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In spite of the remarkable progress in basic and preclinical studies of acute myeloid leukemia (AML), the five-year survival rate of
AML patients remains poor, highlighting the urgent need for novel and synergistic therapies. Over the past decade, increased
attention has been focused on identifying suitable immunotherapeutic strategies for AML, and in particular on targeting leukemic
cells and their progenitors. However, recent studies have also underlined the important contribution of the leukemic
microenvironment in facilitating tumor escape mechanisms leading to disease recurrence. Here, we describe the immunological
features of the AML niche, with particular attention to the crosstalk between the AML blasts and the cellular components of the
altered tumor microenvironment (TME) and the mechanisms of immune escape that hamper the therapeutic effects of the most
advanced treatments. Considering the AML complexity, immunotherapy approaches may benefit from a rational combination of
complementary strategies aimed at preventing escape mechanisms without increasing toxicity.
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INTRODUCTION

The concept of adoptive immunotherapy was described for the
first time by Mathé in the late ‘60s in the context of allogeneic
hematopoietic stem cell transplantation (HSCT) for the treatment
of acute myeloid leukemia (AML). The graft-vs-leukemia effect, by
which leukemia can be eradicated by the immune cells from the
donor graft, revolutionized the field of cancer therapy and has
since evolved to targeted immunotherapeutic strategies such as
chimeric antigen receptor (CAR) redirected T cells, bispecific T-cell
engagers (BiTEs) and checkpoint inhibitors. Furthermore, it
became evident that AML development and progression are
associated with dysregulated immune responses. In particular,
recent studies have highlighted how leukemic cells manipulate
and alter the tumor microenvironment (TME) creating a unique
niche that directly promotes their survival as well as drug
resistance.

This review is aimed at describing the biological properties of
the AML niche, the crosstalk between AML blasts, and cellular
components of the TME, considering the non-hematopoietic
participants such as stromal cells and vascular endothelium, and
the development of resistance towards immunotherapeutic
strategies. We will then review the most innovative concepts
supporting therapeutic combinations that may overcome the
current barriers in AML treatment.

HOW AML AND ITS NICHE AFFECT IMMUNOTHERAPY

AML blast-induced resistance to immunotherapy

There is compelling evidence that AML blasts play a role in the
creation of weathered gears in the host immune system through
several unique immune evasion mechanisms (Fig. 1). Tumor escape
strategies in AML involve direct adaptation of the AML cells to hide
from immune recognition and tumor-cell-mediated modifications
of the immune cell compartment that include effector T cells,
natural killer cells (NKs), and dendritic cells (DCs). With the advent
of spatially-resolved immunohistochemistry, high-throughput sin-
gle-cell transcriptomic, proteomic, and mass cytometry technolo-
gies it is possible to better decipher the AML immunologic
microenvironment and to envision more tailored immunother-
apeutic strategies for the future of AML treatment [1-5].

AML are defective in antigen presentation

The success of allogenic HSCT relies on the ability of T and NK cells
to recognize and eliminate leukemic cells. AML blasts have
developed immunoediting processes, such as genetic deletion of
HLAs, especially in the context of the haploidentical transplant,
and epigenetic downregulation of HLA class Il molecules in
different donor transplant settings, which preclude conventional
recognition of AML blasts by CD8 and CD4 T cells via afTCR
engagement with peptides presented in class | and Il. Gene
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AML blast’s immune escaping strategies. Schematic illustration summarizing the most known immune evasion mechanisms exerted

by AML blasts. AML blasts can hamper T- and NK-cell effector functions by aberrantly overexpressing inhibitory T-cell ligands (i.e. PD-L1, Gal-9,
CD155, CD112, CD86) (1), or by releasing soluble forms of NKG2DL (2). AML blasts promote T-cell exhaustion and apoptosis, drive the
expansion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and induce the switch of macrophages to tumor-
associated macrophages (TAMs) (3) by altering the cytokine milieu and through the release within the BM niche of other soluble factors such
as reactive oxygen species (ROS), indoleamine 2,3-dioxygenase-1 (IDO1), arginase Il (Argll), and extracellular vesicles (EVs) (4). Moreover, AML
blasts reduce their expression of antigen presentation molecules, thus hiding themselves from immune cells such as dendritic cells (DCs) and

macrophages (5). Figure created with Biorender.

expression profiling of AML blasts from patients relapsed after
HSCT has uncovered transcriptional signatures enriched in altered
immune-related processes, including the epigenetic downregula-
tion of HLA class Il genes, the genomic loss of HLA, the epigenetic
upregulation of T cells inhibitory ligands, and the deregulated
release of immunosuppressive molecules [6-9].

AML blasts express immune checkpoint markers

Immune Checkpoints (ICs) are regulatory molecules expressed on
T cells to activate self-tolerance and prevent autoimmunity. To
evade immune surveillance, leukemic blasts aberrantly express the
ligands for ICs [6]. The role of each co-inhibitory pathway in AML
has been extensively described in a recent review by Taghiloo and
Asgarian-Omran [10]. The most well-known AML ligand for a IC is
programmed-cell-death ligand-1 (PD-L1) that, once recognized by
the PD-1 receptor on T cells, provides a co-inhibitory signal that
causes T-cell exhaustion. Moreover, the PD-1/PD-L1 axis can also
promote the expansion of regulatory T cells (Tregs), which further
hampers the effector function of CD8 T cells. T-cell immunoglobulin
and mucin domain 3 (TIM-3) is a well-defined IC in both effector T
and NKcells. TIM-3 binds to galectin-9, which is highly expressed on
AML blasts, and has been found to promote self-renewal via
stimulatory -catenin and NFkB-signaling, and to reduce the release
of pro-inflammatory cytokines, ultimately resulting in NK- and T-cell
dysfunction. Furthermore, galectin-9 is highly involved in creating
an autocrine loop that seems essential in the maintenance of
leukemic stem cells (LSCs) [11, 12]. In AML murine models and in
patients there is a strong association between high frequency of
TIM-3" and PD-1" T cells and poor prognosis [13-16]. Another
inhibitory receptor, TIGIT (T-cell immunoglobulin and ITIM domain),
which binds to the same ligands as DNAM-1, CD155, and CD112,
has also been shown to be upregulated in AML blasts. Interestingly,
low levels of DNAM-1 expression are observed in AML patients,
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while its ligands are highly expressed [17, 18] suggesting that the
binding of TIGIT with CD112 and CD155 ligands may represent a
mechanism of tumor immune escape promoted by immune cell
inhibitory signaling. This notion is further supported by clinical
observations showing that CD112 and CD155 expression are
associated with poor prognosis in AML [19]. In another recent
study, high mRNA levels of the inhibitory receptors Cytotoxic T-
lymphocyte associated protein 4 (CTLA4) and lymphocyte
activating-3 (LAG-3) in AML blasts were also shown to be predictive
of an unfavorable prognosis [20]. A peculiar checkpoint and AML
LSC marker that plays a crucial role in immune evasion is CD47, a
transmembrane protein that by binding to its receptor Signal
Regulatory Protein Alpha (SIRPa) on macrophages exerts a “don’t
eat me” signal by blocking macrophage engulfment [21]. It is
physiologically expressed by various types of normal cells but has
emerged as a potent common signal by which cancer cells evade
the innate immune system [22].

Immune Checkpoint Inhibitors (ICls) targeting PD-1/PD-L1 and
CTLA4 are highly effective in patients with solid tumors
characterized by high neoantigen loads such as melanoma and
lung cancer, and have become standard of care for these patients.
ICls are currently explored in multiple clinical trials of patients with
hematologic malignancies including AML. Combinatorial
approaches are also underway by exploiting other ICls, such as
CD47, TIM-3, TIGIT, and LAG-3.

AML blasts alter the formation of T-cell immune synapses

One of the most comprehensive study that analyzed the T-cell
compartment in AML was performed by Le Dieu et al. They
observed that the absolute number of T cells in the peripheral
blood (PB) of newly diagnosed AML patients was increased
compared with age-matched healthy controls. Furthermore, gene
expression profiling revealed an aberrant T-cell activation signature
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in AML patients. In particular, differentially expressed genes were
involved in actin cytoskeletal formation, and correlative functional
data demonstrated an impaired capacity of T cells in forming an
immune synapse with AML blasts [23]. These results are in line with
previous studies showing that T cells isolated from AML patients
are phenotypically effector cytotoxic T lymphocytes, express
activation markers, but are impaired in their cytotoxic potential
defined as the capacity to express cytotoxic granules [24].

AML secrete immunoinhibitory soluble factors altering T-cell
immune responses

T-cell functional alterations in AML are also a consequence of a
dysregulated cytokine network directly mediated by AML blasts.
Several studies have documented high numbers of Tregs in
patients with AML [25, 26]. In particular, Shenghui et al. showed
that elevated frequency of CD4*CD25"CD127°"" Tregs in AML is
associated with poor prognosis. Moreover, it was observed that
bone marrow (BM)-resident Tregs were more immunosuppressive
than Tregs detected in PB further supporting the concept that the
AML niche is characterized by multiple layers of inhibitory cells
[27]. Tregs enrichment in the AML niche has been associated with
the capacity of AML blasts to secret immunoinhibitory factors, such
as IL-10, IL-35, transforming growth factor-beta (TGF-B), and
indoleamine 2,3-dioxygenase 1 (IDO1) [28-30]. These soluble
factors push T-cell polarization towards induced Tregs promoting
T-cell tolerance and leukemia progression. IDO1 in particular has
been shown to correlate with poor prognosis [31]. IDO1 catabolizes
the degradation of tryptophan to N-formylkynurenine. The
reduction in local tryptophan concentration and accumulation of
toxic tryptophan metabolites cooperate to arrest T-cell prolifera-
tion. Moreover, tryptophan-derived metabolites like L-kynurenine
inhibit antigen-specific T-cell proliferation and induce T-cell
apoptosis. This cytokine imbalance reduces the production of
pro-inflammatory cytokines, such as IL-15 and interferon-gamma
(IFN-y), further propagating the negative effects on T-cell effector
functions. A more detailed understanding of the altered cytokine
profile in AML has been reviewed by Binder et al [32].

Other soluble factors related to different metabolic pathways
have also been described to modulate the TME in leukemia. High
levels of arginase Il in plasma of AML patients were shown to
impair T-cell proliferation and to polarize monocytes toward an
immunosuppressive M2-like phenotype. In addition, increased
arginine metabolism inhibited the proliferation of hematopoietic
progenitors, contributing to a wider suppressive TME [33].
Together with arginine I, upregulation of the inducible nitric
oxide synthase (iNOS) by AML blasts correlated to inhibition of T-
cell proliferation, increase in Tregs, and decreased number of
NKT cells [34]. Among the most recently studied metabolites in
the tumors are fatty acids and lipid mediators derived from fatty
acids. Emerging data suggest that targeting lipid pathways may
restore an active immune milieu in AML [35]. In particular, AML
blasts can metabolize both glucose and fatty acids, released by
surrounding stromal adipocytes, to derive acetyl-CoA to drive the
Krebs cycle and oxidative phosphorylation (OXPHOS) for ATP
production. Notably, LSCs in the AML niche express the fatty acid
transporter CD36, and induce lipolysis in BM adipocytes to fuel
fatty acid oxidation (FAO) in leukemic cells [36].

AML blasts escape NK cell recognition

NK-mediated tumor recognition is MHC-independent and is
governed by the interaction of inhibitory and activating receptors
on NKs and several ligands expressed on the surface of tumor
cells. The graft-versus-leukemia effect mediated by alloreactive
NKs in patients receiving haploidentical HSCT represented one of
the first evidence that NKs can target and kill residual AML blasts.
However, mechanisms of NK-cell evasion and escape by AML
blasts have been documented and include an altered expression
of NK-cell ligands caused by epigenetic changes, such as incorrect
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hypermethylation of genes encoding ligands for the activating
receptor NKG2D (NKG2DL), namely MICA, ULBP1, ULBP2, and
ULBP3 genes [37]. Notably, NKG2DL-negative leukemic cells that
escaped the NK-cell immune recognition were shown to have an
immature morphology and molecular and functional stemness
characteristics, further indicating how AML LSCs and immune
evasion are intertwined [38]. Moreover, AML blasts were shown to
release a soluble form of NKG2DL (sNKG2DL), through cleavage by
metalloproteases or into exosomes, causing the downregulation
of NKG2D receptor on NKs and impairing their cytotoxic activity.
AML blasts express high levels of ligands, such as CD112 and
CD155, that cause a decrease in their activating receptor DNAM-1
on NKs, ultimately leading to an altered degranulation of NKs and
impaired cytotoxic activity [39, 40]. AML blasts may also escape
NKs by induction of co-inhibitory receptors in NKs that include
TIGIT, which inhibits IFN-y release [41]. High TIGIT expression at
engraftment has been associated with a reduced number of NKs
in the BM, reduced incidence of acute graft-versus-host disease,
and poor survival [42].

AML blasts increase myeloid-derived suppressor cells and
tumor-associated macrophages

Myeloid-derived suppressor cells (MDSCs) cause T-cell tolerance
through multiple mechanisms that include expression of V-
domain Ig suppressor of T-cell activation (VISTA), PD-L1, IDO1,
arginase, and production of reactive oxygen species (ROS),
peroxynitrate, and multiple cytokines (TGF-f and IL-10) [43].
AML blasts can promote MDSCs expansion by releasing extra-
cellular vesicles (EVs) containing the oncoprotein MUC1, which, in
turn, increases c-myc expression in EVs through microRNA miR34a,
leading to MDSCs proliferation [44]. Recently, the Akt/mTOR
pathway has been shown to play a critical role in the AML-EV-
induced phenotypical and functional transition from monocytes to
MDSCs. Monocytes engulfing AML-derived EVs acquire the typical
CD14THLA-DR" inhibitory phenotype and upregulate expression
of genes characteristic for MDSCs, such as ST00A8/9 and cEBPpB
[45]. In AML patients, it has been reported that MDSCs were more
abundant in BM and in PB compared with healthy controls [44].
There is also an association between Tregs and MDSCs numbers in
myelodysplastic syndrome, which correlates with a higher risk of
transformation to AML, indicating a potential role for MDSCs in
AML progression [46].

Macrophages are critical cellular components of the immuno-
suppressive TME. The intrinsic plasticity of macrophages renders
this cell subset particularly susceptible to tissue-specific regula-
tion. Within the TME, tumor-associated macrophages (TAMs) are
generally defined as M2 macrophages, and are characterized by
anti-inflammatory activity by secreting arginase, metalloprotei-
nases, TGF-B, IL-10, and other cytokines that cause immune
suppression, angiogenesis and tissue repair [47]. Al-Matary et al.
reported that TAMs are elevated in the BM of AML patients
compared to healthy donors. Moreover, AML blasts can directly
drive TAMs to an M2-like phenotype in the BM and spleen of
tumor-bearing mice [48].

Stromal and vascular niches promote resistance to
immunotherapy

The TME in AML causes resistance to conventional chemotherapy
and suppresses anti-tumor immune responses. In fact, leukemia-
associated remodeling within the AML niche, including changes
associated with increased hypoxia and inflammation as well as
metabolic reprogramming, facilitate immune evasion and activa-
tion of survival pathways favoring AML progression (Fig. 2) [49].

Immunosuppressive properties of mesenchymal stromal cells
in AML

Mesenchymal stromal cells (MSCs) physiologically display a unique
immune regulation ability by inhibiting/reprogramming the
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Fig. 2 Contributions of non-hematopoietic cells in the bone marrow niche to AML immune escape. Representative mechanisms by which
AML-reprogrammed niche cells can promote immune evasion. Mesenchymal stromal cells (MSCs) can regulate the immune response in the
leukemic BM microenvironment by secreting a plethora of inhibitory factors, as soluble molecules or as a component of exosomes (1). These
factors can inhibit cell proliferation, cytolysis, and production of anti-leukemia cytokines by effector lymphocytes. MSCs mainly through the
altered production of CXCL12, interacting with CXCR4, can influence the fate of leukemic cells by triggering their proliferation, spread, and
survival and regulate leukocyte migration to the BM niche (2). MSCs and adipocytes regulate the leukemia cells’ metabolism (3). The
mitochondrial transfer has recently been appreciated to be a mechanism of intercellular communication associated with chemoresistance and
potentially also with immune resistance. Tunneling nanotubules (TNTs) appear to be the primary exchange route used by MSCs to donate
mitochondria to AML blasts, boosting oxidative phosphorylation and consequently ROS production which is used by AML blasts as a strategy
to evade anti-leukemic effector lymphocytes. A reciprocal relationship occurs between AML blasts and adipocytes wherein malignant cells
induce lipolysis from adipocytes and, in turn, adipocytes release fatty acids, which are used as an energy source by malignant hematopoietic
cells. Fatty acid oxidation seems to promote the development and activity of immunosuppressive immune cells, such as Tregs and M2
macrophages. The dramatic increase in BM vascular permeability and decrease of blood flow that coincides with leukemic growth can alter

the ability of T cells to home, adhere, and extravasate into the leukemic reservoir (4). Figure created with Biorender.

activation, proliferation, and function of both adaptive and innate
immune cells, as extensively recently reviewed [50]. The role of
MSCs in inhibiting innate and adaptive immunity in hematological
malignancies, and in particular in AML, is under active investiga-
tion. Vasold and colleagues have reported that AML blasts cultured
with MSCs are less susceptible to NK cell-mediated killing and that
the stromal-induced protection in AML was cell-cell contact-
dependent [51]. Toll-like receptor (TLR) 4 may contribute to the
MSC-induced inhibition of NK cell function. Sorted TLR4" MSCs
derived from AML patients decreased NK cell proliferation and
cytotoxicity, and this effect was enhanced by the activation of the
TLR4 pathway following lipopolysaccharides treatment [52, 53].
The inhibitory effect of MSCs isolated from AML patients is
further supported by their capacity to induce Tregs and upregulate
IDO1 [54, 55]. Similarly, MSCs isolated from patients with
myelodysplastic syndrome inhibit DC functions through increased
production of TGF-f [56]. Other studies reported that AML-derived
MSCs are more immunosuppressive and anti-inflammatory than
MSCs isolated from healthy donors, showing enhanced suppres-
sion of lymphocytes proliferation in vitro and diminished secretion
of pro-inflammatory cytokines such as IL-10 [57]. It has also been
shown that different clinical/cytogenetic AML subgroups may
associate with different profiles of MSCs. Lopes et al. reported that
MSCs in AML patients at diagnosis are characterized by high levels
of vascular endothelial growth factor A (VEGFA), chemokine ligand
2 (CXCL12), prostaglandin E2 (PGE,), IDO1, IL-1B, IL-6, and IL-32
and decrease of IL-10 compared to MSCs collected at the time of
disease relapse indicating that MSCs as TAMs are plastic cells that
may respond to environmental stimuli [58].
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Immunosuppression mediated by MSCs can be further exacer-
bated by the capacity of AML blasts to generate an inflamed TME.
Thus, modifications of the inflammatory status induced by therapy
can reshape the immunomodulatory activity of MSCs. In patients
with juvenile myelomonocytic leukemia, MSCs showed differential
MRNA expression, including genes involved in immunomodula-
tion, that normalized when disease remission was achieved after
HSCT [59]. If MSCs can affect immune-based therapies remains to
be elucidated. The cytokine storm observed in patients treated
with CAR T cells can potentially elicit the immunosuppressive
activity of MSCs and cause cell death of MSCs, which is required
for triggering their immunosuppressive effects [60]. Recent data
showing that MSCs inhibit T-cell responses but do not compro-
mise CD19-specific CAR T cell activity seems indicating that the
potent effector function of CAR T cells may overcome the
inhibitory effects of MSCs, but additional studies are needed to
mechanistically highlight this phenomenon [61].

AML niche shows altered immune cell homing

CXCL12 expressed by BM stromal cells and its receptor CXC
receptor 4 (CXCR4) play a key role in the migration of LSCs to the
BM niche. High expression of CXCR4 on AML blasts has been
shown to predict poor prognosis [62]. The CXCL12/CXCR4 axis can
also activate pathways that favor the survival, growth, and
chemotherapy resistance of AML blasts [63]. CXCL12 expression
seems to be reduced in MSCs in AML, fostering the migration of
CXCR4-overexpressing malignant LSCs versus normal hematopoie-
tic stem cells (HSCs) [64]. CXCR4 is also involved in the trafficking of
adoptively transferred lymphocytes or CAR T cells to the BM niche.
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Suppression in the ability of stromal cells to produce CXCL12 in the
AML TME may dampen their migration and infiltration into the BM,
as reported for other hematological malignancies [65].

Metabolic alterations of the AML niche

It has been established that leukemic cells present deregulated
energy metabolism, which may be involved in causing immune
evasion. Competition for critical nutrients such as glucose or amino
acids increased release of bioactive inhibitory metabolites such as
ROS, and overall microenvironmental metabolic remodeling in tumors
including AML have been reported playing inhibitory effects on the
immune cell subsets [66]. MSCs are capable of further triggering these
metabolic alterations by increasing the bioavailability of nutrients or
by the direct transfer of key machineries between cells. MSCs from
AML patients have a higher propensity to differentiate into
adipocytes, and the interaction between AML blasts and adipocytes
in the BM niche creates a unique microenvironment that supports the
metabolic demands of leukemia [36, 67]. AML blasts induce hormone-
sensitive lipase in adipocytes and activate lipolysis, which then enable
FABP4-dependent transfer of fatty acids to leukemia cells, thus
enhancing FAO [68, 69]. Fatty acid abundance can hamper effector T-
cell functions and promote Tregs differentiation [70]. In fact, FAO can
inhibit the activation of effector T cells by increasing PD-1 expression
and inhibiting INF-y secretion, while promoting Treg cell generation
through activation of the MAPK signaling pathway. Moreover, FAO
has also a key role in polarizing M2 macrophages [71].

MSCs can transfer mitochondria to AML cells through endocytic
pathways or tunneling nanotubes (TNT), a process that is further
boosted by chemotherapy and associated with increased oxida-
tive phosphorylation-derived ATP production in the recipient cells
[72]. AML-derived nicotinamide adenine dinucleotide phosphate
oxidase-2 (NOX2) drives the transfer of mitochondria via the
generation of superoxide [73]. Recently, gap-junction interactions
between AML cells and MSCs in the leukemic niche have been
implicated in the regulation of leukemic cell metabolism [74]. The
constitutive activation of NOX and the mitochondrial production
linked to OXPHOS are the primary sources of large amounts of
ROS that are particularly abundant in AML of M4 and M5 subtypes
[75, 76]. AML blasts can use ROS to evade anti-leukemic effector
lymphocytes since free radicals inactivate T and NK cells by
triggering PARP-1 dependent apoptosis [77].

Vascular niche remodeling in AML

Solid tumors undergo significant remodeling of the blood vessels,
which hinders the efficient recruitment of T cells to the tumor site
[78]. Furthermore, hypoxia secondary to poor perfusion contributes
to inhibit T and NK cells through the activation of their adenosine
A2 receptors by the abundant adenosine present in the hypoxic
environment [79]. Indeed, extracellular ATP is markedly increased
in the AML niche [80] and it is transformed in the immunosup-
pressive mediator adenosine by the ectoenzymes CD73 and CD39
expressed on tumor cells, Tregs and MDSCs [81]. AML progression
has been shown to cause significant remodeling of vascular
endothelium mainly via nitric oxide (NO), with increased vascular
permeability and decreased blood flow, which results in the
formation of a hypoxic leukemia niche [82]. The endosteal BM
region is the main site of this vessel loss [83]. As a consequence,
several BM areas are hypoperfused and both drug biodistribution
and immune cell trafficking are compromised [84, 85]. Finally, the
adhesive properties of the immune cells to the endothelium are
also altered due to the increased levels of E-selectin induced by the
inflammation generated by AML blasts [86].

COMBINATORIAL STRATEGIES TO OVERCOME AML
RESISTANCE TO IMMUNOTHERAPY

The complex immunosuppressive cell network of the AML niche
can affect even the most advanced immune-based therapeutic
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strategies, such as ICls and CAR T cells. Combinatorial strategies
aimed at overcoming multiple immunosuppressive mechanisms,
as well as at targeting non-malignant components of the TME,
such as stromal cells and vascular endothelium, may represent a
novel way to enhance immunotherapy effectiveness.

Targeting AML by combinatorial strategies

Improving BiTEs or DART anti-leukemic activity. An illustrative
clinical experience of AML escape from immunotherapeutic
approaches relates to the studies with the bispecific T-cell
engager (BiTE®) antibody construct CD3xCD33, AMG330. BiTEs
are bispecific antibody-based molecules composed of two single-
chain fragment variable (scFv) domains derived from two different
antibodies, one specific for a tumor-associated antigen and the
other one for CD3¢, on one polypeptide chain [87]. Treatment with
AMG330 showed that the simultaneous engagement of target
cells (CD33% AML blasts) and effector cells (CD3™" T cells) facilitated
recruitment and expansion of effector T cells leading to the
elimination of AML blasts even at very low effector-to-target ratios
of up to 1:80 in vitro. However, engaged CD4" and CD8* memory
T cells upregulated PD-1, TIM-3, and LAG-3, indicating that these
cells remain susceptible to checkpoint inhibition [88]. PD-1/PD-L1
blockade led to a significant increase of AMG330-mediated lysis, T-
cell proliferation, and IFN-y secretion [89]. In a reported clinical
study, 8 of 42 evaluable patients responded to AMG330 and
preliminary response assessment showed that patients with high
tumor burden had decreased response to AMG330 [90]. In search
for other factors that might cause resistance to AMG330,
Harrington et al. found that a favorable response correlated with
the number of endogenous T cells, while the levels of CD33 in
AML blasts, disease-risks and drug resistance did not correlate
with responses [91]. The positive effects of the PD-1/PD-L1 have
also been observed in studies using FLT3 BiTE, AMG427
(NCT03541369) [92].

DART, or dual-affinity retargeting antibodies, are bispecific
antibodies that have increased stability and half-life compared to
BiTEs. In particular, flotetuzumab, a CD123xCD3 bispecific DART,
showed encouraging activity in AML patients with an objective
response rate ranging between 18% and 30%, but also increased
incidence of cytokine release syndrome [93]. Of note, patients with
early disease progression showed higher baseline levels of PD-L1
on AML blasts [94].

CAR T cells in AML. The success of CAR T cell therapy in B cell
malignancies has yet to be realized in AML. In addition to the
identification of the most appropriate target in AML to maximize
efficacy, but preventing myeloid suppression, preclinical evidence
suggests that CAR T cells may be more susceptible to checkpoint
inhibition in AML compared to B cell malignancies. Kenderian
et al. found PD-1 and TIM-3 pathways to be involved in CART cell
loss of function in AML. Incubation of primary AML samples with
CD33- or CD123-redirected CAR T cells resulted in a significant
upregulation of PD-L1 on AML blasts and the combination of CAR
T cells with ICls increased the anti-tumor effects of CAR T cells [95].
Our group has also recently observed upregulation of PD-1 and
TIM-3 on cytokine-induced killer cells (CIK) expressing a CD33-
specific CAR isolated from the BM of tumor-bearing mice
nonresponding to the treatment [96].

In addition to ICls [97-99], epigenetic drugs can also be used in
the attempt to restore AML ligands [37] and T-cell functions
[100, 101] within the immunosuppressive TME [102]. CAR T cells
combined with ICls are currently under preclinical and clinical
investigation for the treatment of both solid and hematological
tumors, as recently reviewed by Hosseinkhani N et al. [103]. Novel
bispecific CAR T cell constructs targeting both CD13 and TIM-3
have shown eradication of AML cells in xenograft models.
Bispecific CAR T cells showed lower PD-1 and TIM-3 expression
in the BM, suggesting that TIM-3 targeting may have a potential
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immunomodulatory effect [104]. Baragafio Raneros A et al.
observed that DNA methylation can contribute to the absence
of NKG2DL expression during AML development. Treatment with
inhibitors of histone deacetylase (HDACi) and DNA methyltrans-
ferase (DNMTi) was found to restore NKG2DL (MICA and ULBPs
1-3) expression in AML through the hypomethylation of TIMP3, an
inhibitor of protease ADAM17, the sheddase involved in the
release of soluble NKG2DL by AML cells [105]. The DNA-
demethylating agent decitabine (DAC) has been recently shown
to significantly enhance anti-leukemia functions of CD123-specific
CAR T cells in vitro and in vivo. Transcriptomic profiling revealed
that DAC treatment conferred to CD123 CART cells an enrichment
of genes associated with naive, early memory, as well as non-
exhausted T cells [100]. Moreover, the next-generation CAR design
is conceived to boost the anti-tumor function by using immune
agonist [106] or co-stimulatory cytokines [107, 108], and to skew T-
cell phenotype toward a stem cell/central memory state [109-
111]. In a recent preclinical study, Ataca Atilla et al. incorporated
transgenic IL-15 to enhance the anti-AML activity of CLL-1 CAR
T cells. Unexpectedly, and in contrast to the safety observed with
CAR T/IL15 combination in other disease settings, IL-15-expressing
CLL-1 CAR T cells induced a severe and atypical form of cytokine
release syndrome (CRS), associated with high levels of circulating
tumor necrosis factor-alpha (TNF-a). Combination of TNF-a
blockade and elimination of CAR T cells using an inducible safety
switch controlled the adverse events [112]. This study suggests
that combinatorial strategies with CARs improve the anti-tumor
effects in AML, but a careful evaluation is fundamental to gain
efficacy, whilst avoiding toxicity.

Targeting the leukemic niche to improve the efficiency of
immunotherapies

The central role of stromal cells in the regulation of anti-tumor
immune response stimulates the development of novel therapeu-
tic strategies that target not only tumor cells directly, but also non-
malignant cells contributing in shaping the TME.

Targeting of MSCs can be obtained using cytotoxic drugs or
drugs interfering with their immunosuppressive properties.
Tyrosine kinase inhibitors can inhibit both growth and function
of MSCs [113]. However, MSCs are involved in many physiological
processes in the BM (e.g. HSCs maintenance and regulation) and
in other organs (maintenance of the structural architecture), and
depletion of MSCs may have serious side effects. How normal
MSCs differ from leukemia-associated MSCs remains to be
determined, and it is critical in guiding the development of
specific drugs. In solid tumors, the fibroblast activation protein
(FAP), a member of the serine protease family, is expressed by
tumor-associated fibroblasts at higher levels than on resident
fibroblasts in healthy tissue. Thus, FAP has been considered as a
suitable target to eliminate tumor-associated fibroblasts. In
particular, FAP-specific CAR T cells have been used to reduce
tumor-cell growth, with minimal off-tumor toxicity [114]. However,
the relationship between activated fibroblasts and BM MSCs
remains unclear [115, 116]. Many small-molecule inhibitors
targeting IDO1, heme oxygenase-1 (HO-1), hepatocyte growth
factor (HGF), arginase | and Il, PGE,, and TGF-$ [117-119] and MSC
immunomodulatory such as aminobiphosphonate zoledronate
[120] have been developed opening the use of these drugs in
combination with ICls and adoptive cell therapies.

The mobilization of leukemic cells from the protective BM niche
is considered a promising strategy to increase their susceptibility
not only to conventional chemotherapeutic agents but also to
immunotherapies [121]. Small-molecule inhibitors, short peptides,
and antibodies have been developed to disrupt the CXCL12/
CXCR4 axis that releases AML blasts from the BM [63], and recent
findings suggest that CXCR4 antagonism can potentially synergize
with immunotherapies in several clinical trials involving solid
tumors.

SPRINGER NATURE

Metabolic alterations of the leukemic niche are also potentially
druggable. Targeting the fatty acid metabolism using FAO
inhibitors may increase not only the efficacy of chemotherapeutic
agents, as shown by Farge et al. by combining etomoxir and
cytarabine [122], but also boost adoptively transferred T cells [71].
Although etomoxir is no longer used clinically due to its side
effects [123], other FAO inhibitors, including avocatin B, exhibit
similar inhibitory effects on leukemia cell metabolism [124]. The
conversion of ATP in adenosine in the AML microenvironment
limits anti-tumor immunity through the suppression of multiple
immune subsets including T cells. Indeed, genetic depletion of the
adenosine 2A receptor which is over-expressed by activated CAR
T cells has been found to enhance their anti-tumor function
[125, 126].

Commonly used chemotherapeutics such as cytarabine, etopo-
side and doxorubicin are agents that promote mitochondria
uptake by AML cells [75]. Consequently, resistant clones could
have increased oxidative metabolism and produce a large amount
of ROS that can, in turn, inactivate T cells and NKs. Several
approaches have been used to disrupt mitochondria transfer by
blocking TNTs, endocytosis, or superoxide. The surface molecule
CD38 is critical for the transport of mitochondria from MSCs to
AML cells [127]. Daratumumab, a monoclonal anti-CD38 antibody
approved for the treatment of multiple myeloma, was shown to
block the delivery of mitochondria to AML cells, decrease the
oxygen consumption rate, and inhibit the growth of leukemic cells
[128, 129]. Main regulators of mitochondrial biogenesis and
activity including PGC-1a and NOX2 are also promising targets.
Marley et al. showed that inactivation of PGC-1a by knockdown or
by reduction in superoxide levels with N-acetylcysteine impaired
mitochondrial transfer [73, 130]. Gap junctions are also shown to
mediate mitochondria transfer of MSCs. Blocking connexin-43
gap-junction formation had no effect on cytoplasmic transfer, but
reduced mitochondria transfer [131].

Finally, remodeling the dysfunctional tumor vasculature in AML
and reversing hypoxia may increase drug delivery and enhance T-
cell function. In this sense, NOS inhibitors can function to normalize
the altered BM vascular permeability [82]. NOS inhibitors have
been developed for several applications, many of which are under
clinical investigation. A specific example is the development of a
peptide that mimics the endogenous inhibition function of
caveolin-1 and selectively acts on endothelial NOS3 [132].

CONCLUSION AND FUTURE PERSPECTIVES

Immunotherapy offers the possibility of more specific and less
long-term toxic therapy in AML. The growing attention to new
immunotherapy strategies together with a greater elucidation of
the AML pathophysiology has led to understanding how the TME
plays key roles in hindering therapeutic efficacy and in modulating
toxicity.

Transcriptomic signatures have been recently used to stratify
AML patients into immune-infiltrated and immune-depleted
disease revealing critical differences in immune gene expression
across age groups and molecular disease subtypes [5]. Of utmost
importance, a novel precision medicine-based conceptual frame-
work was described by evaluating the response to the CD123xCD3
DART flotetuzumab in relapsed/refractory AML patients. Specifi-
cally, T cell-targeting immunotherapy has been found to be
beneficial in subgroups of patients with immune-infiltrated TME.
Furthermore, since flotetuzumab increases expression of PD-L1 in
AML blast, there is strong rationale for conceiving clinical studies
with sequential flotetuzumab and ICls in AML [94]. Immunological
stratification of pre-treatment BM samples combined with
cytogenetic and mutational information may define AML patients
who will potentially have greatest benefit from immunotherapies.

The development of preclinical models that faithfully recapitu-
late the TME of the human AML remains instrumental to dissect
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the mechanism underlining the formation of the TME and to test
novel therapeutic approaches. Artificial 3D microenvironment
recreating the topology of BM with the stromal and vascular niche
components, such as BM-on-a-chip platforms, can offer a powerful
tool [133]. Moreover, the in situ mapping of different subpopula-
tions in the human BM would allow a better definition of the cell
subsets involved and of stromal cell-specific markers that could
lead to the development of selective stromal-targeted therapies
[134, 135].

The future of immunotherapies foresees combinatorial strate-
gies based not only on the possibility to increase targeting efficacy
but also on the modulation of the immune escape mechanisms
generated within the TME. Finally, precise identification of the
immune escape mechanisms in individual AML patients will allow

for

personalized immunotherapy based on specific immune

signatures.
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