per trajectory,

• tgi is the computational time (in ch) for one HMC update of the gauge configuration
(sum of shift forward and backward),

• tsi is the computational time (in ch) for processing one random source (sum of shift
forward and backward),

• ωi is the Gauss quadrature weight,

• vgi is the gauge variance,

• vsi is the random sources variance,

• τi is the integrated autocorrelation time (max between forward and backward),
measured with the Gamma method 3.7.2.

This problem can be solved using Lagrange multipliers. We call λ the Lagrange parame-
ter. The unknown variables are the Ng

i and N s
i , while all the other quantities are assumed

to be known (usually from some preliminary ensembles, or from the thermalization). We
get the system 




tgi +N s
i t
s
i − λ

ω2
i

(Ng
i )

2

(
vgi +

1

N s
i

vsi

)
2τi = 0

Ng
i t
s
i − λ

ω2
i

Ng
i (N

s
i )

2
vsi 2τi = 0

nG∑

j=1

ω2
j 2τj

Ng
j

(
vgj +

1

N s
j

vsj

)
= σ2target .

(F.75)

We solve the first two equations in λ, and by equating the results we get the condition
on the number of sources:

N s
i =

√
tgi v

s
i

tsi v
g
i

≡ N s,∗
i , 1, ..., nG . (F.76)
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These numbers do not depend on ωi, τi and Ng
i , as we may expect. The scaling of N s

i

with the computational times and the variances is such that more sources are produced
when the cost of the gauge configuration is high compared to the gain in the variance.
If we substitute back in λ, we get

λ =
t∗i (N

g
i )

2

ω2
i v

∗
i 2τi

(F.77)

where we also defined the source-optimized computational time and variance

t∗i ≡ tgi +N s,∗
i tsi , v∗i ≡ vgi +

1

N s,∗
i

vsi . (F.78)

If we consider λ at two indices i, j we get nG − 1 independent constraints, leading to

Ng
j = Ng

i

√
ω2
j

ω2
i

v∗j 2τj

v∗i 2τi

t∗i
t∗j

(F.79)

If we replace in the third equation of (F.75), and we also replace the optimized value
N s
j = N s,∗

j of eq. (F.76), we finally get

Ni =
1

σ2target

√
ω2
i v

∗
i 2τi
t∗i

nG∑

j=1

√
ω2
j t

∗
j v

∗
j 2τj , i = 1, ..., nG . (F.80)

This formula suggests the number of measurements (with optimized random sources)
per Gauss point such that the target error on the quadrature is reached at the minimum
computational effort. The optimization requires some input data: the computational
times, the gauge and sources variances, the autocorrelation times. The target error
σtarget itself is better constrained if an estimation of the integral χ is available. The
procedure is thus the following:

1. we generate some exploratory ensembles with a guessed number of trajectories per
point (flat statistics, say), and with a reasonable number of random sources per
trajectory. In this way the integral χ can be estimated, as well as the computational
times per trajectory tgi , t

s
i , the variances vgi , v

s
i and the autocorrelation times τi for

a known number of measurements.

2. Using the estimated central value of the integral, and the target relative accuracy,
the target absolute error σtarget on χ can be determined.

3. Finally, equations (F.76) and (F.80) give the optimized statistics.

F.9.2 Optimization at work

The chosen showcase for the optimization is the 8 × 1443 lattice at T1. Computational
times, variances and autocorrelations were first measured on the thermalization ensembles
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κ N s
i opt Ng flat Ng

i opt
0.13193 53.7(16) 489 47
0.13110 54.9(20) 489 132
0.12971 57.0(12) 489 172
0.12790 62.5(14) 489 199
0.12588 70.7(23) 489 189
0.12383 74.5(24) 489 176
0.12193 82.5(28) 489 168
0.12033 84(3) 489 134
0.11916 72.5(25) 489 107
0.11848 77(3) 489 39
0.11738 75.6(20) 489 231
0.11371 83.6(23) 489 428
0.10823 98(3) 489 461
0.10227 103(3) 489 422
0.09694 103(3) 489 331
0.09293 113(6) 489 178
0.09061 111(6) 489 108
0.07991 107(3) 489 1465
0.04503 112(4) 489 1237
0.01015 98(4) 489 190
total time (Mch) 8.84 3.88

Table F.9: Optimized number of random sources and trajectories for a target error on χ of
∼ 0.5% on a 8× 1443 lattice at temperature T1. The comparison with the corresponding
flat statistics case is shown.
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at volume 8 × 483. We then imposed a target accuracy of 0.5% on the mass integral,
and obtained the optimized numbers of random sources and trajectories per value of the
hopping parameter κ. Finally we rescaled these numbers by the volume factor (48/144)3

and, taking into account a ∼ 20% increase of computing time due to the scaling of the
algorithm and parallelization with the system size, we obtained the optimized numbers
shown in table Table F.9 for the target lattice volume. For comparison we also computed
the number of trajectories in case a flat-statistics approach is chosen, given the optimized
number of random sources. The numberNg

flat is common to all values of κ and is implicitly
defined by

1

Ng
flat

nG∑

i=1

ω2
i 2τi

(
vgi +

1

N s,∗
i

vsi

)
= σ2target . (F.81)

We can see the optimization at work in the last line of Table F.9. We computed the the
total computational time in the two cases using the average time per trajectory in actual
simulations of 8×1443 lattices. The cost of the optimized case is roughly a half compared
to the naive, flat-statistics case. From Table F.9 we also see that, while the optimized
numbers of trajectories change widely with κ, the number of random sources is roughy
of the order of ∼ 100 at all hopping parameters. For simplicitly we decided to fix the
number of sources to 100 at all bare parameters, and to round the number of trajectories
consequently. The final optimized numbers are listed in Table F.8 for the resolutions
L0/a we consider in our study. Actually we used the optimization only for L0/a = 8, 10
because simulations at L0/a = 4, 6 are cheap enough for the simpler, flat-statistics choice
to be competitive.

F.9.3 Lagrange multipliers

The Lagrange multipliers are used to minimize a function f(x), x ∈ Rd, under a constraint
of the form g(x) = 0. We define the Lagrangian

L(x, λ) = f(x) + λg(x) , (F.82)

and the function f is minimized on the stationary points of this Lagrangian:
{
∂xiL(x, λ) = 0 , i = 1, ..., d

∂λL(x, λ) = 0 .
(F.83)

Notice that the second equation is the constraint itself.

F.10 Continuum limit

We collect here the tables with all the fit parameters considered for the extrapolation to
the continuum limit of the entropy density. Table F.10 contains the continuum limits
p0–p8 for all the relevant fits we performed on the numerical data. Table F.11 contains
the related fit coefficients for the parametrization of the cutoff effects.
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id
dataset

p
0

p
1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

χ
2

d.o.f
0

A
20.140(16)

20.103(18)
20.063(19)

20.024(21)
19.986(23)

19.913(26)
19.850(30)

19.765(35)
19.642(58)

17.192
23

1
A

20.136(33)
20.100(30)

20.061(28)
20.022(27)

19.985(25)
19.913(26)

19.852(35)
19.771(56)

19.646(67)
17.177

22
2

4I
20.159(39)

20.093(30)
20.098(31)

20.007(35)
19.982(35)

19.908(37)
19.846(40)

19.784(48)
19.647(60)

14.034
23

3
4I

20.152(49)
20.088(39)

20.094(37)
20.004(38)

19.980(36)
19.909(37)

19.850(44)
19.794(64)

19.658(77)
13.983

22
4

A
20.220(53)

20.195(60)
20.165(67)

20.136(74)
20.112(82)

20.055(93)
20.01(11)

19.95(12)
19.87(15)

14.647
22

5
A

20.18(12)
20.16(12)

20.13(11)
20.11(11)

20.09(10)
20.046(97)

20.02(11)
19.99(16)

19.95(26)
14.485

20
6

4I
20.242(65)

20.186(65)
20.200(71)

20.119(78)
20.108(86)

20.052(97)
20.01(11)

19.97(13)
19.88(15)

11.472
22

7
4I

20.21(13)
20.15(12)

20.17(12)
20.09(11)

20.09(10)
20.04(10)

20.01(11)
20.00(16)

19.94(26)
11.357

20
8

N
4

20.230(63)
20.139(52)

20.184(54)
20.057(60)

20.050(64)
19.987(71)

19.932(76)
19.908(91)

19.78(11)
9.127

15
9

N
4

20.20(10)
20.115(83)

20.163(79)
20.039(77)

20.037(73)
19.981(73)

19.936(77)
19.93(11)

19.83(17)
8.998

14

T
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F
.10:

Sum
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s/T
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fit.
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data,4I
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L
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4
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L
0 /a

=
6
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L
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,10
data

only.
C
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w
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p
i
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4.46
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T
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o
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χ
2

and
the

num
ber

of
degrees

of
freedom

of
the

fit.

id0
id1

id2
id3

id4
id5

id6
id7

id8
id9

p
2
3

-2.48(23)
-2.1(28)

-2.55(33)
-1.7(40)

-9.4(44)
8(46)

-9.6(44)
6(47)

-4.5(13)
1(14)

p
2
4

-0.3(23)
-0.7(33)

-14(37)
-13(37)

-4(11)
p
3
3

23(14)
-37(150)

23(15)
-29(155)

p
3
4

48(120)
42(123)

T
able

F
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4.46
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function.
T
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m
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through

the
id

of
the

fits.
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c00 = 10.14328 c01 = 6.56528 c02 = 6.10007
c03 = 5.53266 c04 = 4.84359 c05 = 3.58625
c06 = 1.47970 c07 = −1.78790 c08 = −6.91749
c11 = 6.88316 c12 = 5.36563 c13 = 4.92258
c14 = 4.39836 c15 = 3.41327 c16 = 1.69967
c17 = −0.91015 c18 = −5.07463 c22 = 6.26307
c23 = 4.70072 c24 = 4.28437 c25 = 3.47033
c26 = 1.98627 c27 = −0.22396 c28 = −3.82206
c33 = 5.90892 c34 = 4.14999 c35 = 3.54695
c36 = 2.34539 c37 = 0.62760 c38 = −2.27333
c44 = 5.38179 c45 = 3.73862 c46 = 2.91580
c47 = 1.86685 c48 = −0.09793 c55 = 5.28125
c56 = 3.67951 c57 = 3.70483 c58 = 3.26356
c66 = 5.86791 c67 = 5.84762 c68 = 7.55016
c77 = 12.03381 c78 = 15.22651 c88 = 28.92183

Table F.12: Covariance matrix for the continuum extrapolated values of the entropy
density, according to fit id9 (see Table 4.8). The coefficient cij gives the covariance of
the parameters pi, pj . Values are multiplied by 103.

F.11 Systematic effects from topology

It is well known that lattice QCD simulations with periodic boundary conditions at
fine lattice spacing suffer from topology freezing [47, 137, 4]. Consequently, either a
setup is chosen where all topological sectors can be sampled (e.g. open boundary condi-
tions [101]), or one should be in the circumstance where topology does not matter.

In our interval of temperatures 1GeV ≲ T ≲ 100GeV the Q = 0 sector of the
QCD phase space gives by far the dominant contribution to the path integral. The
strong suppression of the topological susceptibility at high temperatures is predicted by
the instanton model approximation, see eqs. (2.24), (2.23), and has been numerically
explored [58, 20]. For all practical purposes, we can in principle restrict our study to the
trivial topology sector. We may thus consider all our formulas with the zero topology
condition δQ,0 enforced in the path integral. This propagates to our main observables,
the expectation value of the Wilson plaquette action measured in the pure gauge theory
and the chiral condensate measured in QCD:

〈
SG
〉YM

Q=0
=

〈
δQ,0 S

G
〉YM

⟨δQ,0⟩YM
,
〈
ψψ
〉
Q=0

=

〈
δQ,0 ψψ

〉

⟨δQ,0⟩
. (F.84)

The computation of the integral χ requires, at given L0/a and g20, simulations in QCD
with increasing bare quark mass. At large masses, quarks contribute less and less to
the dynamics and thus the theory behaves more and more as the pure gauge theory (at
the bare parameters of QCD), and the topological susceptibility is expected to be less
suppressed compared to QCD near the chiral limit. This is true in particular for the pure
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gauge simulations where we measure
〈
SG
〉
, which should be meant as QCD simulations

in the limit of infinite bare quark mass.
The effect is that in some (few) of our ensembles topology do fluctuate, at the point

that the zero topology projection eq. (F.84) cannot be enforced efficiently in terms of
accumulated statistics. Actually pure gauge simulations show some topological activity
only at the two lowest temperatures T7, T8 considered in this study, while QCD simu-
lations at T8 only and at the largest values of bare quark mass. In both cases, only the
lattice resolutions L0/a = 4, 6 are affected.

As an alternative solution, we can verify that the correlation between topology and
our observables is negligible within the statistical accuracy. If this is the case, we can
include in the analysis samples from non-zero topological sectors without introducing any
systematics in the results. In the following we report on the detailed investigation of the
effects of topology on our observables. The outcome of these studies is that any effect
from sampling non-trivial topological sectors is negligible within our statistical accuracy.
Therefore, at the lowest temperatures and largest bare masses, we could sample on all
configurations without worrying about the topological activity of the system.

F.11.1 Correlation with Q

We would like to estimate the effect of the topological activity on our main observables.
To this purpose we introduce, in continuum QCD and in the large volume limit, the fixed
topology partition function [24],

ZQ = Z
√

2π

⟨Q2⟩ exp
{
− Q2

2⟨Q2⟩

}
(1 + O(1/V )) (F.85)

where Z denotes the usual partition function including all topological sectors. This
relation can be used to derive the effect on spectral quantities due to the projection in a
topological sector. By deriving both sides with respect to the bare coupling g20 we get

〈
SG
〉
Q
=
〈
SG
〉
+

1

2

〈
SGQ2

〉
c

χtL0V

(
1− Q2

χtL0V

)
+O

(
1

L0V

)
. (F.86)

If we similarly differentiate eq. (F.85) with respect to the bare quark mass we get the
analogous relation for the chiral condensate,

〈
ψψ
〉
Q
=
〈
ψψ
〉
− 1

2

〈
ψψQ2

〉
c

χtL0V

(
1− Q2

χtL0V

)
+O

(
1

L0V

)
. (F.87)

On the left hand sides, the gauge action and chiral condensate are evaluated at fixed
topology Q while on the right the expectation value is over all the topological sectors.
These equations state that the magnitude of the impact of topology on

〈
SG
〉

and
〈
ψψ
〉

is
related to their connected correlation function with the square of the topological charge,
and it is suppressed as χtV which is the variance of the topological charge distribution.
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F.11.2 Topological effects from Dirac spectrum

The chiral condensate can be explicitly written as

〈
ψψ
〉
=

1

L0V

〈
Tr
{
(D +m)−1

}〉
U
, (F.88)

where the trace is over all indices including spacetime, and ⟨·⟩U is defined on the path
integral after the integration of fermionic fields. Calling λ the eigenvalues of the Dirac
operator D, we have

Tr
{
(D +m)−1

}
=
∑

λ

1

λ+m
=
n+ − n−

m
+
∑

λ ̸=0

1

λ+m
, (F.89)

where in the second step we isolated the zero modes of the Dirac operator, which have
definite chirality: n± is the number of zero modes with positive (negative) chirality.
Assuming that either n+ ̸= 0 or n− ̸= 0 (a conjecture called absence of fine tuning), then
n+ − n− = |Q| as a consequence of the index theorem. We get

〈
ψψ
〉
=
⟨|Q|⟩U
mL0V

+
1

L0V

〈∑

λ ̸=0

1

λ+m

〉
U

(F.90)

The bulk of the topology dependence comes from the first term. If we take the difference
of this quantity with the same quantity projected in the trivial topological sector, the
second term mostly cancels. Furthermore, in the large volume limit the topological charge
distribution is Gaussian and ⟨|Q|⟩U ∼

√
L0V χt so that

〈
ψψ
〉
−
〈
ψψ
〉
Q=0
≈

√
χt

m
√
L0V

+O

(
1

L0V

)
(F.91)

This equation reveals that the correlation of the chiral condensate with the topological
sector is suppressed with one power of the quark mass. This is reassuring because we
expect topology to be more active at large masses 1. However, it must be said that
equation (F.91) has been derived under many assumptions, one above all the fact that
the Dirac operator respects chiral symmetry, which is not true in our simulations with
Wilson fermions. Therefore any conclusion from equation (F.91) cannot be more than
an indicative guideline.

F.11.3 Numerical checks

Equations (F.87) and (F.91) suggest that the effects of topology on the chiral condensate
are suppressed both with the quark mass and the volume. In order to check this behaviour
we measured the chiral condensate on a long Monte Carlo history produced in quenched

1The volume and mass suppressions predicted by equations (F.91) and (F.87) are apparently dif-
ferent. However, in equation (F.91) we are not considering the implicit dependence of the topological
susceptibility on the quark mass, in the large mass limit.
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κ |∆Q| = 1 |∆Q| = 2 |∆Q| = 3 |∆Q| = 4

0.10100 0.002(6) 0.026(8) 0.043(12) 0.044(19)
0.08354 0.0011(29) 0.012(4) 0.020(5) 0.019(8)
0.04136 0.4(6) 2.8(8) 4.6(11) 4.3(18)
0.00932 0.10(13) 0.60(17) 0.97(23) 0.9(4)

nms 11022 4310 1526 622

(a) Data from lattice 6 × 483, z/a = (8, 0, 0), quenched. Estimates of the effect of topology on
the integrand function for the mass integral χ. The Q = 0 sector is sampled with 7552 points.

κ |∆Q| = 1 |∆Q| = 2 |∆Q| = 3 |∆Q| = 4

0.10100 0.0075(29) 0.002(3) 0.007(4) 0.005(4)
0.08354 0.0035(13) 0.0009(15) 0.0034(17) 0.0024(18)
0.04136 0.8(3) 0.2(3) 0.8(4) 0.6(4)
0.00932 0.17(7) 0.05(7) 0.18(8) 0.12(9)

nms 2421 2408 2007 1398

(b) Data from lattice 6 × 963, z/a = (8, 0, 0), quenched. Estimates of the effect of topology on
the integrand function for the mass integral χ. The Q = 0 sector is sampled with 1334 points.

Table F.13

QCD, on a 6× 483 lattice at bare parameters of T8. On each configuration, we measured
the topological charge at fixed Wilson flow time twf [109], such that

T
√
8twf = c , T = 1/(L0

√
2) , c = 1/

√
10 ≈ 0.316 . (F.92)

The chiral condensate was computed by setting the valence quark hopping parameter at
some selected values in the interval 0.009 ≲ κ ≲ 0.1. On this ensemble we then computed
the discrepancy 〈

ψψ
〉
|Q| −

〈
ψψ
〉
Q=0

(F.93)

considering the most sampled topological sectors. The related discrepancies on the in-
tegrand function for the mass integral χ are reported in Table F.13a. To obtain these
numbers we considered the worst case where the effects at the two shifts add up. The ta-
ble reports the number of configurations that occurred at the different topological sectors
considered for the study. The trend along the rows (that is, for increasing topological
charge) is compatible with an increasing of the topological effect on the integrand func-
tion, although less statistics is available at large |∆Q|. The trend along columns (that
is, for decreasing κ) is more difficult to interpret because both the quark mass and the
topological susceptibility increase, see also Table F.14. From equation (F.91), we expect
a (partial) compensation between the two.

It is interesting to compare the deviations in Table F.13a to the values of the integrand
function corresponding to the same κ in Table F.14, containing (full QCD) data for the
quadrature of the mass integral. The largest impact occurs at κ = 0.041 and |∆Q| = 4,
where the effect due to topology is ∼ 2σ of the integrand function (even though the
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all Q sectors Q = 0 only
κ ω Gauss nms χt/T

4 × 103 integrand nms integrand
0.13529 0.167 1000 0.01281(56) 0.804(53) 1000 0.804(53)
0.13413 0.374 1000 0.01273(56) 2.705(51) 1000 2.705(51)
0.13219 0.548 1000 0.01524(69) 4.424(47) 1000 4.424(47)
0.12970 0.673 1070 0.01576(75) 4.762(49) 1070 4.762(49)
0.12694 0.739 1000 0.01873(87) 3.779(39) 1000 3.779(39)
0.12417 0.739 1000 0.02005(96) 2.567(35) 1000 2.567(35)
0.12164 0.673 1000 0.0230(10) 1.821(27) 1000 1.821(27)
0.11953 0.548 1000 0.0243(13) 1.370(26) 1000 1.370(26)
0.11799 0.374 1000 0.0256(16) 1.041(22) 1000 1.041(22)
0.11711 0.167 1000 0.0281(21) 0.929(25) 1000 0.929(25)
0.11529 1.285 1000 0.0279(14) 0.678(24) 999 0.677(24)
0.10925 2.706 1000 0.0291(14) 0.282(17) 999 0.282(17)
0.10100 3.509 1000 0.0446(45) 0.095(12) 999 0.095(12)
0.09307 3.509 1500 0.71(54) 0.0435(70) 1404 0.0409(72)
0.08702 2.706 1500 0.22(12) 0.0316(52) 1472 0.0309(53)
0.08354 1.285 1500 1.78(23) 0.0268(43) 1120 0.0228(56)
0.07339 0.023 1000 0.139(30) 14.1(2.9) 941 15.3(2.9)
0.04136 0.037 1000 2.07(31) 11.1(1.4) 612 9.8(2.2)
0.00932 0.023 1000 9.3(3.5) 2.40(30) 454 2.55(55)
mass integral χ/T 4 17.01(13) 16.98(14)

Table F.14: Data from 6 × 483 lattices, temperature T8. First column: points for the
Gauss quadrature at these bare parameters. Second column: Gauss weights for the
quadrature. Third, fourth, fifth columns: number of measurements, topological suscep-
tibility and integrand function considering all the sampled topological sectors. Sixth and
seventh columns: number of measurements and integrand function considering data at
Q = 0 only. Last row: comparison of integrals computed with and without Q = 0 pro-
jection.
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Figure F.4: Monte Carlo history of the topological charge at selected values of κ.

uncertainty is large). Despite these effects, we see from the last row of Table F.14 that
the impact of the Q = 0 projection on the full integral is well below 1σ, while its relative
error is comparable to the ∼ 0.5% target accuracy.

Table F.13b is analogous to Table F.13b, but data are produced on a 6× 963 lattice.
The statistics was tuned so to have a comparable accuracy on the chiral condensate. The
data in the two Tables are compatible with a suppression of the topological effects with
the volume. Comparing data from Tables F.13b and F.14 we see that the worst case
is κ = 0.041, |∆Q| = 3, whose impact is less than ∼ 0.5σ of the integrand function.
This makes us confident that at the target volume, that is as large as L/a = 144 in the
three spatial directions, the effects of topology on the integrand function are definitely
subdominant within our statistical accuracy.

In conclusion, in Figure F.4 we report the Monte Carlo the history of the topolog-
ical charge at some values of hopping parameter, measured on selected ensembles. As
expected, the topological susceptibility increases with the mass and thus more and more
non-trivial topological sectors are sampled. Figure F.5 shows the Monte Carlo history of
the plaquette and the tree-level subtracted chiral condensate compared to the topological
charge, at the largest mass of Figure F.4. This plot shows qualitatively that no relevant
correlation is present between the observables and the topological sectors.

F.12 Finite volume effects

We report on the tests we performed to check that finite volume effects on the entropy
density are negligible within our statistical accuracy. The entropy density is proportional
to the 1-point function ⟨T0k⟩ξ of the QCD Energy-Momentum tensor (EMT) measured
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Figure F.5: Monte Carlo history of the plaquette and tree-level subtracted chiral con-
densate, compared to the history of the topological charge.
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T L/a ⟨TG,{6}01 ⟩ξ/T 4 ⟨TF,{6}01 ⟩ξ/T 4 s/T 3

T1
144 -2.802(17) -6.3058(59) 19.763(48)
288 -2.791(14) -6.3175(60) 19.759(38)

T8
144 -2.373(23) -5.8475(98) 18.238(64)
288 -2.361(19) -5.867(10) 18.245(62)

Table F.15: Results for the bare EMT components, and for the entropy density obtained
from the perturbatively renormalized EMT. We consider two temperatures and two values
of the spatial volume, and L0/a = 6.

in the moving frame, see equation (2.17). On the lattice the EMT requires a finite
renormalization because the regularization breaks the SO(4) symmetry to its discrete
hypercubic subgroup. At given L0/a and g20 we write the lattice entropy density as

s

T 3
= −1 + ξ2

ξk

1

T 4
⟨TR,{6}0k ⟩

ξ
, (F.94)

where on the right appears the renormalized lattice EMT in the sextet representation of
the hypercubic group [33]:

TR,{6}µν = Z
{6}
G (g20)T

G,{6}
µν + Z

{6}
F (g20)T

F,{6}
µν . (F.95)

The conventions for the EMT can be found in Appendix B. Finite volume effects for the
entropy can thus be directly estimated by measuring the relevant 1-point functions of the
EMT at some selected bare parameters, on lattices with different spatial volumes. This
circumvents the very expensive computation of the free energy along the line of Chapter 4
on a larger physical volume. The two finite renormalization constants are not known yet
non-perturbatively, even though there is some work in progress in this direction [23] (see
also Section 5.3). However, in order to study the finite volume effects we may use the
1-loop results in lattice perturbation theory [31, 42].

We proceeded as follows. At the bare parameters of T1, T8 and lattice resolution
L0/a = 6 we measured the two one-point functions appearing in (F.95) in lattice QCD
simulations at L/a = 144 and L/a = 288, and shift ξ = (1, 0, 0). Then, we computed the
entropy density at the two volumes using equation (F.94) and the perturbative renormal-
ization constants. The results are collected in Table F.15, where we show the bare matrix
elements of the EMT and the entropy density obtained from the perturbative renormal-
ization of the tensor. For the check to be significant, we collected enough statistics so
that the relative accuracy on the entropy density is comparable to the accuracy of the
fully non-perturbative values in Table 4.7. At both temperatures T1 and T8, the gluonic
1-point functions at two volumes are compatible within ∼ 0.5 combined sigma, while the
fermionic components within ∼ 1.4 combined sigma. However, when they are combined
together for estimating the entropy density, we see that the values at two volumes are in
perfect agreement, with a deviation smaller than ∼ 0.1 combined sigma.
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Appendix G

Technical details on the
non-perturbative renormalization of
composite operators

G.1 Perturbative computation of ZV

In this Appendix we discuss the computation of ⟨V l
µ⟩ and ⟨V c

µ ⟩ at O(g20) in lattice per-
turbation theory. We present here only the relevant expressions, while for the details of
our conventions and notation we refer readers to Appendix E and to Ref. [42]: in partic-
ular, the results of the calculation for the conserved flavour-singlet vector current can be
found in Appendix G of that reference. The computation is carried out in the presence of
shifted boundary conditions and of a twist fermion phase for a generic number of colours,
Nc, and of quark flavours, Nf . We write the expectation value of the local current as
follows

⟨V l
µ⟩ = V l,(0)µ + g20 V l,(1)µ , (G.1)

where the tree-level value is given by

V l,(0)µ = 4iNcNf
aF

(5)
µ +

∑
σ F

(4)
µσ

(am0 + 4)
. (G.2)

The definitions of the integrals F (5)
µ , F (4)

µν and of similar ones that appear below can be
found in Appendix E. The O(g20) contribution can be written as the sum of three terms,

V l,(1)µ = i(N2
c − 1)Nf

{
V l,1µ + V l,2µ + V l,3µ

}
, (G.3)

whose expressions are

V l,1µ = aB(0)

{
a2F

(5)
µ +

∑
σ aF

(4)
µσ

(am0 + 4)
− 2

(
aF (7)

µ +
∑

σ

F (6)
µσ

)}
, (G.4)
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V l,2µ = −4
∫

q
ξ
;p

ξ,θ
;k

ξ,θ

δ̄(p− q − k)
DG(q)D2

F (k)DF (p)
× (G.5)

k̄µ

{
m0(p)m0(k)

∑

σ

cσ(r)− a
∑

σ

{
r̄σ

[
m0(k)p̄σ +m0(p)k̄σ

]}

+
∑

σ

{
p̄σk̄σ

[
3− cσ(r)

]}}
,

V l,3µ = −2
∫

q
ξ
;p

ξ,θ
;k

ξ,θ

[p̄µ (cµ(r)− 3) + am0(p)r̄µ]

DG(q)DF (p)DF (k)
δ̄(p− q − k) , (G.6)

and we have defined r = p+ k.

The Sheikholeslami-Wohlert term for the O(a)-improvement of the action adds two
contributions to the O(g20) coefficient,

V l,(1)µ −→ V l,(1)µ + i(N2
c − 1)Nf

{
V l,4µ + V l,5µ

}
, (G.7)

which are given by

V l,4µ = acsw

∫

q
ξ
;p

ξ,θ
;k

ξ,θ

δ̄(p− q − k)
DG(q)D2

F (k)DF (p)
× (G.8)

{
2k̄µ

{
a
∑

σρ

{
q̄σ(k̄σp̄ρ − p̄σk̄ρ)

(
p̄ρ + k̄ρ

)}

+
∑

σ

{
q̄σ
[
m0(k)p̄σ −m0(p)k̄σ

]∑

ρ̸=σ

[
cρ(p) + cρ(k)

]}
}

+DF (k)

{
a
(
p̄µ + k̄µ

)∑

σ

q̄σp̄σ + q̄µ

[
m0(p)

∑

σ ̸=µ

(
cσ(p) + cσ(k)

)

− a
∑

σ

p̄σ
(
p̄σ + k̄σ

)]
}}

,
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V l,5µ =
a2c2sw
4

∫

q
ξ
;p

ξ,θ
;k

ξ,θ

δ̄(p− q − k)
DG(q)D2

F (k)DF (p)
× (G.9)

{
2k̄µ

{
2
∑

σ

q̄2σ
∑

ρ

p̄ρk̄ρ
(
1 + cρ(q)

)

+ 2
∑

σ

k̄σ q̄σ
∑

ρ

q̄ρp̄ρ

(
2− cσ(q) +

∑

λ ̸=ρ
cλ(q)

)

−
[∑

σ

p̄σk̄σ −m0(k)m0(p)
][∑

ρ

q̄2ρ

(
3 +

∑

λ ̸=ρ
cλ(q)

)]}

+DF (k)

{
p̄µ
∑

σ

[
q̄2σ

(
1− 2cµ(q) +

∑

ρ̸=σ

cρ(q)
)]

− 2q̄µ
∑

σ

[
p̄σ q̄σ

(
2− cµ(q) +

∑

ρ ̸=σ
cρ(q)

)]}}
.

The critical mass at O(g20) is given in Appendix E.2. The 1-loop term generates one
extra contribution to the expectation value of the vector current which reads

V l,(0)µ −→ V l,(0)µ +
∂V l,(0)µ

∂m0

∣∣∣
m0=m

(0)
cr =0

m(1)
cr g

2
0 , (G.10)

where

∂V l,(0)µ

∂m0
= −8iNcNf

aF
(7)
µ +

∑
σ F

(6)
µσ

(am0 + 4)
. (G.11)

Based on the above results and those discussed in Ref. [42] for the conserved vector
current, we have computed the perturbative expansion of ZV at O(g20) in infinite spatial
volume, see eq. (5.15). We report in the following the results for the tree-level and 1-loop
coefficients Z(0)

V , Z(1)
V . We write the latter as follows:

Z
(1)
V = Z

(1,0)
V + Z

(1,1)
V csw + Z

(1,2)
V c2sw. (G.12)

The coefficients Z(0)
V , Z(1,0)

V , . . . , Z(1,2)
V depend on the extension of the compact direc-

tion L0/a because of discretization effects. Their numerical values at θ0 = π/6 with
shift ξ = (1, 0, 0) are collected in Table G.1 for several values of L0/a. These are the
coefficients to be used in eq. (5.17) to improve the non-perturbative results presented
in Subsection 5.2.4. The values in the Table G.1 suggest also that, at least at this or-
der in perturbation theory, discretization errors for ZV are tiny for the larger temporal
extensions.
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L0/a Z
(0)
V Z

(1,0)
V Z

(1,1)
V Z

(1,2)
V

4 1.112904 -0.071406 0.012116 0.001336
6 1.021530 -0.067500 0.014571 0.001616
8 1.005285 -0.066005 0.015062 0.001689
10 1.001882 -0.065592 0.015097 0.001708

Table G.1: Values of Z(0)
V , . . . , Z(1,2)

V at θ0 = π/6 and ξ = (1, 0, 0) for several values of
L0/a. The numerical values have been rounded at the level of 10−6.

G.2 Renormalization constants

We collect here the explicit solutions of the master equation (5.26) for the sextet renor-
malization constants. It is convenient to define the following differences,

∆
G,{6}
0k = ⟨TG,{6}0k ⟩

ξ,θB0
− ⟨TG,{6}0k ⟩

ξ,θA0
, (G.13)

∆
F,{6}
0k = ⟨TF,{6}0k ⟩

ξ,θB0
− ⟨TF,{6}0k ⟩

ξ,θA0
, (G.14)

while the determinant of the matrix in the master equation (5.26) reads

D
{6}
0k = ⟨TG,{6}0k ⟩

ξ,θA0
⟨TF,{6}0k ⟩

ξ,θB0
− ⟨TF,{6}0k ⟩

ξ,θA0
⟨TG,{6}0k ⟩

ξ,θB0

= ⟨TG,{6}0k ⟩
ξ,θA0

∆
F,{6}
0k − ⟨TF,{6}0k ⟩

ξ,θA0
∆
G,{6}
0k .

(G.15)

Then, the solution of the system for the sextet gluonic renormalization constant Z{6}
G

may be put in the following form,

Z
{6}
G = − 1

⟨TG,{6}0k ⟩
ξ,θA0


∆fξ,θA0

∆ξk
+
⟨TF,{6}0k ⟩

ξ,θA0
VAB0,k

∆
F,{6}
0k




1 +

⟨TF,{6}0k ⟩
ξ,θA0

∆
G,{6}
0k

D
{6}
0k


 ,

(G.16)
while the sextet fermionic Z{6}

F reads

Z
{6}
F =

VAB0,k

∆
F,{6}
0k

+
∆
G,{6}
0k

D
{6}
0k


∆fξ,θA0

∆ξk
+
⟨TF,{6}0k ⟩

ξ,θA0
VAB0,k

∆
F,{6}
0k


 . (G.17)

The expressions for the triplet renormalization constants Z{3}
G , Z{3}

F can be similarly
derived exploiting equation (5.27).

G.3 Simulation details

In our simulations of Nf = 3 O(a)-improved Wilson fermions we used the package
openQCD-1.6 [99] modified for including shifted boundary conditions. We simulated
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the up and down quark doublet with an optimized twisted-mass Hasenbusch precondi-
tioning [75, 101] for the quark determinant. This determinant was factorized into three
components using twisted mass values of aµ = 0.0, 0.1 and 1.0. For the strange quark we
adopted the RHMC algorithm [86, 36], optimizing the frequency splitting of the rational
approximation with two distinct contributions. All the flavours were even-odd precondi-
tioned. The integration of the molecular dynamics equations has been performed with a
three-level integration scheme. The gauge force have been integrated at the finest level
using a 4th-order Omelyan-Mryglod-Folk (OMF4) [123] integrator with a step size of 1,
while the fermionic forces were integrated at the two coarser levels. At the finest of these
levels, we again used an OMF4 integrator with a step size of 1, while at the coarsest level,
we employed a 2nd-order OMF integrator with a step size ranging from 7 to 9. Along
the molecular dynamics evolution the Dirac equation has been solved using a standard
conjugate gradient method with chronological inversion. Each trajectory has been chosen
to be 2 Molecular Dynamics Units long for all lattices.
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