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Highlights

e Spruce lignins were isolated via a steam-explosion organosolv process.
e Isolated lignins were analysed for structural features and thermal stabilities.
e Data suggest that covalently linked lignin-humin hybrids are eventually formed.

e Thermal stability profiles sustain the presence of such hybrid structures.

Abstract

Organosolv lignins (OSLs) are important byproducts of the cellulose-centred biorefinery that need to
be converted in high value-added products for economic viability. Yet, OSLs underperform. Applying
advanced NMR, GPC, and thermal analyses, isolated spruce lignins were analysed to correlate
organosolv process severity to the structural details for delineating potential valorisations. Very mild
conditions were found to not fractionate the biomass, causing a mix of sugars, lignin-carbohydrate
complexes (LCCs), and corresponding dehydration/degradation products and including pseudo-
lignins. Employing only slightly harsher conditions promote fractionation, but also formation of sugar
degradation structures that covalently incorporate into the oligomeric and polymeric lignin
structures, causing the as organosolv lignin isolated materials to represent de facto lignin-humin
hybrid (HLH) structures not yet evidenced as such in organosolv lignins. These structures effortlessly
explain observed unexpected solubility issues and unusual thermal responses, and their presence

might have to be acknowledged in downstream lignin valorisation.
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humins, organosolv lignin, structure elucidation
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1 Introduction

A multitude of industrial chemicals and materials are generated from petroleum-based platform
chemicals as they serve as starting points for commercially important polymers, construction
material, composites, fibres, etc.[1,2] In light of the urgency of finding a replacement for the
petroleum-based platform chemicals, lignocellulosic material is considered a promising source, while
also holding the potential of net zero carbon profiles.[1] As recently reviewed, both the C5 and C6
sugars from hemicellulose and cellulose, as well as their derivatives have potential as building block
chemicals with industrial applications.[1] Lignin, representing a significant portion of lignocellulosic
biomass, holds a high, but yet rather unutilized potential, being the largest renewable resource of
aromatics, and being produced at a quantity of 50 million tons per year at the moment, with only 2%
of this amount being commercially exploited. Suitable downstream applications of isolated lignins
depend on structural features of the lignin of choice, and thus both on the source of the
lignocellulosic raw material and on the mode of extraction, since both factors are determining for the
structural features of the eventually isolated lignins. For softwoods, guaiacyl units dominate over
traces of syringyl and p-hydroxylcinnamyl units in terms of abundance within the lignin, being
engaged mainly in the four most frequently occurring motifs, i.e., B-ethers (60%), dibenzodioxocin (9-
12%), phenylcoumaran (10%) and resinol (5%) motifs; these are accompanied by traces of biphenyl
ethers (1%) and spirodienones (1-2%).[3] Due to the radical-driven biosynthesis of lignin presumably
lacking stringent control mechanisms, the distribution of these motifs is random in terms of
combinations of the different motifs alongside branched and/or linear chains of varying molecular
weights. Both alkaline and acidic systems can be principally applied to fractionate lignocellulosic
biomass into the three main polymer streams, i.e., cellulose, hemicelluloses and lignin,[4] to furnish
starting points for downstream valorisations that target aspects that are not available by valorisation
strategies like pyrolysis that use unfractionated biomass. Naturally, the different inter-unit linkages in
lignin will display different susceptibilities towards different chemical treatments[5] and thus affect
the structural and hence chemical and physical properties of the polyphenolic end-isolate, including

solubility, thermal stability, reactivity profile, etc.[6]

Mechanical pretreatments are often applied alongside suitable chemical systems with or without
addition of catalysts to increase overall fractionation efficiency. A physical mode often applied to the
fractionation of lignocellulosic material is steam explosion (SE), with this method primarily applied
for the depolymerisation of hemicellulose and the extraction of sugar species.[7] This means of
pretreatment benefits from mechanical and thermal conditions, and the entire structure is softened
and easier distorted.[8]Among the most promising chemical methods for fractionation of

lignocellulosic biomass are the organosolv (0S) processes. Their application in form of EtOH in an
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aqueous system with or without mineral acid catalyst has previously been applied for fractionation of

the highly recalcitrance softwoods such as spruce.[9-12]

As of now only few works investigated combinations of two promising modes of pretreatment, i.e.,
SE-OS processes, with respect to potential synergies and the impact of variations in process
parameters such as time and acidity on the characteristics of the resulting lignin isolates, and thus
the suitability for potential downstream valorisations.[13] The present work set out to investigate
the fractionation of spruce through a combined SE-OS, looking at the most important process
parameters time and intrinsic acidity, as well as their reflection in the structural features of the

isolated polyphenols and observed fundamental macroscopic properties.[14]

3 Results and discussion
3.1 Lignin isolation and structural aspects

The SE-OS treatment conditions applied for isolating six spruce organosolv lignins are listed in

Table 1, together with obtained solubilisations of lignins. Quantitative *'P NMR, quantitative >C NMR
and semiquantitative HSQC analyses as well as gel permeation chromatography results were
employed in order to elucidate the structural characteristics for the various isolated lignins (Table 1).
Listed motifs, structurally depicted in case of lignin structural features in Figure 1, and in case of
humin-type structures in Figure 3, were identified on the basis of literature reports. [15-23]

It is important to note that the HSQC-derived data shown in the table, albeit being semiquantitative,
allow for the delineation of the discussed relative trends on the basis of a comparable amount of

lignin analysed for each sample and the standardised sample preparations.



107 Table 1: Extraction conditions, yields, abundances of key structural motifs, molecular weights, and monomer
108 compositions for the lignins isolated under the various SE-OS process conditions. Data derived from non-

109 guantitative HSQC measurements were normalised in semiquantitative fashion on the basis of the G-2H-signal.
110 Quantitative *C NMR was analysed on the basis of the internal standard trioxane. Error for BCc NMR

111 quantification data was estimated to be 0.2 mmol/g.

Lignin sample S1 S2 S3 S4 S5 S6 | NMR shifts® | ref”
Process conditions : !
T[°C] 200 200 200 200 200 200! |
duration [min] 15 30 60 30 30 30!
ethanol content [%v/v] 65 65 65 52 52 52! i
sulfuric acid content [%w/w] 0 0 0 0 0.2 1.0 :

Solubilised lignin (Klason) [% w/w]° 50.8 71.7 619 76.2 718 79.4:

Lignin - interunit binding motif . . ;
Abundance [%C9 (semiquantitative)]

(HsQC)
, o8 L 478|711
B-0-4’ (average C**-H) (A) 821 320 3.42 394 362 278 ! [24,25]
| 431|833 !
a-ethoxylated B-O-4’ linkage (C*-H) (B) 3.64 4.25 7.25 6.28 4.69 0.00E 4.50|79.7 [26]
a-oxidised B-0-4’ linkage (C*-H) (C) 046 087 053 097 099 085! 563|830 | [26]
B-B’ (average C**-H) (D) 239 173 126 267 243 195 2894
| 3.06]53.5 |
B-5 (average C**-H) (E) 499 631 643 695 682 591! 545(869 ! [24,27]
B-1’ (F) 5690 098 005 201 209 206 3.60[51.9 | [25]
o | 2.52(33.7 |
secoisolariciresinol (G) 1.10 1.27 1.42 0.00 133 0.89: v [28]
| 1.87]42.3 !
total interunit motifs 265 144 175 22.8 220 14.4 |
. 25 | 6.93/]10.2 |
G units (average of C"”-H) 99.4 99.2 976 99.0 96.2 98.1, i [24,29]
| 6.77/|152 |
Lignin - end groups (HSQC) Abundance [%C9 (semiquantitative)]
Hibbert ketone, C'-H (H) 032 085 028 032 052 056 . 3.64/441 | [30]
coniferyl aldehyde (aver. of C**-H)(J) 0.66 0.65 073 091 102 0.66 7.42]|125.8 [29]
coniferyl alcohol (C**'-H*®) (K) 150 066 1.08 115 124 o025 | 043113140 [24]
| 6.14]130.6 |
guaiacyl propanol (L) 210 219 207 215 247 176 | 2:53|31.2 [28]
| 1.69]34.4 |
guaiacyl acetic acid (M) 0.06 0.32 0.09 0.07 0.19 0.08% 3.63|38.1 [30]
guaiacyl hydroxy-acetic acid (C*-H) (N) 032 044 025 028 032 029 | 490|756 | [31]
guaiacyl aldehyde (CHO) (O) 043 0.55 051 0.79 1.07 0.45 i 9.58|28.9 ! [32]
....total end groups 539 566 501 567 683 4.05
Lignin - OH-groups (31P NMR) Abundance [mmol/g]
aliphatic OH 3.04 3.17 255° 2.97° 247 2.42§ 145.5-150.0 [33]
Cs-subst./condensed guaiacylic OH 0.34 025 0.69° 0.85° 0.42 O.36i 144.7-140.0 [34]
guaiacyl OH 087 116 1.29° 1.47° 156 142 139.0-140.0 | [34]
p-hydroxyphenol OH 0.09 0.03 0.09" 0.13° 0.06 0.05:@ 137.3-1382 | [34]
carboxylic acid OH 021 016 012 018 012 012} 133.6-136.6 | [34]
total phenolic OH 130 1.44 207 245 204 1.83]
G-OH/condensed OH 256 4.64 1.87 1.73 371 394 |
arom-OH/ali-OH 043 045 081 083" 083 076




Lignin — add. funct. motifs (*C NMR) Abundance [mmol/g] : :

Ar-CHO 026 055 093 099 033 000 191.0 | [35]

quaternary C (‘C%) 67.2 648 101 800 151 38.2 | 132.0-160.0 | [36]

tertiary C (‘C") 106 226 142 121 63.2 53.2 | 132.0-100.0 | [36]
c/c, 063 029 072 066 239 072

aromatic C-H 89.0 80.5 814 739 101 344 1250960 | [15]
LCCs (HSQC) Abundance [%C9 (semiquantitative)] :

benzyl ether (C*P-H in B-0-4’) (P) 119 140 085 000 0.00 0.0 4.55/80.2 | [37]
1o | 4.72]100.7 !

phenyl glycoside (C**-H) (Q) 0.90 0.03 0.00 0.04 0.2 0.00: L [38]

3.12|77.2
alkyl glycoside (C'-H) (R) 6.81 0.10 022 041 0.15 009 3.06/69.9 [38]

Furfural and humins - functional . L
Abundance [%C9 (semiquantitative)]

groups (HSQC) ; ;
furan-CH® (1) 203 129 118 081 079 079 | 7481243 | [16]
furfural CHO (1) 134 039 013 003 017 008! 957|127 | [17]
5-HMF-CH,R (1) 148 063 045 037 040 219! 452(557 | [16]
' 200|264 !
R-CH,C(O)CH,CH,CO,H (IX) 136 121 147 137 139 127 L [16]
| 219|334 |
furan-benzyl ether (C*-H) (X) 0.22 055 039 044 104 039! 456[680 !
oxiran-C*H (X1) 540 110 1.60 1.56 140 099 524|714 | [16]
oxiran-C°H (X1) 491 148 165 260 246 245 418|669 | [16]
furan — phenol methylene bridge (XIlI) 6.68 1.70 2.14 0.83 1.00 0.43 3.45|56.0 [18]
Furfural and humins — functional
13 Abundance [mmol/g]
groups (T"C NMR)
furfural C° (1) 0.01 001 001 001 000 000: 1520 | [18]
furfural CHO (1) 358 214 000 9.00 036 000; 1780 | [17]
furan biaryl via ¢*- ¢ () 000 000 066 000 0.00 000! 1270 | [19]
C3in polyfuran motif (Vi) 111 103 836 890 447 333! 1100 | [19]
‘opened’ furan C=0 (VIII) 1.99 7.66 0.00 3.28 0.00 0.00 | 208.0-205.0 ' [15]
furan-phenol biaryl via €% C° (XII) 112 117 119 126 447 222 1059 | [20]
Plieudo-llgnm - functional groups Abundance [mmol/g]
(*C NMR)
R-CH,-CHO 215 156 000 7.00 0.25 0.00 | 43.0 L [21)
Ar-CH,-Ar 2.15 330 4.15 3.04 206 1.80: 29.0-420 | [22]
Ar-C-O-R 133 000 044 000 000 133! 1670 | [39]

Molecular weight (GPC)

Mn [kDa] 1.0 12 15 1.0° 12 14|

Mw [kDa]) 90 75 63° 28° 3.7 61!

polydispersity index (Mw/Mn) 8.90 6.28 4.29° 2.79° 296 4.36 .
Lignin aromatic units (py-GC) Abundance (%) : :
S 1 1 1 1° 1 2 ;
G 94 93 93 91° 93 91 §
H 5 6 6 7 6 8

112 ® Shifts actually used for analysis in §(*H)/[ppm] | 8(**C)/[ppm] for HSQC data, and in &(*3C)/[ppm]
113 for >C NMR data.
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References used as guide/comparison for shifts.
Data previously published.[40]
Data previously published.[41]
Data previously published.[42]
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Interunit linkages

MeOQ  O-L
HO L HO. L OMe Q
HO 5 o) o ‘ Oy HO
OMe OMe o)
O o
oe )
O Ou HO
L L t L-O  OMe
B-aryl ether a-oxo-B-aryl ether phenyl coumaran secoisolariciresinol (G)
p-0-4' (A) a-0x-B-0-4' (C) p-5' (E)
HO. L
~° o
OMe
OMe
oy,
a-ethoxy-B-aryl ether resinol diphenyl ethane
a-EtO-B-O-4' (B) B-p' (D) B-1' (F)

Non-phenolic end-of-chain motifs

OH OH o
o,
o) HO. OH
OMe OMe OMe OMe
e O e O
h gLrJ;I(aZiIL | coniferyl coniferyl coniferyl guaiacyl- ﬁu:r'g;yl guaiacyl
zetong (H)y aldehyde (J)  alcohol (K) alcohol (L) acetic acid (M) acet?lc aciz (N) aldehyde (O)
LCC motifs Prevailing aromatic unit
mannose” "~y L b L
omMe Me© o L = lignin chain OMe
o “glucose/xylose Oy,
benzyl ether phenyl glucoside alkyl glucoside G-type
(P) Q) (R) aromatic unit

Figure 1. Important structural motifs of lignins unambiguously identified in the analyses of the HSQC and B¢
NMR spectra of lignins S1 — S6. Colour coding matches that used in Figure 2.
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Figure 2. HSQC spectra of the isolated lignins, split in aliphatic and anomeric/aromatic regions. Key structural
motifs were colour-coded following colours used in Figure 1: (A) S1; (B) S2; (C) S3.
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Figure 2 continued. HSQC spectra of the isolated lignins, split in aliphatic and anomeric/aromatic regions. Key
structural motifs were colour-coded following colours used in Figure 1: (D) S4; (E) S5; (F) S6.
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3.2 Effect of treatment time (samples S1, S2, and S3)

Differences in treatment conditions strongly affect the amount of the as lignin isolated material
(Table 2), indicating essentially changes in fractionation efficacy, introduced changes in physico-

chemical behaviours, and thus eventually also in the structure of the isolated material.

Detailed structural analysis of S1 by HSQC, including an semiquantitative analyses of the signals
confirms an insufficient fractionation, leaving significant amounts of carbohydrates in the isolated
lignin fraction (Figure 2A). Studies suggest that in coniferous species the lignin is significantly bound
to the hemicellulose through lignin carbohydrate complexes (LCCs);[43] yet, as recently reviewed,[5]
the exact nature and extent of these LCCs is still pending. Postulated binding motifs include benzyl
ether (BE), phenyl glycosidic (PG), and y-ester (GE) linkages involving galactoglucomannan and
arabinoglucuronoxylan;[37] alkyl glucosides have also been claimed.[38] In lignin S1. a-benzyl ethers
(P, Figure 1) are present at a content of 1.19 mmol/g (average over C* and C?in B-0-4’);
phenylglucosides (Q) were identified and quantified to 0.90 mmol/g (average over C', C?), and
alkylglucosides (R) were identified in significant amounts (average over C", C*). The signals of the
expectable carbohydrates commonly linked to these motifs are accompanying the cross-peaks seen
as indicative of LCCs (Figure 2A), forming together hence a hallmark of insufficient process severity.
Correspondingly, anotable reduction of these groups is seen in S2 upon extended reaction times.
Coniferyl alcohol (K, Figure 1) interestingly drops with slightly higher process intensity as well in S2;
its appearance can be interpreted as indicative of an onset of cleavage of eventually present alkyl
glucuronic acid ester linkages. The fact that the abundance of this motifs is present in all samples, in
combination with the fact that alkyl glucuronic acid ester linkages could not reliably be detected in S1
as a fourth LCC motif, suggest that S1-conditions were strong enough to cleave at least parts of
presumable LCCs. The constant presence of the group renders it less probable that the motif

emerges as an onset of dehydrating decomposition of corresponding hydroxylated endgroups.

The amount of aromatic C-H augments with increasing treatment time. While increase from S1 to S2
is explained at least in part by removal of dilution effects caused by the carbohydrate impurities, the
increase also reflects a more efficient biomass fractionation, liberating more and larger lignin
molecules/fragments from the various cell walls going from $2 to $3. *'P NMR data (Table 1) reveal a
concomitant slight increase in aliphatic OH-groups, despite the de facto elimination of sugar-based
aliphatic OH-groups. Considering that the increase in G-type phenolic OH-groups (Table 2) is more
pronounced, depolymerisation under cleavage of internal lignin ether linkages seems likely as
commencing depolymerisation process. [34,44] This interpretation is supported by the gradual

increase in lignin end-groups (Table 1). At the same time, intensities of signals C*-H and C*-H in

11
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ethoxylated B-0-4’ motifs augment from S1 to S2 (Table 1). This known [26] benzylic alkoxylation
shows in the context of the ethanosolv conditions an Sy-type cleavage of benzyl ether LCC-motifs
that displays a preserving effect on B-0-4’ structures, leading to the extraction of by tendency larger
lignin molecules under S2 conditions.[45] This interpretation is sustained by the decrease in the
polydispersity index (PDI) when doubling extraction time in combination with a small net increase in

the number average molecular weight (Mn) (Table 1).

Reaction times of 60 min for production of $3 lead to a decline of both the extractable amount of
lignin and its structural integrity. The formation condensed structures is also indicated by the

*p NMR data, with the content of condensed aromatic OH-groups doubling alongside a decrease in
aliphatic OH-groups. The decrease in total abundance of endgroups for S3, irrespective of relative
changes among them, indicates together with GPC data also an onset of repolymerisation of initially
smaller fragments stemming from a successful decomposition as potentially indicated by the
decreased M,, of S3. The latter might also be interpreted, however, as a more effective re-deposition
of eventually structurally changed lignin molecules on fibrous surfaces, causing consequently the

observed reduced extraction yield.[13]

3.3 Effect of ethanol content (samples S2 and S4)

Adjusting solvent composition is a common lever for tuning system reactivity in OS processes.[13]
Based on interesting recent works that allow for a discussion of organosolv pretreatments as a
function of solvent composition, [46,47] it was speculated that especially the degree of a disturbance
of the intrinsic water structure would increase system activity, generating an environment where
certain reactions occur to a greater extent through enhanced stabilization of transition states and
more active catalytic components: improved aqueous hydration of rather hydrophobic ethanol
clusters in the media[48] might generate a more reactive system through elevated proton activity
due to the role of the hydroxyl to hydrate in said hydrophobic clusters.[49] EtOH-concentration was

lowered from 65% v/v to 52% v/v for the production of lignin S4, using otherwise S2 conditions.

The lower EtOH content for S4 leads to a higher content of solubilized lignin, eventually due to a very
efficient biopolymer fractionation and a reduction of re-polymerisation and re-deposition, which is
turn is likely the result of the decreased hydrophobic aggregation and which has been found
dependent on the available surface area of non-polar structures, [46] eventually inform of ethoylated
B-aryl ethers. The B-0-4’ content in S4 is only slightly higher when compared to S2, with 3.94 vs. 3.20
mmol/g, respectively. As mentioned previously, these relatively stable contents under eventually

intrinsically more acidic conditions can originate from protective C*-ethoxylation, which is
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abundantly present in S4 (Table 1). Ethoxylation explains also that the overall increase in aliphatic
interunit linkages is represented in the *'P NMR data for S4 in form of a marginal reduction instead of
a slight increase. Interestingly, however, *'P NMR data reveal also an increased content of ortho-
disubstituted phenols when transiting from higher to lower EtOH concentration, indicative of
commencing condensation reactions. This is seen, however, along an invariant total abundance of
end-groups in S4 with respect to S2. Since both the number and weight average molecular weight
significantly decrease for S4 (Table 1), a more complex reactive situation in which depolymerisation
events and repolymerisations exist in advantageous equilibrium is most likely encountered. Overall,

S4 conditions appear as milder, but well working context for efficient biomass fragmentation.

3.4 Effect of acidic catalyst (samples S4, S5, and S6)

While having an effect on the hydrophilicity/lipophilicity of the system, varying ethanol contents
causes changes in system acidity. A blunter, widely applied way of acidity adjustment in (SE-)OS
systems is, however, the addition of catalytic amounts of a mineral acid, a series of biomass
fractionations was run in which different loadings of sulfuric acid were applied while keeping
otherwise the 30 minutes reaction time and 52% ethanol concentration, with the aim to elucidate

more explicitly the role of the acidic environment often applied.[50]

Spectroscopic analysis suggests a significant effect of the acid presence on both amount and
structure of isolated lignins S5 and S6 compared to S4, as discussed in detail in the Supporting
Information (Table 1). Holistically, structural data obtained for the acid series suggest a degradation
and eventual repolymerisation of the natural lignin as function of system acidity. In front of this
rather clear picture, interestingly, lignin solubility sees an initial drop from S4 to S5, before peaking in
absolute terms under S6 conditions. Degradation and re-polymerisation under maximum acidic

conditions does thus not seem to lead to re-deposition on fibrous surfaces or insoluble structures.

3.5 Furfural-lignin-hybrid and humin-lignin-hybrid structures

SE-OS related decomposition of hemicelluloses inevitably leads to the presence of carbohydrates and
derivatives thereof in the reaction mixture. Further decomposition of the sugar units has been
reported, to form furfural and its derivatives in the reaction mixtures. [51,52] Formation of so-called
pseudo-lignins has been discussed as larger molecular structures stemming from the re-
polymerisation of these reactive sugar degradation products; these larger molecules behave during

lignin isolation like lignin, i.e., present a certain acid insolubility, and cause thus as byproducts of
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pretreatments issues, both in the quantitative discussion of the isolated lignin quantity with respect
to the Klason lignin content of the starting biomass, and thus importantly with respect to a
downstream biotechnological valorisation of cellulose due to re-depositioning on fibrous surfaces.
With respect to structural features of the pseudo-lignins, only main functional group contents are
normally reported, claiming the presence of ketones, acids, and aromatic structures. [15,53] On the
other hand, starting from furfural-derived reactive molecules, also the formation of humins[54-57]

has been reported as possibility to valorise biomass-derived carbohydrates.[55]

In light of recent reports which exploited 5-hydroxymethyl furfural (5-HMF) and derivatives as
crosslinker in lignin-based resins,[20] as well as on the basis of more recent reports on structural
features in humins, we hypothesized that the conditions used in the acidic SE-OS process for
producing lignins S1 to S6 would eventually not (only) form pseudo-lignins alongside the initially
solubilized and then precipitated lignin. Similarity of conditions generated during fractionation could
lead to a the formation of furfural-decorated lignin, or furfural-lignin hybrids, i.e., FLHs, and
eventually in extremis to humin-lignin hybrid polymers, i.e., HLHs, and as such severely interfering
with downstream valorisations. In the present study, conditions were seen especially suitable in
systems with an increased acidity and time-determined severity factor suitable to not only favour
degradation of sugars, but also their subsequent reaction in terms of acid-catalysed nucleophilic
additions, ring-openings, and acetal formations. Figure 3 shows structural features of 5-HMF and
humins,[15—-23] identified as key motifs and considered stable enough to be found in the isolated

lignin and detectable in spectroscopic analysis.
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Figure 3. Structural features characteristic for humins (I — IX), for furfural-lignin hybrids (FLHs) (Xa, Xla), and for

the humin-lignin hybrids (HLHs) (Xb, Xlb, XII, XII1).
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Figure 4. Exemplary visualisation of structural features of humins, furfural-lignin-hybrids (FLHs) and humin-
lignin hybrids (HLHs) in S4: (A) HSQC analysis: Colour coding is following Figure 3; structural features of lignins
as shown in Figure 2 are shown in yellow, unidentified peaks are kept in grey. (B) BCNMR analysis: only FLH-
and HLH-related peaks are indicated.

5-HMF-based and —characterising cross-peaks are unambiguously detectable in the HSQC spectra of
the isolated lignin fractions (Table 1). S4 - in terms of lignin structure and absence of carbohydrates
appearing as the lignin product of an acceptably functioning fractionation, as long as analyses
focuses on lignin and LCC-connected cross-peaks and neglects the ‘peaks of extractives’ — can be
used exemplary for showing the relevant cross-peaks in Figure 4, and thus for indicating that such
structures are present in lignin samples obtained with process parameters to be considered as viable
on the basis of structural features of the isolated lignin (vide supra). The intensity of the cross-peak
attributable to the furfural aldehyde, detectable in the HSQC at an apparent shift of 9,57|12,7
(8*H/[ppm]|8™C/[ppm]) due to a wrapping of the spectrum, corresponding to real shift of 9.57|177.7
(8"H/[ppm]|8™C/[ppm]) upon unwrapping the spectral data as common in OMICs fields,[58] applying
the spectral width of 165 ppm in the carbon domain, amounts to only 0.03 mmol/g in this sample,
and is present in the other lignins at higher concentrations (Table 1). this is confirmed by the

quantitative >C NMR analysis, according to which furfural aldehyde is present at a more elevated
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level. The presence of these low amounts of furfural cross-peaks, together with the observed
decrease of aliphatic OH-groups alongside the increase of aliphatic lignin interunit bonding motif
contents suggests an etherification of aliphatic hydroxyls, as suggested in form of structure Xa in
Figure 3. Considering the average of the furan ring protons in the HSQC, their content amounts to an
average of circa 0.44 mmol/g (Table 1). This indicates that the furfural aldehyde, has been partly
reduced and/or partly masked as acetal. Corresponding to the latter hypothesis, cross-peaks are
delineable in the HSQC spectra of $4 that would match C* and C" of a p-O-4’ interunit linkage
occupied in the formation of an acetal-dioxane motif Xla, indicated in Figure 3 as an alternative form

of a furfural-lignin hybrid, FLH.

Such a relatively stable acetal could be one integral part of a larger covalently linked construct of
humin-like structures and lignin molecules, representing a furfural-lignin copolymer or hybrid, HLH.
The HSQC-derived intensity of the methylene group in a 5-HMF-based motif (Figure 3) amounts to
ca. 0.4 mmol/g (Table 1) indicating in connection with the abundance of C>-H and C*-H (Table 1) that
parts of the furan content must have undergone oxidative heteroaromatic coupling and oxidative
polymerisation via the aliphatic side chains. Both features are in agreement with current structural
ideas of humins produced in similar chemical environments.[59] Analysis of HSQC and **C NMR data
of S4 (Figure 4) reveal (cross-)peaks for other typical humin motifs, depicted in Figure 3 as structures

Il =VII, and quantified in Table 1.

NMR analyses additionally reveal motifs resulting from an acid-catalysed, hydrolytic ring-opening of
furans in S4 (Figures 3 & 4). Carboxylic acid IX, reported as part of humins,[16] is detectable via the a-
and B-methylene carbons at 2.46|26.24 and 2.54|33.73(8"H/[ppm] | 5"3C/[ppm]), respectively (Table
1); the approx. abundance of ca. 1.4 mmol/g is high with respect to the so far discussed furfural and
humin signals as impurities. The value does fit, however, the high abundance, found via the
quantitative *C NMR, for ‘internal’ open furans (VIII, Figure 3) in terms of carbonyl-flanked ethylene

carbons and the flanking ketones (Table 1).

Acids, aldehydes and ketones discussed here as furfural-derived and/or humin-incorporated features
could principally also originate from oxidation of the aliphatic hydroxyl groups in the lignin side-
chains. The overall aldehyde content is, however, significantly greater than the aldehyde content
clearly attributable to lignin motifs (Table 1). Equally, the intensity of the signal attributed to ketone
functionalities is greater than the intensity of the one corresponding to a-oxidised -O-4" structures.
In combination with the abundances of furan-crosslinking motifs this suggests the presence of larger
structures, i.e., humins, giving overall thus rise to covalently linked humin-lignin hybrid (HLH)

structures not yet described. Even considering a certain overestimation due to peak overlapping and
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noise levels in the analysed quantitative >C NMR, postulating organosolv-born HLHs remains

reasonable.

Covalent linkages seem not being limited to cyclic acetals or benzylic ethers as discussed above in
form of structures Xb and Xlb(Figure 3), but importantly involve additionally direct oxidative phenol-
furan coupling. Despite being a softwood lignin sample, *'P NMR suggests a distinct amount of ortho-
disubstituted phenolics in S4 (Table 1). This is in line with an oxidative coupling at C* with a furan
moiety, in form of a weak peak identifiable in the *C NMR (Figure 4B, Table 1) as typical for a furan

C’ linked to a phenol, i.e., motif Xl in Figure 3.[17]

Development of functional group contents (Table 1) as function of severity can be rationalised as
follows: ketones are present in S2 and S4, with these carbonyl groups being reportedly present in
humins, stemming from the hydrolytic opening of the furan motif (vide supra).[20] Drastic reduction
in ketones upon extending treatment time from S2 to S3 could indicate that the ‘original” humin
structures acts as a reactive scaffold which could cause polymerisation and generation of products
becoming insoluble or redeposited, and are thus not visible in material isolated after prolonged
treatment times, i.e., 62% isolated $3.[54] Increasing intrinsic acidity and reducing time diminishes,
but not fully eliminates, the carbonyls in isolated76% of S4, rendering this material still soluble
enough to be isolated in the applied procedure. Increased acidity by added mineral acids then

eliminates carbonyls again in isolated 72% S5.

S6 seems to contradict this generalised interpretation due to the high isolation yield of 79%. Yet,
looking at the deviations of the various structural motifs as shown in Table 1 relative to S2, it
becomes apparent that S6 conditions, though being logically in line with the series, yield overall
drastic changes, effectively diminishing significantly carbohydrate-related signals. In other words,
decomposition of any organic structure is more effectively achieved here, most probably by not
allowing the reactive intermediates to form humins and subsequently HLHs as observed for S4 and
S5. This can eventually be interpreted as the transition from the presence of humin structures in
humin-lignin hybrids, i.e., HLHs in S4, towards the formation of the previously reported, yet
structurally not in detail elucidated pseudo-lignins ‘polluting’ S6. As indicated in Table 1, signals
attributable as indicators for pseudo-lignin presences, i.e., an -CH, in an aliphatic aldehyde[60] and a
methylene bridging two aromatics,[60] are diminishing alongside, albeit more drastically, when
increasing acid content towards S6 conditions (Table 1). Correspondingly, the former two groups also
diminish when increasing intrinsic acidity going from S3 to S4 production. Importantly, this indicates
that the pseudo-lignins are above all an intermediate product formed during an onset of sugar-

degradation. The pseudo-lignin structure ‘matures’ then as such, maintaining initial motifs in more
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polymeric forms yet to be elucidated in detail, becoming humin-like, with the latter being eventually
incorporated into lignins in form of HLHs as described above when conditions are favourable. Figure
5 summarises the structural discussion in form of a potential mechanistic pathway to the proposed

novel HLHs as integral and representative structures for the isolated lignins.

Figure 5. Exemplary structural representations of proposed humin-lignin hybrids, HLHs, depicting structural

motifs as discussed in the main text. N.B: structural representation does not reflect abundancies of a specific
sample.

3.6 Thermal analysis of spruce lignins

TGA and dTGA were chosen as relevant characteristics of as lignins that directly reflect structural
aspects, and could thus serve as an immediate way of verifying the structural hypothesis and getting

hints regarding the consequences they bring with respect to applications.

The chemical alterations observed upon increasing treatment time are reflected in the dTGA and TGA
data (Figure 6) for samples S1, S2, and S3 (see the Supporting Information for brief reviewing of

thermal response behaviours of encountered functional groups.

19



365

366

367

368
369
370
371
372
373
374
375
376
377
378
379

380
381
382
383

384
385
386
387
388
389
390

Weight %

T T T 1
200 400 600 800

Temperature (°C)

Figure 6. dTGA and TGA of the isolated lignins S1 — S6.

S1, containing residual polysaccharides, is characterized by a rapid onset of thermal degradation at
around 200° C, leading to a greater overall mass loss of 10%, which is in-line with the values reported
for sugar content in $1.[61] Extending treatment times to produce S2 and S3, a gradual change from
thermal liability at intermediate temperatures (S2) towards higher stability at intermediate
temperatures (S3) is found, despite some thermal instability in the highest temperature region. As
discussed previously,[13] this seems counter-intuitive, as S3 displays the highest content of liable B-
0-4’ linkages and should thus decompose more readily in the intermediate temperature range.
However, the simultaneous introduction of a greater content of aliphatic condensation structures,
and thus net reduction in aliphatic OH-groups, can act as structural counterpoise. This trend is
additionally aided by i) the reduction in molecular weight; ii) an increase in G-type OH-groups;[62]
iii) a-ethoxylation of B-0-4’ motifs;[63] and iv) a-etherification with furfural and humins as discussed

above.

TGA and dTGA data indicate only minor effects on the overall thermal stability (vide infra) of the
above discussed structural changes caused by a reduction on ethanol content going from lignin
extracts S2 to S4, causing also only similar char yields for both lignins. Yet, as a small but particularly

interesting difference appears a shoulder in the medium temperature region in S4.

The gradual change of lignin structure introduced by the acid presence in S5 and S6 treatment
conditions has a more significant effect. In case of 0.2 % v/v acid catalyst, i.e., S5, distinct regions of
significant mass loss exist in both the intermediate and the high temperature region around 700° C.
For S6, i.e., 1 % v/v acid catalyst, only a single mass loss occurs in the intermediate temperature
region. S6 seems thus once more to be an outlier at first glance, but S6 lignin is, however,
characterized by the highest char yield (Figure 6). S6 structures display the largest number and

weight average molecular weights across the systems for which a ‘time-independent acidity effect’
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can be discussed, i.e., $2, S4, S5 and S6. Yet, an elevated content of thermally liable ether structures
such as B-0-4’ could explain the faster mass loss for S6 in the intermediate temperature regime
remained only to a lower extent in S6. The mass loss occurring at low temperatures for S6 in the
intermediate temperature region, in light of the overall highest char yield, thus reflects structural
features like the discussed condensed biaryl structures that do not easily generate volatiles, in
contrast to the structural features of S5 and S4. Humin-lignin hybrids, HLHs, in light of the structural
insights discussed for S4 and S6, remain as only significant source of explanation for the observed
development of the thermal behaviour. Condensed structures stemming not only from expectable
lignin degradation but also from sugar degradation and repolymerisation gradually substitute
aliphatic structures responsible for mass loss in moderate temperature regions, causing char yields

higher than expected.

4 Conclusion

Various lignins isolated from spruce in a combined steam-explosion — organosolv (SE-OS) process
were structurally elucidated in detail. Structural features typical for lignins could be detected and
related to isolation conditions in terms of direct effects of time and facultative presence of acid-
catalyst. The clearly visible presence of additional functional groups typical for sugars, humins and
pseudo-lignins in various of the isolated lignins gave rise to a revision of the structural picture of the
lignins isolated in this type of process using conditions rather ‘standard’ in the field and not often
guestioned. Increasing process severity, especially in terms of acidity, favours the presence of
furfural and humin structures in the isolated lignins, in form of also covalently linked humin-lignin
hybrids, HLHs, that have not yet been described as structural feature yet. These hybrids are
characterised by oligomeric and/or polymeric humins linked via cyclic acetals and furan-phenol
biaryls to lignin oligomers. Pseudo-lignins represent, at least in the chemical space covered in this
work, rather an intermediate product emerging from sugar degradation, maturing into humin
structures subsequent HLH-formation. To the best of the author’s knowledge, this work represents
one of the first examples in which the worlds of lignins, pseudo-lignins, and humins are joined to
arrive at a more holistic view that more realistically considers the complexity of the lignocellulosic
biomass during chemical treatments for fractionation. In more practical terms, the work highlights
simply the importance of validating process parameters on the basis of a holistic set of analysis

techniques.

The demonstrated presence of HLHs in SE-OS lignins obtained under certain conditions might require

a change in the way organosolv lignins are a priori seen, or taken for, with the consequences for

21



424
425
426
427
428
429
430

431

432

433
434

435

436

437
438
439
440
441
442

443

444

445

446

447

448
449
450
451
452

various valorisation attempts. As integral, covalently linked part of the organosolv lignin structures
that cannot be simply ‘washed away’ by chromatographic efforts or ultrafiltration, and with rather
standard conditions favouring their formation in even not insignificant amounts, they are responsible
for, e.g., eventually unexpected solubility issues generally observed in OS-lignins, and can explain
eventually encountered, unexpected scarce utility of OS lignins in some high value-added
applications. On the other hand, a purposeful production of HLHs might be a promising starting point

to a type of ‘one-pot synthesis’ of resins so far produced from lignin and furfural additives.
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Careful structural analyses of spruce organosolv lignin isolates by state-of-the-art techniques
revealed a new structural component: humin-lignin hybrids. These novel structures can help to
understand the complex interplay between the structural polymers during common biorefinery
approaches, and can explain puzzling physico-chemical behaviours of organosolv lignins.
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