
Applied Mathematics & Optimization (2021) 84:2849–2887
https://doi.org/10.1007/s00245-020-09732-w

Random Evolution Equations: Well-Posedness,
Asymptotics, and Applications to Graphs

Stefano Bonaccorsi1 · Francesca Cottini2 · Delio Mugnolo3

Accepted: 11 November 2020 / Published online: 11 March 2021
© The Author(s) 2021

Abstract
We study diffusion-type equations supported on structures that are randomly varying
in time. After settling the issue ofwell-posedness, we focus on the asymptotic behavior
of solutions: our main result gives sufficient conditions for pathwise convergence in
norm of the (random) propagator towards a (deterministic) steady state. We apply our
findings in twoenvironmentswith randomly evolving features: ensembles of difference
operators on combinatorial graphs, or else of differential operators on metric graphs.

Keywords Operator semigroups · Evolution equations in random environments ·
Discrete Laplacians · Quantum graphs

Mathematics Subject Classification Primary 35R60 · Secondary 47D06 , 37A50 ,
60K15

Dedicated to Professor Rainer Nagel on the occasion of his 80th birthday.

The third author was partially supported by the Deutsche Forschungsgemeinschaft (Grant 397230547).

B Stefano Bonaccorsi
stefano.bonaccorsi@unitn.it

Francesca Cottini
f.cottini2@campus.unimib.it

Delio Mugnolo
delio.mugnolo@fernuni-hagen.de

1 Dipartimento di Matematica, Università di Trento, via Sommarive 14, Povo, TN 38123, Italy

2 Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca, via Roberto Cozzi 55,
20125 Milan, Italy

3 Lehrgebiet Analysis, Fakultät Mathematik und Informatik, FernUniversität in Hagen, 58084 Hagen,
Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00245-020-09732-w&domain=pdf
http://orcid.org/0000-0002-5209-2678


2850 Applied Mathematics & Optimization (2021) 84:2849–2887

1 Introduction

Randomly switching dynamical systems stand in between deterministic evolution
equations (where the dynamics of the system is prescribed and completely known
a priori) and stochastic differential equations, where the dynamics is perturbed by the
introduction of noise.

Such systems are described by a continuous component, which follows a (determin-
istic) evolution driven by an operator A j which is selected among a class of operators
C = {A1, . . . , An} by a discrete jump process.

These problems are related to a large—but somehow disjoint—literature, which
treats piecewise deterministic Markov processes [5,11,12,29], switched dynamical
systems [7], products of random matrices [22], random walk in random environment
[39,40] with applications in biology [10], physics [9] or finance [38], for instance.

In the present paper,we study the asymptotic behavior of a class of randomevolution
problems that may be relevant in some applications. Our main results (Theorems 2.11
and 2.13 below) state that the system consisting of a random switching between
parabolic evolution equations driven by contractive, compact analytic semigroups
satisfying suitable additional conditions converges towards an orthogonal projector
provided the process spends enough time at each state, and we are able to estimate
the rate of convergence: we refer to Sect. 2 for the theorems’ formulation and Sect. 3
for their proof. As a motivation to our study, we provide in this section an example
concerning the dynamics of the discrete heat equation on a system of random varying
graphs. This example will be further analyzed in Sect. 4, which is devoted to the study
of combinatorial graphs: there we discuss some further examples which relate our
results to the existing literature. Finally, Sect. 5 is devoted to an application of our
theory to a randomly switching evolution system on metric graphs. This section takes
advantage of a novel formal definition of metric graphs [30] which can be exploited
to verify the assumptions of our construction.

1.1 AMotivating Example

Let G1, . . . ,GN be a family of simple (i.e., with no loops or multiple edges) but not
necessarily connected graphs on a fixed set of vertices V with cardinality |V|. We
consider the function space defined as the complex, finite-dimensional Hilbert space
C
V ≡ {u : V→ C}.
On every graphGk we introduce the graph LaplacianLk (for a formal definition, see

Sect. 4) , which (under our convention on the sign) is negative semi-definite and whose
eigenvalue λ1 = 0 has multiplicity equal to the number of connected components in
Gk . The corresponding eigenspace is spanned by the collection of indicator functions
on each connected component. In particular, if Gk is connected, then kerLk = 〈1〉 is
the space of constant functions on the vertices.

It is known ([31, Ch. 4]) that the solution of the Cauchy problem
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{
d
dt u(t, v) = Lku(t, v), v ∈ V, t ≥ 0,

u(0, v) = f (v), v ∈ V,

can be expressed in the form

u(t, v) = etLk f (v)

and in the limit for t → ∞, it converges to the projector Pk f onto the null space
kerLk , where the projection equals the average of f on each connected component
of Gk .

Let us introduce a random mechanism of switching the graphs over time. Having
fixed a probability space (�,F, P), we introduce a Markov chain {Xk, k ≥ 0}) with
state space E = {1, . . . , N } (which defines the environment where the evolution takes
place) and a sequence of increasing random times {Tk, k ≥ 0}, T0 = 0, such that the
Cauchy problem is defined by the operator LXk on the time interval [Tk, Tk+1)

{
d
dt u(t, v) = LXk u(t, v), v ∈ V, t ∈ [Tk, Tk+1), k ∈ N,

u(0, v) = f (v), v ∈ V.
(1.1)

We can associate with (1.1) the random propagator

S(t) = e(t−Tn)LXn

n−1∏
k=0

e(Tk+1−Tk )LXk , t ∈ [Tn, Tn+1), n ∈ N, (1.2)

which maps each initial data f ∈ C
V into the solution u(t) of (1.1) at time t . This

settles the issue of well-posedness of (1.1). The main question we are going to address
in this paper is however the following:

(P) Does the random propagator (S(t))t≥0 converge as t →∞? Towards which limit?

The asymptotic behavior of a randompropagator (S(t))t≥0 associatedwith problem
(1.1) has not yet been studied in a general, possibly infinite-dimensional setting. Some
results are known for finite-dimensional time-discrete dynamical systems, where the
randompropagator (S(Tn))n∈N defined likewise is a product of randommatrices (PRM
for short): this theory dates back to the 1960s, see e.g. Furstenberg [20].

In Theorem 2.11 we show that under suitable assumptions on the random switching
mechanism and on the involved operators, the random propagator converges towards
the orthogonal projection on

⋂N
j=1 kerL j ; and in Theorem 2.13 we estimate the rate

of convergence. In Sect. 2 we set the mathematical stage and then formulate both
results; their proofs are led in Sect. 3, after collecting some necessary lemmata of
probabilistic and operator theoretical nature. Our main results require an accurate
analysis of the null spaces of the operators driving the relevant evolution equations (in
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our motivating example, the discrete Laplacians Lk): notice that even when all kerLk

have the same dimension, there is no reason why this should agree with the dimension
of K :=⋂N

j=1 kerL j ; describing the orthogonal projector onto K is therefore, not an
easy task. Coming back to our motivating example of graphs, we observe in Sect. 4
that K can be explicitly described in terms of the null space of a new operator A
that is related to the Laplacians on the graphs G1, . . . ,GN but acts on a different
class of functions. The key point here is that in doing so we can relate the long time
behavior of a Cauchy problem with random coefficients with that of an associated
(deterministic) Cauchy problem supported on a different “union” structure.We are not
going to elaborate on this functorial viewpoint, but content ourselves with discussing
in Sect. 5 a different, more sophisticated setting where the same principle can be seen
in action. While in our two main applications we focus for the sake of simplicity on
heat equations, our abstract theory is by no means restricted to this scope: general
reaction-diffusion equations, evolution equations driven by poly-harmonic operators,
or even systems switching between these two classes could, for example, be studied
as well, see Remark 2.14. An easy application to a heat equation (on a fixed interval)
with random boundary conditions is sketched in Example 2.1.

The case of combinatorial graphs is tightly related to the topic of random walk
in random environments, see e.g. the classical surveys by Zeitouni [39,40], which
roughly speaking describe the behavior of a random walker who at each step finds
herself moving in a new realization of a d-dimensional bond-percolation graph. We
also mention the connection to the somehow dual approach in [23], where Hussein
and the third author develop a theory of evolution equations whose time domain is a
(given!) tree-likemetric graph: on each branch of the tree a different parabolic equation
is considered. In comparison, in the present paper we restrict to the easiest possible
case (the tree is simply R+), but its branches can have random length.

At the same time, if the evolution of L(t) is, in fact, deterministic, then (1.1)
is essentially a non-autonomous evolution equation; well-posedness theory of such
problems is a classical topic of operator theory, while some criteria for exponential
stability have been recently obtained in [2] in the context of diffusion onmetric graphs:
in comparison with ours, the conditions therein are much more restrictive in that each
realization of the considered graph is assumed to be connected.

The convergence of piecewise deterministic Markov processes (or random switch-
ing system) is discussed, in particular concerning the ergodicity of the Markov
processes [5,11]. The results in [8] are concerned with the non-ergodicity of a switch-
ing system in the fast jump rate regime and open the path to similar results in [27].

2 Setting of the Problem andMain Results

In this section we introduce a general setting for abstract random evolution problems:
we will successively show that our motivating problem (P) is but one special instance
of a system that can be described in this way.

To begin with, we construct the random mechanism of switching by means of a
semi-Markov process. These processes have been introduced by Levy [28] and Smith
[36] in order to overcome the limitation induced by the exponential distribution of the
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jump-time intervals and developed by Pyke [33,34]. These models are widely used in
the literature to model random evolution problems and, more generally, evolution in
random media, see e.g. Korolyuk [26].

Let (Z(t), t ≥ 0) be a semi-Markov process taking values in a set E , which denotes
a given set of indices, defined on a suitable probability space (�,F, P). By definition,
this means that there exists aMarkov renewal process {(Xn, τn) : n ∈ N}, where {Xn}
is a Markov chain with values in E and {τn} are the renewal times between jumps.
The distribution function of τn depends on the state of the Markov process Xn and,
conditioned on Xn = x , it is given by

�x (t) = P(τn+1 < t | Xn = x) = q(x, E, t), t ≥ 0.

If we denote θx the renewal time in the state x (i.e., the time spent in x before the next
jump) then the distribution function of θx is just �x (t).

If we introduce the counting process N (t) := max{n : Tn ≤ t}, then Z(t) = XN (t).
The joint distribution is given by the transition probability function q(x, y, t)

q(x, y, t) = P(Xn+1 = y, τn+1 < t | Xn = x).

By definition, for fixed t , (x, y) 
→ q(x, y, t) is a sub-Markovian transition function,
i.e.,

q(x, y, t) ≥ 0 and
∑
z∈E

q(x, z, t) ≤ 1 for all x, y ∈ E and all t ≥ 0.

The non-negative random variables τn define the time intervals between jumps,
while the Markov renewal times {Tn, n ∈ N} defined by

T0 = 0, Tn =
n∑

k=1
τk, n ∈ N

are the regeneration times.
For simplicity, in the sequel we assume that random variables {τn} are independent

and the distribution of τn+1 only depends on the state of the Markov chain Xn = x .
Therefore, the transition probability function can be represented in the form

q(x, y, t) = π(x, y)�x (t),

where
(
π(x, y)

)
is a Markov transition matrix and �x (t) are, for any x ∈ E , the

probability distribution functions of the renewal time in the state x .
Clearly, Markov chains and Markov processes with discrete state space are exam-

ples of semi-Markov processes (the first is associated with τn ≡ 1, the second with
independent, exponentially distributed τn). Our standing probabilistic assumptions are
summarized in the following.
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Assumption 2.1 Z = (Z(t))t≥0 is a semi-Markov process based on aMarkov renewal
process {(Xn, τn) : n ∈ N} over the state space E × [0,∞) such that

(1) the Markov transition matrix
(
π(x, y)

)
defines an irreducible Markov chain with

finite state space E = {1, . . . , N };
(2) the inter-arrival times τn are either constant, or their distribution functions �x (t),

for every x ∈ E , have a finite continuous density function φx (t) > 0 for a.e.
t > 0; and

(3) the inter-arrival times τn have finite expected value E
x [τn] = μx > 0.

The sequence of jump times associated to the process Z is T0 = 0, Tn+1 = Tn+τn+1
for n ≥ 0.

Remark 2.2 Since the embeddedMarkov process X is irreducible, there exists a unique
invariant distribution ρ = (ρ1, . . . , ρN ) for it.

Moreover, this implies that the total time spent in any state by the semi-Markov pro-
cess Z is infinite almost surely, and the fraction of time spent in x ∈ E = {1, . . . , N }
satisfies


x := lim
t→∞

1

t

∫ t

0
1{Z(s)=x} ds = ρxμx∑

j∈E ρ jμ j
. (2.1)

Once our random environment has been described, we can introduce the evolution
problem.

We consider an ensembleK = {A1, . . . , AN } of linear operators on a normed space
H ; clearly, the cardinality ofK is the same as that of the state space E of the Markov
chain.

We can now introduce the abstract random Cauchy problem

{
d
dt u(t) = A(Z(t))u(t),

u(0) = f ,
(2.2)

where A(Z(t)) = AXn for t ∈ [Tn, Tn+1). The solution of (2.2) is a random process,
where the stochasticity enters the picture through the semi-Markov process (Z(t))t≥0.
Notice that (1.1) is a special case of (2.2) on the finite-dimensional space H = C

d .
In the literature, (deterministic) non-autonomous Cauchy problems of the form

(2.2) are a classical topic with a well-developed theory, see e.g. [3,15,37]. In this
paper, we shall use the following natural modification of the notion of solution.

Definition 2.3 Assume that there exists a finite partition 0 = T0 < T1 < . . . < TN =:
T of [0, T ] such that A(Z(t)) = AXn for all t ∈ [Tn−1, Tn), n = 1, . . . , N . We say
that a càglàd function u : [0, T ] → H is a solution of (2.2) on [0, T ] if
(1) u ∈ C1((Tn−1, Tn); H) for all n = 1, . . . , N ;
(2) u(t) ∈ D(AXn ) for all t ∈ (Tn−1, Tn) and n = 1, . . . , N ;
(3) u′(t) = AXnu(t) for all t ∈ (Tn−1, Tn) and n = 1, . . . , N .

Sufficient conditions for well-posedness of (2.2) are given by the following.

123



Applied Mathematics & Optimization (2021) 84:2849–2887 2855

Assumption 2.4 H is a separable, complexHilbert space and for every j ∈ {1, . . . , N }
the closed, densely defined operator A j : D(A j ) ⊂ H → H generates a strongly-
continuous, analytic semigroup of contractions and it has no spectral values on iR,
with the possible exception of 0.

Definition 2.5 A solution u for (2.2) is a stochastic process {u(t), t ≥ 0} which is
required to be adapted to the filtration {Ft } generated by the SMP Z :

Ft := σ {{τn ≤ t} ∩ {(x0, . . . , xn) ∈ B}, n ∈ N, B ∈ En+1}.

and whose trajectories solve the identity u′(t) = A(Z(t))u(t) almost surely in the
sense of Definition 2.3.

Existence and uniqueness of the solution in the sense of previous definition is a
consequence of the well-posedness of the Cauchy problem driven by the operator AXn

on the time interval (Tn−1, Tn).

Theorem 2.6 Under the Assumptions 2.1 and 2.4, given f ∈ H, (2.2) has a unique
solution u, which can be expressed as u(t) = S(t) f in terms of the random propagator
(S(t))t≥0 ⊂ L(H) defined by

S(t) := e(t−Tn)AXn

n−1∏
k=0

e(Tk+1−Tk )AXk , t ∈ [Tn, Tn+1), n ∈ N. (2.3)

In particular, u is a continuous function (almost surely).

Proof Let us fix a path of the semi-Markov process Z , which is identified by the
sequences of states {Xn} and times {Tn}. By standard arguments (see e.g. [18]) there
exists a unique solution u(t) of the Cauchy problem in [0, T1) with leading operator
AX0 : this solution has limit u(T1) = limt↑T1 u(t). Next, we consider the Cauchy
problem in [T1, T2) with leading operator AX1 and initial condition u(T1). Notice that
the solution is continuous in T1. Again, there exists a unique solution which has limit
in T2. We can repeat this argument: since by assumption lim Tn = +∞ almost surely,
we obtain the thesis. ��

We notice the following equivalent expression of the random propagator (S(t))t≥0
in terms of the inter-arrival times {τn} and the counting process (N (t))t≥0 introduced
above:

S(t) := e(t−TN (t))AXN (t)

N (t)−1∏
k=0

eτk+1AXk , t ∈ R+. (2.4)

After establishing well-posedness of our abstract random Cauchy problem, we are
interested in studying the long-time behavior of its solutions. To this purpose, we are
going to impose the following.

Assumption 2.7 A j has compact resolvent for every j ∈ {1, . . . , N }.
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It follows from the Assumptions 2.4 and 2.7 that each A j has finite-dimensional
null space, hence a fortiori

K :=
N⋂
j=1

ker A j

is finite-dimensional, too. If k := dim K > 0, then we denote by {e1, . . . , ek} an
orthonormal basis of K .

We shall throughout denote by PK the orthogonal projector onto K and Pj the
projector onto ker A j . In general, for a projector P , its orthogonal operator is P⊥:=I−
P . For the sake of consistency of notation, we use the same notation also in the case
K = {0}.
Remark 2.8 In particular, it holds that A jei = 0, for all j = 1, . . . , N and all i =
1, . . . , k. Since the range of PK is spanned by null vectors of A j for each j = 1, . . . , N ,
PK commuteswith each A j , each semigroup operator et A j , and each spectral projector
Pj onto ker A j , j = 1, . . . , N , t ≥ 0.

Remark 2.9 Let A be an operator which satisfies our Assumptions 2.4 and 2.7. Notice
that they require A to be dissipative and, thanks to Assumption 2.7, the spectrum of A
is discrete. By [18, Cor. IV.3.12 and Cor. V.2.15] there exists a spectral decomposition
H = H0 ⊕ Hd where H0 = ker(A) and Hd = H⊥0 and the restriction of A to
Hd generates an analytic contraction semigroup with strictly negative growth bound
sd(A) = sup{�(λ) : λ ∈ σ(A) \ {0}} < 0.

In order to examine the long time behavior of the solution, we introduce a notion
of convergence in the almost sure sense.

Definition 2.10 We say that a random propagator (S(t))t≥0 ⊂ L(H) converges in
norm P- almost surely towards a (deterministic) operator M ∈ L(H) if

P

(
‖ · ‖ − lim

t→∞ S(t) = M
)
= 1.

Next result provides the main result about the asymptotic behaviour of the random
propagator (S(t))t≥0 associated to the Cauchy problem (2.2).

Theorem 2.11 Under the Assumptions 2.1, 2.4, and 2.7 the random propagator
(S(t))t≥0 for the Cauchy problem (2.2) converges in norm P-almost surely towards
the orthogonal projector PK onto K :=⋂N

j=1 ker A j .

Let us finally discuss the asymptotic behavior of the random evolution problem
(2.2) under an additional assumption that is inspired by a result from [2], where non-
autonomous diffusion equations on a fixed network are studied. Our aim is to study
when the solution converges exponentially, for all initial data f , towards the orthogonal
projector of f onto the eigenspace with respect to the simple eigenvalue 0. Adapting
the ideas of [2] to our general setting, we shall impose the following.
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Assumption 2.12 There is one operator, say A1, whose null space ker A1 is contained
in the null space of all other operators A2, . . . , AN . In this case, we have that K :=⋂N

j=1 ker A j = ker A1.

It turns out that under this additional assumption (S(t))t≥0 converges in norm
exponentially fast towards the orthogonal projector PK onto K . We stress that this is
again a probabilistic assertion, since the result depends on the path of the system—
actually, on the number of visits to the state corresponding to A1.

Theorem 2.13 Under the assumptions of Theorem 2.11, let additionally the Assump-
tion 2.12 hold. Then the almost sure convergence of the random propagator towards
PK is exponential with rate α, where

α ≥ lim
t→+∞

1

t

∫ t

0

(− sd(A1)
)
1(Z(s)=A1) ds =

(− sd(A1)
)

1 > 0,

and sd(A1), introduced in Remark 2.9, is strictly negative thanks to the Assumption
2.12 and 
1 was introduced in (2.1).

We postpone the proofs of our main results to Sect. 3.

Remark 2.14 1) The Assumption 2.4 is especially satisfied if each A j is self-adjoint
and negative semi-definite. In this case, moreover, sd(A j ) = λk j+1(A j ) the largest
non-zero eigenvalue, where k j is the dimension of ker(A j ) (we denote λk the sequence
of eigenvalues of A j , and w.l.o.g. we assume that they are ordered: λ1 ≥ λ2 ≥ . . . ;
then λk = 0 for all k < k j ).

There are, however, further classes of operators satisfying it. If the semigroup
generated by A j is positive and irreducible, for example, it follows from the Kreı̆n–
Rutman Theorem that the generator’s spectral bound is a simple, isolated eigenvalue.
A more general class of examples can be found invoking the theory of eventually
positive semigroups, see [13, Thm. 8.3].

2) If we strengthen Assumption 2.12 by requiring that all operators in the ensamble
K satisfy ker(A j ) = K , then the statement of Theorem 2.13 becomes deterministic
in the sense that the convergence towards the orthogonal projector PK always occurs.

2.1 Randomly Switching Heat Equations

The scope of our result is not restricted to graphs and networks. To illustrate this, we
consider a toy model—a heat equation with initial data f ∈ L2(0, 1), under different
boundary conditions—where the switching takes place at the level of operators, rather
than underlying structures. Here we show that convergence to the projector onto the
intersection of the null spaces holds. A more complex example, where the thermostat
model with switching in the boundary conditions, is given in [27]: in that case, non-
ergodicity is possible under certain conditions on the parameters.

(1) We first consider two different realizations A1, A2 of the Laplacian acting on
L2(0, 1): with Neumann and with Krein–von Neumann boundary conditions,
which lead to the domains
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D(A1) :=
{
u ∈ H2(0, 1) : u′(0) = u′(1) = 0

}
(2.5)

and
D(A2) :=

{
u ∈ H2(0, 1) : u′(0) = u′(1) = u(1)− u(0)

}
(2.6)

respectively, [35, Exa. 14.14]. Both operators satisfy the Assumption 2.4. Further-
more, the null space of the former realization is one-dimensional, as it consists of
the constant functions; whereas a direct computation shows that null space of the
latter realization is 2-dimensional, as it consists of all affine functions on [0, 1];
hence the intersection K of both null spaces is spanned by the constant function 1
on (0, 1). Both associated heat equations are well-posed, yet the latter is somewhat
exotic in that the governing semigroup is not sub-markovian. We are interested
in the long-time behavior of this mixed system (2.2), with A(Z(t)) ∈ {A1, A2}:
if the switching obeys the rule in the Assumption 2.1, the random propagator
(S(t))t≥0 converges in norm P-almost surely towards the orthogonal projector
onto the intersection of both null spaces, i.e., onto the space of constant func-
tions on [0, 1]; hence the solution of the abstract random Cauchy problem (2.2)
convergesP-almost surely towards themean value of the initial data f ∈ L2(0, 1).

(2) On the other hand, if we aim at studying the switching between Dirichlet and
Neumann boundary conditions, and thus introduce the realization A3 with domain

D(A3) := {u ∈ H2(0, 1) : u(0) = u(1) = 0}, (2.7)

then one sees the intersection space K is trivial, as ker A3 = {0}, hence the
random propagator converges in norm P-almost surely to 0 if the Assumption 2.1
is satisfied.

(3) Also observe that upon perturbing A3 we find the new operator

Ã3u := A3u + π2u

D( Ã3) := D(A3),

whosenull space is nowone-dimensional, as it is spannedby sin(π ·).Nevertheless,
ker A1∩ker Ã3 = {0}, hence again under theAssumption 2.1 the system switching
between A1, Ã3 converges towards 0.

(4) Finally, let us consider a switching between A1 and A4 defined as

A4u := d

dx

(
p
du

dx

)
D(A4) := D(A1),

where p ∈ W 1,∞(0, 1), p(x) > 0 for all x ∈ [0, 1]. Because ker A1 and ker A4
both agree with the space of constant functions, under the Assumption 2.1 the
random propagator converges in norm P-almost surely towards the orthogonal
projector onto the space of the constant functions.
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Moreover, as a consequence of Theorem 2.13 we can observe the exponential
convergence of the random propagator for some (but not all) of these toy models.
In particular, this holds whenever we take A3 in the ensemble K: indeed, we have
K = {0} and then the Assumption 2.12 is satisfied, since the first eigenvalue λ

(3)
1 of

A3 is strictly negative. The exponential convergence of (S(t))t≥0 can be shown also for
randomly switching systems whereK ⊂ {A1, A2, A4}. In all of these cases K agrees
with the space of constant functions on (0, 1), hence it is one-dimensional and the
Assumption 2.12 is still fulfilled, since the second eigenvalue λ

( j)
2 < 0, for j = 1, 4.

On the other hand, we cannot apply Theorem 2.13 and then prove the exponential
convergence of the random propagator for all those models which switch Ã3 with A1
or/and A2 or/and A4. In fact, this implies that the intersection space K is trivial again,
but no one operator has strictly negative first eigenvalue.

3 Technical Lemmas and Proofs

3.1 AMonotonicity Lemma

The following lemma 3.4 provides the crucial tool to prove the assertion of Theorem
2.11. It shows how we can bound the norm of the random product of matrices which
generates the random propagator (S(t))t≥0 with respect to the stopping times.

Let L ≥ N and (k1, . . . , kL) be a sequence of indices that covers the whole E =
{1, . . . , N }. Given an ensemble K of operators satisfying the Assumption 2.4, let
us consider the associated sequence of operators (Ak1 , . . . , AkL ) taken from K. We
shall denote Pj the projection on the kernel ker A j and PK the projection on K =
∩Lj=1 ker Ak j = ∩Ni=1 ker Ai .

Remark 3.1 In the proof we will need some known results in functional analysis: if T
is a compact operator on a reflexive Banach space X , then there exists x belonging
to the unit sphere of X such that ‖T ‖ = ‖T x‖, i.e., the norm of T is attained: see
e.g. [1, Cor. 1]. This is in particular true if T = T (t) for some t > 0, provided the
semigroup generated by A is analytic (or even merely norm continuous) and A has
compact resolvent, see [18, Thm. II.4.29]. Finally, we will need the well-known fact
that the compact operators form a two-side ideal in in the space L(H) of bounded
linear operators on H .

The following results are necessary steps in order to prove the main result of this
section.

Lemma 3.2 Let (T (t))t≥0 be a contractive, analytic strongly continuous semigroup
on a Hilbert space H whose generator A has compact resolvent and no eigenvalue
on the imaginary axis, with the possible exception of 0. Then the following assertions
hold:

(1) ‖T (t ′)x‖ < ‖T (t)x‖ for all x /∈ ker A and all t ′ > t ≥ 0;
(2) ker A = {x ∈ H : ‖T (t0)x‖ = ‖x‖} for some t0 > 0.
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Proof (1) Fix x /∈ ker A and let 0 ≤ t < t ′.
Let us first consider the case of injective A, so that P = 0, where we denote by

P the orthogonal projector onto ker A. Then x �= 0, and T (t)x → 0 as t → ∞ by
the Jacobs–deLeeuw–Glicksberg theory, see [18, Thm. V.2.14 and Cor. V.2.15]. Due
to analyticity of the semigroup, the mapping ϕ : (0,∞) � t 
→ ‖T (t)x‖2 ∈ R is
real analytic: indeed, for each x ∈ H the mapping (0,∞) � t 
→ T (t)x ∈ H is
real analytic, hence it can be represented by an absolutely converging power series,
say T (t)x = ∑∞

k=0 tk fk ; but then, the Cauchy product of
∑∞

k=0 tk fk with itself,
given by

∑∞
m=0 tm

∑m
l=0( fl , fm−l), is absolutely converging towards ‖T (t)x‖2 =

(T (t)x, T (t)x).
If ‖T (t)x‖ = ‖T (t ′)x‖, then ϕ is constant on the interval [t, t ′]: indeed, by con-

tractivity of the semigroup

‖T (s)x‖ ≤ ‖T (t)x‖ = ‖T (t ′)x‖ ≤ ‖T (s)x‖ for all s ∈ [t, t ′].

Due to the identity theorem for real analytic functions, ϕ is now constant on (0,∞)—a
contradiction, since ϕ(t)→ ‖x‖2 �= 0 as t ↘ 0, but ϕ(t)→ 0 as t →∞. This proves
the theorem in case that P = 0.

Let us now consider the case of general P: observe that Px �= x , since x /∈ ker A.
Applying the first step of the proof to the restriction of (T (t))t≥0 to the H � ker A,
we see that

‖T (t)(I − P)x‖2 > ‖T (t ′)(I − P)x‖2,

hence by Pythagoras’ theorem

‖T (t)x‖2 = ‖T (t)Px‖2 + ‖T (t)(I − P)x‖2
> ‖T (t)Px‖2 + ‖T (t ′)(I − P)x‖2
= ‖T (t ′)Px‖2 + ‖T (t ′)(I − P)x‖2 = ‖T (t ′)x‖2

(3.1)

where the second to last identity holds because the fixed space of (T (t))t≥0

fix(T (t))t≥0 := {x ∈ H : T (t)x = x for all t ≥ 0}

agrees with the null space of its generator A by [18, Cor. IV.3.8], hence T (t)y = y
for all y ∈ ker A and all t ≥ 0.

(2) We see that

fix(T (t))t≥0 ⊂ {x ∈ H : ‖T (t)x‖ = ‖x‖ for all t ≥ 0}
⊂ {x ∈ H : ‖T (t0)x‖ = ‖x‖ for some t0 ≥ 0}
(1)⊂ ker A.

This concludes the proof, since as recalled before ker A = fix(T (t))t≥0. ��
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The following is probably linear algebraic folklore, but we choose to give a proof
since we could not find an appropriate reference.

Lemma 3.3 Let H be a Hilbert space and let P1, . . . , Pm be finitely many orthogonal

projectors on H; let PK be the orthogonal projector onto K :=
m⋂
i=1

rg Pi . If Pi is

compact for at least one i = 1, . . . , L, then the operator Pm . . . P1P⊥K has norm
strictly less than 1:

‖Pm . . . P1P
⊥
K ‖ = 1− ε < 1.

Proof It is obvious that ‖Pm . . . P1P⊥K ‖ ≤ 1.We proceed by contradiction and assume
that

‖Pm . . . P1P
⊥
K ‖ = 1. (3.2)

Since at least one Pi is compact, so is thewhole product, hence it is norm-attainable, see
Remark 3.1: there exists x ∈ H with ‖x‖ = 1 such that ‖Pm . . . P1P⊥K x‖ = ‖x‖ = 1.

Notice that

1 = ‖Pm . . . P1P
⊥
K x‖ ≤ ‖Pm . . . P1‖‖P⊥K x‖

hence ‖P⊥K x‖ = 1 = ‖x‖ and it follows that x = P⊥K x . We then substitute in previous
equality and get

1 = ‖Pm . . . P1P
⊥
K x‖ = ‖Pm . . . P1x‖

and the same reasoning implies ‖P1x‖ = 1, and x = P1x . Reiterating the same
argument we obtain x = Pj x for any j = 1, . . . ,m, therefore x ∈ K ; but we have
x = P⊥K x , which implies x = 0, a contradiction to ‖x‖ = 1. Therefore, (3.2) is false
and the thesis follows. ��

We now proceed to prove the main result of this section. Recall that the operators
A j are assumed to be dissipative and Pj is the projection on ker A j .

Lemma 3.4 Under the Assumptions 2.4 and 2.7, let L ≥ N and (k1, . . . , kL) be a
sequence of indices that covers the whole E = {1, . . . , N }. For η > 0 small enough
there exists δ > 0 such that, for ti ≥ δ > 0, i = 1, . . . , L, we have

||P⊥K etL AkL · · · et1Ak1 || ≤ 1− η < 1. (3.3)

Proof Recall that Pi is the orthogonal projection on ker Ai , K = ∩Ni=1 ker(Ai ), and
the projection on K satisfies PK Pi = PK = Pi PK , P⊥K P⊥i = P⊥i = P⊥i P⊥K . Recall

that Young’s inequality for product implies that ab ≤ a2
2ε + εb2

2 for every ε > 0; we
further simplify by noticing that 2ε > ε/2, hence the first term on the right is bounded
by a2

ε/2 . In the sequel, we shall repeatedly use this estimate in the form: for all α > 0,

(a + b)2 ≤ (1+ α)a2 + (1+ α−1)b2.
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We have

‖etL AkL . . . et2Ak2 et1Ak1 P⊥K x‖2 = ‖etL AkL . . . et2Ak2 et1Ak1 (Pk1 + P⊥k1 )P
⊥
K x‖2

≤ (1+ α)‖etL AkL . . . et2Ak2 et1Ak1 Pk1 P
⊥
K x‖2

+ (1+ α−1)‖etL AkL . . . et2Ak2 et1Ak1 P⊥k1 P
⊥
K x‖2

≤ (1+ α)‖etL AkL . . . et2Ak2 Pk1 P
⊥
K x‖2

+ (1+ α−1)‖etL AkL . . . et2Ak2 ‖2‖et1Ak1 P⊥k1 x‖2

where we use the fact that et1Ak1 Pk1x = Pk1x for any x ∈ H , t1 ≥ 0, and that
ker Ak1 ⊃ K , so (ker Ak1)

⊥ ⊂ K⊥; the first estimate follows from Young’s inequal-
ity. Notice further that all semigroups involved are contraction operators, hence
‖etL AkL . . . et2Ak2 ‖2 ≤ 1; finally, we have ‖et1Ak1 P⊥k1 x‖ ≤ e−t1sd (Ak1 )‖P⊥k1 x‖ ≤
e−t1sd (Ak1 )‖x‖. We recall that sd(A j ) is the growth bound of the operator A j on
(ker A j )

⊥, see Remark 2.9, and in our assumptions sd(A j ) < 0. It follows that

‖etL AkL . . . et2Ak2 et1Ak1 P⊥K x‖2 ≤ (1+ α)‖etL AkL . . . et2Ak2 P⊥K Pk1x‖2
+ (1+ α−1)e−2t1sd (Ak1 )‖x‖2.

We continue by splitting the first term in the right hand side

‖etL AkL . . . et2Ak2 et1Ak1 P⊥K x‖2
≤ (1+ α)‖etL AkL . . . et2Ak2 (Pk2 + P⊥k2 )P

⊥
K Pk1x‖2

+ (1+ α−1)e−2t1sd (Ak1 )‖x‖2
≤ (1+ α)2‖etL AkL . . . et2Ak2 Pk2 P

⊥
K Pk1x‖2

+ (1+ α−1)‖etL AkL . . . et2Ak2 P⊥k2 P
⊥
K Pk1x‖2

+ (1+ α−1)e−2t1sd (Ak1 )‖x‖2
≤ (1+ α)2‖etL AkL . . . et3Ak3 Pk2 P

⊥
K Pk1x‖2

+ (1+ α−1)‖etL AkL . . . et3Ak3 ‖2e−2t2sd (Ak2 )‖P⊥k2 P⊥K Pk1x‖2
+ (1+ α−1)e−2t1sd (Ak1 )‖x‖2

≤ (1+ α)2‖etL AkL . . . et3Ak3 P⊥K Pk2 Pk1x‖2

+ (1+ α−1)
(
e−2t2sd (Ak2 ) + e−2t1sd (Ak1 )

)
‖x‖2

and by recursion, we finally obtain

‖etL AkL . . . et2Ak2 et1Ak1 P⊥K x‖2 ≤ (1+ α)L‖PkL . . . Pk3 Pk2 Pk1 P
⊥
K x‖2

+ (1+ α−1)
L∑

i=1
e−2ti sd (Aki )‖x‖2 (3.4)
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The operator in the first term is bounded in norm by 1 − ε, thanks to Lemma 3.3;
therefore, we obtain the estimate

‖etL AkL . . . et2Ak2 et1Ak1 P⊥K x‖2≤
(

(1+ α)L (1− ε)2+(1+α−1)
L∑

i=1
e−2ti sd (Aki )

)
‖x‖2

The thesis follows by first taking α small enough such that the first addendum is
bounded by 1 − 2η, then taking δ large enough such that the second addendum is
bounded by η.1

��
Notice that in previous lemma there is not any a priori bound on the required δ,

which can be arbitrarily large. However, in the case of a fixed, deterministic clock, the
same result follows for arbitrary δ > 0 however small.

Lemma 3.5 Under the Assumptions 2.4 and 2.7, let L ≥ N and (k1, . . . , kL) be a
sequence of indices that covers the whole E = {1, . . . , N }. Then for all δ > 0

‖P⊥K eδAkL · · · eδAk1 ‖ < 1.

Proof Let us nowprove the inequality by contradiction: because all semigroups aswell
as the projector P⊥K are contractive and hence certainly ‖P⊥K eδAkL · · · eδAk1 ‖ ≤ 1, it
suffices to assume that

‖P⊥K eδAkL · · · eδAk1 ‖ = 1;

since the product operator is a compact operator, as stated before, there would then
exist some x ∈ H , x �= 0, with ‖P⊥K eδAkL · · · eδAk1 x‖ = ‖x‖. Because

‖P⊥K eδAkL · · · eδAk1 x‖ ≤ ‖P⊥K eδAkL · · · eδAk2 ‖‖eδAk1 x‖ ≤ ‖eδAk1 x‖,

it follows that ‖eδAk1 x‖ = ‖x‖ and hence, by Lemma 3.2.(2), x ∈ ker Ak1 , i.e.,
eδAk1 x = x . Proceeding recursively we see that x ∈ ⋂L

i=1 ker Aki ⊂ K , whence

1 Let us notice that in formula (3.4), the only fixed term is ε from Lemma 3.3. Thus, let us fix η such that

η <
1− (1− ε)2

2
= ε(2− ε)

2

Then, we choose α such that

(1+ α)L (1− ε)2 = (1− 2η)

and, setting λ+ = max{sd (Ai ), : i = 1, . . . , L} < 0, we may choose

δ >
1

|λ+| log
(
η−1L(1+ α−1)

)
.
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eδAki x = x for all i and hence

‖x‖ = ‖P⊥K eδAkL · · · eδAk1 x‖ = ‖P⊥K x‖ = 0,

a contradiction. ��

3.2 Proof of Theorem 2.11

We aim to apply Lemma 3.4, hence we start by fixing a sequence ξ = (ξ0, . . . , ξL−1)
of states in E which covers E and is admissible for the sequence X , meaning that
the probability that X passes from the successive elements of ξ in the given order is
positive. Since X is irreducible, we can also require that the transition ξL−1→ ξ0 has
positive probability.

Next step is to prove that, almost surely, the sequence ξ occur infinitely times in
the path of X and that the waiting times are longer than δ. Then the theorem follows
as a consequence of our construction.

In the sequel, the constant L is fixed and given by the length of the sequence ξ .
It is known that an irreducibleMarkov chainwith finite state space {Xn} is recurrent,

i.e., every state is visited infinitely times, with a finite mean waiting time between
successive visits. In the sequel, we need to prove that also any admissible cycle is
recurrent.

An admissible cycle is a finite sequence of states of fixed length L which
returns to the starting point with positive probability. Formally, we require that
ξ = (ξ0, ξ1, . . . , ξL−1) is an admissible cycle if

- the Markov chain follows this cycle with a strictly positive probability:

pξ0,ξ1 · · · pξL−2,ξL−1 pξL−1,ξ0 > 0;

- by a suitable rotation of the indexes, it is always possible to let ξ0 = X0.

Now, we can divide the path of X in blocks of length L: Y (0) = (X0, . . . , XL−1),
Y (1) = (XL , . . . , X2L−1), …, and consider the stochastic process Y taking values in
a subset � of EL , where � = {θ = (θ0, . . . , θL−1) ∈ EL : ∏

pθi ,θi+1 > 0}.

Y is a Markov chain on the state space� ⊂ EL . (3.5)

Proof In order to prove Markov property, we exploit the Markov property of the
process X and we obtain

P(Y (n + 1) = θ(n + 1) | Y (0) = θ(0), . . . ,Y (n) = θ(n))

= P(X(n+1)L = θn+1;L , . . . , X(n+2)L−1 = θn+1;L−1 | Y0
= θ0;0, X1 = θ0;1, . . . , X(n+1)L−1 = θn;L−1)
= P(X(n+1)L = θn+1;L , . . . , X(n+2)L−1 = θn+1;L−1 | Y0
= θ0;0, X1 = θ0;1, . . . , X(n+1)L−1 = θn;L−1)
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= P(X(n+1)L = θn+1;L , . . . , X(n+2)L−1 = θn+1;L−1 | YnL
= θn;0, . . . , X(n+1)L−1 = θn;L−1)
= P(Y (n + 1) = θ(n + 1) | Y (n) = θ(n)).

We shall denote p̄ = (
p̄θ,η

)
θ,η∈� the transition matrix associated to the Markov chain

Y . ��
Let d be the period of the Markov chain X (d = 1 if the chain is aperiodic). We

notice first that d|L . If d > 1, the state space E can be divided into p sub-classes
E0, . . . , Ed−1, such that ∪Ei = E , and Ei ∩ E j = ∅ for i �= j . For an aperiodic
irreducible chain, we can set E = E0. It holds that pn(x, y) > 0 only if x ∈ Ei

and y ∈ Ei+n (where all the indices are taken modulus d) and pnd(x, y) > 0 for all
sufficiently large n and for all x, y in the same class Er .

The Markov chain Y inherits an analog division, i.e., � = C0 ∪ · · · ∪Cd−1, where
Ci = {θ = (θ0, . . . , θL−1) ∈ �, | θ0 ∈ Ei }. Assume that there exists n such that
p̄n(θ, η) > 0. Then θ0 ∈ Ei , θL−1 ∈ Ei+L−1 = Ei−1 (since L is a multiple of d,
hence i + L − 1 ∼= i − 1 (mod d)), η0 ∈ Ei+nL = Ei . If d > 1, previous computation
implies that Y is no longer irreducible; however, if one consider the restriction of Y
to any of the classes Ci , we have the following result.

Proposition 3.6 If X is a homogeneous, irreducible Markov chain of period d, then Y
restricted to any of the classes Ci (i + 0, . . . , d − 1) is a homogeneous, irreducible,
aperiodic Markov chain on the given class (if X is aperiodic, i.e. d = 1, then Y is
irreducible and aperiodic on the whole �).

Proof Let θ and η in the same class Ci , which implies that θL−1 ∈ Ei−1 and η0 ∈ Ei .
Then there exists n0 large enough such that for n > n0, pnd+1(θL−1, η0) > 0. Taking
n > n0 in such a way that k = nd/L is integer, we get that p̄k(θ, η) > 0, but since θ

and η are arbitrary, this implies that the class Ci is closed and irreducible. Moreover,
since (k + 1)L = (n + L/d)d it follows that also p̄k+1(θ, η) > 0, which implies that
Y is aperiodic on the class Ci , and this concludes the proof. ��
Corollary 3.7 Assume that X is a homogeneous, irreducible Markov chain. Then any
admissible state y for the Markov chain Y is recurrent.

Let ξ = (ξ0, . . . , ξL−1) be the admissible cycle fixed at the beginning of the proof.
Recall the representation of S(t) given in (2.4), and take t = nL − 1 for simplicity:

‖P⊥K S(nL − 1)‖≤‖P⊥K
nL−1∏
k=0

eτk+1AXk ‖ ≤
n∏

m=0
‖P⊥K eτ(m+1)L AX(m+1)L−1 . . . eτmL+1AXmL ‖

(3.6)

Let N (n) = ∑n
k=0 1Yk=ξ1τkL+1≥δ . . .1τk(L+1)≥δ be the number of visit up to time

n to the state ξ by the Markov chain Y introduced above, such that all the waiting
times in the successive states are at least as long as δ. Since the state ξ is recurrent
for the chain Y and the events {τkL+1 ≥ δ} are independent and have strictly positive
probability, it follows that N (n)→∞ as n→∞, almost surely.
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Now, we notice that in the right hand side of (3.6) we have N (n) terms which can
be bounded, thanks to Lemma 3.4, by 1− η < 1 and the remaining terms have norm
bounded by 1, hence

‖P⊥K S(nL − 1)‖ ≤ (1− η)N (n) t→+∞−−−−→ 0. (3.7)

By Remark 2.8 we can write the random propagator as

S(t) = PK S(t)+ P⊥K S(t) = PK + P⊥K S(t)

and the thesis

lim
t→+∞‖S(t)− PK ‖ = 0 P− a.s.

follows by (3.7).

3.3 Proof of Theorem 2.13

As done in the proof of Theorem 2.11, we can write the random propagator as

S(t) = PK S(t)+ P⊥K S(t)

and show that ‖P⊥K S(t)‖ → 0 as t →+∞ in order to obtain the thesis.
Denote u(t) := S(t) f for all initial data f ; we can estimate the norm of the vector

P⊥K u(t) ∈ H by

||P⊥K u(t)||2 − ||P⊥K f ||2 =
∫ t

0

d

ds
||P⊥K u(s)||2 ds

= 2�
(∫ t

0
(
d

ds
P⊥K u(s), P⊥K u(s)) ds

)

= 2
∫ t

0
�(A(Z(s))P⊥K u(s), P⊥K u(s)) ds,

(3.8)

where the last equality holds due to Remark 2.8 and because d
ds and P⊥K commute.

We split the above integral with respect to the various states of Z(t):

||P⊥K u(t)||2 − ||P⊥K f ||2 =
N∑
j=1

2
∫ t

0
1(Z(s)= j)�(AX j P

⊥
K u(s), P⊥K u(s)) ds,

and since all the Ak’s are dissipative, we have the trivial estimate

||P⊥K u(t)||2 − ||P⊥K f ||2 ≤ 2
∫ t

0
1(Z(s)=1)�(A1P

⊥
K u(s), P⊥K u(s)) ds.
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Now, by Assumption 2.12, K = ker(A1) and, by Remark 2.9, A1 restricted to K⊥
has growth bound sd(A1) strictly negative, hence the above estimate becomes

||P⊥K u(t)||2 − ||P⊥K f ||2 ≤ −2sd(A1)

∫ t

0
1(Z(s)=1) (P⊥K u(s), P⊥K u(s)) ds

= −2sd(A1)

∫ t

0
1(Z(s)=1) ||P⊥K u(s)||2 ds.

By Gronwall’s Lemma we deduce that

‖P⊥K u(t)‖2 = ‖P⊥k S(t) f ‖2 ≤ ‖P⊥K f ‖2 e−2sd (A1)
∫ t
0 1(Z(s)=1) ds . (3.9)

The thesis now follows from Remark 2.2: indeed, the integral diverges to +∞ P-
almost surely, hence ||P⊥K S(t)|| → 0. Moreover, as stated in Remark 2.2, the fraction
of time spent in a state by the semi-Markov process Z can be computed to be

lim
t→+∞

1

t

∫ t

0
1(Z(s)=A1) ds = 
1 > 0,

where 
1 was introduced in Remark 2.2. It follows from (3.9) that the speed of
convergence to 0 is at least equal to (−2sd(A1))
1.

4 Combinatorial Graphs

A simple (finite, undirected) combinatorial graph G = (V, E) is a couple defined by
a finite set V of vertices v and a subset E ⊂ V(2) of unordered pairs e := {v,w} of
elements of V; such a pair e is interpreted as the edge connecting the vertices v,w.

Given a simple graph G = (V, E), let us introduce a positive weight function on the
set of vertices V

m : V→ (0,+∞)

which induces the scalar product

( f , g)m :=
∑
v∈V

m(v) f (v)g(v), f , g ∈ C
V,

on the space C
V of complex valued functions f : V → C: we denote by �2m(V) the

Hilbert space C
V with respect to (·, ·)m . In addition, let

μ : E→ (0,+∞)

be a positive weight function on the set of edges E. We call the 4-tuple (V, E,m, μ) a
weighted combinatorial graph.
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Remark 4.1 We stress that each weighted graph is a metric space with respect to the
shortest path metric; while the topology does depend on the weights, any two weights
define equivalent topologies, and in particular it does not depend on m, μ whether G
is connected or not.

Let us recall the notion of discrete Laplacian (orLaplace–Beltramimatrix)Lm,μ on
a weighted graph G = (V, E,m, μ), cf. [31, § 2.1.4]—or shortly: weighted Laplacian.
For any vertex v ∈ V, let Ev denote the set of all edges having v as an endpoint. Then
Lm,μ : �2m(V)→ �2m(V) is defined by

Lm,μ f (v) := 1

m(v)

∑
e={v,w}∈Ev

μ(e) ( f (w)− f (v)) , ∀ v ∈ V;

Lm,μ reduces to the discrete, negative semi-definite Laplacian if μ ≡ 1 and m ≡ 1;
i.e., L1,1 is minus the Laplacian matrix that is common in the literature [31, § 2.1.4].
Indeed, we stress that we have not adopted the usual sign convention of algebraic
graph theory, as any such Lm,μ is self-adjoint and negative semi-definite. More gen-
erally, Lm,μ satisfies the Assumptions 2.4 and 2.7 and it can be shown that Lm,μ

(and not−Lm,μ) generates a Markovian semigroup. The associated sesquilinear form
q : �2m(V)× �2m(V)→ C is given by

q( f , g) =
∑

e={v,w}∈E
μ(e) ( f (v)− f (w)) (g(v)− g(w)), f , g ∈ �2m(V),

and satisfies

q( f , g) = (Lm,μ f , g)m = ( f ,Lm,μg)m, f , g ∈ �2m(V);

accordingly, its Rayleigh quotient is

( f ,Lm,μ f )m
( f , f )m

= q( f , f )

‖ f ‖2m
=

∑
e={v,w}∈E μ(e)| f (v)− f (w)|2

‖ f ‖2m
, f �= 0. (4.1)

It follows from (4.1) that λ = 0 is an eigenvalue of each weighted Laplacian Lm,μ:
the associated eigenfunctions are constant on each connected component of G =
(V, E,m, μ). Therefore, it turns out that the null space of Lm,μ agrees with the null
space of the unweighted Laplacian (on (V, E)) associated with G.

4.1 The General Model

Throughout this section we consider a finite collection C of graphs.

Assumption 4.2 C = {G1, ...,GN },whereG1 = (V, E1,m1, μ1), ...,GN = (V, EN ,mN , μN )

are simple graphs with same vertex set V but possibly different edge sets Ei , vertex
weights μi , and edge weights μi , i = 1, . . . , N .
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The following seems to be natural but not quite standard: we prefer to note it
explicitly.

Definition 4.3 (Union and intersection of weighted graphs) The union of Gi =
(V, Ei ,mi , μi ), i = 1, . . . , N , is the weighted graph G∪ = (V, E,m, μ) with set
of vertices V, set of edges E :=⋃N

i=1 Ei , vertex weights

m(v) := min
i=1,...,N mi (v), v ∈ V,

and edge weights

μ(e) := max
i=1,...,N μi (e), e ∈ E.

Likewise, the intersection of Gi = (V, Ei ,mi , μi ), i = 1, . . . , N , is the weighted
graph G∩ = (V, E,m, μ) with set of vertices V, set of edges E := ⋂N

i=1 Ei , vertex
weights

m(v) := max
i=1,...,N mi (v), v ∈ V,

and edge weights

μ(e) := min
i=1,...,N μi (e), e ∈ E;

here we set μi (e) := 0 if e /∈ Ei .

In this way, it is possible to study the behavior of the intersection of the null spaces
of the Laplacian operators Lmk ,μk (Gk) associated with the graphs in C. This result
seems interesting on its own, since it explicitly connects the geometry of the graph
with the algebraic property of the Laplacian operator.

Lemma 4.4 Given G1, . . . ,GN combinatorial graphs satisfying the Assumption 4.2,
letG be their weighted union graph (see Definition 4.3) and letLm,μ(G) be the discrete
Laplacian on G. Then

kerL(G) =
N⋂
i=1

kerLmi ,μi (Gi ).

Proof It suffices to work with unweighted graphs; for simplicity, moreover, we only
prove the case N = 2. In general, suppose that G, G1 and G2 are written as disjoint
unions of connected components:

G =
l⊔

h=1
G(h), G1 =

m⊔
j=1

G( j)
1 , G2 =

n⊔
k=1

G(k)
2 .
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Any eigenfunction associated with the null eigenvalue of L shall be constant on
any connected component of G, hence BG = {1h, h = 1, . . . , l}, where

∀ v ∈ V : 1h(v) :=
{
1 if v ∈ G(h),

0 otherwise,

is a basis for kerL(G). Similarly, B1 = {11, j , j = 1, . . . ,m} and B2 = {12,k, k =
1, . . . , n} are a basis of kerL(G1) and kerL(G2), respectively. Hence, we only need
to prove that for all h = 1, . . . , l, 1h is in the intersection of the null spaces in C and
then extend the result to kerL(G) by linearity. In particular, denoting

C (h)
1 :=

{
j ∈ {1, . . . ,m} G( j)

1 ⊆ G(h)
}

,

C (h)
2 :=

{
k ∈ {1, . . . , n} G(k)

2 ⊆ G(h)
}

,

then by construction the function 1h will be

∀ v ∈ V : 1h(v) :=
{
1 if v ∈ G( j)

1 , j ∈ C (h)
1 ,

0 otherwise,

and

∀ v ∈ V : 1h(v) :=
{
1 if v ∈ G(k)

2 , k ∈ C (h)
2 ,

0 otherwise,

thus 1h ∈ kerL(G1) ∩ kerL(G2), in fact it can be written as linear combination of
both bases B1 and B2 as

1h =
∑
j∈C(h)

1

11, j or 1h =
∑

k∈C(h)
2

12,k .

On the other hand, given f ∈ kerL(G1) ∩ kerL(G2), we have

f = α111,1 + · · · + αm11,m (4.2)

and
f = β112,1 + · · · + βn12,n, (4.3)

where B1 and B2 as above. Then, comparing the expressions (4.2) and (4.3), we get
that

α j = βk = c1, ∀ j ∈ C (1)
1 , ∀k ∈ C (1)

2 ,

...

α j = βk = cl , ∀ j ∈ C (l)
1 , ∀k ∈ C (l)

2 ,

123



Applied Mathematics & Optimization (2021) 84:2849–2887 2871

and f can also be expressed in terms of BG as

f =
l∑

h=1
ch1h,

thus f ∈ kerL(G). ��
As a corollary, we notice the following result, concerning the relation between the

connectedness of the union graph G (see Remark 4.1) and the dimension of the kernel
of the (weighted or unweighted) Laplacian operator.

Corollary 4.5 Given G1, . . . ,GN combinatorial graphs satisfying the Assumption 4.2,
let G be their weighted union graph. Then

G is connected ⇐⇒
N⋂
i=1

kerLmi ,μi (Gi ) = 〈1〉. (4.4)

Partially motivated by Corollary 4.5, with a slight abuse of notation we adopt in
the following the notation Li := Lmi ,μi (Gi ), i = 1, . . . , N . Fixed a probability space
(�,F, P), let (Z(t))t≥0 be a semi-Markov process on the state space E = {1, . . . , N }
which satisfies Assumption 2.1. In this section, we shall consider the random Cauchy
problem

{
du
dt (t, v) = LXk u(t, v), v ∈ V, t ∈ [Tk, Tk+1), k ∈ N,

u(0, x) = f (v), v ∈ V,
(4.5)

whereLXk is the discrete Laplace operator associatedwith the currently selected graph
GXk . The above equation is also known in the literature as the (random) discrete heat
equation.

We can now state ourmain result in this section.We recall that the relevant operators
Lm,μ satisfy the Assumptions 2.4 and 2.7, hence the following is a direct consequence
of Theorem 2.11.

Theorem 4.6 Let (Z(t))t≥0 be a semi-Markov process and C be a family of graphs
that satisfy the Assumptions 2.1 and 4.2, respectively. Then the random propagator
(S(t))t≥0 for the Cauchy problem (4.5) converges in norm P-almost surely towards

the orthogonal projector PK onto the space K =
N⋂
i=1

kerLi .

The limiting operator can be identified with the orthogonal projector onto the con-
stant functions, provided G is connected.

Corollary 4.7 Under the assumptions of Theorem 4.6, (S(t))t≥0 converges in norm
P-almost surely to P0 if and only if the union graph G is connected.
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Proof Corollary 4.5 implies that P0 = PK if and only if the union graphG is connected,
while Theorem 4.6 implies the convergence of S(t) towards PK , hence the sufficiency
and necessity of the condition. ��

In the last part of this section we present two special cases of evolution on com-
binatorial graphs where we discuss the relation between our result and the existing
literature.

4.2 Connected Graphs

In this section we assume that all the graphs in C are connected. As we have already
seen, this assumption is unnecessarily strong if we aim at solving (P).

However, we are going to show an interesting link between our problem and the
analysis of the so-called left-convergent product sets [14]. For simplicity, in this section
we assume that τn = 1 for every n, hence Tn = n and Z(t) = Z("t#) = X"t#.

A set K = {M1, . . . , MN } of matrices is said to have the left-convergent product
property, or simply to be an LCP set, if for every sequence j = ( jn)n∈N taking values

in {1, . . . , N } the infinite left-product Mj :=
∞∏
k=0

Mjk converges. Given two sequences

j and j′, define the metric

d(j, j′):=N−r where r is the first index such that jr �= j ′r

and call the topology induced by d on S = {j = ( jn)n∈N, jn ∈ {1, . . . , N }} as
sequence topology on S. It is known [17] thatK is an LCP set ifK is paracontracting,
meaning that for some matrix norm

Mx �= x ⇒ ‖Mx‖ < ‖x‖ for allM ∈ Kandx ∈ R
d .

The issue of convergence of infinite products of matrices has been finally settled in a
fundamental paper by Daubechies and Lagarias: in particular, see [14, Thm. 4.1 and
Thm. 4.2] and also the erratum in [16].

Proposition 4.8 [14, Thm. 4.2] Let K be a finite set of d × d matrices. Then the
following are equivalent.

(a) K is an LCP set whose limit function j 
→ Mj is continuous with respect to the
sequence topology on S.

(b) All matrices Mi inK have the same eigenspace E1 with respect to the eigenvalue
1, this eigenspace is simple for all Mi , and there exists a vector space V such that
C
d = E1 ⊕ V and such that if PV is the oblique projector onto V away from e1,

then PVKPV is an LCP set whose limit function is identically 0.

In particular, if E1 is a 1-dimensional subspace, then the limit function M is the
projector onto this space.
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Now we can state this result in the setting of combinatorial graphs. Under the
assumption of connectedness of all graphs, Theorem 2.11 states that S(t) will con-
verge to P0 (the projector on the subspace 〈1〉 of constant functions) no matter which
sequence of graphs we follow in (4.5), thus it provides the same result as in the deter-
ministic case treated in Proposition 4.8. We shall give in Lemma 4.9 an alternative
proof to this result, which specializes to the notation of graph theory.

Lemma 4.9 Let C = {G1, . . . ,GN } be a finite family of connected graphs and Z =
(Xn, τn = 1) be an irreducible Markov chain. Then for any path of the process Z the
limit

lim
t→+∞‖S(t)− P0‖ = 0 (4.6)

holds for the random evolution problem (4.5).

Proof In our assumptions, 0 is a simple eigenvalue of each Laplacian matrix Lk :=
L(Gk) with associated eigenvector 1.

The orthogonal operator P⊥0 is again an orthogonal projector operator with range
〈1〉⊥. Notice that P0S(t) = P0 because rg P0 = 〈1〉 is contained in

fix (etLk )t≥0 := {x : V→ C : etLk x = x for all t ≥ 0}

for every 1 ≤ k ≤ N . Therefore,

S(t) = P0S(t)+ (I − P0)S(t) = P0 + P⊥0 S(t) for all t ≥ 0, (4.7)

and we can prove the assertion by showing that

lim
t→+∞‖P

⊥
0 S(t)‖ = 0.

First of all, by definition P⊥0 is idempotent and commutes with the exponential matrix
of every Laplace operator. Hence

P⊥0 S(t) = P⊥0 e(t−k)LXk eLXk−1 · · · eLX0 = P⊥0 e(t−k)LXk P⊥0 eLXk−1 · · · P⊥0 eLX0 .

We claim that

each matrixP⊥0 eLi , i = 1, . . . , Nhas norm strictly less than 1. (4.8)

By the finiteness of E, we denote by

δ := max
{
||P⊥0 eLi || i = 1, . . . , N

}
< 1.
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For all t > 0, let k ∈ N be such that k ≤ t < k + 1. By sub-multiplicativity of the
matrix norm we have

||P⊥0 S(t)|| = ||P⊥0 e(t−k)LXk P⊥0 eLXk−1 · · · P⊥0 eLX0 ||
≤ ||P⊥0 e(t−k)LXk || ||P⊥0 eLXk−1 || · · · ||P⊥0 eLX0 ||
≤ ||P⊥0 eLXk−1 || · · · ||P⊥0 eLX0 || ≤ δk−1.

If t →+∞, then k →+∞ and we finally get

lim
t→+∞‖P

⊥
0 S(t)‖ = 0

which implies the thesis.
In order to complete the proof it remains to show that claim (4.8) holds. We have

proved a more refined version of this claim in Lemma 3.4; however, in the current set-
ting, the proof is straightforward. LetL denote the Laplacian operator for a connected
graph G. By a direct computation we have for all t > 0

‖(I − P0)e
tL f ‖2 =

d∑
k=2

e2tλk ( f , ek)
2
�2
≤ e2tλ2

d∑
k=2

( f , ek)
2
�2

= e2tλ2‖(I − P0) f ‖2 ≤ e2tλ2‖ f ‖2,

whence ‖(I − P0)eδL‖2 < e2δλ2 < 1 since λ2 < 0. ��

4.3 Randomly Switching Combinatorial Graphs with Non-zero Second Eigenvalue

The goal here is to apply our exponential convergence criteria to combinatorial graphs.
Consider the random evolution problem (4.5); we are going to show the exponential
convergence of the random propagator (S(t))t≥0 provided that the following assump-
tion holds:

Assumption 4.10 There exists one combinatorial graph in C, say G1, such that each
connected component of G j , j �= 1, is contained in one of the connected components
of G1.

As shown in the proof of Lemma 4.4, a consequence of the assumption above is
that kerL1 ⊆ kerL j , j �= 1, therefore the Assumption 2.12 is satisfied and we can
directly apply Theorem 2.13.

Corollary 4.11 Let (Z(t))t≥0 be a semi-Markov process and C be a family of graphs
that satisfy the Assumptions 2.1 and 4.2, respectively. Let additionally the Assump-
tion 4.10 hold.

Then the random propagator (S(t))t≥0 converges in norm P-almost surely expo-
nentially fast towards the orthogonal projector PK with an exponential rate no lower
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than

α = −
N∑
j=1

sd(L j )
 j

that is the average of the values sd(L j ) (introduced in Remark 2.9) with respect to the
fraction of time 
 j spent by the process Z(t) in the various states.2

Proof The assertion follows from Theorem 2.13. Notice that the exponential rate can
be computed by

−1

t

∫ t

0
sd(LZ(s)) ds = −

N∑
j=1

1

t
sd(L j )

∫ t

0
1(Z(s)=G j ) ds

which converges, as t →∞, to (compare Remark 2.2)

α = −
N∑
j=1


 j sd(L j ) = −
N∑
j=1

sd(L j )
ρ jμ j∑N
l=1 ρlμl

.

This concludes the proof. ��
Remark 4.12 Assume that G1 is connected (then the Assumption 4.10 is verified). It
follows that the union graph G is connected, too, hence the intersection space K is
one-dimensional and PK = P0 is the projection onto the space of constant functions
on V. Moreover sd(L1) = λ2(L1) < 0. Adapting the proof of [19, Cor. 3.2] (where
the convention is adopted that L is positive semi-definite) we see that each of the
discrete Laplacians Lk on the weighted combinatorial graph Gk has second largest
eigenvalue λ2(Lk) := λ2(Gk) ∈ [λ2(G∪), λ2(G∩)], where G∪,G∩ are the union and
intersection graph introduced in Lemma 4.4, respectively: therefore we conclude that
the convergence to equilibrium for the randomly switching problem is not faster (resp.,
not slower) than in the case of the heat equation on G∪ (resp., on G∩; observe that
G∩ may however be disconnected, and hence λ2(G∩) may vanish, even if all Gk are
connected).

Estimates on the rate of convergence to equilibrium of the random propagator are
readily available: it is well-known that, for a generic unweighted connected graph
G, −|V| ≤ λ2(G) ≤ −2(1 − cos π

|V| ), where the second inequality is an equality
if and only if G is a path graph, see [19, 3.10 and 4.3]. It follows that λ2(Lk) ∈
[−|V|,−2(1− cos π

|V| )] if in particular G∩ is connected; this gives an estimate on the
convergence rate in Corollary 4.11.

2 It is possible to explicitly compute
1 in terms of the invariant distributionρ = (ρ1, . . . , ρN ) associated to
the embeddedMarkov chain X and the expected values of the jump times for the different statesμ j = E

j [τ1]
by the formula


 j =
ρ jμ j∑N
l=1 ρlμl

.
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5 Metric Graphs

In this section we discuss the application of Theorem 2.11 to finite metric graphs.
Roughly speaking, metric graphs are usual graphs (as known from discrete mathemat-
ics) whose edges are identified with real intervals—in this case, finitely many interval
of finite length; loops and multiple edges between vertices are allowed. While this
casual explanation is usually sufficient [6,31], for our purposes we will need a more
formal definition. We are going to follow the approach and formalism in [30].

Let E be a finite set. Given some (�e)e∈E ⊂ (0,∞), we consider the disjoint union
of intervals

E :=
⊔
e∈E
[0, �e] :

we adopt the usual notation (x, e) for the element of E with x ∈ [0, �e] and e ∈ E.
We can define on E a (generalized) metric by setting

dE
(
(x, e), (y, f)

) :=
{
de(x, y) = |x − y|, if e = f and x, y ∈ [0, �e],
∞, otherwise.

(5.1)

Consider the set

V :=
⊔
e∈E
{0, �e} =

⊔
e∈E
{(0, e), (�e, e)}

of endpoints ofE.Given any equivalence relation≡onV,we extend it to an equivalence
relation on E as follows: two distinct elements (x1, e1) �= (x2, e2) ∈ E belong to the
same equivalence class in E if and only if they belong to the set of vertices V and
they are equivalent with respect to the relation≡ on V, (x1, e1) ≡ (x2, e2): we denote
this equivalence relation on E again by ≡ and we call G := E�≡ a metric graph,
with E its set of edges and V := V�≡ its set of vertices. So, a vertex v ∈ V is by
definition an equivalence class consisting of boundary elements from E, like (0, e)
or (�f, f). Beyond our formalism, the equivalence relation on V can be understood as
follows: two elements of V belong to the same equivalence class and can hence be
identified if they are endpoints of two adjacent edges corresponding to the same vertex
of the underlying combinatorial graph: see [30, Rem. 1.7] for more details, which will
however not be necessary in the present context.

Two edges e, f ∈ E are said to be adjacent if one endpoint of e and one endpoint of f
lie in the same equivalence class v ∈ V (i.e., if e, f share an endpoint, up to identification
by ≡); in this case we write e ∼ f. Also, two vertices v,w ∈ V are said to be adjacent
if there exists some (not necessarily unique) e ∈ E such that {x, y} = {(0, e), (�e, e)}
for representatives x of v and y ofw (i.e., if there is an edge whose endpoints are v,w,
up to identification by ≡); in this case we write v ∼ w.

Let us stress that by definition a metric graph is uniquely determined by a family
(�e)e∈E and an equivalence relation on V; however, its metric structure is independent
on the orientation of the edges!
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As a quotient of metric spaces, any metric graph is a metric space in its own right
with respect to the canonical quotient metric defined by

dG(ξ, θ) := inf
k∑

i=1
dE(ξi , θi ), ξ, θ ∈ G,

where the infimum is taken over all k ∈ N and all pairs of k-tuples (ξ1, . . . , ξk)

and (θ1, . . . , θk) with ξ = ξ1, θ = θk , and θi ∼ ξi+1 for all i = 1, . . . , k − 1, [4,
Def. 3.1.12], where ∼ denotes the adjacency relation introduced before. We call dG
the path metric of G. A metric graph is said to be connected if the path metric doesn’t
attain the value ∞; in other words, if any two points of G can be linked by a path.
Along with this metric structure there is a natural measure induced by the Lebesgue
measure on each interval; accordingly, we can introduce the spaces

C(G) and L2(G)

as well as

H1(G) := { f ∈ L2(G) ∩ C(G) : f ′ ∈ L2(G)}.

Again, these definitions do not depend on the orientation of the metric graph; but
the notation

f (ξ) := fe(x) := f
(
(x, e)

)
, ξ := (x, e),

does.
On the graph G we aim to introduce a differential operator acting as the second

derivative on the functions f j (x)on every edgee j ; and possiblymore general operators
of the form

Amax := f 
→ d

dx

(
p
d f

dx

)

for some elliptic coefficient p ≥ p0 > 0 of class W 1,∞, p0 ∈ R. While it is natural
to require that fe ∈ H2(0, �e) for every edge e, taking

⊕
e∈E H2(0, �e) as domain

only defines an operator acting on functions on L2(E): this is not sufficient in order to
define a self-adjoint operator and suitable boundary conditions shall thus be imposed
in order for Amax to satisfy the Assumption 2.4.

Each realization of the elliptic operator A we are interested in is equipped with
natural vertex conditions: for each element u in its domain

• u ∈ C(G), and in particular u is continuous across vertices;
• u satisfies the Kirchhoff condition at each vertex, namely

∀ v ∈ V :
∑
e∈E

(0,e)∈v

pe(v)u′e(v) =
∑
f∈E

(�f,f)∈v

pf(v)u
′
f(v), (Kc)
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i.e., the weighted sum of the inflows equals the weighted sum of the outflows.

(Observe that in any vertex with degree 1 the latter becomes a Neumann boundary
condition; and that the case p ≡ 1 defines the usual Laplacian � with natural vertex
conditions on the metric graph G.)

We can now define the operator A with natural vertex conditions on G, i.e.

(Au)e(x) := (pe(x)u
′
e(x))

′,

D(A) :=
{
u ∈ C(G) ∩

⊕
e∈E

H2(0, �e) : u satisfies (Kc)

}
.

(5.2)

Let us summarize the main results we need in our construction for the operator
A with natural vertex conditions. They are part of a general, well-established theory,
see e.g. [25, Thm. 2.5 and Cor. 3.3] for edgewise constant coefficients pe and [31,
Thm. 6.67] for the general case.

Proposition 5.1 The operator A with natural vertex conditions on H = L2(G) is
densely defined, closed, self-adjoint, and negative semi-definite; it has compact resol-
vent.

Thus, the Assumptions 2.4 and 2.7 are satisfied and A generates a contractive
strongly continuous semigroup, denoted by (et A)t≥0. Hence the abstract Cauchy prob-
lem {

d
dt u(t) = Au(t), t > 0,

u(0) = f ,
(5.3)

is well-posed: for every f ∈ L2(G) there exists a unique mild solution given by

u(t) := et A f , ∀t ≥ 0.

Moreover, continuous dependence on the initial data holds. Because A is self-adjoint
and hence the semigroup is analytic, the solution u is for all f ∈ L2(G) of class
C1((0,∞); L2(G)) ∩ C((0,∞); D(A)).

By Proposition 5.1, the spectrum of A consists of negative eigenvalues of finite
multiplicity and the spectral radius satisfies s(A) = 0 ∈ σ(A). The study of the
complete spectrum is still an open problem: actually, only in few cases it is fully
determined and in general just some upper and lower bounds on the eigenvalues are
known. In this work, we are going to emphasize the following property of σ(A), see
[25, Theorem 4.3].

Proposition 5.2 Let G be a finite metric graph and denote by G(1), . . . ,G(l) its con-
nected components. Then, the multiplicity of 0 as eigenvalue of the operator A with
natural vertex conditions is l. In particular, the piecewise constant functions {1h}lh=1,
where

1h(x) =
{
1 if x ∈ G(h),

0 otherwise,
(5.4)

for all h = 1, . . . , l, form a basis of ker A.
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e1 e2
G1

Fig. 1 Model A

5.1 AMotivating Example

Let us study on the interval [0, 2] the heat equation
{

∂u
∂t (t, x) = ∂2u

∂x2
u(t, x), t ≥ 0, x ∈ [0, 2],

u(0, x) = u0(x), x ∈ [0, 2],

where u0 ∈ L2(0, 2). In particular, we are going to analyze two different and well-
known boundary value problems: in one case, we impose two Neumann conditions
at x = 0 and x = 2, whereas the second setting keeps the same constraints at the
boundaries, plus one additional Neumann condition at the middle point x = 1.

Model A describes the evolution of the heat equation on [0, 2] with Neumann
boundary conditions in 0 and 2. Formally, however, we consider [0, 2] as the graph
G1 with V = {0, 1, 2} and edges e1 = [0, 1] and e2 = [1, 2].

The evolution is thus described by the Laplace operator �1 given by

D(�1) = {u = (u1, u2) : ui ∈ H2(0, 1), i = 1, 2,

u′1(0) = u′2(2) = 0, u1(1) = u2(1), u′1(1)− u′2(1) = 0},

�1u = d2u

dx2
.

The spectrum of�1 clearly agrees with that of the LaplacianwithNeumann conditions
on [0, 2], i.e.,

σ(�1) =
{
λk = −k2π2

4
, k = 0, 1, 2, . . .

}
,

with associated eigenfunctions

e0(x) = 1√
2
, x ∈ [0, 2],

ek(x) = cos

(
kπ

2
x

)
, x ∈ [0, 2], k ≥ 1.

In this way, for every initial condition u0 ∈ L2(0, 2), we can explicitly write the
solution in terms of the spectral representation

u(t) = et�1u0 =
+∞∑
k=0

etλk (u0, ek)L2(0,2) ek
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N N N
0 21

e1 e2
0 1 21′

G2

Fig. 2 Model B: on the right, the correct interpretation as a network equation with a disconnected graph

and, as expected, the limit distribution for long times agrees with the average of u0
computed on the interval [0, 2]

lim
t−→+∞ u(t) = (u0, e0)e0 = P0u0 = 1

2

∫ 2

0
u0(x) dx .

Model B describes the evolution of the heat equation on [0, 2] with Neumann
boundary conditions in 0, in 2, as well as in 1. Formally, we consider [0, 2] as the
graph G2 with V = {0, 1, 1′, 2} and edges e1 = [0, 1] and e2 = [1′, 2].

The Laplace operator associated with G2 is �2 with domain

D(�2) =
{
u = (u1, u2) ∈ H2(0, 1)⊕ H2(1′, 2)

: u′1(0) = u′1(1) = 0, u′2(1′) = u′2(2) = 0
}
,

�2u = d2u

dx2
.

Here the dynamics is somehowdifferent from the previous one: in fact, theNeumann
condition placed in x = 1 acts like an insulating “wall” through which heat exchanges
are not allowed. The spectrum in this case is

σ(�2) =
{
μk = −k2π2, k = 0, 1, 2, . . .

}
,

where every eigenvalue has now multiplicity two.
For every initial condition g = (g1, g2) ∈ L2(G) the solution u(t) converges, as

t → ∞, to the vector-valued function whose two coordinates are the mean value of
g1 and g2, respectively.

Starting from these two models, we now introduce the following scenario: imagine
that we are going to study the heat diffusion along the interval [0, 2] with Neumann
boundary conditions.However, at each renewal time Tn we can decide to add or remove
one third Neumann condition at x = 1. In particular, the choice of considering three
or two constraints is determined by a suitable random process. This means that the
system switches between Model A and Model B and the stochastic evolution problem
is of the form (2.2).

We shall see that the asymptotic behavior of our systems is given by the uniform P-
almost sure convergence towards the orthogonal projector P0 to the constant functions.
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5.2 The General Model

Like in Sect. 4, we are going to introduce ensembles of metric graphs.

Assumption 5.3 C = {G1, ...,GN }, where G1, ...,GN are metric graphs with the same
edge set E (i.e., defined upon the same finite set E and the same vector (�e)e∈E) but
possibly different sets of verticesV1 := V(G1), ...,VN := V(GN ) (i.e., the equivalence
relations ≡1, . . . ,≡N may be different).

Once again, we introduce a probability space (�,F, P) and a semi-Markov process
(Z(t))t≥0 satisfying Assumption 2.1.

At this point, we can associate with each graph Gi in C an operator Ai with natural
vertex conditions and elliptic coefficient pi ∈ W 1,∞ as in (5.2), which we denote by

(Ai , D(Ai )), i = 1, . . . , N :

we emphasize that the different vertex sets induce different operator domains, even
though all operators satisfy the same class of vertex conditions: for example, “cutting
through a vertex”, hence producing two vertices of lower degree out of a vertex of
larger degree, induces a new operator with relaxed continuity conditions (and two new
Kirchhoff conditions).

By Proposition 5.1, all these operators satisfy the Assumptions 2.4 and 2.7. We can
state our main problem, i.e., the continuous random evolution on metric graphs

{
d
dt u(t) = AXk u(t), t ∈ [Tk, Tk+1),
u(0) = f ∈ L2(G).

(5.5)

We recall that S(t) is the random propagator associated with problem (5.5) such that
u(t) = S(t) f . Our interest is again to prove a link between the convergence of S(t)
towards the orthogonal projector P0 with the connectedness of the union of the graphs
in C. However, the key point here is to give a definition of the concept of union graph
in the metric setting: this follows immediately from the above formalism, see [30].

Definition 5.4 (Union and intersection of metric graphs)
Let G1, . . . ,GN be metric graphs defined on the same E, i.e., Gi = E�≡i , i =

1, . . . , N . Denote by ≡∪ and by ≡∩ the equivalence relations obtained by taking the
reflexive, symmetric, and transitive closure of

⋃N
i=1 ≡i ⊂ V×V and

⋂N
i=1 ≡i ⊂ V×V,

respectively. Then, we call union and intersection metric graph the metric graphs

G∪ := E�≡∪ and G∩ := E�≡∩,

respectively.

In Fig. 3 we can consider some examples of union graphs.
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G1 G2 G1 ∪ G2

e1
e1 e1

e2
e2 e2

e3

e3 e3

G1 G2 G1 ∪ G2

e1 e1 e1e2 e2 e2

G1

e1 e2

e3

G2

e1 e2

e3

e1

e3
e2

G1 ∪ G2

Fig. 3 Some examples of union graph

G1

e1 e2

e3

G2

e1 e2

e3

G1 ∪ G2

e1 e2

e3

Fig. 4 If we reverse the orientation of just one edge, the resulting union is different

Remark 5.5 We observe that for fixed ≡1,≡2, the union metric graph G1 ∪ G2 does
depend on the orientations of the edges in E (as so do G1,G2, too); this is in sharp
contrast to the case of combinatorial graphs.

For instance, we can take the same graphs G1 and G2 in the third example in Fig. 3
and just reverse the orientation of one edge as shown in Fig. 4.

Our main result in this section is the following lemma, which characterizes the null
space of elliptic operators with natural vertex conditions associated with the union
graph with its connectedness.

Lemma 5.6 Given G1, . . . ,GN metric graphs satisfying the Assumption 5.3, let G be
their union graph (see Definition 5.4). Let Ai be the elliptic operators associated with
Gi with natural vertex conditions operators and coefficients pi ∈ W 1,∞(Gi ). Then

G is connected ⇐⇒
N⋂
i=1

ker Ai = 〈1〉. (5.6)

Notice that this lemma is remarkably similar to Corollary 4.5 (which deals with
combinatorial graphs) and also their proofs will be similar.
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Proof We show the proof for N = 2, then one can easily extend the result for an
arbitrary N by induction. In general, both G1 and G2 have a certain number of disjoint
connected components:

G
(1)
1 , . . . ,G

(m)
1 s.t. G1 =

m⊔
j=1

G
( j)
1 , for some m ∈ N

and

G
(1)
2 , . . . ,G

(n)
2 s.t. G2 =

n⊔
k=1

G
(k)
2 , for some n ∈ N.

Since connectedness is just a topological property, notice that the connected compo-
nents remain the same for every choice of orientation.

Now assume that G is connected: we need to show that ker A1 ∩ ker A2 ⊆ 〈1〉.
Thus, we take f ∈ ker A1 ∩ ker A2, in particular from the results in Proposition 5.2
it is well-known that f is constant on each connected component of both G1 and G2.
Take ξ = (x, eh) and θ = (y, el) in G: we are going to show that

f (ξ) = f (θ).

(We can assume that h �= l, otherwise the assertion is trivial.) By connectedness of G,
there exists a chain of adjacent (in G1 and/or in G2) edges �ξθ = {eh, ei1 , . . . , eiM , el}
linking ξ and θ :

ξ ∈ eh ∼ ei1 ∼ · · · ∼ eiM ∼ el � θ.

Thus, taking into account that f is constant on the connected components of both
graphs, we deduce that f is constant along �xy and in particular f (ξ) = f (θ).
Because ξ, θ are arbitrary, we conclude that f is constant.

In order to prove the opposite implication, we are going to show that if G is discon-
nected, then we can find a non constant function such that f ∈ ker A1 ∩ ker A2. Take
two connected components G(A) and G(B) of G. Then, both contain a certain number
of connected components of G1 and G2. In particular, we set

JA =
{
j ∈ {1, . . . ,m} : G( j)

1 ⊆ G(A)
}

, JB =
{
j ∈ {1, . . . ,m} : G( j)

1 ⊆ G(B)
}

and

KA =
{
k ∈ {1, . . . , n} : G(k)

2 ⊆ G(A)
}

, KB =
{
k ∈ {1, . . . , n} : G(k)

2 ⊆ G(B)
}

.

Due to the fact that G is disconnected, it follows that

JA ∩ JB = ∅, KA ∩ KB = ∅,
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in fact there exist no connected components, either of G1 or G2, shared by G(A) and
G(B): this is true regardless of the chosen orientation of the edges of G. Hence, the
indicator functions on each connected component of G1 (resp. G2) form a basis for the
respective kernel

ker A1 = 〈{11, j }mj=1〉 and ker A2 = 〈{12,k}nk=1〉.

Since every graph has the same set of edges (with possibly different connections),
and every edge in G(A) belongs to one and only one component G( j)

1 on G1 (and also

to one and only one component G(k)
2 of G2) we can write

1A =
∑

e∈G(A)

1e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j∈JA

∑
e∈G( j)

1

1e =
∑
j∈JA

11, j

∑
k∈KA

∑
e∈G(k)

2

1e =
∑
k∈KA

12, j

(5.7)

and similarly for G(B):

1B =
∑

e∈G(B)

1e =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j∈JB

∑
e∈G( j)

1

1e =
∑
j∈JB

11, j

∑
k∈KB

∑
e∈G(k)

2

1e =
∑
k∈KB

12, j .

(5.8)

At this point, we only need to take any function of the form

f = α1A + β1B , α, β ∈ C, α �= β,

and from (5.7) and (5.8) one gets that f can be written as a linear combination of
elements of the bases of both ker A1 and ker A2:

f = α
∑
j∈JA

11, j + β
∑
j∈JB

11, j %⇒ f ∈ ker A1

and

f = α
∑
k∈KA

12,k + β
∑
k∈KB

12,k %⇒ f ∈ ker A2.

Thus, the proof is complete. ��
In the end, we can finally state the following characterization of the asymptotic

behavior of the solutions to (5.5) in terms of the connectedness of the union graph.
The proof is, at this point, a direct consequence of Theorem 2.11 and Lemma 5.6.
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Theorem 5.7 Let (Z(t))t≥0 be a semi-Markov process and C be a family of graphs
that satisfy the Assumptions 2.1 and 5.3, respectively. Then the random propagator
(S(t))t≥0 for the Cauchy problem (5.5) converges in norm P-almost surely towards
the orthogonal projector P0 onto the constants if and only if the union graph G is
connected.

5.3 Randomly SwitchingMetric Graphs with Non-zero Second Eigenvalue

As we have previously seen in the combinatorial setting, we are going to apply expo-
nential convergence results in the framework of metric graphs. We shall work under
the following additional assumption.

Assumption 5.8 There exists one metric graph in C, say G1, such that each connected
component of G j , j �= 1, is contained in one of the connected components of G1.

By a similar argument as in the proof of Lemma 5.6, this implies that the null
space ker A1 is contained in all the null spaces of A j , j �= 1, thus Assumption 2.12 is
verified. The application of Theorem 2.13 then reads as follows.

Corollary 5.9 Let (Z(t))t≥0 be a semi-Markov process andC be a family of graphs that
satisfy the Assumptions 2.1 and 5.3, respectively. Let additionally the Assumption 5.8
hold.

Then the random propagator (S(t))t≥0 for the Cauchy problem (5.5) converges in
norm P-almost surely exponentially fast towards the orthogonal projector PK with an
exponential rate no lower than

α = −
N∑
j=1

sd(A j )
 j

that is the average of the values sd(A j ) (introduced in Remark 2.9) with respect to the
fraction of time 
 j spent by the process Z(t) in the various states.

The setting described here is somehow comparable to the diffusion equation pre-
sented in [2], in the casewhen their semilinear term is set equal to zero. The dependence
on time of that model is different from the non-autonomous random evolution prob-
lem (5.5): while diffusion and conductivity coefficients are in [2] allowed to vary over
time (in a measurable fashion), yielding an operator family (A(t))t≥0, the evolution
is studied on one fixed graph. However—much like in our setting—the crucial point
in [2] is that the time average of the spectral gap of (A(t))t≥0 is bounded above away
from zero. In their case, this is enforced by assuming that the graph is connected and
allows the authors of [2] to prove exponential convergence to equilibrium.

Remark 5.10 As in the case of combinatorial graphs discussed in Remark 4.12, we
can find in the literature some estimate on the best possible value of the parameter α,
provided that G1 is connected (in this case, Assumption 5.8 is satisfied and sd(A1) =
λ1(A1)). We refer e.g. to the estimates in [32, Théo. 3.1], [21, Thm. 1], and [24,
Thm. 4.2]: for a generic connected metric graph G
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−π2|E|2
L2 ≤ λ2 ≤ −π2

L2 ,

where the second inequality is an equality if and only if G consists of an interval; here
|E| is the number of edges and L is the total length of the graph (the sum of the lengths
of the edges). Therefore, the parameter α, that is the weighted average of −λ2(Ai ) as

Gi varies in C, is no lower than
π2

L2 (as long as the intersection graph G∩ of all graphs

in C is connected) and no higher than
π2|E|2
L2 .
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