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1 Introduction

Randomly switching dynamical systems stand in between deterministic evolution
equations (where the dynamics of the system is prescribed and completely known
a priori) and stochastic differential equations, where the dynamics is perturbed by the
introduction of noise.

Such systems are described by a continuous component, which follows a (determin-
istic) evolution driven by an operator A ; which is selected among a class of operators
C={Aj,..., Ay} by adiscrete jump process.

These problems are related to a large—but somehow disjoint—Iliterature, which
treats piecewise deterministic Markov processes [5,11,12,29], switched dynamical
systems [7], products of random matrices [22], random walk in random environment
[39,40] with applications in biology [10], physics [9] or finance [38], for instance.

In the present paper, we study the asymptotic behavior of a class of random evolution
problems that may be relevant in some applications. Our main results (Theorems 2.11
and 2.13 below) state that the system consisting of a random switching between
parabolic evolution equations driven by contractive, compact analytic semigroups
satisfying suitable additional conditions converges towards an orthogonal projector
provided the process spends enough time at each state, and we are able to estimate
the rate of convergence: we refer to Sect. 2 for the theorems’ formulation and Sect. 3
for their proof. As a motivation to our study, we provide in this section an example
concerning the dynamics of the discrete heat equation on a system of random varying
graphs. This example will be further analyzed in Sect. 4, which is devoted to the study
of combinatorial graphs: there we discuss some further examples which relate our
results to the existing literature. Finally, Sect. 5 is devoted to an application of our
theory to a randomly switching evolution system on metric graphs. This section takes
advantage of a novel formal definition of metric graphs [30] which can be exploited
to verify the assumptions of our construction.

1.1 A Motivating Example

Let Gy, ..., Gy be a family of simple (i.e., with no loops or multiple edges) but not
necessarily connected graphs on a fixed set of vertices V with cardinality |V|. We
consider the function space defined as the complex, finite-dimensional Hilbert space
CV={u:V—>C.

On every graph Gy we introduce the graph Laplacian L (for a formal definition, see
Sect. 4) , which (under our convention on the sign) is negative semi-definite and whose
eigenvalue A1 = 0 has multiplicity equal to the number of connected components in
Gy. The corresponding eigenspace is spanned by the collection of indicator functions
on each connected component. In particular, if G is connected, then ker £ = (1) is
the space of constant functions on the vertices.

It is known ([31, Ch. 4]) that the solution of the Cauchy problem
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Lu(t,v) = Leult, v), veV, r>0,
u0,v) = f(v), vev,

can be expressed in the form

u(t,v) = e'™* f(v)

and in the limit for # — oo, it converges to the projector Py f onto the null space
ker Ly, where the projection equals the average of f on each connected component
of Gy.

Let us introduce a random mechanism of switching the graphs over time. Having
fixed a probability space (€2, F, P), we introduce a Markov chain {Xy, k > 0}) with
state space £ = {1, ..., N} (which defines the environment where the evolution takes
place) and a sequence of increasing random times {7, k > 0}, Ty = 0, such that the
Cauchy problem is defined by the operator Lx, on the time interval [T}, Ti41)

Fut,v) = Lxu@,v),  veV, t e[l Tirn), keN,

(1.1)
u(0,v) = f(v), vev.

We can associate with (1.1) the random propagator

n—1
Sty = e ""TRn [T M=%t e [T, Ty11), neN,  (1.2)
k=0

which maps each initial data f € CV into the solution u(r) of (1.1) at time 7. This
settles the issue of well-posedness of (1.1). The main question we are going to address
in this paper is however the following:

(P) Does the random propagator (S(¢));>0 converge as ¢t — 0o? Towards which limit?

The asymptotic behavior of arandom propagator (S(¢));>¢ associated with problem
(1.1) has not yet been studied in a general, possibly infinite-dimensional setting. Some
results are known for finite-dimensional time-discrete dynamical systems, where the
random propagator (S(7},)),cn defined likewise is a product of random matrices (PRM
for short): this theory dates back to the 1960s, see e.g. Furstenberg [20].

In Theorem 2.11 we show that under suitable assumptions on the random switching
mechanism and on the involved operators, the random propagator converges towards
the orthogonal projection on ﬂj.v:l ker L ;; and in Theorem 2.13 we estimate the rate
of convergence. In Sect. 2 we set the mathematical stage and then formulate both
results; their proofs are led in Sect. 3, after collecting some necessary lemmata of
probabilistic and operator theoretical nature. Our main results require an accurate
analysis of the null spaces of the operators driving the relevant evolution equations (in
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our motivating example, the discrete Laplacians L;): notice that even when all ker L
have the same dimension, there is no reason why this should agree with the dimension
of K := ﬂj»v:] ker £ ;; describing the orthogonal projector onto K is therefore, not an
easy task. Coming back to our motivating example of graphs, we observe in Sect. 4
that K can be explicitly described in terms of the null space of a new operator A
that is related to the Laplacians on the graphs Gy, ..., Gy but acts on a different
class of functions. The key point here is that in doing so we can relate the long time
behavior of a Cauchy problem with random coefficients with that of an associated
(deterministic) Cauchy problem supported on a different “union” structure. We are not
going to elaborate on this functorial viewpoint, but content ourselves with discussing
in Sect. 5 a different, more sophisticated setting where the same principle can be seen
in action. While in our two main applications we focus for the sake of simplicity on
heat equations, our abstract theory is by no means restricted to this scope: general
reaction-diffusion equations, evolution equations driven by poly-harmonic operators,
or even systems switching between these two classes could, for example, be studied
as well, see Remark 2.14. An easy application to a heat equation (on a fixed interval)
with random boundary conditions is sketched in Example 2.1.

The case of combinatorial graphs is tightly related to the topic of random walk
in random environments, see e.g. the classical surveys by Zeitouni [39,40], which
roughly speaking describe the behavior of a random walker who at each step finds
herself moving in a new realization of a d-dimensional bond-percolation graph. We
also mention the connection to the somehow dual approach in [23], where Hussein
and the third author develop a theory of evolution equations whose time domain is a
(given!) tree-like metric graph: on each branch of the tree a different parabolic equation
is considered. In comparison, in the present paper we restrict to the easiest possible
case (the tree is simply R ), but its branches can have random length.

At the same time, if the evolution of L(¢) is, in fact, deterministic, then (1.1)
is essentially a non-autonomous evolution equation; well-posedness theory of such
problems is a classical topic of operator theory, while some criteria for exponential
stability have been recently obtained in [2] in the context of diffusion on metric graphs:
in comparison with ours, the conditions therein are much more restrictive in that each
realization of the considered graph is assumed to be connected.

The convergence of piecewise deterministic Markov processes (or random switch-
ing system) is discussed, in particular concerning the ergodicity of the Markov
processes [5,11]. The results in [8] are concerned with the non-ergodicity of a switch-
ing system in the fast jump rate regime and open the path to similar results in [27].

2 Setting of the Problem and Main Results

In this section we introduce a general setting for abstract random evolution problems:
we will successively show that our motivating problem (P) is but one special instance
of a system that can be described in this way.

To begin with, we construct the random mechanism of switching by means of a
semi-Markov process. These processes have been introduced by Levy [28] and Smith
[36] in order to overcome the limitation induced by the exponential distribution of the
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jump-time intervals and developed by Pyke [33,34]. These models are widely used in
the literature to model random evolution problems and, more generally, evolution in
random media, see e.g. Korolyuk [26].

Let (Z(z), t = 0) be a semi-Markov process taking values in a set E, which denotes
a given set of indices, defined on a suitable probability space (€2, F, IP). By definition,
this means that there exists a Markov renewal process {(X,, 7,) : n € N}, where {X,}
is a Markov chain with values in E and {7,} are the renewal times between jumps.
The distribution function of 7, depends on the state of the Markov process X,, and,
conditioned on X, = x, itis given by

D,(t) =P(ry41 <t | Xpn=x)=qx, E, 1), t>0.

If we denote 6, the renewal time in the state x (i.e., the time spent in x before the next
jump) then the distribution function of 0, is just ®, (7).

If we introduce the counting process N (f) := max{n : T, < t},then Z(t) = Xn).
The joint distribution is given by the transition probability function g (x, y, t)

g, y, ) =PXup1 =Y, tug1 <t | Xp =2x).

By definition, for fixed ¢, (x, y) — ¢q(x, y, t) is a sub-Markovian transition function,
i.e.,

q(x,y.0)=0 and Y g(x,z,1)<1 forallx,y € Eandallt > 0.

zeE

The non-negative random variables t, define the time intervals between jumps,
while the Markov renewal times {7, n € N} defined by

n
To =0, Tn:ZTk» neN
k=1

are the regeneration times.

For simplicity, in the sequel we assume that random variables {t,} are independent
and the distribution of 7,41 only depends on the state of the Markov chain X, = x.
Therefore, the transition probability function can be represented in the form

q(x7 yvt) :TC(.X, y)cDX(t)v

where (rr(x, y)) is a Markov transition matrix and ®,(¢) are, for any x € E, the
probability distribution functions of the renewal time in the state x.

Clearly, Markov chains and Markov processes with discrete state space are exam-
ples of semi-Markov processes (the first is associated with 7, = 1, the second with
independent, exponentially distributed 7,,). Our standing probabilistic assumptions are
summarized in the following.
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Assumption 2.1 Z = (Z(t));>0 is a semi-Markov process based on a Markov renewal
process {(X,, 7,) : n € N} over the state space E x [0, 00) such that

(1) the Markov transition matrix (n (x, y)) defines an irreducible Markov chain with
finite state space £ = {1, ..., N};

(2) the inter-arrival times t,, are either constant, or their distribution functions ®, (¢),
for every x € E, have a finite continuous density function ¢, (¢) > 0 for a.e.
t > 0;and

(3) the inter-arrival times 7, have finite expected value E*[t,] = uy > 0.

The sequence of jump times associated to the process Zis Ty = 0, T;,41 = T, + 741
forn > 0.

Remark 2.2 Since the embedded Markov process X is irreducible, there exists a unique

invariant distribution p = (p1, ..., py) forit.

Moreover, this implies that the total time spent in any state by the semi-Markov pro-
cess Z is infinite almost surely, and the fraction of time spentinx € £ = {1,..., N}
satisfies

L[ PxMx
O:= lim — Liz)=x1ds = =————
X 0 {Z(s)=x} Z

t—oo t

. 2.1
JeE Pjltj

Once our random environment has been described, we can introduce the evolution
problem.

We consider an ensemble KX = {Ay, ..., Ay} of linear operators on a normed space
H ; clearly, the cardinality of X is the same as that of the state space E of the Markov
chain.

We can now introduce the abstract random Cauchy problem

i =
i Ly(t) = AZ@)u(), 0

u(0) = f,

where A(Z(t)) = Ay, fort € [T, T,+1). The solution of (2.2) is a random process,
where the stochasticity enters the picture through the semi-Markov process (Z(¢));>0.
Notice that (1.1) is a special case of (2.2) on the finite-dimensional space H = C¢.
In the literature, (deterministic) non-autonomous Cauchy problems of the form
(2.2) are a classical topic with a well-developed theory, see e.g. [3,15,37]. In this
paper, we shall use the following natural modification of the notion of solution.

Definition 2.3 Assume that there exists a finite partition0 =Ty < T} < ... < Ty =:
T of [0, T] such that A(Z(¢)) = Ay, forallt € [T,—1,T,),n =1,..., N. We say
that a caglad function u : [0, T] — H is a solution of (2.2) on [0, T] if

(1) ue C'(Ty—1, T,); H) foralln =1, ..., N;
(2) u(t) € D(Ayx,) forallt € (T,—1, T,)andn =1, ..., N;
(3) u'(r) = Ax,u(t) forallr € (T,—;, T,) andn =1,..., N.

Sufficient conditions for well-posedness of (2.2) are given by the following.
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Assumption 2.4 H is aseparable, complex Hilbert space and forevery j € {1, ..., N}
the closed, densely defined operator A; : D(A;) C H — H generates a strongly-
continuous, analytic semigroup of contractions and it has no spectral values on iR,
with the possible exception of 0.

Definition 2.5 A solution u for (2.2) is a stochastic process {u(t),¢ > 0} which is
required to be adapted to the filtration {F;} generated by the SMP Z:

F:=o{{t, <t}N{(x0,...,x,) € B}, neN, Be E"T!}.

and whose trajectories solve the identity u’(t) = A(Z(¢))u(r) almost surely in the
sense of Definition 2.3.

Existence and uniqueness of the solution in the sense of previous definition is a
consequence of the well-posedness of the Cauchy problem driven by the operator Ay,
on the time interval (7,1, T,).

Theorem 2.6 Under the Assumptions 2.1 and 2.4, given f € H, (2.2) has a unique
solution u, which can be expressed as u(t) = S(t) f in terms of the random propagator
(S(1)e=0 C L(H) defined by

n—1
S(t) =TT A [Te T =04 4 e [T, T, 1), neN.  (23)
k=0

In particular, u is a continuous function (almost surely).

Proof Let us fix a path of the semi-Markov process Z, which is identified by the
sequences of states {X,,} and times {7, }. By standard arguments (see e.g. [18]) there
exists a unique solution u(¢) of the Cauchy problem in [0, 77) with leading operator
Ax,: this solution has limit u(71) = lim;47, u(z). Next, we consider the Cauchy
problem in [77, 72) with leading operator A x, and initial condition u (7). Notice that
the solution is continuous in 77. Again, there exists a unique solution which has limit
in 7>. We can repeat this argument: since by assumption lim 7,, = 400 almost surely,
we obtain the thesis. m|

We notice the following equivalent expression of the random propagator (S(¢))s>0
in terms of the inter-arrival times {7, } and the counting process (N ());>0 introduced

above:
N(t)—1

S@t) =TI TT e %, eRy. 2.4)
k=0

After establishing well-posedness of our abstract random Cauchy problem, we are
interested in studying the long-time behavior of its solutions. To this purpose, we are
going to impose the following.

Assumption 2.7 A; has compact resolvent for every j € {1,..., N}.
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It follows from the Assumptions 2.4 and 2.7 that each A; has finite-dimensional
null space, hence a fortiori

N
K = ﬂ ker A
j=1

is finite-dimensional, too. If k := dim K > 0, then we denote by {ey, ..., et} an
orthonormal basis of K.

We shall throughout denote by Pk the orthogonal projector onto K and P; the
projector onto ker A ;. In general, for a projector P, its orthogonal operator is PLi=I—
P. For the sake of consistency of notation, we use the same notation also in the case
K = {0}.

Remark 2.8 In particular, it holds that Aje; = 0, forall j = 1,..., N and all i =
1, ..., k.Since the range of P is spanned by null vectorsof A j foreachj =1,..., N,
Pk commutes with each A ;, each semigroup operator e’ 4j, and each spectral projector
PjontokerA;,j=1,...,N,t >0.

Remark 2.9 Let A be an operator which satisfies our Assumptions 2.4 and 2.7. Notice
that they require A to be dissipative and, thanks to Assumption 2.7, the spectrum of A
is discrete. By [18, Cor. IV.3.12 and Cor. V.2.15] there exists a spectral decomposition
H = Hy ® Hyq where Hy = ker(A) and H; = Hg" and the restriction of A to
H,; generates an analytic contraction semigroup with strictly negative growth bound
sq(A) =sup{Nr) : r €0 (A)\{0}} <O.

In order to examine the long time behavior of the solution, we introduce a notion
of convergence in the almost sure sense.

Definition 2.10 We say that a random propagator (S(¢));>0 C L(H) converges in
norm P- almost surely towards a (deterministic) operator M € L(H) if

IP(|| = lim S() = M) =1

Next result provides the main result about the asymptotic behaviour of the random
propagator (S(¢));>0 associated to the Cauchy problem (2.2).

Theorem 2.11 Under the Assumptions 2.1, 2.4, and 2.7 the random propagator
(S(£))>0 for the Cauchy problem (2.2) converges in norm P-almost surely towards
the orthogonal projector Pk onto K := ﬂj-v:l ker A;.

Let us finally discuss the asymptotic behavior of the random evolution problem
(2.2) under an additional assumption that is inspired by a result from [2], where non-
autonomous diffusion equations on a fixed network are studied. Our aim is to study
when the solution converges exponentially, for all initial data f, towards the orthogonal
projector of f onto the eigenspace with respect to the simple eigenvalue 0. Adapting
the ideas of [2] to our general setting, we shall impose the following.
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Assumption 2.12 There is one operator, say A1, whose null space ker A1 is contained
in the null space of all other operators A», ..., Ay. In this case, we have that K :=
ﬂ?’:] ker Aj = ker Ay.

It turns out that under this additional assumption (S(¢));>0 converges in norm
exponentially fast towards the orthogonal projector Pg onto K. We stress that this is
again a probabilistic assertion, since the result depends on the path of the system—
actually, on the number of visits to the state corresponding to Aj.

Theorem 2.13 Under the assumptions of Theorem 2.11, let additionally the Assump-
tion 2.12 hold. Then the almost sure convergence of the random propagator towards
Pk is exponential with rate o, where

. 1 [!
az tim [ (=suA0) iz ds = (= suan)er = 0.
and sq(Ay), introduced in Remark 2.9, is strictly negative thanks to the Assumption
2.12 and ©1 was introduced in (2.1).

We postpone the proofs of our main results to Sect. 3.

Remark 2.14 1) The Assumption 2.4 is especially satisfied if each A is self-adjoint
and negative semi-definite. In this case, moreover, s4(A;) = Akj+1(A ;) the largest
non-zero eigenvalue, where k ; is the dimension of ker (A ;) (we denote A, the sequence
of eigenvalues of A;, and w.l.o.g. we assume that they are ordered: A1 > A > ...}
then Ay = O forall k < kj).

There are, however, further classes of operators satisfying it. If the semigroup
generated by A is positive and irreducible, for example, it follows from the Krein—
Rutman Theorem that the generator’s spectral bound is a simple, isolated eigenvalue.
A more general class of examples can be found invoking the theory of eventually
positive semigroups, see [13, Thm. 8.3].

2) If we strengthen Assumption 2.12 by requiring that all operators in the ensamble
X satisfy ker(A ;) = K, then the statement of Theorem 2.13 becomes deterministic
in the sense that the convergence towards the orthogonal projector Pg always occurs.

2.1 Randomly Switching Heat Equations

The scope of our result is not restricted to graphs and networks. To illustrate this, we
consider a toy model—a heat equation with initial data f € L?(0, 1), under different
boundary conditions—where the switching takes place at the level of operators, rather
than underlying structures. Here we show that convergence to the projector onto the
intersection of the null spaces holds. A more complex example, where the thermostat
model with switching in the boundary conditions, is given in [27]: in that case, non-
ergodicity is possible under certain conditions on the parameters.

(1) We first consider two different realizations A1, A, of the Laplacian acting on
L%(0, 1): with Neumann and with Krein—von Neumann boundary conditions,
which lead to the domains
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D(A)) = {u e H2(0,1) : ' (0) = (1) =o} 2.5)

and
D(As) = {u € H2(0,1) : 4/ (0) = /(1) = u(l) — u(O)} (2.6)

respectively, [35, Exa. 14.14]. Both operators satisfy the Assumption 2.4. Further-
more, the null space of the former realization is one-dimensional, as it consists of
the constant functions; whereas a direct computation shows that null space of the
latter realization is 2-dimensional, as it consists of all affine functions on [0, 1];
hence the intersection K of both null spaces is spanned by the constant function 1
on (0, 1). Both associated heat equations are well-posed, yet the latter is somewhat
exotic in that the governing semigroup is not sub-markovian. We are interested
in the long-time behavior of this mixed system (2.2), with A(Z(t)) € {A1, A2}:
if the switching obeys the rule in the Assumption 2.1, the random propagator
(S(#))r>0 converges in norm P-almost surely towards the orthogonal projector
onto the intersection of both null spaces, i.e., onto the space of constant func-
tions on [0, 1]; hence the solution of the abstract random Cauchy problem (2.2)
converges P-almost surely towards the mean value of the initial data f € L?(0, 1).
(2) On the other hand, if we aim at studying the switching between Dirichlet and
Neumann boundary conditions, and thus introduce the realization A3 with domain

D(A3) = {u € H20,1) : u(0) = u(1) = 0}, 2.7)

then one sees the intersection space K is trivial, as ker A3 = {0}, hence the
random propagator converges in norm P-almost surely to O if the Assumption 2.1
is satisfied.

(3) Also observe that upon perturbing A3 we find the new operator

Agu = Aju + ’u
D(A3) := D(A3),

whose null space is now one-dimensional, as it is spanned by sin(7 -). Nevertheless,
ker AjNker A3 = {0}, hence again under the Assumption 2.1 the system switching
between Ay, A3 converges towards O.

(4) Finally, let us consider a switching between A| and A4 defined as

A d du
u:=—|_p—
+ dx pdx
D(A4) := D(A1),
where p € W1(0, 1), p(x) > 0 for all x € [0, 1]. Because ker A; and ker A4
both agree with the space of constant functions, under the Assumption 2.1 the

random propagator converges in norm P-almost surely towards the orthogonal
projector onto the space of the constant functions.
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Moreover, as a consequence of Theorem 2.13 we can observe the exponential
convergence of the random propagator for some (but not all) of these toy models.
In particular, this holds whenever we take A3z in the ensemble X: indeed, we have
K = {0} and then the Assumption 2.12 is satisfied, since the first eigenvalue )»53) of
Aj is strictly negative. The exponential convergence of (S(#));>0 can be shown also for
randomly switching systems where K C {A1, Az, A4}. In all of these cases K agrees
with the space of constant functions on (0, 1), hence it is one-dimensional and the
Assumption 2.12 is still fulfilled, since the second eigenvalue A;J ) < 0, for j =1,4.
On the other hand, we cannot apply Theorem 2.13 and then prove the exponential
convergence of the random propagator for all those models which switch A3 with A
or/and A; or/and A4. In fact, this implies that the intersection space K is trivial again,
but no one operator has strictly negative first eigenvalue.

3 Technical Lemmas and Proofs
3.1 A Monotonicity Lemma

The following lemma 3.4 provides the crucial tool to prove the assertion of Theorem
2.11. It shows how we can bound the norm of the random product of matrices which
generates the random propagator (S(¢));>0 with respect to the stopping times.

Let L > N and (kq, ..., kr) be a sequence of indices that covers the whole £ =
{1,..., N}. Given an ensemble K of operators satisfying the Assumption 2.4, let
us consider the associated sequence of operators (Ayg,, ..., Ak, ) taken from K. We
shall denote P; the projection on the kernel ker A; and Pk the projection on K =
ﬂ]L.:l ker Akj = ﬂlNzl ker A;.

Remark 3.1 In the proof we will need some known results in functional analysis: if 7'
is a compact operator on a reflexive Banach space X, then there exists x belonging
to the unit sphere of X such that ||T|| = ||Tx]||, i.e., the norm of T is attained: see
e.g. [1, Cor. 1]. This is in particular true if T = T (¢) for some ¢t > 0, provided the
semigroup generated by A is analytic (or even merely norm continuous) and A has
compact resolvent, see [18, Thm. I1.4.29]. Finally, we will need the well-known fact
that the compact operators form a two-side ideal in in the space L(H) of bounded
linear operators on H.

The following results are necessary steps in order to prove the main result of this
section.

Lemma3.2 Let (T (t));>0 be a contractive, analytic strongly continuous semigroup
on a Hilbert space H whose generator A has compact resolvent and no eigenvalue
on the imaginary axis, with the possible exception of 0. Then the following assertions

hold:

(1) IT(x|| < IT(®)x|| forall x ¢ ker Aand allt’ >t > 0;
(2) ker A ={x € H:||T(to)x]| = x|} for some ty > O.
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Proof (1)Fix x ¢ ker Aandlet0 <t < t'.

Let us first consider the case of injective A, so that P = 0, where we denote by
P the orthogonal projector onto ker A. Then x # 0, and T(#)x — 0 ast — oo by
the Jacobs—deLeeuw—Glicksberg theory, see [18, Thm. V.2.14 and Cor. V.2.15]. Due
to analyticity of the semigroup, the mapping ¢ : (0,00) > f > IT(Hx)> € Ris
real analytic: indeed, for each x € H the mapping (0,00) > t — T(t)x € H is
real analytic, hence it can be represented by an absolutely converging power series,
say T(t)x = Y 3o, tX fi; but then, the Cauchy product of Y 22 X fi with itself,
given by > 0> 1™ > (fi, fm—1), is absolutely converging towards 1T (t)x|)> =
(T (t)x, T(t)x).

If | T(t)x|| = ||T(¢)x], then ¢ is constant on the interval [z, t']: indeed, by con-
tractivity of the semigroup

IT@x < IT@x) = I1T@)xl < ITs)x]|  foralls e [z,7].
Due to the identity theorem for real analytic functions, ¢ is now constant on (0, co)—a
contradiction, since (1) — [|x||? # Oasz \  0,but ¢(r) — Oast — oo. This proves
the theorem in case that P = 0.
Let us now consider the case of general P: observe that Px # x, since x ¢ ker A.

Applying the first step of the proof to the restriction of (7'(¢));>0 to the H © ker A,
we see that

IT@U = P)x|> > IT@)U — P)x|?,
hence by Pythagoras’ theorem

IT (x> = IT @) Px|* + 1T — P)x]|?
> | T@Px|? + T — P)x|? (3.1)
= |T)Px|> + IT ) — P)x||*> = | T()x|?

where the second to last identity holds because the fixed space of (7'(¢));>0
fix(T(¢))i=0 :={x € H:T(t)x = x forall t > 0}

agrees with the null space of its generator A by [18, Cor. IV.3.8], hence T'(t)y = y

forall y € ker A and all ¢ > 0.

(2) We see that

fix(T'(¢))i=0 C {x € H : ||T(t)x]|| = ||x|| forall + > 0}

C{x e H:|T()x| = ||x]| for some 7y > 0}
(H
C ker A.
This concludes the proof, since as recalled before ker A = fix(T'(¢));>0. m|
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The following is probably linear algebraic folklore, but we choose to give a proof
since we could not find an appropriate reference.

Lemma 3.3 Let H be a Hilbert space and let Py, ..., Py be finitely many orthogonal
m

projectors on H; let Pg be the orthogonal projector onto K := ﬂrg Pi. If P; is
i=1

compact for at least one i = 1,..., L, then the operator Py, ... P P,Jg has norm

strictly less than 1:

|Py...PIPE=1—¢<1.

Proof 1Itis obvious that || Py, ... P PIJ<- || < 1. We proceed by contradiction and assume
that
[Py ... P PE| = 1. (3.2)

Since at least one P; is compact, so is the whole product, hence it is norm-attainable, see
Remark 3.1: there exists x € H with ||x|| = 1 such that | P,, ... P; PI%xH = |x||=1.
Notice that

1=|Pp... PIPgx|| < ||[Pp... P1]|]| Pgx|

hence ||P1%x|| = 1 = ||x|| and it follows that x = Péx. ‘We then substitute in previous
equality and get

1=|Py... PIPgx| =|Py...Px|

and the same reasoning implies ||P;x|| = 1, and x = P;x. Reiterating the same
argument we obtain x = P;x for any j = 1,...,m, therefore x € K but we have
X = P,ng, which implies x = 0, a contradiction to ||x|| = 1. Therefore, (3.2) is false
and the thesis follows. O

We now proceed to prove the main result of this section. Recall that the operators
A are assumed to be dissipative and P; is the projection on ker A ;.

Lemma 3.4 Under the Assumptions 2.4 and 2.7, let L > N and (k1,...,kr) be a

sequence of indices that covers the whole E = {1, ..., N}. For n > 0 small enough
there exists 6 > 0 such that, fort; > 6 >0,i =1,..., L, we have
||PgetA ..o <1 —p<1. (3.3)

Proof Recall that P; is the orthogonal projection on ker A;, K = O{V: | ker(A;), and
the projection on K satisfies Px P; = Px = P; Px, P P~ = P = P Pt Recall

. . . . 2 2
that Young’s inequality for product implies that ab < 7- + % for every ¢ > 0; we

further simplify by noticing that 2¢ > ¢/2, hence the first term on the right is bounded
by 8“7 In the sequel, we shall repeatedly use this estimate in the form: for all @ > 0,

(a+b)* < (1 +a)a®+ (1 +a Hp
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We have

et .. Ak et Ak Py ? = |t . e Akt AN (P + P x|

< (14 a)llee .. 2t p Pix|?

+ (L +a et M P P

< (1 +a)etthe . e py Pix|?

+ (1 +a et e |e" A plx|?

where we use the fact that ¢4 P x = Py x forany x € H, 1; > 0, and that
ker Ay, D K, so (ker Ag, )L c K+ the first estimate follows from Young’s inequal-
ity. Notice further that all semigroups involved are contraction operators, hence
le Ak . M2 < 1; finally, we have " Plx| < e )| Ply| <

e 15| x || We recall that sg(A j) is the growth bound of the operator A; on

(ker A j)l, see Remark 2.9, and in our assumptions s7(A;) < 0. It follows that

letAke .. At A PLx|? < (1 +a)|let e ... e PL Py x|?

+ (1o he 2 |y,
We continue by splitting the first term in the right hand side

IIe’LAkL ... ekl Ak PIJ('XHZ
< (L +a)lle™ M .. Y (P, + PE) Py Py x|)?
+ (1o e x| 2
< (14 a)? ||t .. e P, PE Py x|?
+ (L +a et e Pl PE P x|
+ (e e 21 |y
< (14 a)? et . eB3% P, PE Py x|
+ (1 +a et . B |25 A) | Pl pr P x|1?
+ (Lo he 2|y 2
< (14 a)? et .. 3% PL P, P x|

+(1+ 05_1) (e_ZIZSd(Akz) + e—Zled(Akl)) ||x||2

and by recursion, we finally obtain

Ay Ay 1A pL 2 L L2
et ... e Prox||” < (14 a)* || Py, - .. Pry Py Pe, P X||

L
+ (1 +a—1) Ze—zt,’Sd(Aki)”xuz
i=1
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The operator in the first term is bounded in norm by 1 — ¢, thanks to Lemma 3.3;
therefore, we obtain the estimate

L
le' e . e Ak e Ak Ppx|® < ((1 +ao)t(l—e)+(14+a™H ) eZIiS"(A"i)> x>
i=1

The thesis follows by first taking o small enough such that the first addendum is
bounded by 1 — 27, then taking § large enough such that the second addendum is
bounded by 7.!

O

Notice that in previous lemma there is not any a priori bound on the required §,
which can be arbitrarily large. However, in the case of a fixed, deterministic clock, the
same result follows for arbitrary § > 0 however small.

Lemma 3.5 Under the Assumptions 2.4 and 2.7, let L > N and (ky,...,kr) be a
sequence of indices that covers the whole E = {1, ..., N}. Then for all § > 0

| PiEedhe ... k|| < 1.
Proof Letus now prove the inequality by contradiction: because all semigroups as well
as the projector P,% are contractive and hence certainly || Pl%e‘SA"L o edh | <1,it
suffices to assume that

”P[J{eSAkL .. -eSAkl ” — 1,

since the product operator is a compact operator, as stated before, there would then
exist some x € H, x # 0, with ||Pée§AkL . -e5Ak1x|| = ||x||. Because

[Pge’®e .. Mix|| < || Pge®e .. M| x| < [l x|,

it follows that [|¢®4%1x|| = |x| and hence, by Lemma 3.2.(2), x € ker Ay, i.e.,
AMx = x. Proceeding recursively we see that x € ﬂiLzl ker Ay, C K, whence

I et us notice that in formula (3.4), the only fixed term is & from Lemma 3.3. Thus, let us fix n such that

1-(1-9?% e2-¢)
n< =

2 2

Then, we choose « such that
A+t -e?=0a-2n
and, setting A+ = max{sg(A;), : i =1,..., L} <0, we may choose

1 -1 -1
§>—1 L1 .
> ol Og(n 1+« ))
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¢%4% x = x for all i and hence

1 Ak A L
lxll = | Pge’ e - e® x| = || Pix|l =0,

a contradiction. O

3.2 Proof of Theorem 2.11

We aim to apply Lemma 3.4, hence we start by fixing a sequence & = (&), ..., &1_1)
of states in E which covers E and is admissible for the sequence X, meaning that
the probability that X passes from the successive elements of £ in the given order is
positive. Since X is irreducible, we can also require that the transition §&;,_1 — &p has
positive probability.

Next step is to prove that, almost surely, the sequence £ occur infinitely times in
the path of X and that the waiting times are longer than §. Then the theorem follows
as a consequence of our construction.

In the sequel, the constant L is fixed and given by the length of the sequence §.

It is known that an irreducible Markov chain with finite state space { X, } is recurrent,
i.e., every state is visited infinitely times, with a finite mean waiting time between
successive visits. In the sequel, we need to prove that also any admissible cycle is
recurrent.

An admissible cycle is a finite sequence of states of fixed length L which
returns to the starting point with positive probability. Formally, we require that
& = (&,&1,...,&r—_1) is an admissible cycle if

- the Markov chain follows this cycle with a strictly positive probability:
Peo&r - Perabro1 Per_1.6 > 0;

- by a suitable rotation of the indexes, it is always possible to let £y = Xo.

Now, we can divide the path of X in blocks of length L: Y (0) = (Xo, ..., Xr—1),
Y1) =(Xr,...,X2.-1), ..., and consider the stochastic process Y taking values in
asubset A of EL, where A = {6 = (0, ...,0._1) € EL : [1pe 6., >0}

Y is a Markov chain on the state spaceA C E L, 3.5)

Proof In order to prove Markov property, we exploit the Markov property of the
process X and we obtain

PYn+1)=0n+1)|Y0) =60),...,Y([n)=~0(n))

=PXu+)L =O+1:0, - Xn42)L—1 = Ontr1.0-1 1 Yo
=60.0, X1 =60;15 - -» X(ae 1)L -1 = On:1—-1)
=PXu+iL =6nrt;L, - s X+2)L—1 = Ont1.2-1 | Yo

=600.0, X1 =001, .-+, X(nt1)L.—1 = On:—1)
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=PXu+1L =010, - Xn42)L—1 = Ont1.0—1 | Yo
= Un;05 -+ X(n+1)L71 = en;Lfl)
—PY(+1)=0@n+1)| Y(n) =6n)).

We shall denote p = ( 1397,7) oA the transition matrix associated to the Markov chain
Y. O

Let d be the period of the Markov chain X (d = 1 if the chain is aperiodic). We
notice first that d|L. If d > 1, the state space E can be divided into p sub-classes
Eo, ..., Eq_y1,such that UE; = E,and E; N E; = { for i # j. For an aperiodic
irreducible chain, we can set E = Ey. It holds that p”"(x,y) > Oonly if x € E;
and y € E;4, (where all the indices are taken modulus d) and p™(x,y) > 0 for all
sufficiently large n and for all x, y in the same class E,.

The Markov chain Y inherits an analog division, i.e., A = Co U ---U Cy4_1, where
Ci ={0 = (0,...,0_1) € A,| 6p € E;}. Assume that there exists n such that
p"@,n) > 0.Then by € E;, 011 € Eixp—1 = E;j_1 (since L is a multiple of d,
hencei+L—1=i—1(modd)),ny € Eiynr = E;.If d > 1, previous computation
implies that Y is no longer irreducible; however, if one consider the restriction of Y
to any of the classes C;, we have the following result.

Proposition 3.6 If X is a homogeneous, irreducible Markov chain of period d, then Y
restricted to any of the classes C; (i + 0, ...,d — 1) is a homogeneous, irreducible,
aperiodic Markov chain on the given class (if X is aperiodic, i.e.d = 1, then Y is
irreducible and aperiodic on the whole A).

Proof Let 6 and 7 in the same class C;, which implies that 6,1 € E;_1 and g € E;.
Then there exists ng large enough such that for n > ng, p”d+1 (6r—1,n0) > 0. Taking
n > ng in such a way that k = nd/L is integer, we get that p* (6, ) > 0, but since 6
and n are arbitrary, this implies that the class C; is closed and irreducible. Moreover,
since (k+ 1)L = (n + L/d)d it follows that also ﬁk+1 (6, n) > 0, which implies that
Y is aperiodic on the class C;, and this concludes the proof. O

Corollary 3.7 Assume that X is a homogeneous, irreducible Markov chain. Then any
admissible state y for the Markov chain Y is recurrent.

Let& = (&, ..., &r—1) be the admissible cycle fixed at the beginning of the proof.
Recall the representation of S(¢) given in (2.4), and take t = nL — 1 for simplicity:

nL—1 n
1PES(L = DI <|IPg [ e™i#) < T ipget s Moenim gt At |
k=0 m=0

(3.6)

Let N(n) = ZZ:O Ty, —elg, 55 -- Trgien=s be the number of visit up to time
n to the state £ by the Markov chain Y introduced above, such that all the waiting
times in the successive states are at least as long as §. Since the state £ is recurrent
for the chain Y and the events {t;74+1 > J} are independent and have strictly positive
probability, it follows that N (n) — 0o as n — 00, almost surely.
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Now, we notice that in the right hand side of (3.6) we have N (n) terms which can
be bounded, thanks to Lemma 3.4, by 1 — 1 < 1 and the remaining terms have norm
bounded by 1, hence

) t—+o0
_—

IPgSmL — D] < (1 —mN* 0. 3.7)

By Remark 2.8 we can write the random propagator as
S(t) = Pk S(t) + Pg S(t) = Px + P S(1)
and the thesis
z—leoo IS#) — Px]l=0 P —as.
follows by (3.7).
3.3 Proof of Theorem 2.13
As done in the proof of Theorem 2.11, we can write the random propagator as
S(r) = PgS(t) + P S(1)
and show that || PI% S(t)|| = 0ast — 400 in order to obtain the thesis.

Denote u(t) := S(¢) f for all initial data f; we can estimate the norm of the vector
Piu(t) € H by

td
||P,%u(r)||2—||P,%f||2=/ NPl ds
o as
t
=20 </ (iPIJ(‘u(s), Pfgu(s))ds) (3.8)
0 ds
t
=2/ R(A(Z(s)) Pgu(s), Piu(s))ds,
0

where the last equality holds due to Remark 2.8 and because % and PIJ{- commute.
We split the above integral with respect to the various states of Z(z):

N t

IPgu®)* = 1P fI17 =) 2f Lizes)=j) R(Ax, Pgu(s), Piu(s))ds,
: 0
j=1

and since all the A’s are dissipative, we have the trivial estimate

t
1PgudI® = 11Pg f1I* < 2[ Liz(s)=1) R(A1 Pgu(s), Pgu(s))ds.
0
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Now, by Assumption 2.12, K = ker(A;) and, by Remark 2.9, A; restricted to K 1
has growth bound s4 (A1) strictly negative, hence the above estimate becomes

13
IPgu@®I®> = |IPg f11> < —2sa(A) / Lize=1) (Pgu(s), Piu(s))ds
0
! 1 2
= —25d(Al)f Lizs)=1) | Pgu(s)||” ds.
0
By Gronwall’s Lemma we deduce that
IPEu@? = [PES)fIP < | PEfIP e 2a0 o tzo=nds (3.9
The thesis now follows from Remark 2.2: indeed, the integral diverges to +o0o P-
almost surely, hence ||PI§ S(t)|] = 0. Moreover, as stated in Remark 2.2, the fraction

of time spent in a state by the semi-Markov process Z can be computed to be

1 t
lim —/ 1(Z(S)=A])ds = @1 > 0,
0

t—>—+00 t
where ®; was introduced in Remark 2.2. It follows from (3.9) that the speed of
convergence to 0 is at least equal to (—2s47(A1))07.
4 Combinatorial Graphs
A simple (finite, undirected) combinatorial graph G = (V, E) is a couple defined by
a finite set V of vertices v and a subset E C V® of unordered pairs e := {v, w} of
elements of V; such a pair e is interpreted as the edge connecting the vertices v, w.

Given a simple graph G = (V, E), let us introduce a positive weight function on the
set of vertices V

m:V — (0, 4+00)

which induces the scalar product

(fs@m =Y _ mWfWeW), f,geC

veV

on the space CV of complex valued functions f: V — C: we denote by Ei (V) the
Hilbert space CV with respect to (-, -),,. In addition, let

w: E— (0, 400)

be a positive weight function on the set of edges E. We call the 4-tuple (V, E, m, u) a
weighted combinatorial graph.
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Remark 4.1 We stress that each weighted graph is a metric space with respect to the
shortest path metric; while the topology does depend on the weights, any two weights
define equivalent topologies, and in particular it does not depend on m, u whether G
is connected or not.

Let us recall the notion of discrete Laplacian (or Laplace—Beltrami matrix) L, , on
a weighted graph G = (V, E, m, ), cf. [31, § 2.1.4]—or shortly: weighted Laplacian.
For any vertex v € V, let E, denote the set of all edges having v as an endpoint. Then
L 6%1 V) — 6%1 (V) is defined by

Lo f = s Y WO UMW), ¥VeV:
e={v,w}eky

L, reduces to the discrete, negative semi-definite Laplacian if u = 1 and m = 1;
i.e., £1,1 is minus the Laplacian matrix that is common in the literature [31, § 2.1.4].
Indeed, we stress that we have not adopted the usual sign convention of algebraic
graph theory, as any such L,, , is self-adjoint and negative semi-definite. More gen-
erally, L, , satisfies the Assumptions 2.4 and 2.7 and it can be shown that L,, ,
(and not —L,, ,,) generates a Markovian semigroup. The associated sesquilinear form
q: £2.(V) x £2/(V) — Cis given by

af = > O UW - fw)EW —gW).  f.ge M),

e={v,w}eE
and satisfies
q(f &) = Lompfs&m=(f Lonpym:  fr8€la\);

accordingly, its Rayleigh quotient is

FoLompu Pm a(fs ) Peepumpee L@ F V) = fF(w)]?
fsDm IR I£1I2 ’

F#0. (41)

It follows from (4.1) that A = 0 is an eigenvalue of each weighted Laplacian L, ,:
the associated eigenfunctions are constant on each connected component of G =
(V, E, m, n). Therefore, it turns out that the null space of £,, , agrees with the null
space of the unweighted Laplacian (on (V, E)) associated with G.

4.1 The General Model

Throughout this section we consider a finite collection C of graphs.

Assumption 42 C = {Gl, ceey GN},whereGl = (V, El, mu, le), ceey GN = (V, EN, my, ,lLN)
are simple graphs with same vertex set V but possibly different edge sets E;, vertex
weights p;, and edge weights w;,i = 1,..., N.
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The following seems to be natural but not quite standard: we prefer to note it
explicitly.

Definition 4.3 (Union and intersection of weighted graphs) The wunion of G; =
V,Ei,mi, i), i = 1,..., N, is the weighted graph Gy = (V,E, m, n) with set
of vertices V, set of edges E := U,N: 1 Ei, vertex weights

m(v) = minNmi(v), vev,
and edge weights
e) = i(e)), eeckE.
wn(e) i:q{ﬁfNMl( )
Likewise, the intersection of G; = (V,E;,m;, i), i = 1,..., N, is the weighted

graph Gn = (V, E, m, u) with set of vertices V, set of edges E := ﬂlNzl E;, vertex
weights

m(v) ;= max m;(V), vev,
i=1,....N

.....

and edge weights

e) = i i(e), eckE;
u(e) ‘:I{nnNuz( )

here we set u;(e) :=0ife ¢ E;.

In this way, it is possible to study the behavior of the intersection of the null spaces
of the Laplacian operators L, ., (Gr) associated with the graphs in €. This result
seems interesting on its own, since it explicitly connects the geometry of the graph
with the algebraic property of the Laplacian operator.

Lemma 4.4 Given Gy, ..., Gy combinatorial graphs satisfying the Assumption 4.2,
let G be their weighted union graph (see Definition 4.3) and let L, ,,(G) be the discrete
Laplacian on G. Then

N
ker £(G) = ) ker Ly, 4, (Gy).
i=1

Proof 1t suffices to work with unweighted graphs; for simplicity, moreover, we only
prove the case N = 2. In general, suppose that G, G; and G; are written as disjoint
unions of connected components:

I m n
G= |_|G(h), G| = |_|G(])’ GZZLngk)~
h=1 j=1 k=1
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Any eigenfunction associated with the null eigenvalue of £ shall be constant on
any connected component of G, hence Bg = {15, h =1, ..., [}, where

1 ifveG®,

YveV: 1y(v) =
w (V) [O otherwise,

is a basis for ker £(G). Similarly, By = {11;, j =1,...,m}and By = (1o, k =
1, ..., n} are a basis of ker £(G1) and ker £(G,), respectively. Hence, we only need
to prove that forall h = 1, ..., [, 15 is in the intersection of the null spaces in € and
then extend the result to ker £(G) by linearity. In particular, denoting

e = {je{l,...,m} Gﬁf)gGW},

= {k e{l.....n} 6P c G(h)] ,
then by construction the function 1, will be

1 ifveGY, jec?,
0 otherwise,

VveV: 1y(v):

and
1 ifveGy, kecy,

VveV: 1y(v) =
w (V) 0 otherwise,

thus 1, € ker L(G;) Nker L(Gy), in fact it can be written as linear combination of
both bases B and B, as

1, = Z 1y, or 1= Z 1o k.

jec® kecy
On the other hand, given f € ker £(G) Nker £L(G;), we have
f=alig1+- - F+anliny “4.2)

and
=11+ -+ Bulay, 4.3)

where B and B, as above. Then, comparing the expressions (4.2) and (4.3), we get
that
aj:ﬁk:C], VjECl(l), VkeCél),
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and f can also be expressed in terms of Bg as

I
= enln,
h=1

thus f € ker L(G). O

As a corollary, we notice the following result, concerning the relation between the
connectedness of the union graph G (see Remark 4.1) and the dimension of the kernel
of the (weighted or unweighted) Laplacian operator.

Corollary 4.5 Given Gy, ..., Gy combinatorial graphs satisfying the Assumption 4.2,
let G be their weighted union graph. Then

N
G is connected <= [ )\ker L, 1, (Gi) = (1). (4.4)
i=1

Partially motivated by Corollary 4.5, with a slight abuse of notation we adopt in
the following the notation L; := L,,, ,,;(G;),i =1, ..., N. Fixed a probability space
(2, F, P), let (Z(t));=0 be a semi-Markov process on the state space £ = {1, ..., N}
which satisfies Assumption 2.1. In this section, we shall consider the random Cauchy
problem

:%(r,v)=zxku<r,v), veVireloTo). keN, o

u(0, x) = f(v), vev,

where Ly, is the discrete Laplace operator associated with the currently selected graph
Gy, . The above equation is also known in the literature as the (random) discrete heat
equation.

We can now state our main result in this section. We recall that the relevant operators
L,y satisfy the Assumptions 2.4 and 2.7, hence the following is a direct consequence
of Theorem 2.11.

Theorem 4.6 Let (Z(t));>0 be a semi-Markov process and C be a family of graphs
that satisfy the Assumptions 2.1 and 4.2, respectively. Then the random propagator
(S(#))i=0 for the Cauchy problem (4.5) converges in norm P-almost surely towards

N
the orthogonal projector Pk onto the space K = m ker L;.
i=1

The limiting operator can be identified with the orthogonal projector onto the con-
stant functions, provided G is connected.

Corollary 4.7 Under the assumptions of Theorem 4.6, (S(t));>0 converges in norm
P-almost surely to Py if and only if the union graph G is connected.
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Proof Corollary 4.5 implies that Py = P if and only if the union graph Gis connected,
while Theorem 4.6 implies the convergence of S(7) towards Pk , hence the sufficiency
and necessity of the condition. O

In the last part of this section we present two special cases of evolution on com-
binatorial graphs where we discuss the relation between our result and the existing
literature.

4.2 Connected Graphs

In this section we assume that all the graphs in C are connected. As we have already
seen, this assumption is unnecessarily strong if we aim at solving (P).

However, we are going to show an interesting link between our problem and the
analysis of the so-called left-convergent product sets [ 14]. For simplicity, in this section
we assume that 7, = 1 for every n, hence T, =n and Z(t) = Z([t]) = X ;.

A set X = {My, ..., My} of matrices is said to have the left-convergent product
property, or simply to be an LCP set, if for every sequence j = (j,)nen taking values

oo

in{l, ..., N} the infinite left-product Mj := l_[ M j, converges. Given two sequences
k=0
jand j/, define the metric

d(,j):=N""  whereris the first index such thatj, # j/

and call the topology induced by d on S = {j = (ju)nen, jn € {1,..., N}} as
sequence topology on S. It is known [17] that X is an LCP set if X is paracontracting,
meaning that for some matrix norm

Mx #x = |Mx| <|x|| forallM € Kandx € RY.

The issue of convergence of infinite products of matrices has been finally settled in a
fundamental paper by Daubechies and Lagarias: in particular, see [14, Thm. 4.1 and
Thm. 4.2] and also the erratum in [16].

Proposition 4.8 [14, Thm. 4.2] Let X be a finite set of d x d matrices. Then the
following are equivalent.

(a) X is an LCP set whose limit function j — M; is continuous with respect to the
sequence topology on S.

(b) All matrices M; in X have the same eigenspace E| with respect to the eigenvalue
1, this eigenspace is simple for all M;, and there exists a vector space V such that
C? = E; @ V and such that if Py is the oblique projector onto V away from e,
then Py X Py is an LCP set whose limit function is identically 0.

In particular, if Ep is a 1-dimensional subspace, then the limit function M is the
projector onto this space.
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Now we can state this result in the setting of combinatorial graphs. Under the
assumption of connectedness of all graphs, Theorem 2.11 states that S(z) will con-
verge to Py (the projector on the subspace (1) of constant functions) no matter which
sequence of graphs we follow in (4.5), thus it provides the same result as in the deter-
ministic case treated in Proposition 4.8. We shall give in Lemma 4.9 an alternative
proof to this result, which specializes to the notation of graph theory.

Lemma4.9 Let C = {Gy, ..., Gy} be a finite family of connected graphs and Z =
(X5, T = 1) be an irreducible Markov chain. Then for any path of the process Z the
limit
lim ||S(#) — Pyl =0 (4.6)
t—+00
holds for the random evolution problem (4.5).
Proof In our assumptions, 0 is a simple eigenvalue of each Laplacian matrix Ly :=
L(Gg) with associated eigenvector 1.
The orthogonal operator POJ- is again an orthogonal projector operator with range
(]l)L. Notice that PyS(t) = Py because rg Py = (1) is contained in
fix (elL")[ZO ={x:V>C: ey = x forall t > 0}
for every 1 < k < N. Therefore,
St) = PySEt)+ (I — Py)S(t) = Py + POLS(t) forall t > 0, 4.7)

and we can prove the assertion by showing that

. 1 o
Jim [[Py-S(@®)] = 0.

First of all, by definition POJ- is idempotent and commutes with the exponential matrix
of every Laplace operator. Hence

PES(t) = Pgrel'MEx Xt L ofxo = plel=REx pile o ... piletxo,
We claim that
each matrixP(f‘eL", i =1,..., Nhas norm strictly less than 1. 4.8)

By the finiteness of E, we denote by
5= max{||POJ‘eL"|| i= 1,...,N} <1
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For all t > 0, let k € N be such that k < r < k + 1. By sub-multiplicativity of the
matrix norm we have

L 1 (t-kLx, pL L L
1Py SOOIl = 11Pg =R Xk Pyme™ X1 ... Pgre™Xo|
1L (t—kL 1L Lo
< 1P| | Pghe et - || e o
< ||PeR X ] || Pe o)) < 5.

If t - 400, then k — 400 and we finally get
lim {|PgS@)Il =0
— 400

which implies the thesis.

In order to complete the proof it remains to show that claim (4.8) holds. We have
proved a more refined version of this claim in Lemma 3.4; however, in the current set-
ting, the proof is straightforward. Let £ denote the Laplacian operator for a connected
graph G. By a direct computation we have for all > 0

d d
I = Po)e'™ fIP =Y & (fep < €™ Y (f e

k=2 k=2
2t A 2 2t A 2
=2 = Po) fII7 < 2| f1%,

whence ||(1 — Po)e‘sL ||2 < e¥*%2 < 1 since Ay < 0. O

4.3 Randomly Switching Combinatorial Graphs with Non-zero Second Eigenvalue

The goal here is to apply our exponential convergence criteria to combinatorial graphs.
Consider the random evolution problem (4.5); we are going to show the exponential
convergence of the random propagator (S(¢));>o provided that the following assump-
tion holds:

Assumption 4.10 There exists one combinatorial graph in C, say Gj, such that each
connected component of G;, j # 1, is contained in one of the connected components
of G 1.

As shown in the proof of Lemma 4.4, a consequence of the assumption above is
that ker L1 € ker L, j # 1, therefore the Assumption 2.12 is satisfied and we can
directly apply Theorem 2.13.

Corollary 4.11 Let (Z(t));>0 be a semi-Markov process and C be a family of graphs
that satisfy the Assumptions 2.1 and 4.2, respectively. Let additionally the Assump-
tion 4.10 hold.

Then the random propagator (S(t));>0 converges in norm P-almost surely expo-
nentially fast towards the orthogonal projector Px with an exponential rate no lower
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than

N
=—> 5a(L))0;
j=1

that is the average of the values sq (L ;) (introduced in Remark 2.9) with respect to the
fraction of time ® j spent by the process Z(t) in the various states.”

Proof The assertion follows from Theorem 2.13. Notice that the exponential rate can
be computed by

N

1 [t 1 !
—;/0 Sd(LZ(s))dS=—Z;Sd(Lj)/<; L(z(s)=6;) ds

j=1

which converges, as t — 00, to (compare Remark 2.2)

PjHj
= — Ojsq(Lj) =— sq(Lj) —=———
Z ¢ Zd Zlﬂolﬂl

This concludes the proof. O

Remark 4.12 Assume that G; is connected (then the Assumption 4.10 is verified). It
follows that the union graph G is connected, too, hence the intersection space K is
one-dimensional and Px = P is the projection onto the space of constant functions
on V. Moreover sz (L£1) = 12(L1) < 0. Adapting the proof of [19, Cor. 3.2] (where
the convention is adopted that L is positive semi-definite) we see that each of the
discrete Laplacians £ on the weighted combinatorial graph G has second largest
eigenvalue 1> (Ly) := A2(Gg) € [A2(Gu), A2(Gn)], where Gy, G are the union and
intersection graph introduced in Lemma 4.4, respectively: therefore we conclude that
the convergence to equilibrium for the randomly switching problem is not faster (resp.,
not slower) than in the case of the heat equation on Gy (resp., on Gn; observe that
Gn may however be disconnected, and hence 1>(Gn) may vanish, even if all Gy are
connected).

Estimates on the rate of convergence to equilibrium of the random propagator are
readily available: it is well-known that, for a generic unweighted connected graph
G, —|V|] < 2 (G) < —2(1 — cos ﬁ), where the second inequality is an equality
if and only if G is a path graph, see [19, 3.10 and 4.3]. It follows that A,(Ly) €
[—|V], =2(1 — cos ﬁ)] if in particular Gn, is connected; this gives an estimate on the
convergence rate in Corollary 4.11.

2 Ttis possible to explicitly compute © in terms of the invariant distribution p = (p1, ..., py) associated to
the embedded Markov chain X and the expected values of the jump times for the different states u ; = E/[r{]
by the formula

Pjkj

0 =—2
J N
D=1 PLIY
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5 Metric Graphs

In this section we discuss the application of Theorem 2.11 to finite metric graphs.
Roughly speaking, metric graphs are usual graphs (as known from discrete mathemat-
ics) whose edges are identified with real intervals—in this case, finitely many interval
of finite length; loops and multiple edges between vertices are allowed. While this
casual explanation is usually sufficient [6,31], for our purposes we will need a more
formal definition. We are going to follow the approach and formalism in [30].

Let E be a finite set. Given some (£e)ece C (0, 00), we consider the disjoint union
of intervals

&= |_|[0, le] :

eckE

we adopt the usual notation (x, e) for the element of € with x € [0, £¢] and e € E.
We can define on € a (generalized) metric by setting

de(x,y) =|x —y|, ife=fandx,y € [0, €],

de((x,e), (v,0) == (5.1)

00, otherwise.

Consider the set

V= | [0, te) = [_[{0. @), (te. @)

eckE eckE

of endpoints of €. Given any equivalence relation = on V, we extend it to an equivalence
relation on € as follows: two distinct elements (x1, €]) # (x2, €) € &€ belong to the
same equivalence class in € if and only if they belong to the set of vertices V and
they are equivalent with respect to the relation =on 'V, (x1, e1) = (x2, e3): we denote
this equivalence relation on € again by = and we call § := 8/5 a metric graph,
with E its set of edges and V := V/E its set of vertices. So, a vertex v € V is by
definition an equivalence class consisting of boundary elements from €, like (0, e)
or (¢, f). Beyond our formalism, the equivalence relation on V can be understood as
follows: two elements of 'V belong to the same equivalence class and can hence be
identified if they are endpoints of two adjacent edges corresponding to the same vertex
of the underlying combinatorial graph: see [30, Rem. 1.7] for more details, which will
however not be necessary in the present context.

Two edges e, f € E are said to be adjacent if one endpoint of e and one endpoint of f
lie in the same equivalence class v € V (i.e., if e, f share an endpoint, up to identification
by =); in this case we write e ~ f. Also, two vertices v, w € V are said to be adjacent
if there exists some (not necessarily unique) e € E such that {x, y} = {(0, e), ({e, )}
for representatives x of v and y of w (i.e., if there is an edge whose endpoints are v, w,
up to identification by =); in this case we write v ~ w.

Let us stress that by definition a metric graph is uniquely determined by a family
(Le)eck and an equivalence relation on V; however, its metric structure is independent
on the orientation of the edges!
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As a quotient of metric spaces, any metric graph is a metric space in its own right
with respect to the canonical quotient metric defined by

k
dg(§,0) :=inf Y de(&.6,), &0¢€8,

i=1

where the infimum is taken over all k € N and all pairs of k-tuples (&1, ..., &)
and (01,...,0) withé = &,0 = 6, and 0; ~ &4 foralli = 1,...,k—1,[4,
Def. 3.1.12], where ~ denotes the adjacency relation introduced before. We call dg
the path metric of G. A metric graph is said to be connected if the path metric doesn’t
attain the value oo; in other words, if any two points of G can be linked by a path.
Along with this metric structure there is a natural measure induced by the Lebesgue
measure on each interval; accordingly, we can introduce the spaces

C(S) and L*(9)

as well as
HY(9) :={f e L*(SNCO): f e LX)}

Again, these definitions do not depend on the orientation of the metric graph; but
the notation

f@&) = fex) = f((x,®), &:=(x,e),

does.
On the graph § we aim to introduce a differential operator acting as the second
derivative on the functions f;(x) onevery edge e ;; and possibly more general operators

of the form
d d
A= 1 50 (1)

for some elliptic coefficient p > po > 0 of class W1, py € R. While it is natural
to require that fo € H?(0, £e) for every edge e, taking Dece H?(0, £e) as domain
only defines an operator acting on functions on L?(€): this is not sufficient in order to
define a self-adjoint operator and suitable boundary conditions shall thus be imposed
in order for A,y to satisfy the Assumption 2.4.

Each realization of the elliptic operator A we are interested in is equipped with
natural vertex conditions: for each element u in its domain

e u € C(9), and in particular u is continuous across vertices;
e u satisfies the Kirchhoff condition at each vertex, namely

VveVv: > peMup(v)= Y prvup(v), (Kc)
eck feE
0,e)ev (4s,fev
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i.e., the weighted sum of the inflows equals the weighted sum of the outflows.

(Observe that in any vertex with degree 1 the latter becomes a Neumann boundary
condition; and that the case p = 1 defines the usual Laplacian A with natural vertex
conditions on the metric graph G.)

We can now define the operator A with natural vertex conditions on G, i.e.

(Au)e(x) = (pe(x)ug(x))’,
) ) (5.2)
D(A) ={ueC@nN @ H*(0, £eo) : u satisfies (Kc¢) ¢ .

ecE

Let us summarize the main results we need in our construction for the operator
A with natural vertex conditions. They are part of a general, well-established theory,
see e.g. [25, Thm. 2.5 and Cor. 3.3] for edgewise constant coefficients pe and [31,
Thm. 6.67] for the general case.

Proposition 5.1 The operator A with natural vertex conditions on H = L?*(9) is
densely defined, closed, self-adjoint, and negative semi-definite; it has compact resol-
vent.

Thus, the Assumptions 2.4 and 2.7 are satisfied and A generates a contractive
strongly continuous semigroup, denoted by (¢'4) >0. Hence the abstract Cauchy prob-
lem

Lu@t) = Au(t), t>0,

u0) = f,

is well-posed: for every f € L?(G) there exists a unique mild solution given by

(5.3)

u(t) :==ef, Vi =0.

Moreover, continuous dependence on the initial data holds. Because A is self-adjoint
and hence the semigroup is analytic, the solution u is for all f € L?(S) of class
C1((0, 00): L*(§)) N C((0, 00); D(A)).

By Proposition 5.1, the spectrum of A consists of negative eigenvalues of finite
multiplicity and the spectral radius satisfies s(A) = 0 € o(A). The study of the
complete spectrum is still an open problem: actually, only in few cases it is fully
determined and in general just some upper and lower bounds on the eigenvalues are
known. In this work, we are going to emphasize the following property of o (A), see
[25, Theorem 4.3].

Proposition 5.2 Let G be a finite metric graph and denote by GV, ..., GO its con-
nected components. Then, the multiplicity of 0 as eigenvalue of the operator A with
natural vertex conditions is l. In particular, the piecewise constant functions {1 h}it:l’

where

1 ifx e g™,
1 = 5.4
n(x) 0 otherwise, (5-4)

forallh =1, ...,1, form a basis of ker A.
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51

€1 €2

Fig.1 Model A

5.1 A Motivating Example

Let us study on the interval [0, 2] the heat equation

W, x) = Lhu(t, ), 120, x€[0,2],
u(0, %) = o (x), x €10,2],

where ug € L?(0,2). In particular, we are going to analyze two different and well-
known boundary value problems: in one case, we impose two Neumann conditions
at x = 0 and x = 2, whereas the second setting keeps the same constraints at the
boundaries, plus one additional Neumann condition at the middle point x = 1.

Model A describes the evolution of the heat equation on [0, 2] with Neumann
boundary conditions in 0 and 2. Formally, however, we consider [0, 2] as the graph
Gy with V = {0, 1, 2} and edges e; = [0, 1] and e» = [1, 2].

The evolution is thus described by the Laplace operator A; given by

D(AD) = {u= (u,u2) : ui € H*(0,1), i = 1,2,
up(0) = u5(2) =0, w1 (1) = uz(1), uy(1) —uy(1) =0},
d?u

Au=—.
! dx?

The spectrum of A clearly agrees with that of the Laplacian with Neumann conditions
on [0, 2], i.e.,

k*m?
o(A1) = {)»k = k=0,1,2,...},
with associated eigenfunctions
() = —, x€[0,2]
eX) = —F, X ) )
0 NG

km
er(x) = cos ?x , x €0, 2], k>1.
In this way, for every initial condition ug € L?(0,2), we can explicitly write the
solution in terms of the spectral representation

“+0o0

tA tA
u(t) =e'“lug = Ze K(ug, ek)Lz(O,Z) ek
k=0
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Ga

N N N €1 €2
o o o)
0 1 2 0 11 2

Fig.2 Model B: on the right, the correct interpretation as a network equation with a disconnected graph

and, as expected, the limit distribution for long times agrees with the average of ug
computed on the interval [0, 2]

2

1
lim u(t) = (uo, eg)eg = Poug = —/ uo(x)dx.
t—>—+00 2 Jo

Model B describes the evolution of the heat equation on [0, 2] with Neumann
boundary conditions in 0, in 2, as well as in 1. Formally, we consider [0, 2] as the
graph G, withV = {0, 1, 1/, 2} and edges e; = [0, 1] and e, = [1’, 2].

The Laplace operator associated with G, is A, with domain

D(Ay) = [u — (uy,up) € H©0, 1) ® H2(1',2)
L W(0) = u (1) = 0, ub(1') = uh(2) = o},

A d*u
U=—s:.
2 dx?

Here the dynamics is somehow different from the previous one: in fact, the Neumann
condition placed in x = 1 acts like an insulating “wall” through which heat exchanges
are not allowed. The spectrum in this case is

o(Ay) = {ﬁk = k%72, k=0, 1,2,._.},

where every eigenvalue has now multiplicity two.

For every initial condition g = (g1, g2) € L2(9) the solution u(¢) converges, as
t — 00, to the vector-valued function whose two coordinates are the mean value of
g1 and gp, respectively.

Starting from these two models, we now introduce the following scenario: imagine
that we are going to study the heat diffusion along the interval [0, 2] with Neumann
boundary conditions. However, at each renewal time 7,, we can decide to add or remove
one third Neumann condition at x = 1. In particular, the choice of considering three
or two constraints is determined by a suitable random process. This means that the
system switches between Model A and Model B and the stochastic evolution problem
is of the form (2.2).

We shall see that the asymptotic behavior of our systems is given by the uniform IP-
almost sure convergence towards the orthogonal projector P to the constant functions.
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5.2 The General Model

Like in Sect. 4, we are going to introduce ensembles of metric graphs.

Assumption 5.3 C = {Gy, ..., Gy}, where Gy, ..., Gy are metric graphs with the same
edge set € (i.e., defined upon the same finite set E and the same vector (£e)ecg) but
possibly different sets of vertices Vi := V(G1), ..., Vi := V(Gn) (i.e., the equivalence
relations =1, ..., =y may be different).

Once again, we introduce a probability space (€2, F, P) and a semi-Markov process
(Z(1))s>0 satisfying Assumption 2.1.

At this point, we can associate with each graph G; in € an operator A; with natural
vertex conditions and elliptic coefficient p; € W1 as in (5.2), which we denote by

(Ai, D(A}), i=1,...,N:

we emphasize that the different vertex sets induce different operator domains, even
though all operators satisfy the same class of vertex conditions: for example, “cutting
through a vertex”, hence producing two vertices of lower degree out of a vertex of
larger degree, induces a new operator with relaxed continuity conditions (and two new
Kirchhoff conditions).

By Proposition 5.1, all these operators satisfy the Assumptions 2.4 and 2.7. We can
state our main problem, i.e., the continuous random evolution on metric graphs

Lu(t) = Axu(t), te[Tx, Tis). 5.5)
u(0) = f € L*(9). '

We recall that S(z) is the random propagator associated with problem (5.5) such that
u(t) = S(¢)f. Our interest is again to prove a link between the convergence of S(¢)
towards the orthogonal projector Py with the connectedness of the union of the graphs
in C. However, the key point here is to give a definition of the concept of union graph
in the metric setting: this follows immediately from the above formalism, see [30].

Definition 5.4 (Union and intersection of metric graphs)

Let G, ..., Gy be metric graphs defined on the same &, i.e., §; = E/Ei, i =
1,..., N. Denote by =, and by =n the equivalence relations obtained by taking the
reflexive, symmetric, and transitive closure of U,N: | =i C VxVand ﬂf\’: | =i CVxV,
respectively. Then, we call union and intersection metric graph the metric graphs

Su = S/EU and  §n:= ‘C’/Eﬂ,
respectively.

In Fig. 3 we can consider some examples of union graphs.
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S1 G2 91 UG
€1 €2 €1 €2 €1 €2
S1 G2 91 UG

€3

€1 €2 el

:i €3
€1 €2

€2
3

91 92

s e e “
1 2
e
el () e 2
€3

Fig.3 Some examples of union graph

91U G2

2 G1U G2

S1
€3 ——>——>o e3
€1 €9
€1 €2 eq eo
o————e
€3

Fig.4 If we reverse the orientation of just one edge, the resulting union is different

Remark 5.5 We observe that for fixed =1, =), the union metric graph §; U G, does
depend on the orientations of the edges in € (as so do G, 9>, too); this is in sharp
contrast to the case of combinatorial graphs.

For instance, we can take the same graphs G and G5 in the third example in Fig. 3
and just reverse the orientation of one edge as shown in Fig. 4.

Our main result in this section is the following lemma, which characterizes the null
space of elliptic operators with natural vertex conditions associated with the union
graph with its connectedness.

Lemma 5.6 Given Gy, ..., Gy metric graphs satisfying the Assumption 5.3, let G be
their union graph (see Definition 5.4). Let A; be the elliptic operators associated with
S; with natural vertex conditions operators and coefficients p; € W1°(G;). Then

N
§ is connected <= [ |ker A; = (1). (5.6)

i=1

Notice that this lemma is remarkably similar to Corollary 4.5 (which deals with
combinatorial graphs) and also their proofs will be similar.
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Proof We show the proof for N = 2, then one can easily extend the result for an
arbitrary N by induction. In general, both G and G, have a certain number of disjoint
connected components:

m
9(1),...,95'") st. G = I_ng"), for some m € N
=1

and

n
gl), e 95") s.t. G = |_| Sg‘), for some n € N.
k=1

Since connectedness is just a topological property, notice that the connected compo-
nents remain the same for every choice of orientation.

Now assume that G is connected: we need to show that ker A} Nker A, C (1).
Thus, we take f € ker A} N ker A, in particular from the results in Proposition 5.2
it is well-known that f is constant on each connected component of both §; and G,.
Take & = (x, ep) and 0 = (y, e/) in G: we are going to show that

f@&) = f).
(We can assume that & # [, otherwise the assertion is trivial.) By connectedness of G,
there exists a chain of adjacent (in §; and/orin Gy) edges I'tg = {ep,, €;y, ..., €;),, €/}
linking £ and 6:
Ecep~e ~---~e, ~e>0.

Thus, taking into account that f is constant on the connected components of both
graphs, we deduce that f is constant along 'y, and in particular f(§) = f(0).
Because &, 0 are arbitrary, we conclude that f is constant.

In order to prove the opposite implication, we are going to show that if G is discon-
nected, then we can find a non constant function such that f € ker A; Nker A;. Take

two connected components G4 and GB) of G. Then, both contain a certain number
of connected components of §; and G;. In particular, we set

I = {j e{l,....m}:8¥ c 9<A>}, Jg = [j e{l,....m}:8¥ c 9<B>]
and
Ka={ke .on:6P cg®l kp={ker, . .. .m:gP cg®].
Due to the fact that G is disconnected, it follows that

JanJdp =0, KsnNKp=40,
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in fact there exist no connected components, either of §; or G;, shared by G() and
GB): this is true regardless of the chosen orientation of the edges of G. Hence, the
indicator functions on each connected component of Gy (resp. G») form a basis for the
respective kernel

ker A = <{]ll,j};'-1=1) and ker Ay = ({1 x}i_)-

Since every graph has the same set of edges (with possibly different connections),
and every edge in G4) belongs to one and only one component 951 ) on 91 (and also
(k) :
to one and only one component 92 of §») we can write

2. ) le=D Ly

J€Ir eegt) jeda
1, = Z le = 5.7
= D SENS) p ey
keKa eeg® keK 4

2. ) le= Ly

jeJBeeS;(lﬁ jeJp
Ip= Y le= (5.8)
s | Y te= T .
keKp eeS(Zk) keKp

At this point, we only need to take any function of the form

f=ala+pBlp, o, peC, a#p,

and from (5.7) and (5.8) one gets that f can be written as a linear combination of
elements of the bases of both ker A; and ker A»:

f=a) Lij+BY 1i; = fekerd

JEJA J€JB
and
f=a Z L+ 8 Z 1o = f €kerA,.
keK keKp
Thus, the proof is complete. O

In the end, we can finally state the following characterization of the asymptotic
behavior of the solutions to (5.5) in terms of the connectedness of the union graph.
The proof is, at this point, a direct consequence of Theorem 2.11 and Lemma 5.6.
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Theorem 5.7 Let (Z(t));>0 be a semi-Markov process and C be a family of graphs
that satisfy the Assumptions 2.1 and 5.3, respectively. Then the random propagator
(S(t))>0 for the Cauchy problem (5.5) converges in norm P-almost surely towards
the orthogonal projector Py onto the constants if and only if the union graph G is
connected.

5.3 Randomly Switching Metric Graphs with Non-zero Second Eigenvalue

As we have previously seen in the combinatorial setting, we are going to apply expo-
nential convergence results in the framework of metric graphs. We shall work under
the following additional assumption.

Assumption 5.8 There exists one metric graph in C, say Gy, such that each connected
component of G, j # 1, is contained in one of the connected components of Gj.

By a similar argument as in the proof of Lemma 5.6, this implies that the null
space ker A1 is contained in all the null spaces of A, j # 1, thus Assumption 2.12 is
verified. The application of Theorem 2.13 then reads as follows.

Corollary 5.9 Let (Z(t)):>0 be a semi-Markov process and C be a family of graphs that
satisfy the Assumptions 2.1 and 5.3, respectively. Let additionally the Assumption 5.8
hold.

Then the random propagator (S(t)):>o for the Cauchy problem (5.5) converges in
norm P-almost surely exponentially fast towards the orthogonal projector Px with an
exponential rate no lower than

N
== si(A;)0;
j=1

that is the average of the values s4(A ;) (introduced in Remark 2.9) with respect to the
fraction of time © ; spent by the process Z(t) in the various states.

The setting described here is somehow comparable to the diffusion equation pre-
sented in [2], in the case when their semilinear term is set equal to zero. The dependence
on time of that model is different from the non-autonomous random evolution prob-
lem (5.5): while diffusion and conductivity coefficients are in [2] allowed to vary over
time (in a measurable fashion), yielding an operator family (A(t));>0, the evolution
is studied on one fixed graph. However—much like in our setting—the crucial point
in [2] is that the time average of the spectral gap of (A(?));>¢ is bounded above away
from zero. In their case, this is enforced by assuming that the graph is connected and
allows the authors of [2] to prove exponential convergence to equilibrium.

Remark 5.10 As in the case of combinatorial graphs discussed in Remark 4.12, we
can find in the literature some estimate on the best possible value of the parameter «,
provided that G is connected (in this case, Assumption 5.8 is satisfied and sy (A) =
A1(A1)). We refer e.g. to the estimates in [32, Théo. 3.1], [21, Thm. 1], and [24,
Thm. 4.2]: for a generic connected metric graph G
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where the second inequality is an equality if and only if G consists of an interval; here

|E| is the number of edges and L is the total length of the graph (the sum of the lengths

of the edges). Therefore, the parameter «, that is the weighted average of —12(A;) as
2

G; varies in C, is no lower than % (as long as the intersection graph Gn of all graphs

o . 2 |Ef?
in C is connected) and no higher than 7
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