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Abstract

In order to match the increasing precision of modern particle colliders, it is essential

to have accurate theoretical predictions for the cross sections of physical processes

and their associated distributions. These predictions are often obtained via Monte

Carlo event generators which combine the fixed-order calculation, computed as a

perturbative expansion in the coupling constants, with a parton shower and further

hadronization. Due to the presence of soft and collinear emissions, in fact, there are

some regions of the phase space in which the fixed-order computation is unreliable.

In such regions, the presence of two or more widely separated scales leads to the

dependence of those observables on large logarithms of the ratios between these

scales that completely spoils the accuracy of the fixed-order computation. Using

the Multi-Scale Improved NLO (MiNLO′) prescription, it is possible to resum to

all orders the logarithms arising from kinematic configurations that involve different

scales in such a way that the resulting distribution is NLO accurate both for fully

inclusive and 1-jet predictions. The MiNLO′ method was introduced specifically for

QCD radiation and it has already provided remarkable results. The extension to

QED radiation, and its subsequent extension to full electroweak corrections, is still

missing in the literature.

In this work we discuss the abelianization of the MiNLO′ method and its imple-

mentation in the context of QED radiation for the production of a lepton pair plus

a photon, via a neutral vector boson. We discuss the behaviour of the Sudakov form

factor when we switch from QCD to QED and the challenges that such Sudakov

form factor poses in its actual computation. In order to circumvent some of the

problems that would arise in the direct calculation of the Sudakov form factor, we

propose a different solution and we discuss its implementation. Finally, we present

a few distributions of physical interest and we study them both in a modified QED

theory, with a “large” coupling constant, so that all the effects of MiNLO′ are clearly

displayed, and with the physical value of the electromagnetic coupling constant.
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Chapter 1

Introduction

Our knowledge of the fundamental elementary particles and their interactions can be

described within a single theoretical framework, known as the Standard Model (SM)

of Particle Physics, whose success has been established and confirmed in a number

of experiments spanning over half a century.

Despite being a mathematically complete theory accommodating almost all known

experimental data available to date, there is strong evidence that the SM is not the ul-

timate theory but a mere effective theory, valid only at the present accessible energies.

Indeed, it fails to explain a number of experimental observations such as, among the

others, the neutrino masses, the matter-antimatter asymmetry and the astrophysical

evidence of dark matter and dark energy. Within the SM alone, even the presence

of an elementary scalar particle, the Higgs boson, is unpleasant because when com-

puting the radiative corrections to its mass, one encounters quadratically divergent

contributions coming from self-energy corrections. This means that in order to ac-

commodate for the relatively small value of the Higgs mass that was experimentally

observed, an extreme fine tuning of the parameters is required. Moreover, the SM

describes only three of the four fundamental forces of the universe, the gravitational

interaction being left out.

Central to validating the predictions of the SM are hadron colliders, powerful

machines that accelerate protons beams to near-light speed and collide them allow-

ing experimental measurements at unprecedented high energies. At such energies

the strong force responsible for the confinement of partons inside hadrons becomes

less relevant and the accelerated protons start behaving as superpositions of free par-

tons. When two partons from different beams interact in what is referred to as hard

scattering, a large amount of particles is produced. Studying the mass distributions

of the subsets of particles produced in the collisions offers a direct way to discover

new massive particles by looking for peaks in differential distributions. Currently,

the world’s most high-energetic collider is the Large Hadron Collider (LHC), located

at the CERN laboratory in Geneva, Switzerland. The crowning achievement of the
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LHC is the discovery of the Higgs boson [1, 2], whose existence was crucial to con-

firming the mechanism that gives mass to other particles. The discovery, in 2012,

marked a milestone in our quest to unravel the fundamental structure of the universe

and started the precision era of hadron colliders.

The fact that, so far, experiments at the LHC have not yet found any sign of new

physics beyond the SM, has exposed the clear necessity to consider complementary

exploration strategies to the direct searches at the energy frontier. The High Lumi-

nosity phase of the Large Hadron Collider (HL-LHC) is due to start operations in

the late 2020s. With this upgrade, the ATLAS and CMS experiments are expected

to collect ten times more data than they will have recorded during the first three

LHC runs. This dataset will unveil a new landscape for particle physicists to explore

and offer unparalleled opportunities for understanding the forces of nature at their

most basic level. This represents the beginning of a new rich experimental program

set up to pursue the precise measurement of many fundamental SM parameters with

an incredible percent or sub-percent target accuracy.

In order to make the most out of the data that will be collected, present and

future LHC experiments demand theoretical simulations with increasingly better

accuracy as many experimental analyses are (or will be) limited by theoretical un-

certainties. In fact, high-precision predictions play a fundamental role in the quest

for new physics when searching for small deviations from the SM. These predictions

are formulated within the theoretical framework offered by Perturbation Theory in

which the cross section is expressed in terms of a power series of the coupling con-

stant truncated at some fixed order. Most low multiplicity processes at LHC are

known up to next-to-next-to-leading order (NNLO) QCD corrections and in some

cases even beyond that. For some processes also next-to-leading order (NLO) EW

corrections need to be taken into account, as the QCD coupling constant squared is

of the same order of magnitude as the electroweak one1. Moreover the matching of

these fixed-order computations with increasingly accurate parton showers is crucial

to fully exploit the vast amount of data coming from the experiments. In fact, not

only it allows for a direct comparison between the theoretical computation and the

measurements, but also it provides physical predictions in the regions of the phase

space in which the fixed-order computation would be unreliable for observables sen-

sitive to soft/collinear radiation. In such regions, the presence of two or more widely

separated scales leads to the dependence of those observables on large logarithms of

the ratios between these scales that completely spoils the accuracy of a fixed-order

computation. By including soft/collinear emissions to all orders via a parton shower,

one effectively resums the large logarithmic corrections at leading-logarithmic accu-

racy for generic observables, thus obtaining physical results.

Tools to achieve this goal for generic observables are Monte Carlo event gener-

1See Ref. [3] for a recent comprehensive review.
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ators, which incorporates the effects described above. Their purpose is to simulate

events, namely the production of sets of particles and their kinematical distribu-

tion. Event generators have evolved significantly over the decades, incorporating

more sophisticated algorithms throughout the years. The first generators ever to be

implemented provided an accurate description of QCD emission only in the collinear

and/or soft limit via parton showers. Later on, these predictions were improved

by matching the shower to the leading-order (LO) matrix element of the scattering

process. In this way one obtains an accurate description of the scattering also far

from the soft and collinear regions of the phase space. This is achieved by match-

ing the LO matrix elements to general purpose Monte Carlo event generators like

Pythia [4, 5], Herwig [6] or Sherpa [7–9]. A direct improvement to this approach

relies on the matching of the shower to a NLO prediction (NLO+PS). This is done,

for example, through the POWHEG [10–12] and MC@NLO [13, 14] methods, which

are able to produce both NLO accurate distributions for radiation-inclusive observ-

ables and LO accurate ones for observables sensitive to the real radiation. A further

extension of these methods can be obtained by merging two NLO computations with

different multiplicity, namely one with one more resolved parton than the other, and

matching them with parton showers. This is done by many different methods, such

as MiNLO/MiNLO′ [15, 16], MEPS@NLO [17], UNLOPS [18, 19] and FxFx [20]. In

recent years, a significant leap in this direction has been made by extending par-

tonic event generators to NNLO in QCD matched to a parton shower (NNLO+PS),

such as in GENEVA [21–23] and MiNNLOPS [24, 25]2. Alongside these efforts, the

extension of the NLO matching algorithms to the inclusion of EW effects is also an

important goal, as it allows for a fully consistent simulation of higher order QED

and EW corrections.

The topic of this thesis is the implementation of the Multi-Scale Improved NLO

(MiNLO′) method in QED through an abelianization procedure. In this context

we study the production of a lepton pair via neutral current Drell-Yan, i.e. the

production of a Z boson [32], at the LHC. This process plays a central role in the

precision physics program at the LHC both for calibration purposes as well as, in

general, to measure SM parameters at very high accuracy [33–37]. It is also important

for the extraction of PDFs (see e.g. Ref. [38]) and it is one of the main irreducible

backgrounds to the searches for new physics [39, 40].

The outline of the work is the following. The first part consists of the review of

the fundamental theoretical tools needed to describe the process under consideration

and the methods employed. More specifically, in Chapter 2 the MiNLO′ method is

introduced, together with the POWHEG framework and a brief description of the

main ingredients needed for a fixed-order computation. In Chapter 3 we introduce

2Other less developed approaches exist, such as UNNLOPS [26–28] or the one presented in

Ref. [29]. Matching to N3LO QCD corrections have also been discussed in Ref. [30] and [31].
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the electroweak theory and the subtleties related to the different renormalization

schemes. In Chapter 4 we discuss inclusion of final-state massive emitters within the

framework of resummation and the modifications needed to implement them in the

MiNLO′ method. Then, in Chapter 5, we introduce the abelianization prescription

for the transition of the formalism from QCD to QED. Here we discuss the differences

between the QCD and QED case and in particular the numerical issues that are ex-

posed by said differences. In Chapter 6, we describe a way to overcome the numerical

issues introduced in the previous chapter and we discuss the validity region of this

formulation of the abelianized MiNLO′ method. Finally, in Chapter 7 we describe

the implementation of the method in QED and we present our phenomenological

results.
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Chapter 2

Theoretical framework

2.1 Fixed-order computation

The starting point for the description of any hard scattering process in hadron col-

lisions is given by the collinear factorization theorem [41]. Within this framework,

colliding protons can be viewed as a collection of free massless particles, that are

referred to as partons, each carrying a fraction of the total hadron energy. The prob-

ability of finding a parton i with some energy fraction xi is given by a function fi(xi),

called the parton distribution function (PDF). These objects are universal, i.e. they

do not depend on the process under investigation, which means that they can be

determined in some processes and used to describe many others. We can write

σ =
∑
i1,i2

∫
dx1dx2 fi1(x1) fi2(x2) σ̂(x1, x2, αs) + O

(
ΛQCD

Q

)
. (2.1.1)

The last term represents non-perturbative effects that are suppressed by powers of

ΛQCD/Q where ΛQCD ≈ 300 MeV is the hadronization scale and Q is the hard scale

of the process.

The partonic cross section dσ̂ can be perturbatively expanded in powers of the

strong coupling constant as

σ̂(x1, x2, αs) =
∑

n

(αs

2π

)n

σ̂(n)(x1, x2), (2.1.2)

At the lowest order (the Born order), the differential cross section can be written as

dσ̂(x1, x2) = B(p1, p2, k1, ..., kn) dΦn(k1, ..., kn), (2.1.3)

where the dependence on the energy fraction of the incoming partons is implicit in

their momenta p1 and p2. We denoted with B the matrix elements squared at tree

(Born) level, including the appropriate sums and averages over spin and colour as
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2.1. Fixed-order computation

well as the flux factor1. The usual n-body phase space dΦn is given by

dΦn(k1, ..., kn) =

[
n∏

i=1

d3ki

(2π)3k0
i

]
(2π)4 δ4

(
q −

n∑
i=1

ki

)
. (2.1.4)

Schematically we can write the LO cross section as

σLO =

∫
dΦNB(ΦN) (2.1.5)

where B =
∑

i1,i2
fi1fi2B is now the sum over all the relevant partonic contributions

multiplied by the parton luminosity, namely the corresponding PDFs. As for the

phase space we introduced the notation dΦN = dx1dx2 dΦn.

In order to obtain meaningful predictions to be compared with experimental

data, the computation must be performed at higher accuracy and higher-order con-

tributions must be taken into account. The calculation of the NLO cross section

requires the inclusion of new diagrams with extra vertices and it takes contributions

from

• the interference between the one-loop virtual amplitudes and the LO ones,

called virtual contributions;

• real emission amplitudes with a phase space including one extra parton with

respect to the basic process, which are effectively the tree-level squared ampli-

tudes for the process with n + 1 final state particles.

It is assumed that the amplitudes have already been renormalized so that there are

no more divergences of ultraviolet origin. That being said, singular contributions

can still arise in the regions in which the extra particle is either soft or collinear to

one of the other particles. Thus eq. (2.1.5) becomes

σNLO =

∫
dΦN [B(ΦN) + Vb(ΦN) ] +

∫
dΦN+1 R(ΦN+1), (2.1.6)

where the subscript in Vb means that there are infrared divergences explicit in the

amplitude. The computation of the virtual contributions is typically performed using

dimensional regularisation in d = 4 − 2ϵ dimensions: in this way the singularities

are expressed analytically yielding 1/ϵ and 1/ϵ2 poles. Upon the full integration

these divergences are exactly cancelled by the one arising in the evaluation of the

real emission matrix element2 in the soft/collinear regions, namely the regions of the

1To fix the idea and the notation, we limit the discussion to QCD corrections only, and, for

simplicity, we do not specify that σ̂ and B depend on i1 and i2, i.e. the flavours of the incoming

partons. A more precise notation will be introduced in Section 2.2.
2In hadronic collisions, the complete cancellation of the initial-state collinear singularities re-

quires also the inclusion of two additional counterterms known as the collinear remnants. To keep

the discussion as simple as possible, we will not review them and we refer to [11] for the details on

the topic.
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2.1. Fixed-order computation

n + 1 phase space in which the real kinematics becomes indistinguishable from the

Born one. This result is known as the Kinoshita-Lee-Nauenberg theorem [42, 43].

The explicit cancellation of the infrared poles between virtual and real contri-

butions is often not a trivial task to achieve in an analytical computation due to

the two terms belonging to different phase spaces and to the constraints on the

phase-space integration present when computing a differential quantity. Moreover,

because the divergences of the real emissions arise only upon the integration over

dΦN+1, such integration cannot be perfomed numerically. To address these issues,

one can subtract the singularities at the integrand level via the so-called subtraction

methods [44]. The two most widespread NLO subtraction methods are the dipole

subtraction, introduced by Catani and Seymour [45], and the Frixione-Kunszt-Signer

method [46, 47]. Both those methods rely on the introduction of counterterms, that

we can collectively denote as C, in such a way that they reproduce the singular be-

haviour of the real term R in the soft and collinear regions and, once integrated over

the extra radiation phase space, they yield the exact single and double poles of the

virtual amplitude with opposite sign. Formally we have

σNLO =

∫
dΦN [B(ΦN) + V (ΦN) ] +

∫
dΦN+1 [R(ΦN+1) − C(ΦN+1) ] , (2.1.7)

where V is the infrared subtracted virtual amplitude given by

V (ΦN) =

[
Vb(ΦN) +

∫
dΦN+1

dΦN

C(ΦN+1)

]
d=4−2ϵ

. (2.1.8)

For the subtraction to take place, it must be possible to define a mapping between

the real emission phase space ΦN+1 and its underlying n-body configuration, that we

denote by Φ̄N . This mapping is tailored specifically for each singular region in such

a way that:

• for soft configurations, Φ̄N is obtained by removing the soft parton;

• for final-state collinear configurations, Φ̄N is obtained by replacing the mo-

menta of the two collinear partons by a single momentum given by their sum;

• for initial-state collinear configurations, Φ̄N is obtained by removing the radi-

ated collinear parton and by replacing the momentum fraction of the initial-

state radiating parton with its momentum fraction after radiation.

For this reason, it is convenient to define a list of singular regions each identified

uniquely by the superscript αr. In this way for each singular region we have a map-

ping M (αr) that defines a one-to-one correspondence between ΦN+1 and its underlying

n-body phase space configuration Φ̄
(αr)
N plus three more variables that describe the

radiation process. We have

M (αr) : ΦN+1 → {Φ̄(αr)
N ,Φ

(αr)
rad }, (2.1.9)

– 7 –



2.2. The POWHEG method

such that the corresponding phase space element is given by

dΦN+1 = dΦ̄
(αr)
N dΦ

(αr)
rad . (2.1.10)

The term C, representing the subtraction counterterms in eq. (2.1.7), can then be

written as the sum over all the singular regions of distinct counterterms C(αr), namely

C(ΦN+1) =
∑
αr

C(αr)(Φ̄
(αr)
N ,Φ

(αr)
rad ). (2.1.11)

To avoid unnecessary complications, in the following section we will adopt the short

notation

[. . . ]αr (2.1.12)

meaning that all the quantities appearing inside the square bracket that are affected

by the superscript of the singular region must be evaluated in the region αr.

2.2 The POWHEG method

The POWHEG method is a technique to perform the matching of the NLO fixed-

order computations to parton shower generators. The procedure was first introduced

in Ref. [10], discussed in detail in Ref. [11] and then implemented in the POWHEG-

BOX framework, described in Ref. [12]. The core idea in POWHEG is the generation

of the hardest radiation using the exact NLO matrix element before the event is

passed to the shower generator, which in turn will provide any subsequent softer

radiation. The main issue is avoiding double counting, as the emission generated

by POWHEG is, in principle, already accounted for in an approximate way by the

shower. For shower algorithms that are ordered in transverse momentum the solution

is simple, since each radiation is generated with smaller pT than the previous one,

meaning the hardest emission is always the first. In this case POWHEG replaces the

hardest emission with its own NLO accurate one. Angular ordered shower generators

may instead generate soft radiation before generating the emission with the largest pT.

This requires the implementation of the so-called vetoed-truncated shower, described

in details in Ref. [10], which consists in a shower algorithm that is fully equivalent

to the angular ordered shower, but in which the hardest emission is generated first.

Before discussing the implementation of the method, we need to define some

quantities related to the separations of the singular regions and the different flavour

structure of the tree level process. We can introduce a label fb to keep track of the

flavours of the n-body process, ignoring any permutation of the final state particles.

For any given flavour structure we then have a born and a virtual contribution, Bfb

and V fb respectively. As for the real emission terms, we can use the superscript αr,

introduced in the previous section, to isolate the contribution to the real cross section

8



2.2. The POWHEG method

that is singular in only one singular region of integration and has a specific flavour

structure:

R =
∑
αr

R(αr). (2.2.1)

Now for each flavour structure we can define

B̄fb(ΦN) = Bfb(ΦN) + V fb(ΦN)

+
∑

αr∈{αr|fb}

∫ [
dΦrad {R(ΦN+1) − C(ΦN+1)}

]Φ̄(αr)
N =ΦN

αr

,
(2.2.2)

where the sum is performed over all the singular regions that are mapped to an

underlying n-body configuration characterized by the flavour structure fb. In short,

Bfb and B̄fb are the LO and NLO differential cross sections for the process identified

by the flavour structure fb. The notation Φ̄
(αr)
N = ΦN in the last term means that the

arguments between the brackets, which depend on the kinematics obtained via the

mapping in eq. (2.1.9), are evaluated for values of the barred phase-space variables

Φ̄N equal to ΦN . This identification only makes sense if the flavour structure of the

underlying n-body process for the region corresponding to αr is equal to fb, which is

guaranteed by the criterion specified via the sum.

Then we can introduce the following Sudakov form factor

∆fb
pwg(ΦN , pT) = exp

−
∑

αr∈{αr|fb}

[ ∫
dΦrad

R(ΦN+1)

Bfb(ΦN)
θ(kT(ΦN+1) − pT)

]Φ̄N=ΦN

αr

 .

(2.2.3)

Here k
(αr)
T is a quantity used to measure the hardness of the emission. It is a function

of the kinematics of the region αr and becomes equal to the transverse momentum

of the radiated parton as it approaches the singular limit. More specifically:

• for initial-state collinear singularities, in the collinear limit kT is proportional

to the transverse momentum of the emitted parton with respect to the beam

axis;

• for final-state collinear singularities involving two momenta ki and kj becoming

collinear, kT is taken as the spatial component of one of the two momenta

orthogonal to their sum.

With these ingredients, the POWHEG cross section for the generation of the

hardest emission is defined as

dσ =
∑

fb

B̄fb(ΦN) dΦN

∆fb
pwg(ΦN , pmin

T )

+
∑

αr∈{αr|fb}

[
∆fb

pwg(ΦN , kT) θ(kT − pmin
T )

R(ΦN+1)

Bfb(ΦN)
dΦrad

]Φ̄N=ΦN

αr

 .

(2.2.4)
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2.3. The MiNLO′ method

This result has the following properties:

• it is NLO accurate for inclusive observables;

• it correctly reproduces the NLO cross section for large values of kT
3;

• the structure of the shower is left untouched, as only the first emission, which

is the hardest, is replaced by the NLO accurate one.

2.3 The MiNLO′ method

In the previous section we discussed how POWHEG performs the matching of the

NLO fixed-order computation to the parton shower without spoiling the leading

logarithmic structure of the shower itself. This means that, if we consider for example

the process in which a colour singlet F is produced, using POWHEG we obtain

NLO accuracy for distributions inclusive in F, LO accuracy for observables that

rely on the presence of one jet and leading-logarithmic (LL) accuracy (LL is the

accuracy of standard parton showers4) from the second jet onwards. We can also

construct a FJ generator, in which at lowest order the diagrams already contain one

coloured final state parton. In this case we would have NLO accuracy for distributions

inclusive in FJ, only LO accuracy for distributions with two jets and shower accuracy

for subsequent emissions. This logic can be applied to processes with any number

of jets at Born level. Moreover, all these processes achieve predictions that are

complementary in accuracy and they overlap in some regions of the phase space.

Thus it is desirable to merge them within a single framework in which for each

jet multiplicity the highest accuracy is retained. For merging inclusive and 1-jet

predictions5 at NLO, this process can be realized via the MiNLO′ method [16], which

provides a modification of the NLO cross-section formula for the production of a

colour singlet plus one jet, such that it gives NLO accurate results also in the region

in which the transverse momentum of the jet vanishes. More specifically we will

briefly discuss the application of the method within a the POWHEG framework.

The merging problem was already addressed through multiple different solu-

tions [17–20, 53–56], that typically share the same fundamental issue: they require

the introduction of an arbitrary, therefore unphysical, scale. This scale is used for

partitioning the phase space according to the jet multiplicity: in this way each gen-

erator contributes only to the jet bin for which it is NLO accurate. The results are

3There is an argument to be made for the accuracy of non-inclusive observable being spoiled by

the ratio B̄/B encoded in the Sudakov form factor in eq. (2.2.4). To remedy, this one can introduce

a damping procedure via the splitting of the real contribution into a singular part and a finite part.

Additional details on the topic can be found in Refs. [12, 48]
4Much progress has been made in recent years as far as the accuracy of parton showers is

concerned, see for example Refs [49–51].
5An extension of the method which includes higher jet multiplicities can be found in Ref. [52]
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2.3. The MiNLO′ method

then assembled together to obtain inclusive predictions. The choice of the value of

the arbitrary scale is very delicate, as it can spoil the reliability of the computation,

leading for example to the hard jets being described with low accuracy. Moreover,

within reasonable limits, the choice of the scale must not affect the final result as the

latter cannot depend on the value of unphysical parameters.

The MiNLO′ approach was proposed to perform the merging of different gener-

ators without the need for the introduction of any additional scale. It was developed

from the MiNLO method [15], which stands for Multi-scale Improved NLO, that was

introduced to define an a priori criterion for the selection of central scales in NLO

computation. It can be seen as the NLO extension of the reweighting method used

in tree-level matrix element and parton shower (ME+PS) merging algorithms, such

as the CKKW approach [57].

Consider the POWHEG implementation of the FJ process mentioned above,

namely the production of a generic color singlet F plus one jet at tree-level. The

NLO inclusive cross section for the computation of the underlying Born kinematics,

denoted by B̄ in the POWHEG formalism, is given by the sum over all the flavour

structure fb of eq. (2.2.2). In the original MiNLO method, a modification of the

POWHEG B̄ function is introduced via the inclusion of a Sudakov form factor and

with the use of appropriate scales for the couplings, according to the formula

B̄ = αs(pT)∆
2(Q, pT)

[
B
(
1 − 2∆(1)(Q, pT)

)
+ V +

∫
dΦrad R

]
. (2.3.1)

Here Q is the hard scale of the process, that can be identified with the virtuality of

the color singlet F, while the transverse momentum of F is represented by pT. Note

that in eq. (2.3.1), one power of the coupling constant was stripped away from the

Born, virtual and real contribution, and it was factorized in front with its explicit

scale dependence. The Sudakov form factor ∆ is given by

∆(Q, pT) = exp

{
−
∫ Q2

p2T

dq2

q2

[
A(αs(q

2)) log
Q2

q2
+ B(αs(q

2))

]}
(2.3.2)

and by expanding it in powers of αs we get

∆(Q, pT) = 1 + ∆(1)(Q, pT) + O(α2
s). (2.3.3)

The functions A and B admit a perturbative expansion in the strong coupling con-

stant

A(αs) =
∞∑

n=1

(αs

2π

)n

A(n), B(αs) =
∞∑

n=1

(αs

2π

)n

B(n), (2.3.4)

so that at order αs the expansion of the Sudakov form factor in eq. (2.3.3) can be

written as

∆(1)(Q, pT) = − αs

2π

[
1

2
A(1) log2

Q2

p2
T

+ B(1) log
Q2

p2
T

]
. (2.3.5)
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2.3. The MiNLO′ method

The inclusion of a Sudakov form factor in the calculation described by eq. (2.3.1)

introduces NLO corrections to the FJ cross section, leading to double counting and

spoiling the overall accuracy of the computation. The subtraction of the ∆(1) term

is a crucial ingredient of the method, as it compensates for the double counting thus

restoring the NLO accuracy.

In the original MiNLO approach only A(1), A(2) and B(1) are taken into account

and they are known in the literature (see Ref. [58] and references therein, in particular

Refs. [59] and [60]). The A coefficients read

A(1)
c = Cc,

A(2)
c = Cc

[
CA

(
67

18
− π2

6

)
− 10

9
TRnf

]
,

(2.3.6)

where TR = 1/2 and nf is the number of active flavours. Note that previously

we dropped the flavour index for ease of notation. Now we reintroduced the sub-

script c = q, q̄, g to distinguish between quark and gluon lines respectively, with

Cq = Cq̄ = CF and Cg = CA. As for B(1) we have

B
(1)
q,q̄ = −3

2
CF, B(1)

g = −2πβ0, (2.3.7)

where β0 is the customary first order QCD beta function, given by

β0 =
11CA − 2nf

12π
. (2.3.8)

The improved MiNLO method, presented in Ref. [15] is based on the fact that

the singular part of the NLO cross section for the FJ generator must yield the same

result of the O(α2
s) expansion of the NNLL resummation formula for the transverse

momentum of the color singlet. This can be achieved by introducing two upgrades

to the original formalism:

• together with the coefficients A(1), A(2) and B(1), one must also include B(2) in

the computation;

• the additional power of αs entering the NLO contributions, namely V , R and

the expansion of the Sudakov form factor ∆(1), is evaluated at the transverse

momentum of the color singlet F. The same scale choice is applied also to the

factorization scale entering the PDFs.

Unlike the results described in eqs. (2.3.6) and (2.3.7), which are universal, the

explicit expression for B(2) is process dependent. In the case of Drell-Yan production

it was computed in Ref. [61] and it reads

B
(2)
q, (DY) =

[(
π2

2
− 3

8
− 6ζ3

)
C2

F +

(
−11

18
π2 − 17

24
+ 3ζ3

)
CACF +

(
1

12
+

π2

9

)
CFnf

]
+ πβ0 ζ2 CF + πβ0 H

(1)
(DY),

(2.3.9)
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2.3. The MiNLO′ method

where

H
(1)
(DY) = CF

[
7

6
π2 − 8

]
(2.3.10)

is the hard virtual coefficient. By putting all terms together, along with the explicit

expression for the one-loop beta function in eq. (2.3.8), we get

B
(2)
q, (DY ) =

[(
π2

2
− 3

8
− 6ζ3

)
C2

F +

(
11

18
π2 − 193

24
+ 3ζ3

)
CACF +

(
17

12
− 1

9
π2

)
CFnf

]
.

(2.3.11)

Note that these results come from the framework of resummation, which is often

performed in b-space, where b is the impact parameter that is Fourier conjugate to

the vector boson transverse momentum6. As shown by Ellis and Veseli [63], exact

agreement at order α2
s can be achieved between the two formalisms by means of the

following additional replacement

B(2)
c → B(2)

c + 2 ζ3 (A
(1)
c )2. (2.3.12)

In fact, at each order n in perturbation theory, one gets different logarithmic con-

tributions of the type αn
s Lm with 0 ≤ m ≤ 2n − 1, where L = log(Q2/p2

T). At order

α2
s we have perfect correspondence between the coefficients in b-space and the ones

in pT-space only if we drop NNNL contributions. That is, if we consider terms only

up to NNL accuracy, meaning up to O(α2
sL). By including the term in eq. (2.3.12),

we absorb the first term in the NNNL tower of logarithms thus restoring the agree-

ment between pT-space and b-space formalisms (see also Appendix A of the MiNLO′

paper [16]).

Finally we stress that, because of the non perturbative behaviour of the strong

coupling constant in the low energy regime, a minimum cut on the color singlet trans-

verse momentum, say pmin
T = 1 GeV, must be necessarily introduced in eq. (2.3.1).

Other than the physical motivation, a cutoff is also needed for practical reasons,

mainly as a consequence of the numerical instabilities introduced by the computa-

tion of the matrix elements. However, due to the vanishing behaviour of the Sudakov

form factor in the limit pT → 0, the prediction is independent of the specific choice

of the cutoff for sufficiently small pmin
T values.

6In this context, b-space is the more natural space to use as it allows an exact all-orders fac-

torization of the constraint δ(2)(p⃗T −
∑

i k⃗Ti), where p⃗T is the transverse momentum of the vector

boson and k⃗Ti are the transverse momenta of the emitted gluons [62].
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Chapter 3

Electroweak radiative corrections

Because of its large cross section and clean experimental signature, the production of

a lepton pair via a Z boson, known as neutral current Drell-Yan (NC DY) process,

plays a central role in the precision physics program at the LHC and therefore requires

a very high theoretical accuracy. Given the high-precision measurement of the Z

mass at LEP, in fact, the investigation of the Z resonance is of great importance for

detector calibration at LHC and it represents a standard candle that can be used to

constrain the PDFs. It also allows performing precise tests of the SM and it plays a

fundamental role in the measurements of EW parameters, such as in the calibration

of pW
T from pZ

T used in popular strategies for the determination of the mass of the W

boson in hadronic collisions. Moreover, in the high tail of the transverse momentum

and invariant mass distributions of the produced lepton pair, the NC DY represents

one of the main irreducible backgrounds to the searches for new physics at the LHC.

Thus, on the theoretical side, all these tasks require precise predictions with an

inclusion of both strong and electroweak radiative corrections and, simultaneously,

careful control over the remaining theoretical uncertainties. The largest contribu-

tions to the differential cross section come from the strong interaction and were

computed at NLO [64] and at NNLO [65–69] in perturbative QCD. Alongside the

NNLO QCD corrections, the NLO EW corrections have been calculated long ago for

NC DY in Refs. [70–76]. As far as N3LO QCD corrections are concerned, studies

on the threshold effects have appeared in Refs. [77, 78] and, more recently, inclusive

N3LO corrections have been calculated for the production of a lepton pair via photon

exchange [79] and for the fully inclusive NC DY [80, 81], while N3LO correction to

single-differential distributions can be found in Ref. [82]. The resummation of large

logarithms arising from soft gluon emission at small transverse momentum has been

studied in Ref. [83–94] and the combined effect of both QED and QCD transverse

momentum resummation has been discussed in Ref. [95, 96]. The mixed NNLO con-

tributions at order O(αsα) have been addressed both in the pole approximation [97–

99] and in the narrow width approximation for QCD×QED [100], QCD×EW in
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3.1. Input parameter schemes

inclusive Z production [101–103] and fully exclusive Z production [104–106]. More-

over, the complete mixed O(αsα) NNLO corrections to the NC DY process have

been reported for the first time in Refs. [107–110]. In the context of fully exclusive

event generators, the state of the art for DY calculations is represented by matched

computations which include a combination of factorisable effects of both QCD and

EW origin in a unique simulation framework [111–115]. Very recently, the resumma-

tion of EW and mixed QCD-EW effects up to next-to-leading logarithmic accuracy

has been presented in Ref. [116] for both charged and neutral current DY.

In order to perform higher-order computations in the electroweak sector of the

Standard Model, one has to specify the choice of a set of input parameters and

their numerical values. These parameters must be independent to guarantee gauge

independence, well-defined and precisely measured. The electromagnetic coupling

and many of the masses satisfy these conditions and are often considered the op-

timal choice. Such input parameters are well-suited for on-shell (OS) renormaliza-

tion scheme. However, to make contact with QCD, sometimes MS renormalization

schemes are preferred. The input parameter schemes described in the following

section are formally equivalent, at a given perturbative order. Nonetheless the nu-

merical results they provide can be different due to the truncation of the expansion.

Although in principle the choice of the input-parameter scheme should be arbitrary,

there can be phenomenological motivation to prefer one scheme with respect to the

others, depending on the process or the observable under consideration.

3.1 Input parameter schemes

The most intuitive choice for the input parameters consists of the electromagnetic

coupling α = e2/(4π), the weak boson masses MZ and MZ , together with the Higgs

boson mass MH , the fermion masses mf and, in general, the Cabibbo-Kobayashi-

Maskawa matrix.

In the EW sector, the masses of the particles are defined as pole masses, which

means that the value of the mass of a particle is determined by the position of the pole

in its propagator. This is perfectly fine for massive bosons and leptons but not for

light quarks, because, as soon as QCD corrections are involved, the non-perturbative

behaviour of the strong interaction at the scale of the quark masses poses problems

in the definition of the pole masses. By all means, properly defined observables are

expected to be insensitive to the perturbatively problematic light quark masses, as

will be discussed later.

The discussions on the Higgs sector falls outside the scope of this work. However

it is worth mentioning that the Yukawa couplings between the Higgs and the fermions

are not independent parameters and they are indeed fixed by the choice of the fermion

masses and other parameters. As a consequence, tampering with the relation between
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3.1. Input parameter schemes

the masses and the Yukawa couplings introduces a violation of gauge invariance and

can lead to inconsistencies in the results. In the same way we will not address the

CKMmatrix, as it can only become relevant in charged-current processes that involve

the mixing between quark flavours.

For the boson masses, MZ , MW and MH , the simplest choice is to use the real

on-shell masses. This approach fails, however, when the instability of the bosons is

taken into account via the inclusion of their finite decay widths. We can write the

propagator function of a massive boson V with momentum q as

FV (q
2) =

q2

q2 − µ2
V

(3.1.1)

where the complex quantity µ2
V = M2

V − iMV ΓV specifies the location of the pole

of the propagator in the complex plane. The width of the boson ΓV enters the

denominator of the propagator only after performing the Dyson summation of all

the self-energies insertions, which leads to a mixing of the perturbative orders. Thus

the proper introduction of finite-width effects is non trivial and, if done carelessly,

can easily compromise gauge invariance. We briefly discuss two of the most popular

solutions to this problem1:

• The pole scheme [118] is based on the observation that both the location of the

pole of the propagator µ2
V and its residue in the amplitudes are gauge indepen-

dent [119]. So one can first isolate the residue of the resonance under consid-

eration and then introduce a finite decay width only in the gauge-independent

resonant part. If higher-order corrections are taken into account, due to the dif-

ficulties posed by full off-shell calculations, a pole approximation is employed.

The idea is to use the resonant amplitude defined in the pole scheme upon ne-

glecting non-resonant parts. This procedure provides a gauge-invariant answer,

but restricts the validity of the result to the resonance region only and is not

reliable in the threshold regions.

• In the complex-mass scheme (CMS) [120, 121], the masses of each unstable

particle V is consistently identified with µ2
V , i.e. with the location of the poles

of the propagator in the complex plane. This scheme fully respects all relations

that follow from gauge invariance as long as the complex masses are introduced

everywhere, meaning that also the couplings can become complex. This is the

case, for example, for the couplings involving the weak mixing angle which, in

CMS, is defined via the ratio of the complex mass squared of the gauge bosons,

namely cos2 θW = µ2
W /µ2

Z . Additional details can be found in Ref. [122].

1A more detailed analysis on the topic can be found in Ref. [117].
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3.1. Input parameter schemes

Note that our choice2 of the input-parameter scheme employs the coupling constant

α and the two vector-boson masses MZ and MW , on top of MH and mf . This

means that, in this context, the weak mixing angle, θW , is not an independent input

parameter. Indeed, taking it as an independent parameter in addition to MZ and

MW , like setting sin θW to the sine of the effective weak mixing angle at the Z pole,

can, in general, break gauge invariance, leading to wrong results even at LO.

For the electromagnetic coupling α = e2/(4π), the standard definition is α = α(0)

which means that it employs an on-shell renormalization condition in the Thompson

limit3, i.e. photon momentum transfer Qµ = 0. When the typical EW scales are

involved, such as the masses of the gauge bosons, this choice leads to large loga-

rithms of the ratios between the fermion masses and the gauge-boson masses. These

logarithms are related to the running of the coupling itself from Q2 = 0 to the high

scale Q2 ≈ M2
Z . Therefore they can be reabsorbed by choosing a suitable scheme for

α.

We report here the definition of three different input schemes. The various

choices differ by 2-6% and the most appropriate scheme depends on the nature of

the process. The possibilities are:

• α(0) scheme: the fine-structure constant is defined by the Thompson value,

α ≈ 1/137. As mentioned above, in this scheme, the higher-order corrections

depend on the light-quark masses via a factor of α logmq that enters the charge

renormalization.

• α(MZ) scheme: the value of the coupling constant is given by the effective elec-

tromagnetic coupling α(MZ) ≈ 1/129, where α(0) is evolved via renormalization-

group equations from the Thompson limit Q2 = 0 to the Z pole. In this scheme

the terms α logmq are cancelled by a quantity that is typically denoted by

∆α(MZ), which accounts for the running of the coupling from 0 to MZ .

• Gµ scheme: an effective value derived from the Fermi constant Gµ is used,

namely αGµ =
√
2GµM2

W (1 − M2
W /M2

Z)/π. At higher orders it receives con-

tributions from ∆r, which describes the radiative corrections to muon decay.

Again, the light-quark mass effects are cancelled, due to a compensation be-

tween ∆r and ∆α(MZ).

Note that this does not imply that there is only one value of α, but it is crucial that

a common coupling factor is used in complete subsets of diagrams that are gauge-

invariant in order not to spoil consistency relations. Corrections to LO contributions

2There are other possible choices for the input-parameter scheme, such as for example the

(α, sin2 θW , MZ) scheme or the (α, Gµ, MZ) scheme, that are described in details in Ref. [115].
3Note that, in literature, the Thompson limit can also be denoted as α(me), due to the electron

being the lightest charged object whose quantum loops can contribute to the running
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3.2. Renormalization in the OS scheme

scaling with different numbers of powers of the coupling can be treated independently

as they belong to disjoint gauge-invariant sets.

3.2 Renormalization in the OS scheme

Canonically, the discussion on renormalization requires the distinction between bare

quantities, denoted here with the subscript 0, renormalized ones and counterterms.

This procedure must be repeated for all the parameters, such as masses and coupling

constants, as well as the fields that correspond to physical particle states and those

that contribute to the unphysical sector, such as the ghost fields or the would-be

Goldstone fields. In this section we are mainly interested in the charge renormaliza-

tion, usually written as

e0 = (1 + δZe) eR, (3.2.1)

and the changes that need to be introduced with the different definitions of α.

3.2.1 The α(0) scheme

We can proceed by steps, starting from a simplified case by considering a process

without any external photon in the initial or final state. In QED each vertex gives

a contribution δZe +
1
2
δZA, where δZA is the counterterm introduced for the photon

field renormalization. For each internal photon propagator we get a contribution

proportional to δZA that cancels with the two corresponding vertices. This means

that for each power of the coupling α, we get a relative correction 2δZe to the cross

section. The charge renormalization factor in the α(0) scheme is given then by

δZOS
e

∣∣∣
α(0)

=
1

2
ΠAA(0) − sW

cW

ΣAZ
T (0)

M2
Z

(3.2.2)

where we introduced the shorthand notation for the trigonometric functions of the

weak mixing angle

sW = sin θW , cW = cos θW . (3.2.3)

In eq. (3.2.2) we denoted the transverse part of the photon-Z two-point function

as ΣAZ
T , while the vacuum polarization is related to the photon self-energy via the

relation

ΠAA(q2) =
ΣAA

T (q2)

q2
, (3.2.4)

that, since limq2→0Σ
AA
T (q2) = 0, at vanishing photon momentum transfer, can be

written as

ΠAA(0) =
∂ΣAA

T (q2)

∂q2

∣∣∣∣∣
q2=0

. (3.2.5)
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We can isolate the fermionic contributions from the terms related to the W boson in

the two-point functions

ΣAA
T (q2) =

∑
f

ΣAA
T,f (q

2) + ΣAA
T,W (q2),

ΣAZ
T (q2) =

∑
f

ΣAZ
T,f (q

2) + ΣAZ
T,W (q2).

(3.2.6)

For the photon self-energy we have

ΣAA
T,f (q

2) = − α

4π

{
2

3
N f

c 2Q2
f

[
− (q2 + 2m2

f )B0(q
2, mf , mf )

+ 2m2
f B0(0, mf , mf ) +

q2

3

]}
, (3.2.7)

ΣAA
T,W (q2) = − α

4π

{
(3q2 +4M2

W )B0(q
2, MW , MW )− 4M2

W B0(0, MW , MW )

}
, (3.2.8)

where B0 is the scalar two-point function which is uniquely specified by the momen-

tum q2 and the masses of the legs. If we take the derivatives with respect to q2 we

get

∂ΣAA
T,f

∂q2
= − α

4π

{
2

3
N f

c 2Q2
f

[
−B0(q

2, mf , mf )−(q2+2m2
f )

∂

∂q2
B0(q

2, mf , mf )+
1

3

]}
,

(3.2.9)

∂ΣAA
T,W

∂q2
= − α

4π

{
3B0(q

2, MW , MW ) + (3q2 + 4M2
W )

∂

∂q2
B0(q

2, MW , MW )

}
. (3.2.10)

We can now evaluate the equations above in the limit q2 = 0 using

∂

∂q2
B0(q

2, m, m)

∣∣∣∣∣
q2=0

=
1

6m2
, (3.2.11)

so that eq. (3.2.5) becomes

ΠAA(0) = − α

4π

{
2

3

∑
f

N f
c 2Q2

f [−B0(0, mf , mf )] +

[
3B0(0, MW , MW ) +

2

3

]}

= − α

4π

{
2

3

∑
f

N f
c 2Q2

f

[
− ∆UV + log

m2
f

µ2
D

]
︸ ︷︷ ︸

fermions

+3

[
∆UV − log

M2
W

µ2
D

]
+

2

3︸ ︷︷ ︸
Wboson

}
,

(3.2.12)
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where we introduced the following notation to match the literature

∆UV ≡ Γ(1 + ϵ)

ϵ
(4π)ϵ . (3.2.13)

Note that, in the on-shell scheme, ∆UV and µD always come in the combination

∆UV − log
X2

µ2
D

(3.2.14)

where X is a generic scale of the problem. This introduces a dependence of the

vacuum polarization on the logarithm of the masses of all the particles running in the

loop, including the masses of the light quarks which are perturbatively ill-defined4.

The issue with hadronic vacuum polarization will be discussed in details later.

We can proceed in the same way for the photon-Z two-point function. The

fermionic part is given by

ΣAZ
T,f (q

2) = − α

4π

{
2

3
N f

c (−Qf )(g
+
f + g−

f )

[
− (q2 + 2m2

f )B0(q
2, mf , mf )

+ 2m2
f B0(0, mf , mf ) +

q2

3

]}
, (3.2.15)

while the contribution coming from the W boson is

ΣAZ
T,W (q2) = − α

4π

{
− 1

3sW cW

[((
9c2W +

1

2

)
q2 + (12c2W + 4)M2

W

)
B0(q

2, MW , MW )

− (12c2W − 2)M2
W B0(0, MW , MW ) +

q2

3

]}
. (3.2.16)

We note that for q2 = 0

−(q2 + 2m2
f )B0(q

2, mf , mf ) + 2m2
f B0(0, mf , mf ) = 0 (3.2.17)

which means that, in the vanishing transfer momentum limit, all contributions to

ΣAZ
T originate from the W -boson loop, namely

ΣAZ
T (0) = ΣAZ

T,W (0) = − α

4π

{
− 1

3sW cW

6M2
W

(
∆UV − log

M2
W

µ2
D

)}
. (3.2.18)

Putting all terms back together, eq. (3.2.2) becomes

δZOS
e

∣∣∣
α(0)

= − α

4π

{
2

3

∑
f

N f
c Q2

f

[
− ∆UV + log

m2
f

µ2
D

]
+

7

2

[
∆UV − log

M2
W

µ2
D

]
+

1

3

}
.

(3.2.19)

4Quark masses can be estimated from mesons masses. However, being qq̄ bound states, the

values that can be extracted include also effects coming from the bounding energy.
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This result explicitly includes mass-singular terms of the form α logm2
f for each light

fermion f which practically speaking are contained in a new term that quantify the

evolution of α induced by vacuum-polarization effects, coming from light fermions.

More specifically we define

∆α(M2
Z) = ΠAA

f ̸=t(0) − ReΠAA
f ̸=t(M

2
Z), (3.2.20)

where, excluding the top quark, all other fermions f contribute.

In order to compute ∆α(M2
Z), we can separate the contribution from fermions

with well-defined masses, i.e. the leptonic contribution, from the hadronic one

∆α(M2
Z) = ∆αL(M

2
Z) + ∆αH(M2

Z). (3.2.21)

In the case of leptons we already have an expression for ΠAA
f (0) that can be taken

from eq. (3.2.12), so we just need to compute the second term in eq. (3.2.20). From

eq. (3.2.4) we have

ΠAA
f (M2

Z) =
ΣAA

T,f (M
2
Z)

M2
Z

= − α

4π

1

M2
Z

{
2

3
N f

c 2Q2
f

[
− (M2

Z − m2
f )B0(M

2
Z , mf , mf )

+ 2m2
qB0(0, mfmf ) +

M2
Z

3

]}
. (3.2.22)

Assuming MZ ≫ mf we can take the mf → 0 limit

B0(M
2
Z , mf , mf )

mf →0
→ ∆UV + 2 − iπ − log

M2
Z

µ2
D

(3.2.23)

so that

ReΠAA
f (M2

Z) = − α

4π

{
2

3
N f

c 2Q2
f

[
− ∆UV − 5

3
+ log

M2
Z

µ2
D

]}
. (3.2.24)

Thus for a generic fermion f we would have

∆αf (M
2
Z) = − α

4π

{
2

3
N f

c 2Q2
f

[
5

3
− log

M2
Z

m2
f

]}
+ O

(
m2

f

M2
Z

)
. (3.2.25)

Note that there are contributions coming from ΠAA
f (M2

Z) that introduce a non-

logarithmic dependence on the fermion mass and are power suppressed. Moreover,

the result presented in eq. (3.2.25) is perfectly defined for leptons, but it still poses

severe problems for light quarks, as they do not exist as free particles and they

hadronize.
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3.2. Renormalization in the OS scheme

3.2.2 Hadronic vacuum polarization

The simplest and most straightforward way to solve the issue of hadronic vacuum

polarization is just to define the light quark masses as non-physical parameters and

enforce the constraint given by

α(0)

1 − ∆α(M2
Z)

= αexp.(M2
Z) (3.2.26)

where αexp.(M2
Z) is the experimentally measured value of the coupling constant at the

scale of the Z boson mass and ∆α(M2
Z) is computed as a function of mq. In practice

this means using the same formal expression for ∆αf (M
2
Z) given for f ∈ {leptons}

in eq. (3.2.25) also for light quarks, while adjusting the values of the quark masses

such that the resulting value equals the one obtained from experimental data.

Another option is to exploit the hadronic e+e− annihilation data by using an

approach [123, 124] based on a dispersion relation and the optical theorem. In order

to do so, let us slightly change the notation to match the literature

∆αf (q
2) =

 ∂ΣAA
T,f (q

2)

∂q2

∣∣∣∣∣
q2=0

−
Re
(
ΣAA

T,f (q
2)
)

q2

 = Πf (0) − Πf (q
2) (3.2.27)

and

∆αH(q2) =
∑
f∈H

∆αf (q
2) ≡ −Re Π̂(q2). (3.2.28)

We will show that

Re Π̂(q2) =
α

3π
q2Re

[∫ ∞

4m2
π

ds
Rhad(s)

s (q2 − s + iϵ)

]
(3.2.29)

where

Rhad =
σ(e+e− → γ∗ → hadrons)

σ(e+e− → γ∗ → µ+µ−)
(3.2.30)

is the ratio between the hadronic experimental cross section and the muon pair

production cross section in e+e− annihilation.

We can start by briefly recalling the optical theorem, starting from the unitarity

property of the S matrix

S = 1 + iT, S†S = 1, −i(T − T†) = T†T, (3.2.31)

where S and T are the customary scattering matrix and transition matrix respec-

tively. Now if we write the generic matrix element between two states as

⟨f |T |i⟩ = (2π)4 δ(4)(pf − pi) Tfi , (3.2.32)
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3.2. Renormalization in the OS scheme

via the insertion of a complete set of states written as 1 =
∑

n |n⟩ ⟨n|, we get

(2π)4 δ(4)(pf − pi) (Tfi − T∗
if ) = i

∑
n

⟨f |T† |n⟩ ⟨n|T |i⟩ , (3.2.33)

so that

(Tfi − T∗
if ) = i

∑
n

(2π)4 δ(4)(pi − pn) T
∗
nfTin . (3.2.34)

If we consider an elastic scattering, that is |i⟩ = |f⟩, then the real part on the left

hand side cancels, namely

2 Im(Tii) =
∑

n

(2π)4 δ(4)(pi − pn) |Tni|2 =
∑

n

2s σ(i → n). (3.2.35)

This means that we can relate the imaginary part of the amplitude associated with

the process, where the initial state goes into itself, to the total cross section with the

same initial state, times a flux factor. Graphically we have

2 Im

 p1

p2

p1

p2

 = 2s
∑

n

σ

 p1

p2

...
n

 . (3.2.36)

Going back to the fermionic contribution to the photon self energy we have that

ΠAA
f (q2) is

{
real for q2 < 4m2

∗

complex for q2 > 4m2
∗

where m∗ corresponds to the lightest mass for producing a final-state pair of particles.

In this context, it is given by the lightest hadron, i.e. the pion. It is possible to

uniquely define an analytic continuation, q2 → z ∈ C, such that

ΠAA
f (z) = ΠAA

f

∗
(z∗) (3.2.37)

where {
if Re(z) < 4m2

π then ΠAA
f (z) is continuous,

if Re(z) > 4m2
π then we need a branch cut on the real axis.

In order to compute ΠAA
f (q2) we can employ Cauchy’s integral theorem that states

that the value of a generic complex function f in a point z0 in the complex plane

can be obtained from the following integration

f(z0) =
1

2πi

∮
Γ

dz′ f(z′)

z′ − z0
(3.2.38)

provided that z0 is found within the region of the complex plane bounded by the

contour Γ. We refer to Fig. 3.1 for the depiction of a convenient contour for this
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3.2. Renormalization in the OS scheme

Re z

Im z

4m2
π

Γδ

ΓR

l1

l2

z0

Figure 3.1: Integration contour for a function defined with a branch cut on the real axis, starting

from 4m2
π.

integration. In the limit R → ∞, the external circular contour denoted as ΓR

stretches to infinity in all directions on the complex plane. Assuming that f(z) → 0

as |z| → ∞ faster than 1/|z|2, the integral over ΓR gives zero contribution. Similarly,

in the limit δ → 0 the internal contour Γδ shrinks to a point and the integral over it

vanishes. Thus if we take z0 = q2 + iϵ with ϵ > δ, namely we move slightly away in

the complex plane from the branch cut, we can compute the integral in eq. (3.2.38)

as the sum of the two linear integrals over l1 and l2. We have

f(q2 + iϵ) =
1

2πi

∫ ∞

4m2
π

dx
f(x + iδ) − f(x − iδ)

x − q2 − iϵ
, x ∈ R. (3.2.39)

Using the property in eq. (3.2.37) and taking the δ → 0 limit, we get

ReΠ(q2) = Re

[
1

π

∫ ∞

4m2
π

ds
ImΠ(s)

s − q2 − iϵ

]
. (3.2.40)

Now if we consider the scattering process e+e− → e+e− in the forward limit we have

iM =

 e−

e+

e−

e+

p1

p2 p2

p1


= (−ie)2u(p1)γ

µv(p2)

[
− i

q2
(−Π(q2))

]
v(p2)γµu(p1)

(3.2.41)

where q = p1 + p2 is the momentum of the virtual photon. Taking the trace

Tr (γµv(p2)v(p2)γµu(p1)u(p1)) = −4q2 (3.2.42)
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3.2. Renormalization in the OS scheme

we end up with ⟨M⟩spin = e2Π(q2) where we use the notation ⟨. . . ⟩spin to denote the

appropriate sum and average over the spin of the external states. Thus, using the

optical theorem given by eq. (3.2.35), we can write

ImΠ(q2) =
q2

e2
⟨σ(q2)⟩e+e−→hadrons

spin (3.2.43)

where q2 is the flux factor for this process. Moreover, if we use the definition Rhad

in eq. (3.2.30) and the well known result for the e+e− → µ+µ− cross section

⟨σ(q2)⟩e+e−→µ+µ−

spin =
4πα2

3q2
, (3.2.44)

we end up with

ImΠ(q2) =
q2

e2
Rhad(q

2) ⟨σ(q2)⟩e+e−→µ+µ−

spin =
α

3
Rhad(q

2) (3.2.45)

which, together with eq. (3.2.40), gives us

ReΠ(q2) =
α

3π
Re

[∫ ∞

4m2
π

ds
Rhad(s)

q2 − s + iϵ

]
. (3.2.46)

In order to arrive to the final result in eq. (3.2.29) we need to discuss two remaining

issues:

• In general the photon self-energy is not a finite quantity as it contains 1/ϵ poles

of ultraviolet origin. This means that Π(q2) does not meet the requirements

for the use of Cauchy’s integral formula, as its analytic continuation is not a

holomorphic function.

• Unlike Π(q2), the quantity Π̂(q2) does not comply with the condition f(z) → 0

for |z| → ∞ since, as can be seen from the definition in eq. (3.2.27), it contains

Π(0) which is constant in q2.

To overcome these issues we can first take the non-divergent part of Π(q2) by remov-

ing the term containing the ultraviolet pole, namely

Π(q2) − PUV. (3.2.47)

Since the poles are purely real, that is ImPUV = 0, we have that

ReΠ(q2) − PUV = Re

[
1

π

∫ ∞

4m2
π

ds
ImΠ(s)

s − q2 − iϵ

]
(3.2.48)

and for q2 → 0 we get

Π(0) − PUV =

[
1

π

∫ ∞

4m2
π

ds
ImΠ(s)

s − iϵ

]
. (3.2.49)
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Finally, putting all terms together, gives us

Re Π̂(q2) = ReΠ(q2) − Π(0)

= Re

[
1

π

∫ ∞

4m2
π

ds

(
ImΠ(s)

s − q2 − iϵ
− ImΠ(s)

s − iϵ

)]
= Re

[
1

π
q2
∫ ∞

4m2
π

ds
ImΠ(s)

s(s − q2 − iϵ)

]
=

α

3π
q2Re

[∫ ∞

4m2
π

ds
Rhad(s)

s (q2 − s + iϵ)

]
.

(3.2.50)

3.2.3 The α(MZ) scheme

In order to remove the problematic dependence on the light-quark masses, which is

explicit in the result presented in eq. (3.2.19), it is convenient to move to a different

scheme for the definition of the coupling constant. By including the evolution via

renormalization group equation from Q2 = 0 to Q2 = M2
Z in the input value for α,

in fact, one effectively resums the problematic contribution in the definition of the

coupling. Therefore we have

α(M2
Z) =

α(0)

1 − ∆α(M2
Z)

(3.2.51)

where ∆α(M2
Z) is defined as in eq. (3.2.20). The introduction of this correction

amounts to a difference of roughly 6% in the input value of the coupling. Moving to

the α(MZ) scheme, that is removing α(0) in favour of α(MZ) at LO, means that at

loop order the ∆α(M2
Z) terms are subtracted, resulting in the cancellation of light-

fermion mass logarithms from the charge renormalization for the EW corrections.

In practice, the implementation of the scheme, requires a replacement of δZe in

eq.(3.2.2) with

δZOS
e

∣∣∣
α(MZ)

=
1

2
ΠAA(0) − sW

cW

ΣAZ
T (0)

M2
Z

− 1

2
∆α(M2

Z). (3.2.52)

This is the appropriate scheme choice for processes with only internal photons, as

it guarantees the complete cancellations of the unpleasant fermion mass logarithms.

If external photons are present, however, the EW corrections naturally include the

photon wave-function renormalization constant, δZA, that already contains the terms

needed to cancel the aforementioned logarithms. This is a consequence of the QED

Ward identity which can be written as

δZOS
e = −1

2
δZOS

A . (3.2.53)

This relation is tied to the fact that external photons couple with the scale Q2 = 0,

which corresponds to the pure α(0) scheme5. As a consequence, if we consider a

5This is valid only if the photon acts as a proper external state and not, for example, in the

case of photon-induced processes in hadronic collisions where the photon is considered as part of

the content of the proton.
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3.2. Renormalization in the OS scheme

process with m external photons, the coupling factor αn in the LO cross section

should be parametrized as α(0)mα(M2
Z)

n−m. This defines a mixed scheme in which

these large logarithms originating from light fermion masses can be avoided.

3.2.4 The Gµ scheme

In this scheme the input value αGµ for the electromagnetic coupling is defined from

the Fermi constant Gµ, which is known with high precision from muon decay. Nu-

merically we have

αGµ ≡
√
2GµM2

W (M2
Z − M2

W )

πM2
Z

≈ 1/132. (3.2.54)

This scheme provides the opportunity to absorb some universal corrections related

to the renormalization of the weak mixing angle in the LO contributions. More

specifically we can define the following relation

αGµ = α(0)
(
1 − ∆r(1)

)
+ O(α3), (3.2.55)

where the factor ∆r(1) represents the full one-loop electroweak corrections to the

muon decay which, following the notation of Refs. [117, 125], can be written as

∆r(1) = ∆α(M2
Z) − c2W

s2W
∆ρ(1) +∆rrem, (3.2.56)

with ∆ρ(1) being the universal correction to the ρ-parameter, which is defined as

∆ρ(1) =
ΣZZ

T (0)

M2
Z

− ΣW
T (0)

M2
W

, (3.2.57)

and a small remainder given by

∆rrem = Re
ΣAA

T (M2
Z)

M2
Z

− 2
cW

sW

ΣAZ
T (0)

M2
Z

− c2W
s2W

ΣZZ
T (M2

Z) − ΣZZ
T (0)

M2
Z

−
(

c2W
s2W

− 1

)
ΣW

T (M2
W ) − ΣW

T (0)

M2
W

+
α(0)

4πs2W

(
6 +

7 − 4s2W
2s2W

log c2W

)
. (3.2.58)

As far as the running of the electromagnetic coupling is concerned, the Gµ scheme

is similar to the α(MZ) scheme, as in both schemes the input value of α is given at

some electroweak scale. This makes both schemes preferable over the α(0) scheme as

long as external photons are not involved. In particular, since the definition of ∆r(1)

contains ∆α(M2
Z), the Gµ scheme naturally reabsorbs the mass logarithmic terms

that appear in the charge renormalization factor. Indeed we have

δZOS
e

∣∣∣
Gµ

=
1

2
ΠAA(0) − sW

cW

ΣAZ
T (0)

M2
Z

− 1

2
∆r(1). (3.2.59)

Moreover due to the presence of the factor ∆ρ(1), which originates from the OS

renormalization of the weak mixing angle, this scheme is the most appropriate choice

when describing processes in which the W boson is involved, while it is actually not

well suited for photonic couplings.
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3.3 Renormalization in the MS scheme

Sometimes the MS scheme is preferred over the OS scheme for the renormalization of

the EW gauge couplings. While one could, in principle, employ the MS scheme also in

the renormalization of the masses, typically a hybrid scheme is chosen. Usually this

translates in the masses being defined on shell and so is the external photon wave-

function renormalization counterterm, while the electric charge and the weak mixing

angle are renormalized in the MS scheme. The MS counterterms are obtained by

taking their OS counterparts and by keeping only the ∆UV term with the replacement

∆UV → ∆UV − log
µ2

R

µ2
D

. (3.3.1)

Although the choice of both scales in the previous equation is in principle arbitrary,

we must stress an important difference between them. If the value of the renormal-

ization scale µR does not affect the result of the computation once all terms in the

perturbative expansion are taken into account, the truncation of the series intro-

duces a dependence on µR, typically be estimated via a scale-variation procedure.

The choice of the dimensional regularization scale µD, instead, has no effect at all

on the result of the computation, provided that the same choice is applied in the

computation of the amplitudes. Practically speaking, the logarithms resulting from

the ϵ → 0 expansion of ∆UV cancel the dependence of the amplitude on µD, trading

it for a dependence on the renormalization scale.

For the charge renormalization factor we then would have

δZMS
e (µ2

R) =

[
1

2
ΠAA(0) − sW

cW

ΣAZ
T (0)

M2
Z

]
UV

= −α(µ2
R)

4π

{
2

3

∑
f

N f
c Q2

f

[
− ∆UV + log

µ2
R

µ2
D

]
+

7

2

[
∆UV − log

µ2
R

µ2
D

]}
,

(3.3.2)

where α(µ2
R) = e2(µ2

R)/4π is the value of the renormalized fine structure constant in

the MS scheme evaluated at the renormalization scale µ2
R. Note that in eq. (3.3.2) all

particles contributing to the self energy are considered light particles, i.e. with a mass

m < µR, thus the equation is only valid for the degrees of freedom that are lighter than

µ2
R. In order to avoid spurious logarithms, we then have to account for the decoupling

of the heavier degrees of freedom by subtracting their contribution. In general this

decoupling procedure can be defined for any particle, as the renormalization scale can,

in principle, be taken small. For fermions the decoupling is given by the replacement

δZMS
e (µ2

R) → δZMS
e (µ2

R) − α(µ2
R)

4π

[
2

3

∑
f

N f
c Q2

f θ(m2
f − µ2

R) log
m2

f

µ2
R

]
, (3.3.3)
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while for the W boson the procedure is a bit more delicate as it depends on whether

α(µ2
R) is defined with a threshold shift6 at µ2

R = M2
W or not. We have

δZMS
e (µ2

R) → δZMS
e (µ2

R) − α(µ2
R)

4π

[
−7

2
log

M2
W

µ2
R

+
1

3

]
θ(M2

W − µ2
R). (3.3.4)

It is important to note that the decoupling term contains exactly the contribution

needed to go back to the OS scheme. For example, for every decoupled fermion

(m2
f > µ2

R) we have

δZMS
e,f (µ

2
R) = −α(µ2

R)

4π

{
2

3
N2

c Q2
f

[
−∆UV + log

µ2
R

µ2
D

+ log
m2

f

µ2
R

]}
= δZOS

e,f (3.3.5)

and for the decoupling of the W boson

δZMS
e,W (µ2

R) = −α(µ2
R)

4π

{
7

2

[
∆UV − log

µ2
R

µ2
D

− log
M2

W

µ2
R

+
1

3

]}
= δZOS

e,W . (3.3.6)

For processes involving external photons it is customary to define a hybrid scheme, as

mentioned before, where the wave-function renormalization factor for each external

photon is computed in the on-shell scheme, that is

δZOS
A = 2

α

4π

∑
f

2

3
N f

c Q2
f

[
−∆UV + log

m2
f

µ2
D

]
, (3.3.7)

where, for simplicity, we are only considering the fermionic contributions. Note that

for each external photon vertex we then have

α(µ2
R)
(
1 + 2δZMS

e (µ2
R) + δZOS

A

)
(3.3.8)

and taking µ2
R = 0, which is the prescription for external photons, we get

α(µ2
R = 0)

(
1 + 2δZMS

e (µ2
R = 0) + δZOS

A

)
= α0

(
1 + 2δZOS

e + δZOS
A

)
= α0. (3.3.9)

For vertices with internal photons we can instead write the well-known relation be-

tween the bare parameters and renormalized ones both for the OS and MS couplings

e0 =
(
1 + δZOS

e

)
eOS =

(
1 + δZMS

e (µ2
R)
)

eMS(µ2
R), (3.3.10)

to introduce a prescription to go from the on-shell scheme to MS. Note that the

previous identity is well defined for all the OS-scheme choices related to the input

value of the coupling constant presented in this section. If we take the α(0) scheme,

for example, eq. (3.3.10) yields the following solution for the conversion of αOS in

MS

α(µ2
R) =

α(0)

1 − ∆αMS(µ2
R)

, (3.3.11)

6Additional details on this can be found in Ref. [126] and references therein.
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with the definition

∆αMS(µ2
R) = 2

[
δZOS

e − δZMS
e (µ2

R)
]

. (3.3.12)

The charge renormalization factors δZOS
e and δZMS

e (µ2
R) have, by construction, the

same ∆UV terms but paired with different logarithms, as can be seen in eqs. (3.2.14)

and (3.3.1). This means that, in eq. (3.3.12), the two ∆UV cancel each other leaving

behind a term proportional to log(X2/µ2
R), X being the generic scale in eq. (3.2.14).

In addition we have the non-logarithmic finite contributions in δZOS
e and the terms

related to the decoupling,

∆αMS(µ2
R) = −2

α

4π

{
2

3

∑
f

N2
c Q2

f log
m2

f

µ2
R

θ(µ2
R − m2

f )

+

[
−7

2
log

M2
W

µ2
R

+
1

3

]
θ(µ2

R − M2
W )

}
,

(3.3.13)

where we used

log
M2

µ2
R

− log
M2

µ2
R

θ(M2 − µ2
R) = log

M2

µ2
R

θ(µ2
R − M2). (3.3.14)

In this work, in order to avoid the complications introduced by the light quark masses,

we first perform the computation in the OS scheme and then move to the MS scheme

with the masses of all light quarks set to 0.

As a result, the decoupling described by eq. (3.3.3) needs to be implemented

only for the top quark and the leptons, while the contribution coming from the light

quarks is authomatically included in the input value of the coupling constant, as well

as in its running.
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Chapter 4

The MiNLO method for massive

final state emitters

In this chapter we discuss the modifications of the MiNLO formalism needed to

properly describe the production of massive final-state emitting particles. We start

by presenting the resummation formalism for the case of heavy-quark pair production

following the notation introduced in Ref. [127] and [128]. To this purpose we consider

the production process of a heavy-quark pair

h1(P1) + h2(P2) → Q(p3) + Q̄(p4) + X (4.0.1)

where X is to be intended as an arbitrary undetected final state. In the center-

of-mass frame of the collision, the kinematics of the final state is fully specified by

the invariant mass M of the heavy-quark pair, M2 = q2 with qµ = pµ
3 + pµ

4 , the

transverse-momentum vector q⃗T
1 and the rapidity y = 1

2
log q·P1

q·P2
. Analogously, the

individual momenta pµ
3 (pµ

4) of the heavy quarks are specified by the heavy-quark

mass mQ, the rapidity y3 (y4) and the transverse-momentum vector p⃗T3 (p⃗T4).

The fully-differential cross section for this process is given by

dσh1h2→QQ̄+X(s, q⃗T, y, M,ΦQQ̄)

d2q⃗T dM2 dy dΦQQ̄

=
1

s

∑
a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

× fa1/h1

(
x1

z1
, µ2

F

)
fa2/h2

(
x2

z2
, µ2

F

)
dσ̂a1a2→QQ̄+X(q⃗T, z1, z2, M,ΦQQ̄, αs(µ

2
R), µ2

R, µ2
F)

d2q⃗T dz1 dz2 dΦQQ̄

,

(4.0.2)

where ΦQQ̄ is just a place-holder for an independent set of kinematical variables

needed to specify the distribution of the two final-state quarks with respect to the

1To make contact with the literature, in this chapter we will use qT instead of pT to denote the

transverse momentum.
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momentum q of the QQ̄ pair. The hadronic scaling variables x1 and x2 are defined

as

x1 =
M√

s
ey x2 =

M√
s

e−y (4.0.3)

so that M2 = x1x2s and y = 1
2
log(x1/x2). In the same way, the partonic scaling

variables z1 and z2 are used to express the energy fractions carried by the parton

entering the hard process

z1 =
M√

ŝ
eŷ z2 =

M√
ŝ

e−ŷ (4.0.4)

so that of course M2 = z1z2ŝ and ŷ = 1
2
log(z1/z2).

In the large transverse-momentum region, namely qT ∼ M , the perturbative

expansion of the cross section is controlled by the usual expansion parameter, namely

the coupling constant αs, and the fixed-order computation is well suited to describe

the scattering process. In the small-qT region, however, logarithmic contributions

of the type logn(M2/q2T) contained in the cross section become large and spoil the

perturbative expansion. To separate the two regions, we can split the hadronic cross

section into singular and finite components:

dσh1h2→QQ̄+X

d2q⃗T dM2 dy dΦQQ̄

=
dσ

(sing.)

h1h2→QQ̄+X

d2q⃗T dM2 dy dΦQQ̄

+
dσ

(fin.)

h1h2→QQ̄+X

d2q⃗T dM2 dy dΦQQ̄

. (4.0.5)

This decomposition of the hadronic cross section implies a corresponding decompo-

sition of the partonic cross section

dσ̂a1a2→QQ̄+X

d2q⃗T dz1 dz2 dΦQQ̄

=
dσ̂

(sing.)

a1a2→QQ̄+X

d2q⃗T dz1 dz2 dΦQQ̄

+
dσ̂

(fin.)

a1a2→QQ̄+X

d2q⃗T dz1 dz2 dΦQQ̄

. (4.0.6)

The first term on the right-hand side dσ̂(sing.) contains all the contributions that

are singular in the small transverse-momentum limit. This includes both the usual

logarithmically-enhanced terms and also the contributions proportional to δ(q⃗T). The

second term, instead, is finite in this limit and can be obtained by fixed-order trun-

cation of the perturbative series. More precisely we define the finite component such

that

lim
Q→0

∫ Q2

0

dq2T

[
dσ̂(fin.)(q2T)

dq2T

]
f.o.

= 0 (4.0.7)

order-by-order in perturbation theory. In the equation above the notation [F ]f.o.
means that the quantity F is computed by truncating its perturbative expansion at

a given fixed order in αs.
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4.1. Structure of the cross section at small qT

4.1 Structure of the cross section at small qT

For the purpose of this section we shall focus on the singular part of the cross section

which can be written as an inverse two-dimensional Fourier transformation with

respect to the impact parameter b⃗

dσ̂
(sing.)

a1a2→QQ̄+X

d2q⃗T dz1 dz2 dΦQQ̄

=
M2

ŝ

∫
d2⃗b

(2π)2
ei⃗b·q⃗T W QQ̄

a1a2
(ŝ, b, z1, z2,ΦQQ̄;αs(µ

2
R), µ2

R, µ2
F).

(4.1.1)

This expression embodies the all-order resummation of the large logarithms logM2b2

at large b [127]. For processes mediated by qq̄ annihilation at tree level, the depen-

dence of the partonic resummation factor W QQ̄
a1a2

on the impact parameter relies only

on the modulus b and not on the azimuthal angle ϕb. Thus it is customary in litera-

ture to perform the angular integral∫
d2⃗b

4π
ei⃗b·q⃗Tf(b2) =

1

2

∫ ∞

0

b db

∫ 2π

0

dϕb

2π
ei b qT cosϕbf(b2)

=
1

2

∫ ∞

0

db b J0(bqT) f(b2)

(4.1.2)

where the 0-th order Bessel function J0(z) is defined as

J0(z) =
1

π

∫ π

0

eiz cos θdθ. (4.1.3)

Therefore, the two-dimensional Fourier transform is often replaced by a one-dimensional

Bessel transform, allowing eq. (4.1.1) to be written as

dσ̂
(sing.)

a1a2→QQ̄+X

dq2T dz1 dz2 dΦQQ̄

=
M2

ŝ

∫ ∞

0

db
b

2
J0(bqT)W QQ̄

a1a2
(ŝ, b, z1, z2,ΦQQ̄;αs(µ

2
R), µ2

R, µ2
F)

(4.1.4)

where we used the fact that the integrand depends on q⃗T only via its modulus to

write
dσ̂

(sing.)

a1a2→QQ̄+X

d2q⃗T dz1 dz2 dΦQQ̄

=
1

π

dσ̂
(sing.)

a1a2→QQ̄+X

dq2T dz1 dz2 dΦQQ̄

. (4.1.5)

This expression in eq. (4.1.4) contains, in the process-dependent term W QQ̄
a1a2

, the

all-order dependence on the large logarithms, which upon the Bessel integration

correspond to the qT-space terms log(M2/q2T).

There is some arbitrariness in the factorization between constant and logarithmic

terms [129, 130] which results in an intrinsic ambiguity in the choice of the logarithm

taken to be resummed. Indeed, the argument of the b-space logarithms that appear

in W QQ̄
a1a2

can be rescaled as logM2b2 = logQ2b2 + logM2/Q2 as long as Q2 does

not depend on the impact parameter b and provided that logM2/Q2 = O(1) if
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4.1. Structure of the cross section at small qT

bM ≫ 1. Thus an auxiliary scale Q, such that Q ∼ M , can be introduced to define

the logarithmic expansion parameter Lb as

Lb ≡ log
Q2b2

b20
(4.1.6)

where b0 = 2e−γE (γE = 0.5772 . . . is the Euler-Mascheroni constant).

Note that the role played by the auxiliary scale Q is similar to the one attributed

to the renormalization (factorization) scale µR (µF) in the context of renormalization

(factorization). The all-order resummed cross section is independent of Q and the

explicit dependence only appears when it is truncated at some level of logarithmic

accuracy. As it is the case for µR and µF, one can estimate the uncertainties associated

with the choice of the value of the scale Q by taking variations around its central

value Q = M . These estimations are, however, beyond the purpose of this work.

The singular component of the hadronic cross section can be written as

dσ
(sing.)

h1h2→QQ̄+X

d2q⃗T dM2 dy dΦQQ̄

=
M2

s

∫
d2⃗b

(2π)2
ei⃗b·q⃗T W QQ̄

h1h2
(s, b, y, M,ΦQQ̄;αs(µ

2
R), µ2

R, µ2
F).

(4.1.7)

The factor W QQ̄
h1h2

is given by

W QQ̄
h1h2

=
∑
a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fa1/h1

(
x1

z1
,
b20
b2

)
fa2/h2

(
x2

z2
,
b20
b2

)
×
∑

c

σ
(0)

cc̄,QQ̄
e−Scc̄(

b0
b
)
[
HQQ̄C1C2

]
cc̄,a1a2

, (4.1.8)

where σ
(0)

cc̄,QQ̄
is the lowest-order cross section for the c+ c̄ → QQ̄ partonic subprocess.

The exponential term e−Scc̄ is the b-space Sudakov form factor, analogous to the one

given in eq. (2.3.2), namely

e−Scc̄ = exp

{
−
∫ M2

b20
b2

dq2

q2

[
Ac(αs(q

2)) log
M2

q2
+ Bc(αs(q

2))

]}
(4.1.9)

which encodes the resummation of the logarithms of the impact parameter originat-

ing from collinear and soft-collinear (meaning both single and double logarithms)

radiation coming from the initial-state partons. We recall that the functions Ac(αs)

and Bc(αs) can be written as power series in the coupling constant

Ac(αs) =
∞∑

n=1

(αs

2π

)n

A(n)
c (4.1.10)

Bc(αs) =
∞∑

n=1

(αs

2π

)n

B(n)
c . (4.1.11)
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4.1. Structure of the cross section at small qT

The term
[
HQQ̄C1C2

]
cc̄,a1a2

, which includes the hard function and the convolution of

the parton distribution functions with the coefficient functions, has a different form

for the qq̄ annihilation and the gluon fusion channels. Here we can restrict the discus-

sion to qq̄-initiated processes without the need to include the rich Lorentz structure

that comes with the three gluon vertex, as once we go through the abelianization

procedure, such terms will no longer contribute. We have[
H QQ̄C1C2

]
cc̄,a1a2

= [(H∆)]QQ̄
cc̄,a1a2

= (H∆)QQ̄
cc̄ Cca1(z1, αs)Cc̄a2(z2, αs) (4.1.12)

where the operators in colour space are denoted in bold letters. The coefficient

functions Cab(z, αs) are process-independent functions defined via the choice of the

resummation scheme, as it is explained in Section 4.3. In eq. (4.1.12), the operator

∆, which is specific of heavy-quarks pair production, encodes the resummation of

the single-logarithmic corrections due to the large-angle soft radiations from the QQ̄

pair and from interferences between the initial and final state. We can rewrite it in

the following form

∆( b⃗ ) = V†(b)D(ϕb)V(b), (4.1.13)

where the operator V is the exponentiation of the soft anomalous dimension matrix

for heavy-quark pair production Γt, namely

V(b) = Pq exp

{
−
∫ M2

b20
b2

dq2

q2
Γt(ΦQQ;αs(q

2))

}
. (4.1.14)

The symbol Pq means that the exponential matrix is path-ordered with respect to the

integration variable q2. A convenient choice for the parametrization of the final-state

kinematic variables encoded in ΦQQ is given by the rapidity difference y34 = y3 − y4
and one of the azimuthal angles ϕ3 = ϕ4. The explicit form of Γt is discussed in

details in Ref. [127] and will be recalled later on in this chapter. The operator

D encodes the azimuthal dependence of the heavy-quark pair system in the small

transverse-momentum limit due to wide-angle soft radiations. It exhibits an impor-

tant feature [127]: it is always possible to define it in such a way that ⟨D⟩ϕb
= 1, in

other words its average over the azimuthal angle ϕb results in a trivial contribution

at all orders.

It is important to note that for processes without final-state radiation, such as

the production of a color singlet F in QCD, the factor ∆ assumes a trivial form and

the color-space operator in eq. (4.1.12) becomes

(H∆)F
cc̄ = HF

cc̄ 1 (4.1.15)

where HF
cc̄ is the usual process-dependent hard-virtual coefficient.

We can write the color-space operator in eq. (4.1.12) in terms of the scattering

amplitudes as

(H∆)QQ̄
cc̄ =

⟨M̃cc̄→QQ̄|∆ |M̃cc̄→QQ̄⟩
|M(0)

cc̄→QQ̄
|2

. (4.1.16)
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4.1. Structure of the cross section at small qT

All the amplitudes here are considered to be renormalized. The dependence on

the colour indices of the scattering amplitudes M for heavy-quark pair production

is represented by a vector |M⟩ in colour space. The all-orders infrared-subtracted

amplitudes |M̃⟩ can be obtained from the un-subtracted ones |M⟩, which are infrared

divergent, via the application of the appropriate subtraction operator

|M̃cc̄→QQ̄⟩ = [1 − Icc̄→QQ̄(ϵ)] |Mcc̄→QQ̄⟩ . (4.1.17)

The operator Icc̄→QQ̄(ϵ) contains both a divergent part, uniquely defined in order to

cancel the infrared poles that appear at each order in the amplitude, and a finite part

which is, in principle, arbitrary. The exact definition of the latter depends on the

choice of the resummation scheme (see Section 4.3). Both the scattering amplitudes

and the subtraction operator can be expanded perturbatively

Icc̄→QQ̄(ϵ) =
∞∑

i=1

(αs

2π

)i

I
(i)

cc̄→QQ̄
(ϵ) (4.1.18)

|Mcc̄→QQ̄⟩ =
∞∑

i=0

(αs

2π

)i

|M(i)

cc̄→QQ̄
⟩ (4.1.19)

where the additional powers of αs already present at leading order are included in

the definition of |M(i)

cc̄→QQ̄
⟩. Using eq. (4.1.17) we can obtain M̃(n)

cc̄→QQ̄
at each order

as a function of M̃(k)

cc̄→QQ̄
and I

(k)

cc̄→QQ̄
with k ≤ n. For instance, up to NLO we have

that

|M̃(0)

cc̄→QQ̄
⟩ = |M(0)

cc̄→QQ̄
⟩ (4.1.20)

|M̃(1)

cc̄→QQ̄
⟩ = |M(1)

cc̄→QQ̄
⟩ − I

(1)

cc̄→QQ̄
(ϵ) |M(0)

cc̄→QQ̄
⟩ . (4.1.21)

We can write the first-order contribution of the subtraction operator as the sum of

two terms separating the final-state dependent part from the independent one

I
(1)

cc̄→QQ̄
(ϵ) = I

(1)
cc̄ (ϵ) + I

(1)

QQ̄
(ϵ). (4.1.22)

The first term contains the soft and collinear poles coming from the initial-state

radiation in the following form

I
(1)
cc̄ (ϵ) = −1

2

(
µ2

R

M2

)ϵ [(
1

ϵ2
+

iπ

ϵ
− π2

12

)
(T2

1 +T2
2) +

2

ϵ
γc

]
, (4.1.23)

where (Ti)
a is the colour charge of the parton i. These colour charges are matrices

in either the fundamental or the adjoint representation of SU(Nc), and their square,

defined via the product Ti · Tj ≡ (Ti)
a(Tj)

a, is the corresponding Casimir factor

(CF or CA). The coefficients γc (c = q, g) are given by

γq =
3

2
CF, γg =

11CA − 2nf

6
. (4.1.24)
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4.1. Structure of the cross section at small qT

Note that these coefficients match precisely, modulus a minus sign, the B
(1)
c coeffi-

cients in eq. (2.3.7), as they both originate from hard-collinear radiation off the initial

state. The second term in eq. (4.1.22) contains the poles that originate from soft

radiation at large angles from the final-state heavy particles and from initial-final

state interference and it is given by

I
(1)

QQ̄
(ϵ) = −1

2

(
µ2

R

M2

)ϵ [
−4

ϵ
Γ

(1)
t (y34) + F

(1)
t (y34)

]
. (4.1.25)

In eq. (4.1.25), Γ
(1)
t is the first-order term of the expansion in powers of (αs/2π) of

the aforementioned soft anomalous dimension matrix. It can be written as

Γ
(1)
t = −1

4

{
(T2

3 +T2
4)(1 − iπ) +

∑
j=1,2
k=3,4

Tj · Tk log
(2 pj · pk)

2

M2m2
Q

+ 2T3 · T4

[
1

2v
log

1 + v

1 − v
− iπ

(
1

v
+ 1

)]}
(4.1.26)

where v is the relative velocity of Q and Q̄

v =

√√√√1 −

(
2m2

Q

M2 − 2m2
Q

)2

. (4.1.27)

The prefactor in eq. (4.1.26) might differ by a factor of 2 with respect to the one

found in literature due to the choice of the expansion parameter, as explained in

Appendix A. The dependence on the angular distribution of the heavy-quark pair can

be expressed in terms of their rapidity difference y34. Additionally we can introduce

the transverse momentum of the heavy quarks pT3 = pT4 ≡ pTQ and the transverse

mass mT =
√

m2
Q + pT

2
Q. These kinematical quantities satisfy the relation M =

2mT cosh(y34/2), where M is the invariant mass of the QQ̄ pair. Now we can write

the IR finite part F
(1)
t as

F
(1)
t = (T2

3 +T2
4) log

(
m2

T

m2
Q

)
+ (T3 +T4)

2 Li2

(
−

pT
2
Q

m2
Q

)
+T3 · T4

1

v
L34 , (4.1.28)

where the function L34 is

L34 = log

(
1 + v

1 − v

)
log

(
m2

T

m2
Q

)
− 2 Li2

(
2v

1 + v

)
− 1

4
log2

(
1 + v

1 − v

)

+ 2

[
Li2

(
1 −

√
1 − v

1 + v
ey34

)
+ Li2

(
1 −

√
1 − v

1 + v
e−y34

)
+

1

2
y2
34

]
, (4.1.29)

– 37 –



4.2. MiNLO′ formalism for heavy-quark pair production

with Li2 representing the dilogarithm function defined by

Li2(z) = −
∫ z

0

dt

t
log(1 − t). (4.1.30)

These first-order coefficients, namely Γ
(1)
t , F

(1)
t and D(1), specify completely the pro-

cess dependent contributions to eq. (4.1.8) at NLL. Moreover, at NNLL the second-

order coefficients, Γ
(2)
t , D(2) and the equivalent of F

(2)
t that would be the IR finite

contribution to the two-loop subtraction operator, are also needed. We report in

Appendix B the explicit expression for Γ
(2)
t , computed in Ref. [127].

4.2 MiNLO′ formalism for heavy-quark pair production

We can start by isolating the NLL contributions in eq. (4.1.14) by expanding the

second-order term. We have

V(b) = VNLL

[
1 −

∫ M2

b20
b2

dq2

q2
α2

s(q)

(2π)2
Γ

(2)
t

]
+ O(α3

s), (4.2.1)

where

VNLL = Pq exp

{
−
∫ M2

b20
b2

dq2

q2
αs(q)

2π
Γ

(1)
t

}
. (4.2.2)

This procedure gives rise to several different corrections to the MiNLO′ formalism

that we presented in Section 2.3. Such corrections are described in details in Ref. [131]

and we will briefly discuss them. First of all, since it is no longer in exponential form,

the contribution to eq. (4.1.16) coming from the two-loop anomalous dimension can

be written as

−⟨M(0)
cc̄ |Γ(2)†

t + Γ
(2)
t |M(0)

cc̄ ⟩
|M(0)

cc̄ |2

∫ M2

b20
b2

dq2

q2
α2

s(q)

(2π)2
(4.2.3)

where we shortened the subscript of the amplitudes for ease of notation. Such term

has the same functional form of the contributions stemming from the B
(2)
cc̄ coefficient

upon expanding the exponential e−Scc̄ , so we can absorb it into a redefinition of the

Sudakov form factor via the replacement

B
(2)
cc̄ → B

(2)
cc̄ +

⟨M(0)
cc̄ |Γ(2)†

t + Γ
(2)
t |M(0)

cc̄ ⟩
|M(0)

cc̄ |2
. (4.2.4)

Then we consider the terms coming from VNLL: by plugging it back in eq. (4.1.16)

we obtain

(H∆)QQ̄
cc̄ =

⟨M̃cc̄|V†
NLLVNLL |M̃cc̄⟩
|M(0)

cc̄ |2
(HD)QQ̄

cc̄ + O(α3
s) (4.2.5)

plus terms that vanish upon azimuthal integration and can therefore be safely ne-

glected. The first term in eq. (4.2.5) produces contributions that are purely NLL,
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4.2. MiNLO′ formalism for heavy-quark pair production

when VNLL hits the LO amplitudes, and higher-order ones when the interference

with NLO amplitudes is involved. We can obtain both contributions via the follow-

ing replacement

⟨M̃cc̄|V†
NLLVNLL |M̃cc̄⟩
|M(0)

cc̄ |2
→ ⟨M(0)

cc̄ |V†
NLLVNLL |M(0)

cc̄ ⟩
|M(0)

cc̄ |2
⟨M̃cc̄|M̃cc̄⟩

|M(0)
cc̄ |2

(4.2.6)

which, in addition, requires the adjustment of the B
(2)
cc̄ coefficient via the inclusion

of two new terms needed to restore the MiNLO′ accuracy2, namely

B
(2)
cc̄ → B

(2)
cc̄ − 2Re

[
⟨M̃(1)

cc̄ |M̃(0)
cc̄ ⟩

|M(0)
cc̄ |2

]
⟨M(0)

cc̄ |Γ(1)†
t + Γ

(1)
t |M(0)

cc̄ ⟩
|M(0)

cc̄ |2

+ 2Re

[
⟨M̃(1)

cc̄ |Γ(1)†
t + Γ

(1)
t |M̃(0)

cc̄ ⟩
|M(0)

cc̄ |2

]
.

(4.2.7)

As for the azimuthally-dependent term (HD)QQ̄
cc̄ , it gives trivial contributions once

the average over the azimuthal angle is taken. This is true at NLO, but it would be

spoiled at higher orders in gluon-initiated channels, due to the interference between

D(1) and the coefficient functions. We can ignore this complication as it is needed

only when going beyond MiNLO′ accuracy. We have

(HD)QQ̄
cc̄ =

|M̃cc̄|2

|M(0)
cc̄ |2

≡ HQQ̄
cc̄ (αs) (4.2.8)

where the quantity HQQ̄
cc̄ , representing the infrared-subtracted hard-virtual contribu-

tions, can be perturbatively expanded as

HQQ̄
cc̄ (αs) =

∞∑
n=0

(αs

2π

)n

HQQ̄ (n)
cc̄ . (4.2.9)

To summarize, with all the modifications introduced above, eq. (4.1.8) becomes

W QQ̄
h1h2

=
∑

c

1

s
e−Ŝcc̄(

b0
b
) ⟨M(0)

cc̄ |V†
NLLVNLL |M(0)

cc̄ ⟩

×
∑
a1,a2

[
HQQ̄

cc̄ (αs)
(
Cca1 ⊗ fa1/h1

) (
Cc̄a2 ⊗ fa2/h2

)]
, (4.2.10)

where the symbol ⊗ denotes the usual convolution

(f ⊗ g)(x) =

∫ 1

x

dz

z
f
(x

z

)
g(z). (4.2.11)

2A detailed explanation of this procedure can be found in Ref. [131]
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The effective Sudakov form factor is obtained from the one written in eq. (2.3.2) via

the following replacement B
(2)
cc̄ → B̂

(2)
cc̄ with

B̂
(2)
cc̄ = B

(2)
cc̄ +

⟨M(0)
cc̄ |Γ(2)†

t + Γ
(2)
t |M(0)

cc̄ ⟩
|M(0)

cc̄ |2

− 2Re

[
⟨M̃(1)

cc̄ |M̃(0)
cc̄ ⟩

|M(0)
cc̄ |2

]
⟨M(0)

cc̄ |Γ(1)†
t + Γ

(1)
t |M(0)

cc̄ ⟩
|M(0)

cc̄ |2

+ 2Re

[
⟨M̃(1)

cc̄ |Γ(1)†
t + Γ

(1)
t |M̃(0)

cc̄ ⟩
|M(0)

cc̄ |2

]
.

(4.2.12)

Finally, in order to evaluate explicitly the exponential factor encoded in the term

⟨M(0)
cc̄ |V†

NLLVNLL |M(0)
cc̄ ⟩, it is possible to perform a rotation in colour space such

that the one-loop soft anomalous dimension is written in diagonal form. We have

e−Ŝcc̄ ⟨M(0)
cc̄ |V†

NLLVNLL |M(0)
cc̄ ⟩ = |M(0)

cc̄ |2
nc∑

i=1

e−Ŝ
[γcc̄

i ]

cc̄ C
[γcc̄

i ]
cc̄ (ΦQQ̄) (4.2.13)

where nc depends on the SU(3) representation of the initial-state configuration,

precisely nc = 4 for quarks and nc = 9 for gluons. In this way the contribution from

Γ
(1)
t can be included in the B

(1)
cc̄ coefficients of the Sudakov exponent as

B
(1)
cc̄ → B

(1)
cc̄ + γcc̄

i (ΦQQ̄) (4.2.14)

where the functions γcc̄
i are obtained from the eigenvalues of Γ

(1)
t and the coefficients

C
[γcc̄

i ]
cc̄ of the linear combination, satisfy the normalization

∑nc

i=1 C
[γcc̄

i ]
cc̄ (ΦQQ̄) = 1.

4.3 Resummation scheme dependence

As mentioned before, the definition of some terms discussed in this chapter depends

on the choice of the so-called resummation scheme. It is the case, for example, for the

hard-virtual function Hcc̄ and the coefficient functions Cab introduced in eq. (4.1.12)

as well as the Bcc̄ coefficients in the Sudakov exponent. More specifically, it can be

shown [132] that the resummed component of the differential cross section for colour

singlet production, usually written in the form of eq. (4.1.8), is invariant under the

transformation

Hcc̄(αs) → Hcc̄(αs) [f(αs)]
−1 ,

Bcc̄ → Bcc̄ − β(αs)
d log f(αs)

d logαs

,

Cab(z, αs) → Cab(z, αs) [f(αs)]
1/2 ,

(4.3.1)

where f(αs) = 1 + O(αs) is an arbitrary perturbative function. This ambiguity

in the definition of the factors in the set of equations above is a consequence of
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the fact that the transverse-momentum cross section is a divergent quantity. The

arbitrariness involved in the regularization procedure is reflected in the way the

coefficient functions are defined and it is then propagated to the Sudakov form factor

and the hard-virtual function due to the collinear radiation. Therefore these factors

must be computed via the choice of a resummation scheme, which amounts to the

definition of Hcc̄ or Cab for both a qq̄-initiated and a gg-initiated process. Based on

the choice of the scheme, the process dependence of the factor [HCC]cc̄ in eq. (4.1.8)

is distributed between Hcc̄ and Cab
3.

A simple choice for the resummation scheme for Drell-Yan processes consists of a

trivial definition of the hard-virtual factor, namely HDY
cc̄ (αs) = 1, which corresponds

to f(αs) = Hcc̄(αs). In this way, one fixes completely the process-independent form

factor e−Scc̄ and coefficients functions Cab as those determined from the DY process.

This prescription is widespread in literature due to its simplicity, because the Drell-

Yan transverse-momentum distribution is very well known.

One of the most popular choices is given by the so-called hard scheme, that is

the scheme in which order-by-order in perturbation theory the coefficients C
(n)
ab (z)

with n ≥ 1 do not contain any δ(1−z) terms. This definition entails that the process

dependence of the term [HCC]cc̄ is all contained in the hard-virtual coefficient Hcc̄,

while the collinear functions Cab are completely process independent. The first-order

perturbative coefficients of the collinear functions in this scheme are given by

C(1)
qq (z) = CF(1 − z),

C(1)
gq (z) = CFz,

C(1)
qg (z) = z(1 − z),

C(1)
gg (z) = C

(1)
qq̄ (z) = C

(1)
qq′ (z) = C

(1)
qq̄′ (z) = 0,

(4.3.2)

where q and q′ denote quarks of different flavours.

In this work we employ the following definition for the first-order terms of the

expansion of the collinear coefficient functions

C
(1)
ab (z) = −P

(0),ϵ
ab (z) − CFδabδ(1 − z)

π2

12
. (4.3.3)

In this scheme, the first-order hard-virtual coefficient for the DY production of a Z

boson is given by

H
(1)
DY = CF

(
7

6
π2 − 8

)
. (4.3.4)

3Details on the discussion about the appropriate choice of the resummation scheme for the

production process of a heavy-quark pair can be found in Ref. [127]
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The functions P
(0),ϵ
ab are defined as the O(ϵ) part of the leading-order regularized

Altarelli-Parisi splitting functions P
(0)
ab and they are given by

P (0),ϵ
qq (z) = −CF(1 − z),

P (0),ϵ
gg (z) = 0,

P (0),ϵ
gq (z) = −CFz,

P (0),ϵ
qg (z) = −z(1 − z).

(4.3.5)

For completeness we report also the regularized splitting functions:

P (0)
qq (z) = CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
,

P (0)
gq (z) = CF

1

z

[
1 + (1 − z)2

]
,

P (0)
qg (z) =

1

2

[
z2 + (1 − z)2

]
,

P (0)
gg (z) = 2CA

[
z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]
+ 2πβ0δ(1 − z).

(4.3.6)
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Chapter 5

Abelianization of the MiNLO′

method

So far, the MiNLO′ method, described in Section 2.3, has only been used to describe

QCD radiation, as the method is tailored for its application to the physics of hadron

colliders, where the processes are dominated by the strong interactions. As already

pointed out before, however, with the increase in the precision of the experimental

data, the relevance of the EW corrections is becoming more and more clear for the

precision physics program of the LHC and the future colliders. In general, handling

EW corrections is known to be a much harder task than dealing with QCD ones,

however, as long as we consider only IR divergences, EW processes are much simpler.

That is because they are either associated to the propagation of a virtual photon or

the emission of a real one, while the electroweak corrections, where massive boson

are involved, do not suffer from the presence of IR divergences due to the mass of

the boson acting as a natural regulator. As a consequence, the structure of the

IR counterterms required for EW corrections is in one-to-one correspondence with

the abelian subset of the QCD ones. As a result, for the purpose of this work we

can focus on the description of NLO QED corrections without having to add to the

diagrams any massive electroweak boson other than the one already present at the

lowest order.

In this chapter we want to describe the abelianization process needed to translate

QCD corrections to QED ones. We will give a general prescription for the abelian-

ization procedure as well as the results for the description of the MiNLO′ method

applied to the production of a massive lepton pair in neutral Drell-Yan production.

5.1 Abelianization prescription

We want to describe the abelianization procedure for the production process of a

colour singlet plus one jet starting at Born level. Clearly the first step consists of

removing any diagram where non-abelian vertices are involved, that is three-gluon
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5.1. Abelianization prescription

and four-gluon vertices. Note that in this context, photons are considered as partons,

i.e. constituents of the protons, to which we must associate the corresponding parton

density function, namely the photon PDF. This requires the use of a PDF set com-

patible with the determination of the photon content of the proton, as described in

Ref. [133, 134]. Then the abelianized processes can be obtained by simply replacing

the gluon with the photon. At NLO the strategy is the same, but keeping in mind

that unlike gluons, photons can be also radiated off charged leptons. In this work we

only consider QED corrections, so we will ignore the diagrams where the photon is

emitted from the massive electroweak bosons.

We introduce the following prescription to translate the equations discussed in

the previous chapters into QED formalism. For each particle we substitute the colour

operator Ti with

Ti → Qiσi (5.1.1)

where Qi is the charge of the i-th particle. We introduced the sign factor σi for the

charge flow related to each fermion: specifically we have σi = +1 or σi = −1 when

the particle is incoming or outgoing respectively. With this prescription the equation

for charge conservation becomes∑
i=initial

Qi =
∑

j=final

Qj −→
∑

k

Qkσk = 0 (5.1.2)

where the last sum k runs over both initial and final-state fermions. Note that in

this way the equation for charge conservation becomes very similar to the one used

for colour conservation in Appendix A, namely∑
i

Ti = 0. (5.1.3)

To complete the abelianization process we can then use the prescription we just

presented to determine the QED equivalent of the resummation coefficients, A
(i)
c

and B
(i)
c , as well as the Altarelli-Parisi splitting functions P

(i)
ab (z) and the collinear

coefficient functions C
(i)
ab (z). From the definition of the Casimir operators in QCD

we easily obtain their corresponding factors in QED as

CF → Q2
f , CA → 0. (5.1.4)

Additionally we have the replacement

nf → N (2) (5.1.5)

where we defined

N (i) ≡ NC

nq∑
q=1

ei
q +

nl∑
l=1

ei
l (5.1.6)
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5.1. Abelianization prescription

with nq and nl denoting the number of active quarks and leptons respectively. This

is a subtlety related to the difference between the presence of quark loops in pure

QCD results and charged-fermion loops in QED. In the former case, the coupling of

the gluon is the same for all quark flavours, resulting in a factor nf being produced.

Once we replace gluons with photons, we have to allow for the presence of virtual

charged leptons inside the loop and the coupling of each fermion is different as it is

proportional to its electromagnetic charge.

With the rules written above we get the resummation coefficients in QED: from

eqs. (2.3.6) and (2.3.7) we have the process-independent terms

A
(1),QED
f = Q2

f ,

A
(2),QED
f = −5

9
Q2

fN (2) ,

B
(1),QED
f = −3

2
Q2

f ,

(5.1.7)

while the process-dependent coefficient in eq. (2.3.9) becomes

B
(2),QED
f,DY =

[(
π2

2
− 3

8
− 6ζ3

)
(Q2

f )
2 +

(
1

12
+

π2

9

)
Q2

fN (2)

]
+ πβQED

0 ζ2Q
2
f + 2ζ3(A

(1),QED
f )2 + πβQED

0 H
(1),QED
(DY) ,

(5.1.8)

where the hard-virtual coefficient is

H
(1),QED
(DY) = Q2

f

[
7

6
π2 − 8

]
(5.1.9)

and

βQED
0 = −N (2)

3π
(5.1.10)

is the lowest-order QED beta function. Then we report the leading-order regularized

splitting functions [135, 136]

P
(0),QED
ff (z) = Q2

f

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
,

P
(0),QED
γf (z) = Q2

f

1

z

[
1 + (1 − z)2

]
,

P
(0),QED
fγ (z) = Q2

f

[
z2 + (1 − z)2

]
,

(5.1.11)

and the coefficient functions at the first non-trivial order

C
(1),QED
ff (z) = Q2

f

[
(1 − z) − π2

12
δ(1 − z)

]
,

C
(1),QED
γf (z) = Q2

f z,

C
(1),QED
fγ (z) = Q2

f z(1 − z).

(5.1.12)

Note that the equations reported in this section match the results of Ref. [95].
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5.2. Heavy-lepton pair production

5.2 Heavy-lepton pair production

Now we can apply these abelianization rules to the quantities introduced in the

previous chapter. In doing so, the colour structure is completely trivialized as the

QED equivalent of the colour matrices are just complex numbers. Starting with the

colour operator ∆ in eq. (4.1.13) we can write it as

∆QED( b⃗ ) = D(ϕb)|V (b)|2, (5.2.1)

where

|V (b)|2 = exp

{
−
∫ M2

b20
b2

dq2

q2
2ReΓQED

t (y34, α(q2))

}
. (5.2.2)

Note that the path ordering with respect to q2 in the definition of the exponentiation

of the soft anomalous dimension operator in eq. (4.1.14) is no longer required. By

inserting ∆QED in eq. (4.1.16) we get

(H∆)ll
cc̄ = |V (b)|2D(ϕb)H ll

cc̄. (5.2.3)

In this expression, the term D(ϕb) can be safely dropped once again, as the abelian-

ization does not spoil the fact that, as soon as the average over the angle ϕb is taken,

it gives a trivial contribution. In a similar way to what we already discussed for the

QCD case, the exponential term in |V (b)|2 can be absorbed in the Sudakov expo-

nent. Indeed, from eq. (5.2.2) it is explicitly manifest that the contribution coming

from the QED soft anomalous dimension has the same functional form of the B-type

coefficients in the Sudakov form factor at all orders. We have the replacement

BQED,(i)
c → B̂QED,(i)

c = BQED,(i)
c + 2ReΓ

QED,(i)
t,c . (5.2.4)

Note that this is the exact same result that one would get by abelianizing directly

the expression for B̂
(2)
cc̄ in eq. (4.2.12). That is because in QED the two contribu-

tions coming from the interplay of the one-loop soft anomalous dimension with the

interference between the LO and NLO matrix elements, namely the second and third

lines in eq. (4.2.12), cancel each other entirely.

Finally, the last term can be written as

H ll
cc̄ =

⟨M̃cc̄→ll | M̃cc̄→ll⟩
|M(0)

cc̄→ll|2
=

∞∑
i=0

(αs

2π

)i

H ll (i)
cc̄ . (5.2.5)

and from eqs. (4.1.17), (4.1.20) and (4.1.21) we have

H ll
cc̄ = 1 +

α

2π

(
2Re ⟨M(0)

cc̄→ll | M(1)
cc̄→ll⟩

|M(0)
cc̄→ll|2

− 2I
(1)
cc̄→ll(ϵ)

)
+ O(α2) . (5.2.6)
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The first-order subtraction operator I
(1)
cc̄→ll not only removes the double and single

poles of both initial-state and final-state radiation origin, but also contains a finite

part, F
QED,(1)
t , obtained via the abelianization of eq. (4.1.28). For a heavy-lepton

pair in the final state Q3 = −Q4, so if we apply the abelianization rules we have

T3 → σ3Q3, T4 → σ4Q4 = −σ3Q3 (5.2.7)

thus

(T2
3 +T2

4) → 2Q2
l ,

(T3 +T4)
2 → 0,

(T3 · T4) → Q2
l .

(5.2.8)

where Q2
l is the squared electromagnetic charge of the final-state lepton. The IR

finite part of the abelianized subtraction operator then reads

F
QED,(1)
t = 2Q2

l log

(
m2

T

m2
l

)
− Q2

l

1

v
L34, (5.2.9)

with ml being the mass of the final-state heavy leptons. We can then write the

order α contribution to H ll
cc̄ as the sum of the one-loop infrared subtracted hard-

virtual coefficient for heavy-lepton pair production, H
ll (1)

cc̄ , and the finite part of the

first-order subtraction operator, F
QED,(1)
t .

Now we can write the abelianized counterpart of eq. (4.1.8) as

W ll
h1h2

=
∑
a1,a2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fa1/h1

(
x1

z1
,
b20
b2

)
fa2/h2

(
x2

z2
,
b20
b2

)
×
∑

c

e−Ŝcc̄(
b0
b
) σ

(0)
cc̄,ll

[
H ll

cc̄ Cca1(z1, α) Cc̄a2(z2, α)
]

, (5.2.10)

where the hard-virtual factor is given by

H ll
cc̄ = 1 +

α

2π

(
H

ll (1)
cc̄ + F

QED,(1)
t

)
+ O(α2) (5.2.11)

and the effective Sudakov radiator Ŝcc̄ is obtained from the usual colour-singlet case

by replacing at all orders the coefficient BQED
c (α) → B̂QED

c (α), with

BQED
c (α) =

∞∑
n=1

( α

2π

)n

BQED,(n)
c → B̂QED

c (α) =
∞∑

n=1

( α

2π

)n(
BQED(n)

c + 2ReΓ
QED,(n)
t,c

)
.

(5.2.12)

The computation of the first and second-order anomalous dimensions and their rela-

tive abelianizations can be found in Appendices A and B. We summarize the results
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here for completeness

Γ
QED,(1)
t,q = −1

2

[
1 − 1

2v
log

1 + v

1 − v
+

iπ

v
− Qq log

(p1 · p3)(p2 · p4)

(p1 · p4)(p2 · p3)

]
, (5.2.13)

Γ
QED,(2)
t,q = − 5

36
N (2)

[
Qq log

(p1 · p3)(p2 · p4)

(p1 · p4)(p2 · p3)
− Q2

q +
1

2v
log

(
1 + v

1 − v

)
− 1

4

iπ

v

]
− π β0 F

QED,(1)
t ,

(5.2.14)

where Qq is the charge of the initial-state parton with momentum p1 and β0 is the

first-order coefficient of the QED beta function. Note that depending on the choice of

the resummation scheme, as discussed at the end of Chapter 4, the B
(2)
c coefficient in

the Sudakov form factor might contain the first-order coefficient of the perturbative

expansion of the hard-virtual function. If this is the case, such as in eq. (5.1.8), one

must include the finite part of the subtraction operator, that is F
QED,(1)
t , as well.

With the prescription discussed in the previous sections we managed to com-

pletely define the abelianization procedure needed to describe the constituents of

the MiNLO′ formula in QED. Despite the trivialization of the colour structures in-

troduced with the QED equivalent of the heavy-quark pair production terms, the

similarities between the two descriptions, the non-abelian and the abelian ones, are

evident.

Indeed the modifications of the resummation coefficients in the Sudakov form

factor introduced via the exponentialization of the soft anomalous dimension matrix

are almost equivalent in the two cases. More specifically, as one might expect, the

one-loop soft anomalous dimension contributes at lowest order to the first term of

the perturbative expansion of the Bc coefficient, then the two-loop soft anomalous

dimension introduces at the lowest order a modification to the second term of the

expansion and so on. The main differences between the two descriptions are embodied

in the interference terms that express the contributions coming from the one-loop

soft anomalous dimension to the two-loop coefficient B
(2)
c and in the fact that in

QCD a diagonalization in colour space is needed to extract the eigenvalues of Γ
(1)
t .

Where possible, the results presented in this section have been compared to the one

discussed in Refs. [116, 137, 138].

5.3 Computational aspects

It is well known that QED and QCD are very different theories. Indeed, despite using

the same underlying framework, namely the one provided by quantum field theory,

the interactions that they describe arise from different symmetry groups, U(1) and

SU(3) respectively. This is reflected in the non-abelian nature of the QCD operator,

resulting in the rich colour structure that needs to be addressed when computing
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the amplitudes. Moreover, since the vector of the strong interaction carries a colour

charge itself, it is affected by self-interactions. As a consequence, amplitudes in QCD

can contain pure bosonic vertices, such as the three-gluon and four-gluon vertices.

This leads to the presence of bosonic loops in the virtual diagrams and it affects the

flow of the renormalization group. In this section we want to focus on the numerical

differences between the two theories and on the way in which such effects will affect

our results. We stress that these differences should not be underestimated, as even

small changes in the Sudakov exponent can strongly affect the suppression of the cross

section in the small transverse-momentum limit spoiling, in principle, the method

described in Section 2.3.

The first and most obvious difference is related to the coupling constant and its

running. We can take as a starting point the value of both αs and α at the Z boson

resonance, namely

αs(MZ) ≈ 0.118, α(MZ) ≈ 1

128.95
≈ 0.00775 (5.3.1)

where, for the sake of simplicity, we can ignore the differences between the different

schemes in the definition of the QED coupling constant discussed in Chapter 3. These

values already suggest a clear picture, with the QCD coupling constant being more

than ten times larger than the electroweak one, which is the reason why typically

the NLO EW corrections are taken into consideration together with the NNLO QCD

ones. The main difference, however, is not just in the value at the scale of the Z

boson mass, but also in the beta function and consequently in the running of the two

coupling constants. Indeed, due to the presence of the gluons running in the loops,

the QCD beta function has opposite sign with respect to the QED one. This is true

also at the lowest order, as it can be seen from the relative sign between eq. (2.3.8)

and eq. (5.1.10). As a consequence, the value of αs(µ
2
R) decreases as the scale µR at

which it is evaluated increases (asymptotic freedom), while at low energies it becomes

very large, making perturbative computation completely unreliable. On the other

hand, the value of α(µ2
R) increases logarithmically with the scale µR but it remains

relatively small over a wide range of energies. This behaviour, despite being very

useful for the perturbative approach, turned out to be an issue from the point of

view of implementing the various terms arising from resummation. That is because

the natural cutoff given by QCD ensures that the Sudakov form factor goes very fast

to zero when it is evaluated at smaller and smaller transverse momenta, due to the

rapid increase of the value of the coupling constant. This is definitely not the case

in QED, where the value of α at low energies can be basically considered constant,

meaning that the suppression provided by the Sudakov form factor is not enhanced

in the pT → 0 limit, with pT being the transverse momentum of the Z boson. Despite

not being an issue per se, since everything is still well defined in that region, this

peculiarity of QED represents a problem in the numerical sense.
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We recall that our goal is to upgrade the Z + γ QED computation with the

MiNLO′ procedure. In order to understand why the small transverse-momentum

region might be problematic in the context of pure QED, we shall briefly summarize

what happens in our computation when we approach such region:

• The differential cross section dσ/dpT for the production of a Z boson plus a jet

(or a photon in QED) is divergent in the pT → 0 region.

• The Sudakov form factor ∆(Q, p2
T) approaches zero in such region and it guar-

antees that the divergence of the cross section is suppressed. Because of this

behaviour, eq. (2.3.1) yields a finite result for vanishing transverse momentum

and more specifically the MiNLO′ differential cross section has a peak in the

small transverse-momentum region. It is important to note that this remains

true also in QED, despite the suppression of the differential cross section hap-

pens much more slowly.

• Since the MiNLO′ B̄ function is finite in the pT → 0 limit, the integration can in

principle be performed over all the possible values of the transverse momentum,

from 0 to the kinematical limit. However, as will be explained shortly, this is

not the case and a cutoff, say pmin
T , must be introduced in the region close to 0.

The motivations behind the need for a transverse momentum cutoff are both of

theoretical and practical nature. First of all, as it was already mentioned, in QCD

we have a natural cutoff represented by the hadronization scale ΛQCD ≈ 300 MeV.

This is a pure theoretical limit and it marks the energy scale at which the perturbative

approach is no longer valid. Obviously this restriction is no longer present if we are

only considering QED, as the intrinsic limit of the theory is located at the Landau

pole, namely at values of the energy many orders of magnitude higher that what is

accessible at present colliders. Then we are left with the practical reasons for the

introduction of a transverse momentum cutoff:

• As far as the amplitudes are concerned, the computation of the virtual cor-

rections is typically one of the delicate parts and pushing the calculation deep

into difficult regions can results in numerical instabilities.

• As it was discussed in Section 2.1, the contribution coming from the real emis-

sion amplitudes is made finite via the subtraction procedure. However both

the real amplitude and the subtraction counterterms are computed separately

and the cancellations happen point-by-point in the phase space. As a result,

although the sum of the two contributions must yield finite results for each

kinematical configuration, going too close to the pT → 0 limit causes numerical

instabilities in the cancellation between real matrix elements and counterterms.
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In general, the minimum value of the cutoff depends on the process under consider-

ation and the way the computation is carried out. For our computation we found

out that the value of the cutoff should not be taken smaller than pmin
T ≈ 10−3 GeV,

since below this threshold the integration grids, produced by the adaptive integration

algorithm employed by POWHEG-RES framework that we are using, start showing

signs of numerical instabilities. It is important to note that the value chosen for the

cutoff has to be smaller than the value of the transverse momentum at which the

MiNLO′ differential cross section has its maximum. In other words, pmin
T should be

in the region where the Sudakov form factor is small enough to strongly suppress the

divergences of the fixed-order computation. In this way we ensure that the missing

portion of the integral, i.e. the one between 0 and pmin
T , is small and can therefore

be safely neglected.

The numerical issue at the core of this computation lies in the fact that the

transverse-momentum distribution for the abelianized MiNLO′ cross section has a

maximum at a value of pT which is completely inaccessible with the numerical inte-

gration, many orders of magnitude smaller than the 10−3 GeV threshold that was

mentioned above. If we look at QCD, in Ref. [16] for example, the peak of the trans-

verse momentum differential cross-section for neutral Drell-Yan plus one jet is in the

GeV region. In order to roughly estimate the position of the peak for the QED case

we can use the following approximations:

• Due to the slow logarithmic scaling, the value of α can be taken fixed at the

Thompson limit, namely

α(q2) = α(0) ≈ 1/137. (5.3.2)

• We can restrict the computation at the lowest order, both for what concerns

the amplitude and the resummation coefficients in the Sudakov form factor.

Of course doing so will not yield an accurate result, however it will be suffi-

cient to understand the numerical problem underlying the computation and to

appreciate the difference between the standard QCD case and the abelianized

one.

• Moreover we can just take into account a single partonic subprocess for the pro-

duction of a Z boson plus the emission of a photon from initial state radiation,

i.e. u + ū → Z + γ with Z → νν̄. Variations in the initial state partons, such

as the process d + d̄ → Z + γ, and the inclusion of massive final-state leptons,

for example Z → µ+µ−, will be briefly addressed later on.

In the small transverse-momentum limit, using the collinear approximation, we can

schematically write the amplitude as

BZγ ∼ BZ dPγ(z, pT), (5.3.3)
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where dPγ is the probability for the emission of a collinear photon, namely

dPγ(z, pT) =
α

2π

∑
q

dpT

pT

Pq→qγ(z)dz (5.3.4)

and Pq→qγ(z) is the splitting kernel. The Sudakov form factor can then be written

in terms of the splitting function as

∆2(Q, pT) = e−S(Q,pT) = exp

{
−
∑

q

α

2π

∫ Q

pT

dq′
T

q′
T

∫ zmax

zmin

Pq→qγ(z
′)dz′

}
, (5.3.5)

so that at the lowest order the MiNLO′ differential cross section in the transverse

momentum and in the Born phase space ΦB becomes

dσMiNLO
LO

dpTdΦB

∼ dBZγ

dΦB

e−S(Q,pT) ∼ dBZ

dΦB

d

dpT

e−S(Q,pT). (5.3.6)

Note that this discussion is only schematic, a more rigorous derivation comprehensive

also of the full NLO case can be found in Chapter 6 and references therein. For our

purpose we want to focus on the fact that pT dependence of the transverse-momentum

distribution at leading order is completely driven by the MiNLO-improved derivative

of the Sudakov form factor. This means that the value at which the differential cross

section peaks can be found by computing the second derivative of the Sudakov form

factor with respect to the transverse momentum and taking its root. In other words

we want to find the value ppeak
T such that

d2

dp2
T

e−S(Q,pT)

∣∣∣∣
pT=ppeakT

= 0. (5.3.7)

The numerical evaluation of the above equation for the pure QED Sudakov form

factor can be problematic even with the use of dedicated tools such as Wolfram

Mathematica, so we opted for a graphical solution. With the approximations that

we discussed above we can rewrite the Sudakov form factor as

e−S(Q,pT) = exp

{
− α

2π

(
A(1) log2

Q2

p2
T

+ 2B(1) log
Q2

p2
T

)}
. (5.3.8)

We consider two different cases:

• “Standard QED” which corresponds to the following value for the coupling

constant

α = α(0) ≈ 1/137 (5.3.9)

and the Sudakov coefficients

A(1),QED
u = Q2

u ≈ 0.444, B(1),QED
u = −3

2
Q2

u ≈ −0.666. (5.3.10)
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• “Inflated QED”, where we use the standard QED coefficients of the form factor

but the QED coupling constant is inflated to a non-physical value, that is

α = α̃(0) = 0.04, (5.3.11)

which is roughly 5 times larger than the standard value. This value represents

an approximation of the maximum value that α can assume at the Thompson

limit if we require that the QED Landau pole is not within the reach of the

LHC, as explained in Appendix C.

By taking the derivative with respect to the transverse momentum of the Sudakov

form factor as written in eq. (5.3.8), we get

D[e−S](pT) = e−S(MZ ,pT)
α

2π

1

pT

(
A(1) log

M2
Z

p2
T

+ B(1)

)
(5.3.12)

where we set Q = MZ as the hard scale of the process. In Fig. 5.1 we show the plot

of D[e−S](pT) for both cases on a logarithmic scale in pT. The huge difference in the

position of the peak between the two curves is only caused by the choice of the value

of α which must be compensated by the logarithm. Note that these curves should

not be considered as proper approximations of their relative differential cross sections

and they are only used to estimate the position of the maximum of the distribution.

Indeed the difference in the height between the two curves, enhanced by the 1/pT in

eq. (5.3.12), is not of physical interest.

D[e-SQED](pT )

10-110 10-100 10-90

2×1050

4×1050

6×1050

8×1050

pT[GeV]

D[e-SQED-inflated](pT )

10-20 10-15 10-10

2×107

4×107

6×107

8×107

pT[GeV]

Figure 5.1: Derivative of the Sudakov form factor with respect to pT for pure QED (left) and

inflated QED (right).

Now if we were to consider the dd̄-initiated process instead, the effect would just

amount to a factor of 4 in both the first order resummation coefficients, namely

A
(1),QED
d =

1

4
A(1),QED

u , B
(1),QED
d =

1

4
B(1),QED

u . (5.3.13)

In practical terms, this would only shift the plot further towards the problematic

region similarly to what happens when we go from the inflated value of α to the
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physical one. If instead we consider a different final state, where the Z boson decays

into massive charged leptons, things get slightly more complicated. The coefficient

A(1) is left completely untouched, while B(1) is modified according to eq. (5.2.12)

in order to take into account the large-angle soft radiation from final-state heavy

particles. It is important to note that the term coming from the first-order soft

anomalous dimension, 2ReΓ
QED,(1)
t,u , is kinematic dependent. As a result, B(1) is

not a constant anymore, which means that the approximations we used to write

eq. (5.3.8) are no longer valid. However we can simplify the expression in eq. (5.2.13)

to try to estimate its contribution for the µ+µ− final state. First we note that the

last term in the expression can be neglected as it is much smaller than the rest. Then

we can write the parameter v as

v =

√
1 −

4m4
µ

(M2 − 2m2
µ)

2
≈ 1 −

2m4
µ

M4
Z

= 1 − r (5.3.14)

where r ≈ 10−12 and we get 2ReΓ
QED,(1)
t,u ≈ 13.8.
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Figure 5.2: Comparison between D[e−SQED
inflated ](pT) with two different values for B(1)

In Fig. 5.2 we present the plot for the derivative of the Sudakov form factor with

α = α̃(0) and two different values of the B(1) coefficient that mimic the effect of

the µ+µ− final state. Note that despite using the unphysical value for the coupling

constant, the position of the peak is still deep in the region of phase space that

cannot be probed by the integration.

Finally, as a reference, in Fig. 5.3, we compare the first two QED curves to the

QCD case which corresponds to the following values for the Sudakov coefficients

A(1),QCD
q = CF ≈ 1.333, B(1),QCD

q = −3

2
CF = −2. (5.3.15)

Despite only being a rough approximation, it is clear that the QCD Sudakov is

perfectly compatible with the numerical restriction given by the introduction of a

cutoff in transverse momentum, while the same is not true for QED even in the
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unphysical inflated case. We shall keep in mind that the need for some sort of cutoff

in the integration cannot be overlooked, thus in order to be able to implement the

MiNLO′ method correctly in QED without accuracy loss we need to find a way to

include, or at least estimate, the contribution given by the terms below the cutoff.

D[e-SQCD](pT )

D[e-SQED-inflated](pT )

D[e-SQED](pT )

0 2 4 6 8 10

0.05

0.10

0.15

0.20

pT[GeV]

Figure 5.3: Comparison between the derivative of the Sudakov form factor with respect to pT

for three different cases. The orange and green curves are the same that appear in Fig. 5.1 while

the blue one corresponds to an approximation of the QCD case. The latter was obtained by fixing

αs = 0.4 which is roughly the value of the strong coupling constant in the GeV region. This of

course is not a good approximation due to the low energy behaviour of αs discussed previously in

this section, however it is helpful to show the enormous difference between QCD and QED.
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Chapter 6

The cross section below the

transverse momentum cut

We can divide the full MiNLO′ cross section into two contributions, above and below

some value of the transverse momentum pδ
T, so that we can write

σTOT =

∫
dσ

dpT

dpT = σ<(p
δ
T) + σ>(p

δ
T), (6.0.1)

where we have defined, depending on the value of pδ
T,

σ>(p
δ
T) ≡

∫ pmax
T

pδ
T

dσ

dpT

dpT, σ<(p
δ
T) ≡

∫ pδ
T

0

dσ

dpT

dpT, (6.0.2)

and where pmax
T is the kinematic boundary for pT, i.e. pmax

T ≃
√

s/2. In the expression

for σ>, the role of pδ
T is precisely the same played by the transverse momentum cutoff

mentioned in the previous section. This opens up three different possible scenarios:

1. The missing contribution coming from the terms below the cutoff, σ<, is much

larger than the part above, σ>, for any reasonable value of pδ
T. This is the

most unfortunate scenario and it would mean that it is not possible to ob-

tain a detailed description of the QED radiation pattern below pδ
T and, as a

consequence, to exploit the MiNLO′ method to its fullness.

2. The missing piece, σ<, is much smaller than the contribution above the cutoff,

σ>. In other words, the increase of the differential cross section dσ/dpT in the

region at pT < pδ
T is somewhat negligible due to the width of the corresponding

integration interval, namely the value of pδ
T. Note that it always exists, in

principle, some value of pδ
T for which this is true: it is just a question of whether

such value is accessible via the numerical integration. If so, this would be the

ideal case, as it would mean that the method can be extended straightforwardly

in QED.
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3. The two contributions, σ> and σ<, are comparable in size for all sensible values

of pδ
T. In this case it is important to estimate the contribution coming from σ<

with the highest accuracy achievable, as the full result must be obtained by the

sum of both terms. Note that the full computation is by definition independent

of the choice of pδ
T, which means that, if the eventual approximations used to

compute σ< are reasonable, the dependence on the value of pδ
T between the two

contributions should cancel out, or at least be fairly suppressed.

A priori we do not know which one of these three scenarios will be realized in our

computation, so we need a reliable way to estimate σ<.

6.1 Approximation of the MiNLO′ master formula

In eq. (5.3.6) it was schematically shown that it is possible to approximate the

singular part of the differential cross section at LO, in the small transverse momentum

region, in such a way that the dependence on pT is encoded in a total derivative. As a

consequence, the integral over some transverse-momentum interval can be obtained

by integrating out the total derivative, which amounts to evaluating the integrand

at the boundaries. In this way it is possible to estimate the contribution of the σ<

part without the need of a numerical integration which, as we saw in the previous

chapter, is unfeasable. In order to avoid accuracy loss in the process, we need to be

able to write the full NLO differential cross section as a total derivative in pT, plus

some terms that can be neglected as the transverse momentum approaches zero. To

do so we exploit some of the ideas first introduced in Ref. [16] and then matured

in the context of MiNNLOPS [24, 25], which is an NNLO accurate extension of the

MiNLO′ method.

We want to write the differential cross section in the following form

dσ

dΦBdpT

=
d

dpT

[
e−S(Q,pT)L(pT)

]
+ Rf (pT), (6.1.1)

where Rf is the sum of all the terms that are non-singular in the vanishing transverse

momentum limit. The luminosity factor L contains the parton luminosities, the hard-

virtual coefficient for the underlying process, namely the full inclusive production of

a Z boson, and the collinear coefficient functions. It is defined as

L(pT) =
∑

c

d|M(0)
cc̄→Z |2

dΦB

∑
a1a2

{
Hll

cc̄

(
Cca1 ⊗ fa1/h1

)(
Cc̄a2 ⊗ fa2/h2

)}
, (6.1.2)

where M(0)
cc̄→Z is the LO matrix element for the production of a Z boson, the hard-

virtual coefficient Hll
cc̄ is the one defined in eq. (5.2.6), that, if final-state massive

charged leptons are present, must contain also the finite part of the subtraction

operator, as in eq. (5.2.11).
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Up to NLO we can write the non-singular contribution Rf as

Rf (pT) =
dσ

(NLO)
Zγ

dΦBdpT

− α(pT)

2π
Σ(1)(pT) −

(
α(pT)

2π

)2

Σ(2)(pT) + O
(
α3(pT)

)
, (6.1.3)

where Σ(i) is a shorthand notation for the perturbative coefficient of the i-th term of

the singular component of the expnsion in α/2π of the cross section, i.e

Σ(1)(pT) =

[
dσ

(sing.)
Zγ

dΦBdpT

](1)
, Σ(2)(pT) =

[
dσ

(sing.)
Zγ

dΦBdpT

](2)
. (6.1.4)

Additionally, we can write the expansion of the full NLO differential cross section

that appears as the first term of eq. (6.1.3) as

dσ
(NLO)
Zγ

dΦBdpT

=
α(pT)

2π

[
dσZγ

dΦBdpT

](1)
+

(
α(pT)

2π

)2 [
dσZγ

dΦBdpT

](2)
. (6.1.5)

We can perform the derivative in the first term on the right hand side of eq. (6.1.1)

and factorize the Sudakov form factor so that we get

dσ

dΦBdpT

= e−S(Q,pT)

[
D(pT) +

Rf (pT)

e−S(Q,pT)

]
, (6.1.6)

where we defined

D(pT) ≡ dL(pT)

dpT

− L(pT)
dS(pT)

dpT

. (6.1.7)

We want to perturbatively expand eq. (6.1.6) up to order α2(pT) so that the NLO

accuracy is not spoiled. In order to do so, we introduce the following perturbative

expansions

L(pT) = L(0)(pT) +
α(pT)

2π
L(1)(pT) + O

(
α2(pT)

)
, (6.1.8)

dL(pT)

dpT

=
α(pT)

2π

[
dL(pT)

dpT

](1)
+

(
α(pT)

2π

)2 [
dL(pT)

dpT

](2)
+ O

(
α3(pT)

)
, (6.1.9)

dS(pT)

dpT

=
α(pT)

2π

[
dS(pT)

dpT

](1)
+

(
α(pT)

2π

)2 [
dS(pT)

dpT

](2)
+ O

(
α3(pT)

)
. (6.1.10)

Thus we have

dσ

dΦBdpT

= e−S(Q,pT)

{
α(pT)

2π

([
dL
dpT

](1)
− L(0)

[
dS

dpT

](1))

+

(
α(pT)

2π

)2
([

dL
dpT

](2)
− L(0)

[
dS

dpT

](2)
− L(1)

[
dS

dpT

](1))

+ Rf (pT)

(
1 +

α(pT)

2π
S(1)(Q, pT)

)
+ O

(
α3(pT)

)}
.

(6.1.11)
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Plugging in eqs. (6.1.3) and (6.1.5) and collecting the terms with the same power of

the coupling constant, we have

dσ

dΦBdpT

= e−S(Q,pT)

{
α(pT)

2π

([
dL
dpT

](1)
− L(0)

[
dS

dpT

](1)
+

[
dσZγ

dΦBdpT

](1)
− Σ(1)(pT)

)

+

(
α(pT)

2π

)2
([

dL
dpT

](2)
− L(0)

[
dS

dpT

](2)
− L(1)

[
dS

dpT

](1)
+

[
dσZγ

dΦBdpT

](2)
− Σ(2)(pT) +

[
dσZγ

dΦBdpT

](1)
S(1)(Q, pT)

− Σ(1)(pT)S
(1)(Q, pT)

)
+ O

(
α3(pT)

)}
.

(6.1.12)

From eq. (5.2.10) we can extract, using the definition of L(pT) in eq. (6.1.2), the

expressions for the singular part of the differential cross section at LO and NLO,

namely

Σ(1)(pT) = D(1)(pT) =

[
dL(pT)

dpT

](1)
− L(0)(pT)

[
dS(pT)

dpT

](1)
(6.1.13)

Σ(2)(pT) = D(2)(pT) − D(1)(pT)S
(1)(Q, pT)

=

[
dL(pT)

dpT

](2)
− L(1)(pT)

[
dS(pT)

dpT

](1)
− L(0)(pT)

[
dS(pT)

dpT

](2)
− Σ(1)(pT)S

(1)(Q, pT).

(6.1.14)

Once we substitute the expressions for Σ(1) and Σ(2) back into eq. (6.1.12) we obtain

dσ

dΦBdpT

= e−S(Q,pT)

{
α(pT)

2π

[
dσZγ

dΦBdpT

](1)(
1 − α(pT)

2π
S(1)(Q, pT)

)

+

(
α(pT)

2π

)2 [
dσZγ

dΦBdpT

](2)
+ O

(
α3(pT)

)} (6.1.15)

which is perfectly equivalent, up to NLO, to the abelianized MiNLO′ master formula.

Now if we assume that there is some value of pδ
T that guarantees that the second

term on the right hand side of eq. (6.1.1), namely the sum of the non-singular terms,

can be safely ignored with respect to the first term, we can write

dσ<(p
δ
T)

dΦB

=

∫ pTδ

0

d

dpT

[
e−S(Q,pT)L(pT)

]
dpT. (6.1.16)
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The integration is now trivial due to the presence of the total derivative. Moreover

given the suppression provided by the Sudakov form factor,

lim
pT→0

e−S(Q,pT)L(pT) = 0, (6.1.17)

so we have that
dσ<(p

δ
T)

dΦB

=
[
e−S(Q,pT)L(pT)

]
pT=pδ

T

. (6.1.18)

This is an important result, as it allows us to reshape the challenging task represented

by the integration within a region which is not numerically accessible to a much

manageable job that consists in the evaluation of a function, as complex as it may

be, in a single point.

The first two terms of the expansion of the luminosity factor, introduced in

eq. (6.1.2), are given by

L(0)(pT) =
∑

c

d|M(0)
cc̄→Z |2

dΦB

fc/h1fc̄/h2 , (6.1.19)

L(1)(pT) =
∑

c

d|M(0)
cc̄→Z |2

dΦB

{(
H

ll (1)
cc̄ + F

(1)
t

)
fc/h1fc̄/h2

+
∑

a

[
fc/h1

(
C

(1)
c̄a ⊗ fa/h2

)
+
(

C(1)
ca ⊗ fa/h1

)
fc̄/h2

]}
(6.1.20)

Note that the sum over the indices a1 and a2 in eq. (6.1.2) was removed because the

underlying process, i.e. the inclusive production of a Z boson without any additional

radiation, is described at leading order only by qq̄-initiated processes.

It is important to study the origin of the transverse momentum dependence in the

square brackets in eq. (6.1.16) in order to understand possible residual criticalities in

this computation. More specifically, we want to expand on the transverse-momentum

dependence of the luminosity factor L(pT). The LO matrix element for the subprocess

cc̄ → Z is determined by the inclusive underlying Born phase space ΦB: therefore

it is completely independent of the Z boson transverse momentum. Similarly both

H
ll (1)

cc̄ and F
(1)
t , despite being dependent on the kinematics in general, are uniquely

determined by the phase-space configuration of the underlying Born and, as a con-

sequence, cannot be pT-dependent. The same can be said for the first-order collinear

coefficient functions which can vary at most by some universal factor, depending on

the choice of the resummation scheme. The dependence on the transverse momentum

in the luminosity factor is carried by µR and µF, both of which must be evaluated at

µR = µF = pT, according to the MiNLO′ prescription1. In particular, if we consider

the factorization-scale dependence, this means that we have to evaluate the parton

1For a detailed discussion on the topic, see the original MiNLO [15] and MiNLO′ [16] papers.
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distribution functions at pT = pδ
T, which, as we already mentioned, is likely to be

much smaller than the natural cutoff of QCD, of the order of a few hudreds MeV.

As a consequence, many of the numerical packages that are used to handle the evo-

lutions of the parton distribution functions might not be able to reach such values.

Possible solutions are, if the code allows it, to turn off completely the QCD DGLAP

evolution and perform the standard evolution only with QED towards µF = pδ
T, or to

introduce a freezing of the PDFs at the minimum possible value of the factorization

scale. This aspect of the computation will be addressed again in Chapter 7, when

we discuss the implementation of the formulae and the results.

6.2 Numerical validation

In order for the computation to work, we need to check if the assumption that was

made in the previous section is solid. More specifically, in order to be able to use

eq. (6.1.16) we need to determine, if it exists, a value of pδ
T such that:

• It is within the numerically accessible region for the computation of σ>, that

is pδ
T > 10−3 GeV. Preferably closer to the GeV region, where we know from

QCD that the standard integration can be performed without issues.

• The non singular terms can be neglected, which means that the differential

cross section dσZγ/dΦBdpT is approximated reasonably by its pT → 0 limit.

We first rewrite eqs. (4.1.7) and (4.1.8) for the QED case in the following form

dσh1h2→Zγ

dp2
T dM2 dy dΦB

=
∑
a1a2

∫
dz1
z1

∫
dz2
z2

fa1/h1

(
x1

z1
, µ2

F

)
fa2/h2

(
x2

z2
, µ2

F

)

×
∫

d2⃗b

4π
ei⃗b·p⃗T W ll

a1a2
(b, z1, z2,ΦB;α, µ2

R, µ2
F, Q2), (6.2.1)

where

W ll
a1a2

(b, z1, z2,ΦB;α, µ2
R, µ2

F, Q2) =
∑

c

σ
(0)
cc̄,ll

{
δca1 δc̄a2 δ(1 − z1) δ(1 − z2)

+
∞∑

n=1

(α

π

)n
[
Σ

ll (n)
cc̄,a1a2

(
z1, z2, Lb;

M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)
+ [HCC ]

ll (n)
cc̄,a1a2

(
z1, z2;

M2

µ2
R

,
M2

µ2
F

,
M2

Q2

)]}
.

(6.2.2)

For ease of notation, we drop the superscript ll in the following. To perform the

limit check we want to simplify the expressions as much as possible, so we will set

the values of the renormalization and factorization scales to µR = µF = M . This is
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perfectly reasonable as in this manuscript in general, and in particular for what we

discuss here, we are not interested in the effect of the scale variation logarithms that

would appear by changing the value of those two scales. In the same way we can

take Q = M , where Q is the arbitrary auxiliary scale that was introduced to define

the b-space logarithm used for the expansion in eq. (4.1.6). Furthermore we will

consider for simplicity only the uū-initiated processes and a charge-neutral massless

final state, that is Z → νν̄. Finally, we set the electromagnetic constant to a non-

physical value, i.e. α = α̃(0) = 0.04. This is done in order to enhances the impact of

the NLO corrections over the LO, allowing us to probe the limit at order O(α2).

We focus on the second line of eq. (6.2.2) which contains the logarithmically

divergent terms expressed in powers of Lb = log(Q2b2/b20) up to the 2n-th power,

that is

Σ
(n)
cc̄,a1a2

(z1, z2, Lb) =
2n∑

k=1

Σ
(n,k)
cc̄,a1a2

(z1, z2)Lk
b . (6.2.3)

More specifically, the first two orders are given by

Σ
(1)
cc̄,a1a2

(z1, z2, Lb) = Σ
(1,2)
cc̄,a1a2

(z1, z2)L2
b + Σ

(1,1)
cc̄,a1a2

(z1, z2)Lb , (6.2.4)

Σ
(2)
cc̄,a1a2

(z1, z2, Lb) = Σ
(2,4)
cc̄,a1a2

(z1, z2)L4
b + Σ

(2,3)
cc̄,a1a2

(z1, z2)L3
b

+ Σ
(2,2)
cc̄,a1a2

(z1, z2)L2
b + Σ

(2,1)
cc̄,a1a2

(z1, z2)Lb .
(6.2.5)

These coefficients are usually expressed in literature in terms of their (N1, N2)-

moments with respect to the variables z1 and z2. For this purpose, we define the

double Mellin transform f(N1,N2) of the function f(z1, z2) with respect to z1 and z2
as

f(N1,N2) =

∫ 1

0

dz1 zN1−1
1

∫ 1

0

dz2 zN2−1
2 f(z1, z2). (6.2.6)

Note that the dependence on the impact parameter b rests entirely on the powers of

Lb, while the coefficients of the expansion are left untouched by the Bessel integration.

With some simplifications in the notation, we can rewrite the singular part of the

differential cross section in eq. (6.2.1) as

dσ(sing.)

dp2
T

=
∑
a1a2

∫
[dz1z2] fa1/h1fa2/h2

∑
c

σ
(0)
cc̄

[
∞∑

n=1

(α

π

)n

Σ̃
(n)
cc̄,a1a2

(z1, z2, pT)

]
(6.2.7)

with

Σ̃
(n)
cc̄,a1a2

(z1, z2, pT) =
2n∑

k=1

Σ
(n,k)
cc̄,a1a2

(z1, z2) In(pT, Q), (6.2.8)

where the function In(pT, Q) is the Bessel transformation of the n-th power of Lb

In(pT, Q) =

∫
d2⃗b

4π
ei⃗b·p⃗TLn

b . (6.2.9)
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It can be shown that [139, 140]

∫
d2 b⃗

(2π)2
ei b⃗·p⃗T Ln

b =
n−1∑
k=0

(−1)k+1 n

(
n − 1

k

)
R

(n−k−1)
2 Lk(p⃗T, Q) + R

(n)
2 δ(2)(p⃗T)

(6.2.10)

where the coefficient R
(n)
2 is given by

R
(n)
2 =

dn

dan
e2γEa Γ(1 + a)

Γ(1 − a)

∣∣∣∣
a=0

. (6.2.11)

The logarithm Lk(p⃗T, Q) can be defined through a two dimensional plus distribution

according to the convention used in Ref. [139] and, for p2
T/Q2 > 0, it can be written

as

Lk(p⃗T, Q) =
1

πp2
T

(
log

p2
T

Q2

)k

=
1

πp2
T

(−2)k Lk (6.2.12)

where L is a shorthand notation for the pT-space logarithm

L = log
Q

pT

. (6.2.13)

In particular for n ≤ 4 and pT > 0 we have2:

I1(pT, Q) = −πL0(p⃗T, Q) = − 1

p2
T

, (6.2.14)

I2(pT, Q) = 2πL1(p⃗T, Q) = − 4

p2
T

L, (6.2.15)

I3(pT, Q) = −3πL2(p⃗T, Q) = −12

p2
T

L2 (6.2.16)

I4(pT, Q) = 4πL3(p⃗T, Q) + 16πζ3L0(p⃗T, Q) = −32

p2
T

L3 +
16

p2
T

ζ3 (6.2.17)

In order to remove the 1/p2
T factors we can take

pT

dσ

dpT

= 2p2
T

dσ

dp2
T

(6.2.18)

so that at LO we have

pT

dσ
(sing.)
LO

dpT

=
∑
a1a2

∫
[dz1dz2] fa1/h1fa2/h2

∑
c

σ
(0)
cc̄

( α

2π

)
× 4

[
−4LΣ

(1,2)
cc̄,a1a2

(z1, z2) − Σ
(1,1)
cc̄,a1a2

(z1, z2)
]

. (6.2.19)

2Analogous results can be found in Appendix B of Ref. [130].
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The double Mellin moments of the Σ
(1,n)
cc̄,a1a2

coefficients for Z → νν̄ are given by

Σ
(1,2)
cc̄,a1a2,(N1,N2)

= −1

2
A(1)

c δca1δc̄a2 , (6.2.20)

Σ
(1,1)
cc̄,a1a2,(N1,N2)

= −[δca1δc̄a2B
(1)
c + δca1γ

(1)
c̄a2,N2

+ γ
(1)
ca1,N1

δc̄a2 ], (6.2.21)

where the parton anomalous dimensions γ
(n)
ab,N are defined as the coefficients of the

expansions in α/π of the N -moments of the Altarelli-Parisi regularized splitting

functions,

γab,N(α) =

∫ 1

0

dz zN−1 Pab(α, z) =
∞∑

n=1

(α

π

)n

γ
(n)
ab,N . (6.2.22)

Thus at LO we can easily write a complete expression for the pT → 0 limit of the

differential cross section as

pT

dσLO

dpT

=
∑

c

∫
[dz1dz2] fc/h1fc̄/h2 σ

(0)
cc̄

( α

2π

)[ (
8L A(1)

c + 4B(1)
c

)
+ 2

1

fc/h1fc̄/h2

∑
a

(
fc/h1(P

(0)
c̄a ⊗ fa/h2) + (P (0)

ca ⊗ fa/h1)fc̄/h2

)]
, (6.2.23)

where, given the approximations discussed above, the sum over the index c contains

only the up quark.
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Figure 6.1: Comparison between the LO differential cross section and its analytical limit for small

values of the transverse momentum of the Z boson.
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In Fig. 6.1 we present the comparison between the full differential cross section

at LO for the uū-initiated subprocess and the result of the computation described

in eq. (6.2.23). Despite its label, it is important to note that the computation is not

fully analytical, in the sense that the term containing the convolutions between the

splitting functions P
(0)
ab and the PDFs was estimated through a numerical integration.

We want to highlight that eq. (6.2.23) is written exactly in the way in which it

is implemented in the code, where the result is automatically multiplied by the

PDFs associated to the indices cc̄ that specify the cross section σ
(0)
cc̄ . Hence why

there is the compensating factor 1/fc/h1fc̄/h2 . Moreover the LO cross section for the

inclusive process, σ
(0)
cc̄ , was obtained with the same scale choices discussed earlier

in this section. The plot shows a very good agreement between the LO differential

cross section and its limit in a wide range of transverse momentum. Furthermore,

the LO curve, in green, is very stable up to pT ∼ 10−3 GeV with an increase of the

uncertainty associated to the numerical integration for smaller values. The numerical

estimation of the convolution term is shown in pink and the band corresponds to a

variation around its central value obtained by adding and subtracting the uncertainty

given by the numerical integration. The uncertainty associated with the value of σ
(0)
cc̄

is completely negligible.

The study of the pT → 0 limit for the NLO corrections is more delicate, from a

numerical point of view. Thus it is convenient to isolate the pure NLO contributions

from the LO by defining

dσ̄NLO = − [dσNLO − dσLO] , (6.2.24)

so that we can write

pT

dσ̄
(sing.)
NLO

dpT

=
∑
a1a2

∫
[dz1dz2] fa1/h1fa2/h2

∑
c

σ
(0)
cc̄

( α

2π

)2
8
[
32L3Σ

(2,4)
cc̄,a1a2

+ 12L2Σ
(2,3)
cc̄,a1a2

+ 4LΣ
(2,2)
cc̄,a1a2

+
(
Σ

(2,1)
cc̄,a1a2

− 16 ζ3Σ
(2,4)
cc̄,a1a2

) ]
. (6.2.25)

The double Mellin moments of the Σ
(2,n)
cc̄,a1a2

coefficients are

Σ
(2,4)
cc̄,a1a2,(N1,N2)

=
1

8

(
A(1)

c

)2
δca1δc̄a2 , (6.2.26)

Σ
(2,3)
cc̄,a1a2,(N1,N2)

= −A(1)
c

[(
1

3
β̄0 − 1

2
B(1)

c

)
δca1δc̄a2 − 1

2
(δca1γ

(1)
c̄a2,N2

+ γ
(1)
ca1,N1

δc̄a2)

]
,

(6.2.27)
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Σ
(2,2)
cc̄,a1a2,(N1,N2)

= − 1

2
A(1)

c H
(1)
cc̄ δca1δc̄a2 − 1

4
A(2)

c δca1δc̄a2

− 1

2
A(1)

c

(
δca1C̃

(1)
c̄a2,N2

+ C̃
(1)
ca1,N1

δc̄a2

)
+

1

2
(B(1)

c − β̄0)
(

B(1)
c δca1δc̄a2 + δca1γ

(1)
c̄a2,N2

+ γ
(1)
ca1,N1

δc̄a2

)
+

1

2

∑
b1b2

(
B(1)

c δca1δc̄a2 + δca1γ
(1)
c̄a2,N2

+ γ
(1)
ca1,N1

δc̄a2

)
×
(

δb1a1γ
(1)
b2a2,N2

+ γ
(1)
b1a1,N1

δb2a2

)
=

1

2

[
−A(1)

c H
(1)
cc̄ − 1

2
A(2)

c + B(1)
c (B(1)

c − β̄0)

]
δca1δc̄a2

− 1

2
A(1)

c

(
δca1C̃

(1)
c̄a2,N2

+ C̃
(1)
ca1,N1

δc̄a2

)
+

1

2
(B(1)

c − β̄0)
(

δca1γ
(1)
c̄a2,N2

+ γ
(1)
ca1,N1

δc̄a2

)
+

1

2

∑
b

[
B(1)

c

(
γ
(1)
ba1,N1

+ γ
(1)
ba2,N2

)
δca1δc̄a2

+
(

δca1γ
(1)
c̄a2,N2

+ γ
(1)
ca1,N1

δc̄a2

)(
γ
(1)
ba1,N1

+ γ
(1)
ba2,N2

)]
,

(6.2.28)

Σ
(2,1)
cc̄,a1a2,(N1,N2)

= −
∑
b1b2

(
H

(1)
cc̄ δcb1δc̄b2 + δcb1C̃

(1)
c̄b2,N2

+ C̃
(1)
cb1,N1

δc̄b2

)
×
(

B(1)
c δa1b1δa2b2 + δb1a1γ

(1)
b2a2,N2

+ γ
(1)
b1a1,N1

δb2a2

)
− B(2)

c δca1δc̄a2 + β̄0

(
δca1C̃

(1)
c̄a2,N2

+ C̃
(1)
ca1,N1

δc̄a2

)
−
(

δca1γ
(2)
c̄a2,N2

+ γ
(2)
ca1,N1

δc̄a2

)
= −

(
H

(1)
cc̄ B(1)

c + B(2)
c

)
δca1δc̄a2 −

(
C̃

(1)
ca1,N1

γ
(1)
c̄a2,N2

+ γ
(1)
ca1,N1

C̃
(1)
c̄a2,N2

)
−
∑

b

(
δca1C̃

(1)
c̄b,N2

γ
(1)
ba2,N2

+ C̃
(1)
cb,N1

γ
(1)
ba1,N1

δc̄a2

)
−
(
B(1)

c − β̄0

) (
δca1C̃

(1)
c̄a2,N2

+ C̃
(1)
ca1,N1

δc̄a2

)
− H

(1)
cc̄

(
δca1γ

(1)
c̄a2,N2

+ γ
(1)
ca1,N1

δc̄a2

)
−
(

δca1γ
(2)
c̄a2,N2

+ γ
(2)
ca1,N1

δc̄a2

)
,

(6.2.29)

where both γ(i) and C̃(i) are expanded in powers of α/π and we introduced the

notation β̄0 = πβ0. We can now write the contributions to the differential cross

section for the NLO corrections in the same form used for the LO and, for ease of
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notation, we can separate them in the following way

pT

dσ̄NLO

dpT

=
4∑

n=1

pT

dσ̄NLO

dpT

∣∣∣∣
(2,n)

, (6.2.30)

where each contribution contains only terms proportional to L(n−1). The first two

terms are very similar to the LO ones

pT

dσ̄NLO

dpT

∣∣∣∣
(2,4)

=
∑

c

∫
[dz1dz2] fc/h1fc̄/h2 σ

(0)
cc̄

( α

2π

)2 [
32
(
A(1)

c

)2
L3

]
, (6.2.31)

pT

dσ̄NLO

dpT

∣∣∣∣
(2,3)

=
∑

c

∫
[dz1dz2] fc/h1fc̄/h2 σ

(0)
cc̄

( α

2π

)2 [
− 96A(1)

c

(
1

3
β̄0 − 1

2
B(1)

c

)
L2

+ 24A(1)
c L2 1

fc/h1fc̄/h2

∑
a

(
fc/h1(P

(0)
c̄a ⊗ fa/h2) + (P (0)

ca ⊗ fa/h1)fc̄/h2

)]
.

(6.2.32)

For the two subleading ones we have

pT

dσ̄NLO

dpT

∣∣∣∣
(2,2)

=
∑

c

∫
[dz1dz2] fc/h1fc̄/h2 σ

(0)
cc̄

( α

2π

)2
16L

×

{(
−A(1)

c H
(1)
cc̄ − 1

2
A(2)

c + B(1)
c

(
B(1)

c − β̄0

))
+

1

2

1

fc/h1fc̄/h2

∑
a

[
− A(1)

c

(
fc/h1(C

(1)
c̄a ⊗ fa/h2) + (C(1)

ca ⊗ fa/h1)fc̄/h2

)
+ (2B(1)

c − β̄0)
(

fc/h1(P
(0)
c̄a ⊗ fa/h2) + (P (0)

ca ⊗ fa/h1)fc̄/h2

)]
+

1

4

1

fc/h1fc̄/h2

∑
ab

[
fc/h1

(
P

(0)
c̄b ⊗ P

(0)
ba ⊗ fa/h2

)
+
(

P
(0)
cb ⊗ P

(0)
ba ⊗ fa/h1

)
fc̄/h2

+
(

P
(0)
bc ⊗ fc/h1

)(
P

(0)
c̄a ⊗ fa/h2

)
+
(

P (0)
ca ⊗ fa/h1

)(
P

(0)
bc̄ ⊗ fc̄/h2

)]}
,

(6.2.33)
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pT

dσ̄NLO

dpT

∣∣∣∣
(2,1)

=
∑

c

∫
[dz1dz2] fc/h1fc̄/h2 σ

(0)
cc̄

( α

2π

)2
× 8

{
− H

(1)
cc̄ B(1)
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c − 2ζ3

(
A(1)

c

)2
− 1

2

1

fc/h1fc̄/h2

∑
a
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H

(1)
cc̄

(
fc/h1(P

(0)
c̄a ⊗ fa/h2) + (P (0)

ca ⊗ fa/h1)fc̄/h2

)
+
(
B(1)

c − β̄0

) (
fc/h1(C

(1)
c̄a ⊗ fa/h2) + (C(1)

ca ⊗ fa/h1)fc̄/h2

)
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)
+
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ca ⊗ fa/h1

)
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]
− 1

4

1

fc/h1fc̄/h2

∑
ab

[
fc/h1

(
C

(1)
c̄b ⊗ P

(0)
ba ⊗ fa/h2

)
+
(

C
(1)
cb ⊗ P

(0)
ba ⊗ fa/h1

)
fc̄/h2

+
(

C(1)
ca ⊗ fa/h1

)(
P

(0)
c̄b ⊗ fb/h2

)
+
(

P (0)
ca ⊗ fa/h1

)(
C

(1)
c̄b ⊗ fb/h2

)]}
,

(6.2.34)

These equations have been compared with the results presented in Ref. [141]. The

result for the NLO correction, defined as in eq. (6.2.24), is shown in Fig. 6.2. We

display the differential cross section from pT = 10−2 GeV, since the differential cross

section becomes completely unreliable below such value, mainly due to the instability

of the numerical computation of the virtual corrections.

It is important to mention that, to simplify the computation, all the contributions

associated with the photon distribution function fγ/hi
, which is much smaller than

its quark counterparts, have been neglected. Moreover the value of β̄0 was assumed

to be constant, without taking into account any mass threshold of the fermions con-

tributing to the photon self energy and excluding contributions from the top quark.

Because of all of these small approximations and due to the intrinsic complexity of

the computation, with respect to its LO counterpart, the agreement between the

two curves is slightly worse than the one achieved at leading order, while still being

satisfactory within a wide region of values of pT.

The pink band is obtained as in Fig. 6.1 by taking the variation of the estimated

value of the convolution terms equal to the corresponding numerical uncertainty.

Note that, as mentioned before, the value of the factorization scale was taken equal to

the high scale M , given by the Z boson mass, thus the evaluation of the convolution

terms is not affected by the issues caused by the use of the freezing scale for the

PDFs.
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Figure 6.2: Comparison between the NLO correction to the differential cross section and its

analytical limit for small values of the transverse momentum of the Z boson.

The plot in Fig. 6.2 shows a good agreement between the fixed order computation

and its small transverse-momentum limit from pT ≃ 3 × 10−2 GeV up to pT ≃ 1 GeV.

Considering this result, both for the LO case and the NLO corrections, we can take

the value of pδ
T to be roughly between 10−1 GeV and 1 GeV for the process with

α = α̃(0). It is now important to determine whether the contributions coming from

σ>(p
δ
T) and σ<(p

δ
T) are somewhat comparable in size for these values of pδ

T and, if that

is the case, study the dependence of the total result on this unphysical parameter.
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Chapter 7

Implementation and results

In this chapter, we will discuss the implementation of the concepts presented in the

previous chapters and subsequently their phenomenological implications. As already

anticipated, most of the results discussed in this thesis are non-physical due to the

use of a value of the QED coupling constant which is inflated with respect to the

physical one. The reason behind this is that it will be possible to appreciate both

the NLO accuracy resulting from the extension to QED of the MiNLO′ method and

the dependence of the result on the arbitrary parameter pδ
T that was introduced to

overcome the numerical challenges discussed in Chapter 5. Hence why the results

presented in this work are to be understood as a proof of concept for the abelianiza-

tion of the MiNLO′ method and as a first step towards the subsequent extension to

include mixed QED and QCD corrections rather than actual physical descriptions

of the processes at the LHC. In the last part of this chapter we will also present a

physical result.

Moreover we will focus on the simpler process where the final state is obtained

from the decay of the Z boson into νν̄, in other words without final-state massive

charged particles. This greatly reduces the complexity of the computation. In addi-

tion, the main reason for this choice is the consistency of the calculation. Indeed it is

well known that, when studying the neutral Drell-Yan process with charged leptons

in the final state, one must take into account both the diagrams with a Z boson and

a photon in s channel. This is perfectly well defined for LO processes and full NLO

EW ones. However, if only NLO QED corrections are considered, the computation

becomes inconsistent: this is because the so-called photonic corrections, i.e. the loop

diagrams that can be obtained by just adding one photon line, are a gauge invariant

subset of the EW corrections but diagrams involving fermion loops are not. This

means that one cannot separate the photon self-energy from the mixed Z/γ loop

diagrams and ultimately from pure weak corrections. As a consequence, it is not

possible to perform the computation with all three of the following requests satisfied

at once:
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1. only NLO QED corrections;

2. the Z boson in the s channel;

3. final state charged leptons at LO.

Let us briefly discuss what renouncing to each of these features would entail.

1. For the first one there are two possibilities: either one considers the full EW

corrections or only the photonic ones. The former is definitely the best option,

as taking the full EW theory would mean that the computation is both com-

plete and fully consistent, however it would increase the number of diagrams

and in turn the complexity of the calculation. For this reason it would be best

to include the full EW theory only after the feasibility of the method has been

established. As for the latter, namely including only the photonic corrections,

if would mean that fermion loops are not allowed anywhere in the computation

and as a consequence the photon self-energy would receive no corrections at

higher orders. This directly translates to the trivialization of the charge renor-

malization process and would imply that the running of the coupling constant

is turned off. For this reason this is not an appealing option, as the behaviour

of the coupling constant is one of the main differences between QED and QCD.

Since one of the aims of this work is to test the abelianization of the MiNLO′

method in all its aspects, one of which is the running of the coupling constant,

we have decided not to pursue this path.

2. As for the second one, giving up on the Z boson in the s channel would mean

to effectively perform the computation in pure QED, without any term coming

from the weak sector. This would allow to have charged leptons in the final

state, keeping the full genuine QED corrections to the photon self energies.

On the other hand, removing the Z boson contribution drastically changes the

invariant mass distribution of the process which would be now only driven by

the photon propagator which, due to its singularity, would require a cut exactly

where the invariant mass is peaked. Moreover, removing the Z boson would

also imply the lack of a hard scale: both the reference scale for the invariant

mass of the process even at LO and the scale associated to the radiation would

be in principle very small. It is important to note that the invariant mass cut

needed to protect the computation from the photon singularity is not specific

of this scenario. However the role of the cut itself is slightly different depending

on the presence of a resonance, such as the Z boson peak. Indeed the issue with

the absence of a resonance lies in the loss of an hard scale that drives the cross

section away from the photon singularity. Without it, the value of the invariant

mass cut would assume the role of a hard scale. This it is unpleasant due to

the arbitrariness involved in the choice of the value for the cut, however it does
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not represent a conceptual problem per se and is left as a future improvement

of this work.

3. At last we have the simplest option, namely renouncing to final-state charged

leptons. In this way one only has to take into account the radiation from initial-

state particles, while some of the terms discussed in the previous chapters,

which are related to large-angle soft-radiation from final-state particles, become

zero. This is the most obvious choice as it has no actual drawbacks aside for the

fact that the process becomes less interesting from a phenomenological point

of view.

7.1 Implementation

We consider proton-proton collisions at the LHC with a hadronic center-of-mass

energy of
√

s = 13 TeV. The process we are interested in is p p → Z(→ νν̄) + γ.

The decay of the Z boson into a neutrino pair is understood in the following. We

include NLO QED corrections and we do not require any photon or quark in the

final state to be resolved. When upgraded according to the MiNLO′ procedure, such

computation should reproduce the NLO QED corrections to the p p → Z process. At

LO we include the processes

q q̄ → Z + γ q γ → Z + q (7.1.1)

where q = u, d, i.e. we limit ourselves to have only u and d quarks in the initial

state, both for the p p → Z NLO QED computation and the p p → Z + γ MiNLO′

one. The input parameters that we used are

MZ = 91.1876 GeV,

me = 0.51099892 × 10−3 GeV,

mτ = 1.77699 GeV,

ΓZ = 2.4952 GeV,

mµ = 0.105 GeV,

α̃(me) = 0.04,

(7.1.2)

and the 5 light quarks are taken to be massless. The evaluation of the matrix ele-

ments, both at tree level and one-loop, is performed usingRecola [142, 143] with the

Collier package [144–147]1. The computation is carried out in the complex mass

scheme. In order to only include QED corrections we use the set_pure_QED_rcl

option in Recola to turn off all the one-loop corrections that are related to the

weak sector. Moreover, since the LO and the real emission amplitudes are computed

as tree level amplitudes and thus are not affected by such option, we need to turn

off the coupling of the W boson with the fermions and remove the real emission dia-

grams in which a final state pair of quarks is produced via the decay of an additional

Z boson.
1Other tools have been developed to handle the automated computation of processes involving

NLO EW corrections, such as MadGraph [148, 149], GoSam [150, 151] and OpenLoops [152].
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We use the NNPDF31_nlo_as_0118_luxqed PDF set [153] which is provided by

LHAPDF 6 [154]. The evolution is handled using APFEL [155], an evolution pack-

age that with the EnableNLOQEDCorrections option allows performing the DGLAP

evolution of the PDFs up to NLO in QED. Since in APFEL it is not possible to

completely turn off the QCD evolution, we heavily suppress it by decreasing the

input value of αs(MZ) by several orders of magnitude to make the QED evolution

dominant. In principle we wanted to be able to evaluate the PDFs at a scale given

by µF = pδ
T, which can be as small as 10−2 GeV, however even with this suppres-

sion the evolution towards such small scales becomes unreliable so we introduced a

freezing scale µmin
F . In this way the PDFs are evaluated with the NLO QED DGLAP

evolution above µmin
F while below such scale their value is frozen and the evolution

is turned off2. The natural choice for the value of the freezing scale is the smallest

scale specific of each PDF set which, in this case, corresponds to µmin
F = 1.65 GeV.

The running of the coupling constant is implemented via the use of mass thresh-

olds, so that each fermion f contributes only for µR > mf . Moreover, due to the

electron mass being used in the definition of the Thompson limit and the light quarks

being considered massless, their contribution to the running is always taken into ac-

count, independently of the value of µR.

As mentioned before, the computation is divided in two parts, σ> and σ< re-

spectively, so we shall discuss the two implementations separately.

7.1.1 Computation of σ>

This is the standard MiNLO′ approach, described by the abelianization of eq. (2.3.1).

We work in a mixed renormalization scheme, more specifically:

• The two powers of α of the underlying process, namely the two powers associ-

ated with the Z boson in the s channel, are evaluated in the α(MZ) scheme at

the hard scale µR = MZ .

• The subsequent powers of the coupling, namely the one associated with the

radiation at LO and the one introduced with the NLO corrections, are evaluated

at µR = pT in the MS scheme, according to the MiNLO′ method.

In order to do so we first initialize Recola in the α(MZ) scheme using as input a

value of the coupling constant that is consistent with the one presented in eq. (7.1.2).

Then for the terms that are computed as tree level amplitudes, namely the LO and the

real emission contributions, it is sufficient to replace the coupling constant provided

by Recola with the one evaluated at the transverse momentum. As mentioned

before, this amounts to one power of the coupling constant for the LO amplitude and

to two powers for the real emission terms. As for the one-loop virtual contributions,

2We performed some tests relative to the evaluation of the PDFs below µmin
F with a LO QED

evolution which yielded negligible effects.
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instead, the replacement of two powers of α is not sufficient and one also needs to

take care of the finite terms coming from the renormalization. Indeed in order to

transition from the OS scheme used in Recola to MS we need to replace δZOS
e with

δZMS
e as described by eq. (3.3.12). This corresponds the introduction of a shift in

the one-loop virtual amplitude as

V MS(µ2
R) = V OS(µ2

R) − B p∆αMS(µ2
R), (7.1.3)

where p = 1 is the number of powers of the coupling constant that were replaced in

the LO amplitude. We first set the value of µ2
R = M2

Z in eq. (7.1.3) and then run

the result to µ2
R = p2

T by requiring the result to be invariant up to order αN+1 under

variations of µR where N is the number of powers of α in the LO. In practice this

amounts to the following replacement

V MS(p2
T) = V MS(M2

Z) + B

(
α(pT) β0 log

p2
T

M2
Z

)
, (7.1.4)

as illustrated explicitely in eqs. (3.10) and (3.11) of the original MiNLO′ paper [16].

As a final remark we want to discuss the value of β0 in the equation above. Typically,

in the other implementations of the MiNLO′ method, the number of flavours con-

tributing to the one-loop QCD β function is kept fixed throughout the computation,

resulting in β0 being constant. In this formulation of the MiNLO′ method, however,

the values of the lepton mass thresholds in the fermionic contributions to the pho-

ton self-energy are close to the possible values of pδ
T. For this reason we employ a

non-constant value for the one-loop β function in eq. (7.1.4), namely β0 = β0(pT),

obtained by only including only the contributions of the fermions whose masses are

smaller than pT.

7.1.2 Computation of σ<

The computation of this term is much simpler and it only requires the implemen-

tation of eq. (6.1.18). In order to do so we generate an independent phase space

corresponding to the q q̄ → Z inclusive subprocess without the extra radiation. This

process only requires the computation of the LO amplitude and the one-loop virtual

term, which is encoded in the hard-virtual factor, denoted as H
(1)
cc̄ in eq. (6.1.20),

without the need to calculate the real emission amplitude. As far as the renormal-

ization is concerned, in principle the same prescription illustrated in the previous

section would apply. In practice, however, there is no additional power of the cou-

pling constant at LO other than the two powers that are associated with the Z boson

propagator, meaning that the shift described by eq. (7.1.3) would be performed with

p = 0.
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7.2 Phenomenological results

In the previous chapter we discussed the existence of three possible scenarios con-

cerning the relative sizes of σ> and σ< with respect to the total cross section. More

specifically we alluded to the fact that the abelianization of the MiNLO′ method can

be achieved consistently only if σ> is at least somewhat comparable in size to its

counterpart below pδ
T. In particular, it would be desirable to be able to appreciate

the compensation between σ> and σ< when varying the value of pδ
T. Thus we can

start by looking at the two contributions to the total cross section for different values

of our arbitrary parameter pδ
T.

In Tab 7.1 we collect the results of the total cross section contributions obtained

in the two regions for two values of the transverse momentum separator, together

with their sum, which corresponds to the MiNLO′ total cross section for Zγ. These

results show that the two parts of the MiNLO′ computation, σ> and σ<, contribute

almost equally to the total cross section. This means that the abelianization process

is numerically well posed but it cannot achieve the desired accuracy without taking

into account the approximation of the missing terms represented by σ< as obtained

in eq. (6.1.18). Moreover, the dependence of the final result on the arbitrary scale is

roughly 5% of the total between pδ
T = 1 GeV and pδ

T = 10−1 GeV. For comparison,

the total cross section the fully inclusive process, computed at NLO in QED, with

the same input parameters and PDF set discussed in Section 7.1, is

σNLO
Z = 597.2(1)627.2

580.6 pb. (7.2.1)

In eq. (7.2.1) the central value corresponds to µR = µF = MZ , while the other two

values represent the three-point scale variation3 and were obtained by multiplying

both the renormalization scale and the factorization scale by a factor KR and KF

respectively, with (KR, KF) = {(2, 2), (1
2
, 1
2
)}. Furthermore the total cross section for

Z@LO, i.e. the LO fully inclusive result, is σLO
Z = 574.1(1) pb which means that,

with the value of the coupling constant that is being used, the NLO QED corrections

to the process p p → Z amount to approximately 5%.

We observe that the MiNLO′ result for the total cross section seems fairly com-

patible with the inclusive computation with NLO accuracy, as predicted by the

method, particularly so for values of pδ
T = 1 GeV and 10−1 GeV. Note that at

pδ
T = 10−2 GeV we approach the region where the comparison between the fixed-

order computation is not in a good agreement with its limit (see Fig. 6.2). Indeed,

although unpleasant, it is not surprising that the result for the total MiNLO′ cross

section with pδ
T = 10−2 GeV, given by σTOT = 655.1(1), is further away from the one

presented in eq. (7.2.1) with respect to the other results listed in Tab. 7.1.

3A fully consistent comparison would require the study of the scale variation also for the MiNLO′

result, both for σ> and σ<, but this is left for a future work.
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pδ
T [GeV] 1 10−1

σ> [pb] 115.2(1) 226.7(2)

σ< [pb] 484.1(1) 401.3(1)

σTOT [pb] 599.3(2) 628.1(3)

Table 7.1: Contributions to the total cross section of the MiNLO′ result for two different values

of pδ
T and their corresponding sum.
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Figure 7.1: Comparison between the Zγ-MiNLO result and the Z@NLO result for the Z boson

rapidity distribution. The blue band in the left plot is computed from the three values of pδ
T of

Zγ-MiNLO (pδ
T = 1, 10−1 and 10−2 GeV), while the right plot shows the seven-point scale variation

band of the Z@NLO result in red.
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Figure 7.2: Comparison between the Zγ-MiNLO result and the Z@NLO result for the Z boson

rapidity distribution. The bands are the same as in Fig. 7.1.

We present now the results for the differential distributions. We start from the

observables that are inclusive over the QED radiation. By virtue of the MiNLO′

method, the rapidity of the Z boson, in Fig. 7.1, and its invariant-mass distribution,

in Fig. 7.2, should reach NLO accuracy. So we can compare them with the results for

the fully inclusive process Z@NLO. The agreement is expected up to higher-order
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terms. The meaning of the blue band is intrinsically different from the meaning of

the red band: the red band is the scale-variation band and was obtained by taking

the upper and lower envelope of the results of a seven-point scale variation for the

Z@NLO process. As mentioned before we do not have, at present time, the results

for the scale variation of the abelianized MiNLO′ code. As a consequence, the blue

band does not represent the scale variation and was instead obtained by taking the

results corresponding to three values of pδ
T, namely 10−2, 10−1 and 1 GeV. As shown

by the results in Tab. 7.1, the pδ
T-band represents a variation of roughly 5% of the

central value, given by pδ
T = 10−1 GeV. Moreover it is important to note that the

lower bound of the blue band, which is the closest to the central value of the Z@NLO

process, corresponds to pδ
T = 1 GeV.
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Figure 7.3: In the first row, comparison between Zγ-MiNLO and Z@NLO for the single-lepton

transverse-momentum distribution in the region around the peak at pν
T = MZ/2. In the second

row, the same distribution for a wider pν
T range. The blue and red bands are the same as in Fig 7.1.

In Fig. 7.3 we show the transverse-momentum distribution the final-state neu-

trino produced in the decay of the Z boson. This quantity is interesting because

it is clearly divided into two well defined regions by its peak, which is located at

pν
T = MZ/2 ∼ 45 GeV. In Fig. 7.3 we can see that the Zγ-MiNLO results is compat-

ible with the inclusive result with NLO accuracy only up to the peak and the two

curves drift apart beyond such point. Indeed if we consider the inclusive process,
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Z@NLO, we have that, above the MZ/2 threshold, only the real emission diagrams

fully contribute to the result while the Born-like terms, namely the LO and the one-

loop virtual contributions, can only contribute when the Z boson is off-shell, which

is suppressed given the relative small value of the Z-boson width. The blue and red

bands in the plot are the same as before. Note that we only show the plot for the pδ
T

band in the region below the peak where the result is compatible with the inclusive

process via MiNLO′ accuracy. In fact, beyond such value the band is not meaningful

any longer due to the result being dominated by the contribution coming from σ>.

Moreover the region above the peak, in the third panel of Fig. 7.3, shows the fact

that the pT spectrum of the neutrino is harder for the MiNLO′ result with respect

to the Z@NLO one. Indeed the MiNLO′ prediction is NLO accurate for both Z and

Z + γ production, while the Z@NLO result is, effectively, a LO prediction, given

only by the tree-level contribution of Zγ@LO.
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Figure 7.4: Comparison between the Z boson transverse-momentum distribution for the Zγ-

MiNLO result and the Zγ@NLO result with µR = MZ and relative scale variation.

We want to briefly compare the Z boson transverse-momentum distribution of

the Zγ-MiNLO result with the full NLO result for the p p → Z γ process without

the use of the MiNLO method. Due to the absence of a Sudakov form factor, the

latter requires the introduction of a generation cut that was set at pcut
T = 10 GeV.

Moreover the central value for the renormalization scale for the Zγ@NLO computa-

tion was taken as µR = MZ . This comparison is to be understood as a sanity check

since, according to the MiNLO′ method, the Zγ-MiNLO result should agree with

the nominal Zγ@NLO prediction for large values of pT, i.e. pT ∼ MZ . In Fig. 7.4

we show the comparison between the two results, where the red band represents the

upper and lower envelope of the seven-point scale variation of the Zγ@NLO compu-

78



7.2. Phenomenological results

tation obtained in the same way as in Fig. 7.1 for the Z@NLO result. The difference

between the values of pδ
T is not shown, because, outside the small-pT limit, this dis-

tribution is completely dominated by the contribution of σ>, while the contribution

coming from σ< would only be limited to the first bin.
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Figure 7.5: Difference in the Zγ-MiNLO result between the use of a constant value for β0 (pink)

and β0 = β0(pT) (blue) in eq. (7.1.4). As a reference, both are compared to the Z@NLO result

(red).

Given the importance in keeping under control the dependence of the result on

the choice of the value of pδ
T, we want to show the role of one expedient that we

discussed in the implementation of the formulae for the computation of σ>. More

specifically, we are referring to the use of a non-constant value for the one-loop QED

β function in eq. (7.1.4), that is in the transition from the evaluation of the fixed-

order virtual contribution from a high scale µ2
R = M2

Z to µ2
R = p2

T according to the

prescriptions of the MiNLO′ method. In Fig. 7.5 we show the difference between

the typical implementation with a constant value of β0 (pink) and the same result

obtained using β0 = β0(pT) (blue) in eq. (7.1.4). The two curves, with their relative

pδ
T-bands, are compared to the usual result for the Z@NLO process. Despite both

results being compatible with the inclusive process (red), it is possible to appreciate

an improvement in the dependence on pδ
T of the full Zγ-MiNLO result when using

β0 = β0(pT).

Finally we want to show the results for the total cross section and the rapidity

distribution in the physical case. We consider the same process discussed above, with

Z → νν̄ and with α = α(me), i.e. its physical value at the Thompson limit. The

result for the total cross section for the process Z@NLO is

σNLO
Z = 550.70(5)552.04

550.12 pb, (7.2.2)
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Results for α = α(me)

pδ
T [GeV] 1 10−1

σ> [pb] 10.822(3) 26.540(8)

σ< [pb] 539.63(12) 524.08(12)

σTOT [pb] 550.46(12) 550.62(12)

Table 7.2: Contributions to the total cross section for different values of pδ
T (top) and result for

the 3-point scale variation for the total cross section of the process Z@NLO (bottom).

where we used the same notation and the same values for µR and µF as in eq. (7.2.1),

while the corresponding total cross section at LO is σLO
Z = 548.90(5) pb. In Tab. 7.2

we list the contributions to the total cross section given by σ> and σ< for two

values of pδ
T (pδ

T = {1, 10−1} GeV) and their relative sum. First of all we can see an

improvement in the dependence of the full result on the choice of the value of pδ
T

with respect to the α̃ case. Moreover, we can also see a better agreement between

the total cross section of the Zγ-MiNLO process and the fully inclusive one with

respect to the results discussed in Tab. 7.1. The same conclusions can be drawn also

from the plots in Fig. 7.6, where we compare the rapidity distribution for the two

processes and their relative bands, representing the pδ
T dependence in the Zγ-MiNLO

case and the envelope of the three-point scale variation in the Z@NLO case. From

the plot we can see that the two results are compatible with each other within the

percent level, which is consistent with the value of the coupling constant in use.
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Figure 7.6: Comparison between the Zγ-MiNLO result and the Z@NLO result for the rapidity

distribution of the Z boson obtained with the physical value of α = α(me). The blue band represents

a variation of the value of pδ
T as in Tab. 7.2, while the red band is the envelope of the three-point

scale variation.
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Chapter 8

Conclusions

Given the level of accuracy achieved by modern collider experiments, it is crucial

to provide theoretical prediction of very high accuracy, which, not only amounts to

taking higher-order QCD corrections into account, but also to the inclusion of EW

contributions and QCD×EW mixed effects. In this context, as a first step towards

a fully consistent simultaneous inclusion of EW and QCD higher-order effects in

(N)NLO computations matched to parton showers, we focused on QED corrections

in Drell-Yan production.

In this thesis we have presented the abelianization of the MiNLO′ method and

its implementation for the production of a Z boson decaying into a νν̄ pair. In

particular, after presenting the general formalism, valid also for final-state massive

emitters, i.e. charged leptons, we discussed the numerical challenges that the abelian-

ization process entails in the small transverse-momentum region of the QED Sudakov

form factor with respect to its QCD counterpart. Indeed, we showed an estimate

of the position of the peak of the abelianized MiNLO′ differential cross section,

which is completely inaccessible. To overcome this issue we proposed a different

solution for the computation of the contribution to the cross section in the small

transverse-momentum region of the phase space, based on the analytical properties

of the MiNLO′ master formula. As a result we introduced an arbitrary parameter,

pδ
T, acting as a separator between the two contributions, σ> and σ<, and we discussed

the dependence of the full result on the value of such parameter.

We mainly focused on the study of a non-physical case involving a value of the

QED coupling constant which was made fictitiously large in order to allow for a

deeper investigation of the effects of the abelianization. In this scenario, the depen-

dence of the results on the arbitrary scale is not as negligible as one would have

expected and it needs further study. Nonetheless we find results that are consistent

with the fact that the MiNLO′ method should reproduce the fully inclusive prediction

with NLO accuracy, particularly so when the physical value of the coupling constant

is used.
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This work represents a proof of concept for the abelianization of the MiNLO′

method and a first step towards its implementation within the POWHEG framework

for the matching with the parton shower. Alongside a practical implementation of

the massive final-state emitter case, for which the theoretical formalism has been

discussed in this work, the next development on the line is the matching of this

result with a QED parton shower via the POWHEG method. This must be done

consistently both for σ> and σ<. The former would be treated in a standard manner,

i.e. by first generating the second emission according to the POWHEG prescription

and then letting the successive QED cascade to be handled by a parton shower. For

the latter, instead, as the contribution to the σ< cross section is defined through

a tight constraint on the QED emissions, it seems natural to match it directly to

a vetoed pT-ordered QED parton shower, without using the POWHEG matching.

On a longer timescale, the aim is to include also NLO QCD effects, and, eventually

NNLO QCD and mixed QCD×EW corrections.
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Appendix A

One-loop soft anomalous

dimension

A.1 One-loop soft anomalous dimension matrix in QCD

We can start from the expression for the subtraction operator I given by eq. (9) of

Ref. [156]:

I =
(4π)ϵ

Γ(1 − ϵ)

{
q
1

2

(
β0

ϵ
− β̄RS

0

)
+

4∑
j,k=1
k ̸=j

Tj · Tk

(
µ2

|sjk|

)ϵ [
Vjk(sjk, mj, mk) +

1

vjk

(
1

ϵ
iπ − π2

2

)
Θ(sjk)

]

−
4∑

j=1

ΓRS
j (µ, mj)

} (A.1.1)

where we have defined sjk = 2pj · pk and

vjk =

√
1 −

m2
jm

2
k

(pj · pk)2
=

{
v if j, k = 3, 4 or j, k = 4, 3

1 otherwise
(A.1.2)

The first term on the right-hand side of eq. (A.1.1) contains the ultraviolet diver-

gences, to be removed via renormalization. The second term depends on the following

functions

Vjk(sjk, mj, mk) =
1

2ϵ

1

vjk

log
1 − vjk

1 + vjk

− 1

4

(
log2

m2
j

|sjk|
+ log2

m2
k

|sjk|

)
− π2

6
(A.1.3)

Vjk(sjk, m, 0) =
1

2ϵ2
+

1

2ϵ
log

m2

|sjk|
− 1

4
log2

m2

|sjk|
− π2

12
(A.1.4)

Vjk(sjk, 0, 0) =
1

ϵ2
. (A.1.5)
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A.1. One-loop soft anomalous dimension matrix in QCD

Finally the last term is given by

Γq(µ, m) = T2
j

(
1

ϵ
− log

m2

µ2
− 2

)
+ γq log

m2

µ2
= CF

[
1

ϵ
+

1

2
log

m2

µ2
− 2

]
(A.1.6)

Γq(µ, 0) =
1

ϵ
γq + finite terms (A.1.7)

Γg(µ) =
1

ϵ
γg + finite terms (A.1.8)

Let’s start with the Vjk term in eq. (A.1.1):

F =
4∑

j.k=1
k ̸=j

Tj · Tk

(
µ2

|sjk|

)ϵ

Vjk(sjk, mj, mk) =
4∑

j,k=1
k ̸=j

Fjk (A.1.9)

We have three different contributions:

FII = F12 + F21 = 2T1 · T2

(
µ2

|s12|

)ϵ

V12(s12, 0, 0) (A.1.10)

FF F = F34 + F43 = 2T3 · T4

(
µ2

|s34|

)ϵ

V34(s34, m, m) (A.1.11)

FIF =
∑
j=1,2
k=3,4

2Fjk =
∑
j=1,2
k=3,4

2Tj · Tk

(
µ2

|sjk|

)ϵ

Vjk(sjk, m, 0) (A.1.12)

By substituting Vjk and factorizing (µ2/M2)ϵ with s12 = M2 we get

FII =

(
µ2

M2

)ϵ

2T1 · T2
1

ϵ2
(A.1.13)

FF F =

(
µ2

M2

)ϵ

2T3 · T4 (1 + O(ϵ))

(
1

ϵ

1

2v
log

1 − v

1 + v
− 1

2
log2

m2

|s34|
− π2

6

)
=

(
µ2

M2

)ϵ

2T3 · T4

(
1

ϵ

1

2v
log

1 − v

1 + v
+ finite terms

) (A.1.14)

FIF =

(
µ2

M2

)ϵ ∑
j=1,2
k=3,4

2Tj · Tk

(
1 − ϵ log

M2

sjk

+ O(ϵ2)

)

×
(

1

2ϵ2
+

1

2ϵ
log

m2

|sjk|
− 1

4
log2

m2

|sjk|
− π2

12

)

=

(
µ2

M2

)ϵ ∑
j=1,2
k=3,4

2Tj · Tk

(
1

2ϵ2
+

1

2ϵ
log

m2

|sjk|
+

1

2ϵ
log

M2

|sjk|
+ finite terms

)

=

(
µ2

M2

)ϵ ∑
j=1,2
k=3,4

Tj · Tk

(
1

ϵ2
+

1

ϵ
log

m2M2

s2jk

+ finite terms

)
.

(A.1.15)
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A.1. One-loop soft anomalous dimension matrix in QCD

Putting all terms together we obtain

F =

(
µ2

M2

)ϵ

 1

ϵ2

2T1 · T2 +
∑
j=1,2
k=3,4

Tj · Tk



+
1

ϵ

2T3 · T4
1

2v
log

1 − v

1 + v
+
∑
j=1,2
k=3,4

Tj · Tk log
m2M2

s2jk


 (A.1.16)

where we can use colour conservation to rewrite the coefficient of the 1/ϵ2 pole as

2T1 ·T2 +
∑
j=1,2
k=3,4

Tj ·Tk = T1 · (T2 +T3 +T4) +T2 · (T1 +T3 +T4) = −(T2
1 +T2

2).

(A.1.17)

We can now focus on the last term of eq. (A.1.1) which is quite simple

−
4∑

j=1

ΓRS
j (µ, mj) =

(
µ2

M2

)ϵ [
−2CF

1

ϵ
− 2

ϵ
γc

]
=

(
µ2

M2

)ϵ [
−(T2

3 +T2
4)
1

ϵ
− 2

ϵ
γc

] (A.1.18)

where c = g, q refers to initial state partons.

The last thing we need to address are the imaginary terms in the second line of

eq. (A.1.1). If we factorize the usual (µ2/M2)ϵ and we consider only the 1/ϵ pole, we

have

Fimaginary =

(
µ2

M2

)ϵ
1

ϵ

4∑
j,k=1
k ̸=j

Tj · Tk
iπΘ(sjk)

vjk

. (A.1.19)

Using eq. (A.1.2) and knowing that sjk > 0 only if j, k are both initial state or final

state partons (since all the momenta are outgoing) we have

Fimaginary =

(
µ2

M2

)ϵ
1

ϵ
iπ

[
2T1 · T2 +

1

v
2T3 · T4

]
. (A.1.20)

We can now use colour conservation
∑4

i Ti = 0 to rewrite

2T1 · T2 = 2T3 · T4 + (T2
3 +T2

4) − (T2
1 +T2

2) (A.1.21)

so we end up with

Fimaginary =

(
µ2

M2

)ϵ
1

ϵ
iπ

[
−(T2

1 +T2
2) + (T2

3 +T2
4) + 2T3 · T4

(
1

v
+ 1

)]
.

(A.1.22)
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A.2. Abelianization

The final result is then given by

I = − (4π)ϵ

Γ(1 − ϵ)

(
µ2

M2

)ϵ{
(T2

1 +T2
2)

(
1

ϵ2
+

iπ

ϵ

)
+

2

ϵ
γc − 4

ϵ
Γ

(1)
t + finite terms

}
(A.1.23)

where

Γ
(1)
t = −1

4

(T2
3 +T2

4)(1 − iπ) +
∑
j=1,2
k=3,4

Tj · Tk log
(2 pj · pk)

2

m2M2

+ 2T3 · T4

[
1

2v
log

1 + v

1 − v
− iπ

(
1

v
+ 1

)] . (A.1.24)

A.1.1 Comments

1. Note that all real terms in eq. (A.1.24) come from either initial-final or final-

final contributions. On the other hand, for what concerns imaginary parts

only the 1/v term comes from final-final interactions while the other terms

come from initial-initial contributions using eq. (A.1.21).

2. Eq. (A.1.1) is written using the formalism employed by Catani, Dittmaier and

Trocsanyi [156], in which the amplitude is expanded in powers of αs/4π. This

means that in order to adapt these results to the choice of the expansion pa-

rameter αs/2π used in this work we need to multiply eq. (A.1.23) by a factor

1/2.

A.2 Abelianization

We can now apply the abelianization techniques described in Section 5.1 to eq. (A.1.24):

Γ
QED,(1)
t = −1

4

{
(Q2

3 + Q2
4)(1 − iπ) +

∑
j=1,2
k=3,4

(−QjQk) log
(2 pj · pk)

2

m2M2

+ 2Q3Q4

[
1

2v
log

1 + v

1 − v
− iπ

(
1

v
+ 1

)]}
. (A.2.1)

We also have

Q1 = −Q2, |Q1| = |Q2| = Qini,

Q3 = −Q4, |Q3| = |Q4| = Qfin,
(A.2.2)
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A.2. Abelianization

which leads to

Γ
QED,(1)
t = −1

4

2Q2
fin

[
1 − 1

2v
log

1 + v

1 − v
+

iπ

v

]
+
∑
j=1,2
k=3,4

(−QjQk) log
(2 pj · pk)

2

m2M2


= −1

4

{
2Q2

fin

[
1 − 1

2v
log

1 + v

1 − v
+

iπ

v

]
− 2Q1Q3 log

(p1 · p3)(p2 · p4)

(p1 · p4)(p2 · p3)

}
.

(A.2.3)

Thus for a heavy lepton pair in the final state we have

Γ
QED,(1)
t,q = −1

2

{
1 − 1

2v
log

1 + v

1 − v
+

iπ

v
− Qq log

(p1 · p3)(p2 · p4)

(p1 · p4)(p2 · p3)

}
(A.2.4)

where Qq is the charge of the parton with momentum p1.
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Appendix B

Two-loop soft anomalous

dimension

B.1 Two-loop soft anomalous dimension matrix in QCD

From Ref. [127] we can extract the expression for the second order anomalous di-

mension matrix, namely

Γ
(2)
t = −1

4

{[
(T3 +T4)

2(−iπ) +
∑
i=1,2
j=3,4

Ti · Tj log
(2pi · pj)

2

M2m2

]
γ(2)
cusp

− 4γ
(2)
Q + 2 T3 · T4 γ(2)

cusp(v) +
∑
j=1,2

ifabc T a
3 T b

4 T c
j g(v) log

p4 · pj

p3 · pj

+
[
Γ

(1)
t ,F

(1)
t

]
+ πβ0F

(1)
t

}
,

(B.1.1)

where the coefficients γ
(2)
cusp, γ

(2)
Q and γ

(2)
cusp(v) are the second order coefficients of the

perturbative expansions of their respective anomalous dimension functions

γcusp(αs) =
∞∑

n=1

(αs

π

)
γ(n)
cusp (B.1.2)

γQ(αs) =
∞∑

n=1

(αs

π

)
γ
(n)
Q (B.1.3)

γcusp(v, αs) =
∞∑

n=1

(αs

π

)
γ(n)
cusp(v). (B.1.4)

For massless quarks and gluons, the two-loop cusp anomalous dimension was com-

puted in Ref. [157] and it reads

γ(2)
cusp =

(
67

36
− π2

12

)
CA − 5

9
TRnf . (B.1.5)
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B.2. Abelianization

The second-order anomalous dimension for massive partons [158] is given by

γ
(2)
Q =

1

16

[(
2

3
π2 − 98

9
− 4ζ3

)
CFCA +

40

9
CFTRnf

]
(B.1.6)

and the two-loop cusp anomalous dimension for massive quarks [158] can be written

as

γ(2)
cusp(v) = γ(2)

cusp

1

v

(
1

2
Lv − iπ

)
+

CA

2

{
1

4
L2

v − 5

6
π2 + ζ3 − iπLv +

1

v2

[
Li3v +

1

2
Lv Li2v

+
1

24
L3

v − 5

12
π2Lv − ζ3 +iπ

(
−Li2v −1

4
L2

v +
π2

6

)]
+

1

v

[
− 1

24
L3

v + Li2v −1

4
L2

v − Lv log

(
2v

1 − v

)
+

5

12
π2Lv

+
5

6
π2 + iπ

(
1

4
L2

v + Lv + 2 log

(
2v

1 − v

)
− π2

6

)]}
(B.1.7)

where v is the relative velocity given by eq. (4.1.27) and we introduced the shorthand

notations

Lv = log

(
1 + v

1 − v

)
, Li2v = Li2

(
1 − v

1 + v

)
, Li3v = Li3

(
1 − v

1 + v

)
(B.1.8)

with the usual polylogarithm functions

Li2(z) = −
∫ z

0

dt

t
log(1 − t), Li3(z) = −

∫ z

0

dt

t
log(t) log(1 − zt). (B.1.9)

Finally the function g(v) is [159]

g(v) = −1

4
L2

v +
5

6
π2 + iπLv +

1

v

[
−Li2v +

1

4
L2

v + Lv log

(
2v

1 − v

)
−5

6
π2 − iπ

(
2 log

(
2v

1 − v

)
+ Lv

)]
.

(B.1.10)

B.2 Abelianization

By applying the abelianization rules to eq. (B.1.1) we get

Γ
QED,(2)
t = −1

4

{∑
i=1,2
j=3,4

(−QiQj) log
(2pi · pj)

2

M2m2
γQED,(2)
cusp

− 4γ
QED,(2)
f − 2Q2

l γQED,(2)
cusp (v) + πβ0F

QED,(1)
t

}
,

(B.2.1)
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B.2. Abelianization

with

γQED,(2)
cusp = − 5

18
N (2), (B.2.2)

γ
QED,(2)
f =

5

36
Q2

f N (2), (B.2.3)

γQED,(2)
cusp (v) = − 5

18
N (2) 1

v

[
1

2
log

(
1 + v

1 − v

)
− iπ

]
. (B.2.4)

Note that all the contributions left after the abelianization procedure in γ
QED,(2)
cusp ,

γ
QED,(2)
f and γ

QED,(2)
cusp (v) are proportional to N (2). This is due to the fact that their

origin is tied to the splitting of a photon into a fermion-antifermion pair in the final

state.

We stress that the results discussed in this appendix stem from the formulas

presented in Ref. [127], where the perturbative expansion is performed in powers of

αs/π. Since throughout this work we employ an expansion in αs/2π (or equivalently

α/2π in QED), we need to adjust these results accordingly.
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Appendix C

Increasing the value of α

Some of the computation in this work required us to change the reference value of

the QED coupling constant to increase the effect of the QED corrections and at the

same time alleviate the numerical complexity. One possible choice would be to use

a new value of α at the Thompson limit that is somewhat similar to the value of

the QCD coupling constant at the scale of the Z boson mass. In this way we would

be able to make a direct comparison between the QED results and the well known

QCD ones. However this is not possible, due to the shift in the position of the QED

Landau pole. Indeed, by changing the value of the coupling constant, the position

of the pole associated with its running also change and not by a small amount.

We want to determine what is the maximum value that we can use to define

the Thompson limit of α̃(q2) such that the position of the Landau pole does not fall

within the reach of the LHC. In order to do so we can just use the formula for the

LO evolution of the coupling constant, given by

α̃(q2) =
α̃(m2

e)

1 + β0 α̃(m2
e) log(q

2/m2
e)

, (C.0.1)

where we keep the first-order coefficient of the β function fixed, namely β0 = −20/9π

which corresponds to all fermions but the top quark contributing to the photon self

energy loop. We need to find α̃(m2
e) such that

1 + α̃(m2
e) β0 log

(
Q2

m2
e

)
= 0 for Q = 13 TeV (C.0.2)

that gives us approximately α̃(m2
e) = 0.04.
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Appendix D

Explicit computation of the double

convolutions

We want to explicitly compute a couple of the terms that contain double convolutions

appearing in eqs. (6.2) and (6.2). In particular, we focus on the two most complicated

ones, namely (
P (0)

qq ⊗ (P (0)
qq ⊗ f)

)
and

(
C(1)

qq ⊗ (P (0)
qq ⊗ f)

)
(D.0.1)

which involve the following splitting function and coefficient function

P (0)
qq (z) = Q2

f

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
, (D.0.2)

C(1)
qq (z) = Q2

q

[
(1 − z) − δ(1 − z)

π2

12

]
. (D.0.3)

We can start by recalling the plus distribution, denoted as

g(z)

(1 − z)+
, (D.0.4)

whose integral with a smooth test function f(z) is defined as∫ 1

0

dz
g(z)

(1 − z)+
f(z) =

∫ 1

0

dz

1 − z
[g(z) − g(1)] f(z). (D.0.5)

The standard convolution between the splitting function P
(0)
qq and a generic function

f representing the parton distribution function is then given by

(P (0)
qq ⊗ f)(x) =

∫ 1

x

dz

z
f
(x

z

)
Q2

q

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
= Q2

q

∫ 1

x

dz

1 − z

[
1 + z2

z
f
(x

z

)
− 2f(x)

]
+

3

2
Q2

qf(x).

(D.0.6)

92



So that the double convolutions in eq. (D.0.1) can be written as(
P (0)

qq ⊗ (P (0)
qq ⊗ f)

)
(y) = Q4

q

∫ 1

y

dx

x

[
1 + x2

(1 − x)+
+

3

2
δ(1 − x)

]
×

{∫ 1

y
x

dz

1 − z

[
1 + z2

z
f
( y

xz

)
− 2f

(y

x

)]
+

3

2
f
(y

x

)}

= Q4
q

∫ 1

y

dx

1 − x

{
− 2

(∫ 1

y

dz

1 − z

[
1 + z2

z
f
(y

z

)
− 2f(y)

]
+

3

2
f(y)

)

+
1 + x2

x

[∫ 1

y
x

dz

1 − z

[
1 + z2

z
f
( y

xz

)
− 2f

(y

x

)]
+

3

2
f
(y

x

)]}

+
3

2
Q4

q

{∫ 1

y

dz

1 − z

[
1 + z2

z
f
(y

z

)
− 2f(y)

]
+

3

2
f(y)

}
(D.0.7)

(
C(1)

qq ⊗ (P (0)
qq ⊗ f)

)
(y) = Q4

q

∫ 1

y

dx

x

[
(1 − x) − π2

12
δ(1 − x)

]
×

{∫ 1

y
x

dz

1 − z

[
1 + z2

z
f
( y

xz

)
− 2f

(y

x

)]
+

3

2
f
(y

x

)}

= Q4
q

∫ 1

y

dx
1 − x

x

{∫ 1

y
x

dz

1 − z

×
[
1 + z2

z
f
( y

xz

)
− 2f

(y

x

)]
+

3

2
f
(y

x

)}

− Q4
q

π2

12

{∫ 1

y

dz

1 − z

[
1 + z2

z
f
(y

z

)
− 2f(y)

]
+

3

2
f(y)

}
(D.0.8)
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