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Abstract: Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present
in the order of Brassicales, particularly in the Brassicaceae family. Camelina (Camelina
sativa (L.) Crantz) is an oilseed plant belonging to this family. Its seeds, in addition to a dis-
tinctive fatty acid composition, contain three aliphatic GSLs: glucoarabin, glucocamelinin,
and homoglucocamelinin. Our study explored the impact of these GSLs purified from
Camelina press cake, a by-product of Camelina oil production, on yeast chronological
aging, which is the established model for simulating the aging of post-mitotic quiescent
mammalian cells. Supplementing yeast cells with GSLs extends the chronological lifespan
(CLS) in a dose-dependent manner. This enhancement relies on an improved mitochondrial
respiration efficiency, resulting in a drastic decrease of superoxide anion levels and an
increase in ATP production. Furthermore, GSL supplementation affects carbon metabolism.
In particular, GSLs support the pro-longevity preservation of TCA cycle enzymatic ac-
tivities and enhanced glycerol catabolism. These changes contribute positively to the
phosphorylating respiration and to an increase in trehalose storage: both of which are
longevity-promoting prerequisites.

Keywords: Camelina; glucosinolates; chronological aging; Saccharomyces cerevisiae; carbon
metabolism; respiration

1. Introduction

Glucosinolates (GSLs) are a complex group of nitrogen/sulfur-containing glycosides,
produced as secondary metabolites by a large number of plants belonging to the order
of Brassicales, which includes the Brassicaceae family. In this family, there are many
edible plants, such as Brussels sprouts, cauliflower, garden cress, cabbage, broccoli, and
radish, in which the GSL content is particularly abundant [1-3]. To date, more than 130
different GSL structures have been well-documented [4]. Structurally, all GSLs have a
common core structure characterized by a (3-thioglucose linked by a sulfur atom to a (Z)-N-
hydroximinosulfate ester and an amino acid-derived, variable side chain (R group) [2,4].
GSLs may be classified in subgroups according to several criteria. The most frequently
used is based on the biosynthetic precursor amino acid that categorizes GSLs into aliphatic,
aromatic, and indolic GSLs [2,4]. GSLs can be hydrolyzed by endogenous plant myrosinases.
These are thioglucosideglucohydrolases (EC 3.2.1.147) and remove glucose of the core
structure. The resulting aglicone is unstable and rearranges producing isothiocyanates or
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other breakdown products, the nature of which depend upon different factors, including
the nature of the R group [4,5]. GSLs and/or their breakdown products play important
roles in plant protection against biotic and abiotic stresses [6-8], as well as, in agriculture
for their biofumigant activity [9]. In addition, these compounds can provide beneficial
effects on human health attributed, among others, to antioxidant and anti-inflammatory
properties [10-12].

Camelina (Camelina sativa (L.) Crantz), also known as gold-of-pleasure, false flax, or
linseed dodder, is an ancient oilseed plant within the Brassicaceae family [13]. Its crops dis-
play interesting agronomic features, such as a good growth under different environmental
conditions, rapidly maturing short-season forms (spring and winter cultivars), and low
requirements for water, fertilizers, and pesticides [13-17]. Camelina seeds contain three
aliphatic GSLs: glucoarabin (9-methyl-sulfinyl-nonyl-glucosinolate, GSL9), glucocamelinin
(10-methyl-sulfinyl-decyl-glucosinolate, GSL10), and homoglucocamelinin (11-methyl-
sulfinyl-undecyl-glucosinolate, GSL11) [18]. Furthermore, Camelina seeds have a distinc-
tive content in fatty acids (in particular unsaturated w-3 and w-6), which makes Camelina
oil well-suited for many industrial and nutritional products ranging from biodiesel and
lotions to dietary supplements [19,20]. Following oil extraction, Camelina press cake (PC)
is obtained as a by-product and can be employed as cheap protein-rich feed for cattle and
poultry [21,22]. This application makes the entire Camelina supply chain a promising
example of an environmentally and economically sustainable bio-based process. In this
context, Camelina GSL9, GSL10, and GSL11, contained in the PC, have a great potential
due to their antioxidant properties that are worth studying, in order to increase the edible
PC valorization. Thus, the objective of the present study was to analyze the effects of
these GSLs, purified from Camelina PC, in the budding yeast Saccharomyces cerevisiae. This
single-celled eukaryote has been highly instrumental as a model system for many purposes
from basic to biomedical research. For example, S.cerevisiae-based studies have led to the
identification/characterization of the nutrient-sensing TOR pathway, that regulates stress,
growth, metabolism, and aging from yeast to humans [23,24]. In addition, yeast has been
employed to identify natural compounds with anti-aging properties that proved to be
functional (exemplified by spermidine) when tested in mammalian systems [25,26].

Here, we report that GSL9, GSL10, and GSL11 display anti-aging properties promot-
ing chronological lifespan (CLS) extension. Such an extension relies on a more efficient
phosphorylating respiration state that leads, on the one hand, to a lower superoxide anion
(O2°7) content and, on the other, to ATP increase. In addition, a pro-longevity metabolism
toward trehalose storage takes place.

2. Materials and Methods
2.1. Preparation and Purification of GSL Extract

Camelina PC was provided by FlaNat Research srl (Milan, Italy) and GSLs were ex-
tracted following a published method [27] with slight modifications. PC was homogenized
into a fine powder using a grinder (TUBE-MILL 100, IKA, Staufenim Breisgau, Germany).
Powdered sample was resuspended in 96% ethanol (ratio: 1 gr/5 mL) and subjected to
sonication (2 cycles of 5 min each). Supernatants were filtered through a 0.45 um PTFE
filter. After extraction, GSLs were purified by Solid Phase Extraction (SPE). The SPE Mega
Bond Elut NH; cartridges were activated with methanol and equilibrated with 1% acetic
acid in water. The extract was loaded into the NH3;* SPE and GSL fraction was eluted
with a solution of methanol with 2% NH4OH. The purified extract was then evaporated,
dissolved in water, and freeze-dried. The lyophilized fraction was dissolved in water at
10 mg/mL and filtered with 0.22 um PES syringe filter before UPLC-DAD-HRMS analysis.
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2.2. Yeast Strain, Growth Conditions, and CLS Determination

The yeast strain W303-1A (MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100)
was grown in batches at 30 °C in minimal medium (Difco Yeast Nitrogen Base without
amino acids, 6.7 g/L) with 2% w/v glucose and the required supplements added in excess:
adenine, histidine, and uracile at 200 mg/L and leucine at 500 mg/L [28]. CLS was
determined by clonogenic assays [29]. Colony-forming units (CFUs) were counted starting
with 72 h (Day 3, first age-point) after the diauxic shift (Day 0). The number of CFUs on Day
3 was considered the initial survival (100%). Cell number, extracellular glucose, and ethanol
were measured at different time points during growth in order to characterize the growth
profile (exponential phase, diauxic shift, post-diauxic phase, and stationary phase) of the
culture [28]. Cell number was determined using a Coulter Counter-Particle Count and Size
Analyser [30]. Duplication time was calculated as in [30]. Survival integral, namely the
area under the CLS curves, was determined according to [31]. Treatments were performed
at Day 0. GSL9, GSL10, and GSL11 (purchased from Extrasynthese, Genay, France) were
added at the final concentrations of 270, 640, and 90 uM, respectively. Nicotinamide (NAM,
Sigma-Aldrich, Darmstadt, Germany) was added at 5 mM final concentration [32].

2.3. Dosage of Metabolites and Enzymatic Activities

At designated time points, aliquots of the yeast cultures were centrifuged, and both
pellets (washed twice) and supernatants were collected and frozen at —80 °C until used.
Rapid sampling for intracellular metabolite measurements was performed as described [28].
The concentrations of glucose, ethanol, acetate, citrate, succinate, malate, fumarate, and
glycerol were determined using enzymatic assays (K-HKGLU, K-ETOH, K-ACET, K-SUCC,
K-CITR, K-LMALR, and K-GCROL kits from Megazyme, Bray, Ireland, and MAKO060
from Sigma-Aldrich, Darmstadt, Germany). Extraction and determination of intracellular
trehalose according to [33]. The K-HKGLU kit was used to quantify the released glucose.

Isocitrate lyase (Icll) activity was assayed as previously reported [28]. Estimation of
succinate dehydrogenase (SDH) activity was performed according to [34] by measuring at
540 nm the formation of formazan due to tetrazolium salt reduction. Glycerol-3-phosphate
dehydrogenase (Gut2) activity was determined according to [35]: spheroplasts were pre-
pared with Zymolyase 20T (MP Biomedicals, Solon, OH, USA).

ATP was extracted as described [36] and quantified using the ATP determination kit
(Molecular Probes, Thermo Fisher Scientific, Waltham, MA, USA). Cell dry weight was
measured as in [37]. Total protein concentration was assayed using the Pierce™ BCA
Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).

2.4. Subcellular Fractionation

Mitochondria were prepared as in [38] with minor modifications. Briefly, at desig-
nated time points, about 10” cells were harvested by centrifugation and spheroplasts were
prepared in the presence of Zymolyase 20T (MP Biomedicals, Solon, OH, USA). Sphero-
plasts were resuspended in ice-cold homogenization buffer (0.6 M sorbitol, 10 mM Tris-
HCl, pH 7.4, 1 mM EDTA, 0.2% (w/v) bovine serum albumin (Sigma-Aldrich, Darmstadt,
Germany), containing 1 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich, Darmstadt,
Germany) and Complete EDTA-free cocktail of protease inhibitors (Roche Diagnostic,
GmbH, Manheim, Germany). Spheroplasts were homogenized with 20 strokes using a
Dounce homogenizer (Sigma-Aldrich, Darmstadt, Germany). Then, the homogenate was
centrifuged at 1500 rcf for 5 min to remove cell debris and nuclei. The supernatant was
clarified by centrifugation at 4000 rcf for 5 min and, finally, pellets of crude mitochondria
were collected at 12,000 for 10 min. Pellets of crude mitochondria and the corresponding
supernatants were used to measure the concentrations of mitochondrial and cytosolic
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fumarate, respectively. Subcellular fractions were checked by Western analysis using anti-3-
phosphoglycerate kinase mAb (22C5 from Molecular Probes, Invitrogen, Thermo Fisher
Scientific, Waltham, MA, USA) as a cytosolic marker and anti-Tom40 Ab (H-300 from
Santa Cruz Biotechnology, Dallas, TX, USA) as a mitochondrial one. Secondary antibodies
were purchased from Amersham (Cytiva, Amersham, UK). Detection of Western blots as
described [39].

2.5. Respiration Assays and Fluorescence Microscopy

The basal oxygen consumption of intact cells was measured at 30 °C using a
“Clark-type” oxygen electrode (Oxygraph System, Hansatech Instruments, Nortfolk,
UK) as previously reported [40]. The addition of 37.5 mM triethyltin bromide (TET,
Sigma-Aldrich, Darmstadt, Germany) and 10 pM of the uncoupler carbonyl cyanide 3-
chlorophenylhydrazone (CCCP, Sigma-Aldrich, Darmstadt, Germany) to the oxygraph
chamber accounted for the non-phosphorylating respiration and the maximal /uncoupled
respiratory capacity, respectively [32]. The addition of 2 M antimycin A (Sigma-Aldrich,
Darmstadt, Germany) accounted for non-mitochondrial oxygen consumption. Respiratory
rates for the basal oxygen consumption (Jr), the maximal /uncoupled oxygen consumption
(Jmax), and the non-phosphorylating oxygen consumption (Jtgr) were determined from
the slope of a plot of O, concentration against time, divided by the cell number. The net res-
piration (netR) was obtained by subtracting Jtpt from Jr. Index of respiratory competence
(IRC) was determined as previously described [41,42]. At different time points, identical
samples of the yeast cultures were plated on Yeast Extract Peptone/2% glucose (YEPD)
agar plates and on YEP /3% v/v glycerol (YEPG) plates. IRC was calculated as colonies on
YEPG divided by colonies on YEPD times 100%.

Dihydroethidium (DHE, Sigma-Aldrich, Darmstadt, Germany) staining was per-
formed to analyze superoxide anion (O,°~) [43]. The mitochondrial membrane poten-
tial was assessed by staining with 3,3’-dihexyloxacarbocyanine iodide (DiOCg, Molecular
Probes, Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) [44]. Cells were counter-
stained with propidium iodide to discriminate between live and dead cells. A Nikon Eclipse
E600 fluorescence microscope equipped with a Nikon Digital Sight DS Qil camera was
used. Digital images were acquired and processed using Nikon NIS-Elements BR 4.30.00
64-bit software, https:/ /www.microscope.healthcare.nikon.com/products/software /nis-
elements (accessed on 8 January 2025).

2.6. Statistical Analysis

All values are presented as the mean of three independent experiments + standard
deviation (SD). Three technical replicates were analyzed in each independent experiment.
Statistical significance was assessed by one-way ANOVA test. The level of statistical
significance was set at a p value of <0.05. All data were processed with Microsoft Excel
2019 (Microsoft Corporation, Redmond, WA, USA) to calculate the average values and
standard deviations. Statistical analyses were performed using GraphPad Prism software
version 9.5.1 (GraphPad Inc., La Jolla, CA, USA).

3. Results and Discussion
3.1. Characterization of GSL Extract

As a first step, we analyzed, by UPLC-DAD-HRMS, the content of the extract purified
from Camelina PC (see Section 2), which was then used in the experiments with S.cerevisiae

cells. A representative chromatogram is presented in Figure 1, showing that in the purified
extract only three aliphatic GSLs were present, namely GSL9, GSL10, and GSL11.
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Figure 1. Representative UPLC-DAD- HRMS chromatogram of GSLs purified from Camelina
press cake.

3.2. GSL Extract Increases CLS

Taking advantage of the chronological aging model, which allows us to simulate
in S.cerevisiae cellular aging of post-mitotic quiescent mammalian cells, we investigated
whether the purified GSL extract may have any effect on yeast longevity as well as on
cellular metabolism. To this end, in the context of a standard CLS experiment [45], GSL
extract was supplemented to cells in a range of different concentrations (from 10 uM to
1.5 mM). Supplementation was done at the diauxic shift (Day 0) because it is at this point
that a massive metabolic reconfiguration takes place enabling cells to acquire a set of
features required for survival during the quiescent state [46,47]. GSL extract extended
CLS (Figure 2a) showing a dose-response relationship between the increase of both mean
and maximum CLS (Table 1) as well as of the survival integral (Table 1 and Figure 2b)
and the concentrations of GSL extract. As shown in Table 1 and in the dose-response
curve of Figure 2b, the maximal benefit for CLS extension was achieved for 1 mM GSL
extract, whilst higher concentration such as 1.5 mM could not further enhance cell longevity.
Consequently, in this study, 1 mM GSL extract was chosen to investigate the pro-longevity
effect of GSL extract on chronological aging. Furthermore, since the GSL extract obtained
from Camelina PC only consisted of three GSLs, namely GSL9, GSL10, and GSL11 (Figure 1),
we also evaluated the effects on CLS of the three GSLs separately using the amount of each
that was present in 1 mM GSL extract. All three GSLs supplied separately increased CLS
(Figure 2c¢), confirming the pro-longevity effect exerted by the GSL extract.
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Figure 2. GSL extract supplementation at the diauxic shift promotes CLS longevity. Yeast cells were
grown in minimal medium/2% glucose and the required supplements in excess (see Section 2). At
the diauxic shift (Day 0), different concentrations (from 10 pM to 1.5 mM) of GSL extract were added
and (a) survival over time of treated and untreated (NT) cultures was determined by colony-forming
capacity on YEPD plates. 72 h after the diauxic shift (Day 3) was considered the first age point,
corresponding to 100% survival. (b) Dose-response relationship of the survival integral values (SI)
versus the concentrations of GSL extract. (¢) CLS of cells supplied with GSL extract (1 mM) or GSL9,
GSL10, and GSL11 separately, at the concentration which was present in 1 mM GSL extract. All data
refer to mean values determined in three independent experiments with three technical replicates
each. Standard deviations (SD) are indicated.

Table 1. GSL extract extends CLS showing a dose-response relationship.

Mean CLS Max CLS SI

NT 10.90 £+ 0.52 13.99 + 0.56 689.36 + 60
10 uM GSL extract 10.96 £ 0.21 14.24 +0.33 707.98 4+ 55
25 uM GSL extract 11.01 £+ 0.47 14.60 & 0.50 73423 + 74
50 uM GSL extract 10.89 £+ 0.26 13.89 + 0.42 771.42 + 67
100 uM GSL extract 11.07 £ 0.39 14.76 + 0.37 821.40 £+ 31
250 uM GSL extract 11.65 +0.27 * 16.20 £ 0.22* 996.97 + 58 **
500 uM GSL extract 13.38 £+ 0.50 ** 18.50 £+ 0.31 ** 1210.46 + 40 **

1 mM GSL extract 14.92 - 0.21 ** 21.40 = 0.29 ** 1325.25 4= 55 **
1.5 mM GSL extract 15.25 £ 0.33 ** 22.15 + 0.49 ** 1340.11 + 44 **
Data referring to the time points where chronological aging cultures of Figure 2a showed 50% (Mean CLS) and

10% (Max CLS) of survival as well as survival integral (SI) measured as in [7]. NT, untreated culture. Standard
deviations are indicated (* p < 0.05 and ** p < 0.01).
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3.3. GSL Extract Preserves Mitochondrial Functionality

Longevity is tightly linked to mitochondrial functionality. Indeed, increase of mitochon-
drial dysfunction is one feature that has been observed in aging across species and decline
of mitochondrial functionality is considered a hallmark of aging [48-50]. In S.cerevisiae, mito-
chondrial functionality can be assessed by measuring the IRC, which defines the percentage
of viable cells competent to respire [41]. At the diauxic shift, both the unsupplemented
culture and that supplemented with the GSL extract were respiration-competent, showing
an IRC of about 100% (Figure 3a). Afterwards, as expected [32,51], a time-dependent loss of
mitochondrial functionality was observed with increasing chronological age. However, at
Day 18 the IRC of the supplemented culture was still about 75% against about 30% of the
unsupplemented one (Figure 3a). A similar behavior was observed when GSL9, GSL10, and
GSL11 were supplied separately (Figure 3a), indicating that GSLs preserve mitochondrial
functionality. In addition, as cells age, mitochondria undergo a gradual loss of the membrane
potential along with morphological changes: the mitochondrial tubular network becomes
punctiform (also referred to as mitochondrial fragmentation) [52,53]. Fluorescent staining
with DiOCg dye, which accumulates specifically at mitochondrial membranes depending on
their membrane potential [44], revealed that already at Day 5 the mitochondrial network of
chronologically aging cells underwent fragmentation and punctuated structures appeared
(Figure 3b). On the contrary, following GSL extract supplementation, tubular shapes with
bright fluorescence were still present at Day 7 (Figure 3b), suggesting that the mitochondrial
functionality is preserved in line with IRC results.

IRC (%)

\
40 4 ©GSL extract
®GSL9

20 1 ©GSLI0
#GSL11

NT

GSL extract

Day 3 Day 5 Day 7

(b)

Figure 3. GSL extract supplementation at the diauxic shift preserves mitochondrial functionality. Cells
were grown and supplied with GSL extract (1 mM) as in Figure 2 and (a) starting from Day 0, aliquots
of the indicated cultures were serially diluted and plated onto YEPD and YEPG plates in order to
determine the index of respiratory competence (IRC). All data refer to mean values determined in
three independent experiments with three technical replicates each. Standard deviations (SD) are
indicated. (b) Representative images of NT and GSL extract-supplemented cultures stained with
DiOCg to visualize mitochondrial membranes at the indicated time points.
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3.4. GSL Extract Supplementation at the Diauxic Shift Correlates with a More Efficient Respiration

Considering that following the diauxic shift a respiration-based metabolism takes
place and given the influence played by respiration on CLS [54-56], we quantified some
respiratory parameters in both supplemented and unsupplemented cultures. When cells
were supplied with the GSL extract at the diauxic shift, a slight increase in basal oxygen
consumption (Jr) was observed, whilst maximal respiratory capacity (Jpax) was unaffected
(Figure 4a,b). Since Jpiax was assayed in the presence of the protonophore CCCP, which
dissipates the proton gradient across the mitochondrial membrane, it follows that the
membrane potential is not influenced by GSL supplementation. Carbon starvation elicits
a transition from phosphorylating to non-phosphorylating respiration and an increase
in oxidative damage [57]. Interestingly, in supplemented cells, the non-phosphorylating
respiration (JTgr) was extremely lower than that of the unsupplemented ones (Figure 4c). In
such a determination, TET was used to inhibit ATP synthase, allowing oxygen measurement
in a condition where the dissipation of the proton gradient due to ATP synthase-driven
proton translocation is inhibited and only proton leak takes place. Consequently, the net
respiration (netR = Jg — Jrgr), which assesses the coupled respiration, in supplemented cells
was higher than that of the unsupplemented ones, especially 5 days after the diauxic shift
where netR for the unsupplemented culture was reduced to values close to zero (Figure 4d),
indicating that GSL supplementation seems to promote a more efficient coupling of electron
transport to ATP generation. In addition, in supplemented cells the value of the ratio
between netR and Jyax, which estimates the fraction of the electron transfer system utilized
to drive ATP synthesis [58], was also significantly higher. This was particularly evident
as a function of time in culture (Figure 4e), showing that GSL supplementation allows
chronologically aging cells to retain a mitochondrial respiration toward a more coupled
state for a longer period.

It is well known that electrons may accumulate at intermediate levels of the electron
transport chain (ETC) favoring electron leakage. This, in turn, impacts on ROS formation as
oxygen can readily accept single electrons generating O, reduction intermediates, among
which superoxide anions (O,°7). In excess, this radical, directly or converted to other
ROS, causes frequently irreversible damage to cellular macromolecules, such as lipids,
proteins, and DNA, contributing to the aging process [49,59,60]. GSL supplementation
drastically reduced the expected increase of O,*~ that occurs as cells chronologically age
(Figure 4f), in line with the low Jrpr values measured in the supplemented cells since
non-phosphorylating respiration is prone to generate O,°~ [57]. In addition, a lower level
of O;°~ produced in the ETC decreases the risk of impairing mitochondrial functionality.
This is what takes place in the supplemented cells, the mitochondria of which are functional
and with a tubular morphology (Figure 3b). All this correlates with an enhanced CLS.

21 7 gNT 27 1 ONT
13 | ®GSL extract 24 A B GSL extract

Jr (pmol/10° cells/s)
* %
* %
Juiax (pmol/10° cells/s)

0 - T T T
Day 0 Day 1 Day 3 Day 5 Day 0 Day 1 Day 3 Day 5

(a) (b)

Figure 4. Cont.
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Figure 4. GSL extract supplementation at the diauxic shift promotes phosphorylating respiration.
Cells were grown and supplied with GSL extract (1 mM), as in Figure 2, and oxygen uptake rates (J)
are expressed as pmol/ 10° cells/s. (a) Basal respiration rate (Jr), (b) uncoupled respiration rate (Jpax),
(c) non-phosphorylating respiration rate (Jygt), (d) net respiration (netR = Jg — J1gT), and (e) fraction
of the electron transfer system utilized for ATP synthesis (netR/Jyax) were measured at the indicated
time points. Substrates and inhibitors used in the measurements of the respiratory parameters are
detailed in the text. (f) Bar charts of the percentage of fluorescent/superoxide positive cells assessed
by the superoxide-driven conversion of non-fluorescent dihydroethidium into fluorescent ethidium
(Eth). Day 0, diauxic shift. All data refer to mean values determined in three independent experiments
with three technical replicates each. SD is indicated. Statistical significance as assessed by one-way
ANOVA test is indicated (** p < 0.01).

3.5. GSL Extract Supplementation at the Diauxic Shift Preserves TCA Enzymatic Activities

Mitochondria host the TCA cycle that fulfils a broad range of metabolic activities,
from the oxidative generation of reducing equivalents that drive aerobic respiration, to
providing building blocks for macromolecule synthesis. TCA enzymatic activities change at
the diauxic shift when cellular metabolism shifts from fermentation to respiration, as well
as during chronological aging [49,61,62]. Thus, initially, we measured the levels of some
intermediates of the TCA cycle, namely citrate, succinate, malate, and fumarate that also
have a metabolic connection with the glyoxylate shunt (Figure 5). The latter is activated
after glucose depletion and is responsible for the generation of C4 units from C2 ones
(ethanol and acetate) by excluding the two decarboxylation steps of the TCA cycle and also
operates as an anaplerotic device of the TCA cycle [61,63]. After the diauxic shift, in the
unsupplemented culture, the levels of citrate, succinate, malate, and fumarate decreased
(Figure 6a—d) as expected [28,42]. On the contrary, in the GSL-supplemented culture, the
levels of these intermediates remained higher as cells aged (Figure 6a—d). With regard to
succinate, it is released from the glyoxylate shunt into the cytoplasm as a net product and
is imported into the mitochondria to feed the TCA cycle [64].
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Figure 6. GSL supplementation at the diauxic shift preserves TCA intermediate contents. Cells were
grown and supplied with GSL extract (1 mM), as in Figure 2, and intracellular concentrations of
(a) citrate, (b) succinate, (c) malate, and (d) fumarate were measured at the indicated time points. Day
0, diauxic shift. SDH, succinate dehydrogenase complex. All data refer to mean values determined in
three independent experiments with three technical replicates each. SD is indicated (* p < 0.05 and
**p <0.01).

In the latter succinate is oxidized to fumarate by succinate dehydrogenase complex
(SDH), also known as Complex II (Figures 5 and 6). This reaction is coupled to the reduction
of ubiquinone to ubiquinol, which is the substrate for Complex III in the ETC; in such a
way, SDH functionally links the activity of the TCA cycle to the ETC. Starting from the
diauxic shift, SDH activity significantly decreased in unsupplemented cells (Figure 7a), in
concert with a decrease in the levels of mitochondrial fumarate (Figure 7b) indicative of
an aging-associated decline of the TCA cycle flux. In the GSL-supplemented culture SDH
enzymatic activity and mitochondrial fumarate content were stably maintained at higher
levels (Figure 7a,b). This indicates that GSL extract preserves TCA functioning, which is a
feature that is involved in conferring longevity in yeast and other organisms [65-68]. In
addition, in the context of chronological aging, mutants deleted in genes encoding subunits
of SDH, namely SDH1, SDH2, and SDH4, show the shortest-lived phenotype among 33
single ETC component-deleted strains and higher O,*~ content associated with an impaired
mitochondrial efficiency [69]. Interestingly, SDH has a medical significance, considering
that its activity has been reported to decline with age in many tissues (brain, liver, heart,
and skin) and to be reduced in some age-related diseases, including neurodegenerative
disorders. This decline/reduction is associated with an increase of ROS contributing to
cellular damage [70-72].
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three independent experiments with three technical replicates each. SD is indicated (** p < 0.01).
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3.6. GSL Extract Supplementation at the Diauxic Shift Enhances Glyoxylate/Gluconeogenic Flux
and Increased Trehalose Stores Without Affecting Ethanol/Acetate Catabolism

The glyoxylate shunt is composed of five enzymatic reactions, three of which are also
present in the TCA cycle, whilst two are unique to the shunt. One of these is that catalyzed
by isocitrate lyase (Icll). This enzyme is solely localized in the cytosol and generates
succinate and the name-giving metabolite glyoxylate from isocitrate (Figures 5 and 7).
Measurements of Icll enzymatic activity revealed a clear increase in the culture supple-
mented with GSLs compared with the unsupplemented counterpart (Figure 7c) indicative
of an enhancement of the shunt. As stated above, cytosolic succinate is imported into the
mitochondria. However, its transfer by the Sfcl transporter provides cytosolic fumarate. In
fact, fumarate is generated exclusively in the TCA cycle. Once in the cytosol fumarate is
converted to malate and utilized to refill the glyoxylate shunt and fuel gluconeogenesis
(Figures 5 and 7) [73]. The latter, in turn, fuels the synthesis of storage carbohydrates, the
accumulation of which contributes to the longevity of chronologically aging cells [54,74].
Following GSL supplementation, cytosolic fumarate levels increased, as well as trehalose
content (Figure 7d,e). It is well recognized that the ability of chronologically aging cells
to accumulate sufficient trehalose stores ensures, on the one hand, long-term survival
during the stationary phase and, on the other, the resumption of growth upon nutrient
supply. Hence, an enhancement of intracellular trehalose stores correlates with CLS exten-
sion [32,39,74,75]: this is also the case of the culture supplemented with the GSL extract
(Figures 2a and 7e).

During the diauxic shift, the glyoxylate shunt is fed by two C2 by-products of the
fermentation, namely ethanol and acetate (Figure 5). No difference was observed in the
utilization of extracellular ethanol and acetate following GSL supplementation (Figure 8a),
suggesting that GSLs did not affect the catabolism of these compounds. Since, our pub-
lished data indicated that supplementation at the diauxic shift of nicotinamide (NAM), a
form of vitamin B3, extends CLS in concert with an enhancement of the glyoxylate shunt
and increased ethanol/acetate catabolism (Figure 8b,c) [32], we analyzed the effects of a
combined supplementation of GSL extract and NAM. An additive extension on CLS was
produced when GSLs and NAM were provided together at the diauxic shift compared
to single supplementations (Figure 8b and Table 2). On the other hand, the fast kinetics
of ethanol/acetate depletion in the medium of NAM-supplemented cells was unaffected
by GSL supplementation (Figure 8c). A feature of NAM-supplemented cells was also an
increase in trehalose content compared with the unsupplemented ones [32], albeit to a
lesser degree than that measured for GSL supplementation (Figure 8d). Supplementing
NAM and GSLs together resulted in higher trehalose levels than those with GSL extract
alone as cells age (Day 9 to Day 13) (Figure 8d). NAM is a non-competitive inhibitor of
Sir2 activity [76] and, in the context of chronological aging, its supplementation inhibits
Sir2-mediated deacetylation of phosphoenolpyruvate carboxykinase (Pckl) [32]. Pckl
catalyzes the main flux-controlling step of the gluconeogenesis, is active in the acetylated
form [77] and is required for the utilization of ethanol/acetate. SIR2 deletion or inhibi-
tion of its enzymatic activity lead to an improved assimilation of these C2 units by the
glyoxylate-requiring gluconeogenesis resulting in increased accumulation of trehalose and
longevity extension [32,78,79]. Given the results described above with single/combined
supplementations of NAM and GSLs, we may reasonably rule out that Sir2 is the target of
GSLs and that other targets/pathways can account for their effects.
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Figure 8. GSL extract supplementation at the diauxic shift promotes glycerol catabolism resulting
in increased accumulation of trehalose and CLS extension. At the indicated time points, (a) bar
charts of ethanol and acetate levels evaluated for both GSL extract-treated and untreated cultures
of Figure 2. (b) CLS of cultures supplemented at Day 0 with NAM (5 mM), GSL extract (1 mM),
or NAM + GSL extract. In parallel, (c) extracellular ethanol and acetate content, (d) intracellular
trehalose concentration, and (e) intracellular and extracellular glycerol levels were measured. Day 0,
diauxic shift. All data refer to mean values determined in three independent experiments with three
technical replicates each. SD is indicated (** p < 0.01).
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Table 2. Effect on CLS of GSL extract and NAM provided together at the diauxic shift.
Mean CLS Max CLS SI
NT 10.90 & 0.52 13.99 & 0.56 689.36 £ 60
NAM 13.06 £ 0.58 ** 17.24 £ 0.49 ** 979.53 £ 34 **
GSL extract 14.92 £ 0.21 ** 21.40 £ 0.29 ** 1325.25 + 55 **
NAM + GSL extract 17.97 £ 0.39 ** 23.28 £0.23 ** 1510.06 + 45 **

Data referring to the time points where chronological aging cultures reported in Figure 8b showed 50% (Mean
CLS) and 10% (Max CLS) of survival as well as survival integral (SI) measured as in [31]. NT, untreated culture.
Standard deviations are indicated (** p < 0.01).

3.7. Glycerol Catabolism Is Enhanced in GSL-Supplemented Chronologically Aging Cells in
Concert with ATP Increase

The L-glycerol 3-phosphate (L-G3P) pathway becomes operative at the diauxic shift,
allowing glycerol utilization [80]. Glycerol is a C3 by-product of yeast fermentation
and, by the L-G3P pathway, is catabolized to dihydroxyacetone phosphate that can be
used to fuel gluconeogenesis downstream of the step catalyzed by Pckl (Figure 5). In
GSL-supplemented chronologically aging cells, intracellular and extracellular glycerol de-
creased more rapidly than in unsupplemented cells, as well as in NAM-supplemented ones
(Figure 8e). The kinetics of glycerol utilization following the combined supplementation of
NAM and GSLs was similar to that of GSLs alone (Figure 8e). To further examine the effects
on glycerol catabolism of GSLs, the latter were added to NAM-supplemented chronolog-
ically aging cells when the culture reached 50% of survival (mean CLS) (Figure 9a). At
this time point, extracellular ethanol and acetate were completely depleted (Figure 9b),
whilst glycerol was still present (Figure 9c). GSL supplementation determined a strong
decrease in intracellular and extracellular glycerol (Figure 9¢). This decrease corresponded
temporally to the increase in trehalose, the content of which started to rise again reach-
ing levels higher than those of the single NAM supplementation (Figure 9d). All these
changes in the carbon metabolism were accompanied by the extension of CLS (Figure 9a).
Taken together all these data indicate that the GSL extract, on the one hand, specifically
enhances glycerol catabolism and, on the other, that glycerol utilization is directed toward
trehalose biosynthesis.

The enhancement of glycerol catabolism following GSL supplementation was further
assessed by measuring the enzymatic activity of the FAD-dependent glycerol-3-phosphate
dehydrogenase Gut2. In effect, glycerol catabolism specifically requires Gutl, a cytosolic
glycerol kinase that phosphorylates glycerol to glycerol-3-phosphate (G3P). The latter is
oxidized to DHAP with a concurrent reduction of FAD to FADH, by Gut2, which is located
in the mitochondrial membrane (Figure 5) [80]. In GSL-supplemented chronologically aging
cells, Gut2 activity was higher than that in unsupplemented cells (Figure 10a), matching
the increase of glycerol depletion (Figure 8e). It is known that the electron pair of FADH,
is transferred to the mobile electron carrier coenzyme Q, and via the latter to Complex III
of the ETC. Electron flux, the final step of which is catalyzed by Complex 1V, is coupled
to proton pumping across the inner membrane of the mitochondria. The resulting proton
motive force fuels ATP synthesis (Figure 5). Measurements of ATP levels showed that, in
GSL-supplemented chronologically aging cells, these levels remained higher than those in
unsupplemented ones (Figure 10b). These results mirror respiratory results (Figure 4c,d)
which pointed to a more efficient coupling of electron transport to ATP generation following
GSL supplementation.
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Figure 9. GSL extract supplementation during chronological aging further extends the CLS of NAM-
treated cells. Wt cells were grown as in Figure 2 and supplied with NAM (5 mM) at Day 0. At the
time point where NAM stationary cultures showed 50% of survival (mean CLS), GSL extract (1 mM)
was added. (a) CLS of the indicated cultures. In parallel, (b) extracellular ethanol and acetate content,
(c) intracellular and extracellular glycerol levels, and (d) intracellular trehalose concentration were
measured. All data refer to mean values determined in three independent experiments with three
technical replicates each. SD is indicated (** p < 0.01).
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Figure 10. GSL extract supplementation at the diauxic shift positively affects ATP levels. At the
indicated time points, (a) Gut2 enzymatic activity and (b) ATP content were evaluated for both
treated and untreated cultures of Figure 2. For the same cultures: (c) bar charts of the respiration
state value (RSV = [netR / (Jmax — JteT)] X 100). Day 0, diauxic shift. All data refer to mean values
determined in three independent experiments with three technical replicates each. SD is indicated
(**p <0.01).

In keeping with this, the respiration state value (RSV), which represents the percentage
of stimulation of oxidative phosphorylation compared to basal respiration capacity [57],
was higher in GSL-supplemented cells than that in unsupplemented ones (Figure 10c)
which is indicative of an increase in the oxidative phosphorylation efficiency. In this
context, we can hypothesize, although yet fully speculative, that the increase in Gut2
activity together with that of SDH (Figure 7a), both by delivering electrons to the ETC via
ubiquinone, might increase the electron flux through the ETC. This might reduce electron
stalling in the ETC decreasing the probability of unpaired electron leakage to produce ROS.
In particular, Complex III generates O,°*~ during the Q-cycle linked to the formation of an
unstable semiquinone intermediate, which can donate its unpaired electron to oxygen. In
general, under some circumstances, increasing the electron flux through the ETC decreases
ROS formation [81]. Furthermore, a more efficient electron transfer to ubiquinone by
channeling the electrons via the tightly bound FADH; directly to the respiratory chain
might explain the increase in its efficiency. In this regard, it has been observed that the
yeast respiratory chain efficiency increased upon raising the growth temperature (from
30 °C up to 37 °C) and this temperature-dependent increase required Gut2 [82].

4. Conclusions

The GSL extract, which has been purified by us from a seed-press cake of C. sativa,
displays a pro-longevity effect for yeast cells experiencing CLS. The increase of both mean
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and maximum CLS is also observed when the three aliphatic GSLs (GSL9, GSL10, and
GSL11), which make up the extract, were supplied separately. CLS extension occurs since
GSLs are effective in preserving mitochondrial functionality and drastically reduce the
expected increase of O,°~ that takes place as cells chronologically age. In addition, GSLs
have a significant impact on glycerol catabolism, the enhancement of which has positive
effects on the phosphorylating respiration state and on the reserve carbohydrate trehalose:
both prerequisites for a longer chronological lifespan [32,39,69,74,75]. Additional exper-
iments are required to elucidate the precise molecular mechanism/target underpinning
GSL-mediated effects during chronological aging.

Author Contributions: Conceptualization: M.V.; formal analysis and investigation: FA., 1.O. and S.P;
funding acquisition: M.V. and L.C.; supervision: 1.O., L.C. and M.V,; validation: FA., 1.O. and M.V.;
visualization: FA. and 1.O.; writing—original draft preparation: M.V.; writing—review and editing;:
FA, 1O, L.C. and M.V. All authors have read and agreed to the published version of the manuscript.

Funding: Project funded under the National Recovery and Resilience Plan (NRRP), Mission 4.
Component 2 Investment 1.3—Call for tender No. 3138, 16 December 2021, rectified by Decree n.341
of 15 March 2022 of Italian Ministry of University and Research funded by the European Union—
NextGenerationEU; Project code PE0000003 ON FOODS—CUP:H43C22000820001—Spoke 6, Project
title “ON Foods—Research and innovation network on food and nutrition Sustainability, Safety and
Security—Working ON Foods”.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data are contained within the article.

Acknowledgments: We thank Chiara Maria Giustra for preliminar purification experiments. The
authors are grateful to Neil Campbell for English editing.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Nguyen, V.PT.,; Stewart, J.; Lopez, M.; Ioannou, I.; Allais, F. Glucosinolates: Natural occurrence, biosynthesis, accessibility,
isolation, structures, and biological activities. Molecules 2020, 25, 4537. [CrossRef] [PubMed]

2. Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303-333. [CrossRef]
[PubMed]

3.  Fahey, ] W,; Zalemann, A.T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among
plants. Phytochemistry 2001, 56, 5-51. [CrossRef]

4. Blazevi¢, I.; Montaut, S.; Bur¢ul, F; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate structural diversity, identification,
chemical synthesis and metabolism in plants. Phytochemistry 2020, 169, e112100. [CrossRef] [PubMed]

5. Agerbirk, N.; Olsen, C.E. Glucosinolate structures in evolution. Phytochemistry 2012, 77, 16—45. [CrossRef] [PubMed]

6.  Abuyusuf, M.; Rubel, M.H.; Kim, H.T.; Jung, H.J.; Nou, LS.; Park, J.I. Glucosinolates and biotic stress tolerance in Brassicaceae
with emphasis on cabbage: A review. Biochem. Genet. 2023, 61, 451-470. [CrossRef]

7. Chowdhury, P. Glucosinolates and its role in mitigating abiotic and biotic stress in Brassicaceae. In Plant Stress Physiology-
Perspectives in Agriculture; IntechOpen: London, UK, 2022; pp. 141-147. [CrossRef]

8.  del Carmen Martinez-Ballesta, M.; Moreno, D.A.; Carvajal, M. The physiological importance of glucosinolates on plant response
to abiotic stress in Brassica. Int. . Mol. Sci. 2013, 14, 11607-11625. [CrossRef] [PubMed]

9. Ziedan, E.S.H. A review of the efficacy of biofumigation agents in the control of soil-borne plant diseases. J. Plant Prot. Res. 2022,
62,140292. [CrossRef]

10. Zhao, A.; Jeffery, E.H.; Miller, M.]. Is bitterness only a taste? the expanding area of health benefits of Brassica vegetables and
potential for bitter taste receptors to support health benefits. Nutrients 2022, 14, 1434. [CrossRef] [PubMed]

11.  Connolly, E.L.; Sim, M.; Travica, N.; Marx, W.; Beasy, G.; Lynch, G.S.; Bondonno, C.P; Lewis, J.R.; Hodgson, ].M.; Blekkenhorst,

L.C. Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and
clinical evidence. Front Pharmacol. 2021, 12, €767975. [CrossRef]


https://doi.org/10.3390/molecules25194537
https://www.ncbi.nlm.nih.gov/pubmed/33022970
https://doi.org/10.1146/annurev.arplant.57.032905.105228
https://www.ncbi.nlm.nih.gov/pubmed/16669764
https://doi.org/10.1016/S0031-9422(00)00316-2
https://doi.org/10.1016/j.phytochem.2019.112100
https://www.ncbi.nlm.nih.gov/pubmed/31771793
https://doi.org/10.1016/j.phytochem.2012.02.005
https://www.ncbi.nlm.nih.gov/pubmed/22405332
https://doi.org/10.1007/s10528-022-10269-6
https://doi.org/10.5772/intechopen.102367
https://doi.org/10.3390/ijms140611607
https://www.ncbi.nlm.nih.gov/pubmed/23722664
https://doi.org/10.24425/jppr.2022.140292
https://doi.org/10.3390/nu14071434
https://www.ncbi.nlm.nih.gov/pubmed/35406047
https://doi.org/10.3389/fphar.2021.767975

Antioxidants 2025, 14, 80 19 of 21

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Maina, S.; Misinzo, G.; Bakari, G.; Kim, H.Y. Human, animal and plant health benefits of glucosinolates and strategies for
enhanced bioactivity: A systematic review. Molecules 2020, 25, 3682. [CrossRef] [PubMed]

Berti, M.; Gesch, R.; Eynck, C.; Anderson, J.; Cermak, S. Camelina uses, genetics, genomics, production, and management. Ind.
Crops Prod. 2016, 94, 690-710. [CrossRef]

Sydor, M.; Kurasiak-Popowska, D.; Stuper-Szablewska, K.; Rogozinski, T. Camelina sativa. Status quo and future perspectives. Ind.
Crops Prod. 2022, 187, €115531. [CrossRef]

Walia, M.K,; Zanetti, F.; Gesch, R.W.; Krzyzaniak, M.; Eynck, C.; Puttick, D.; Monti, A. Winter camelina seed quality in different
growing environments across Northern America and Europe. Ind. Crops Prod. 2021, 169, e113639. [CrossRef]

Royo-Esnal, A.; Valencia-Gredilla, F. Camelina as a rotation crop for weed control inorganic farming in a semiarid Mediterranean
climate. Agriculture 2018, 8, 156. [CrossRef]

Royo-Esnal, A.; Edo-Tena, E.; Torra, J.; Recasens, J.; Gesch, R.W. Using fitness parameters to evaluate three oilseed Brassicaceae
species as potential oil crops in two contrasting environments. Ind. Crops Prod. 2017, 95, 148-155. [CrossRef]

Vaughn, S.E,; Berhow, M.A. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification.
Ind. Crops Prod. 2005, 21, 193-202. [CrossRef]

Arshad, M.; Mohanty, A K.; Van Acker, R;; Riddle, R.; Todd, J.; Khalil, H.; Misra, M. Valorization of camelina oil to biobased
materials and biofuels for new industrial uses: A review. RSC Adv. 2022, 12, 27230-27245. [CrossRef]

Neupane, D.; Lohaus, R.H.; Solomon, ] K.; Cushman, J.C. Realizing the potential of Camelina sativa as a bioenergy crop for a
changing global climate. Plants 2022, 11, 772. [CrossRef] [PubMed]

Riaz, R.; Ahmed, I; Sizmaz, O.; Ahsan, U. Use of Camelina sativa and by-products in diets for dairy cows: A Review. Animals 2022,
12,1082. [CrossRef]

Juodka, R.; Nainieng, R.; Juskiené¢, V.; Juska, R.; Leikus, R.; Kadziené, G.; Stankevic¢iené, D. Camelina (Camelina sativa (L.) Crantz)
as feedstuffs in meat type poultry diet: A source of protein and n-3 fatty acids. Animals 2022, 12, 295. [CrossRef]

Liu, G.Y,; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183-203.
[CrossRef]

Gonzélez, A.; Hall, M.N. Nutrient sensing and TOR signalling in yeast and mammals. EMBO J. 2017, 36, 397-408. [CrossRef]
[PubMed]

S.; et al. Spermidine is essential for fasting-mediated autophagy and longevity. Nat. Cell Biol. 2024, 26, 1571-1584. [CrossRef]
Zimmermann, A.; Hofer, S.; Pendl, T.; Kainz, K.; Madeo, F.; Carmona-Gutierrez, D. Yeast as a tool to identify anti-aging
compounds. FEMS Yeast Res. 2018, 18, foy020. [CrossRef]

Pagliari, S.; Giustra, C.M.; Magoni, C.; Celano, R.; Fusi, P.; Forcella, M.; Sacco, G.; Panzeri, D.; Campone, L.; Labra, M. Optimization
of ultrasound-assisted extraction of naturally occurring glucosinolates from by-products of Camelina sativa L. and their effect on
human colorectal cancer cell line. Front. Nutr. 2022, 9, €901944. [CrossRef] [PubMed]

Orlandji, I.; Coppola, D.P,; Vai, M. Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial
damage and decreases chronological lifespan. Microb. Cell 2014, 1, 393-405. [CrossRef] [PubMed]

Fabrizio, P.; Gattazzo, C.; Battistella, L.; Wei, M.; Cheng, C.; McGrew, K.; Longo, V.D. Sir2 blocks extreme life-span extension. Cell
2005, 123, 655-667. [CrossRef]

Vanoni, M.; Vai, M.; Popolo, L.; Alberghina, L. Structural heterogeneity in populations of the budding yeast Saccharomyces
cerevisiae. |. Bacteriol. 1983, 156, 1282-1291. [CrossRef] [PubMed]

Murakami, C.; Kaeberlein, M. Quantifying yeast chronological life span by outgrowth of aged cells. J. Vis. Exp. 2009, 27, e1156.
[CrossRef]

Orlandji, I.; Coppola, D.P.; Strippoli, M.; Ronzulli, R.; Vai, M. Nicotinamide supplementation phenocopies SIR2 inactivation
by modulating carbon metabolism and respiration during yeast chronological aging. Mech. Ageing Dev. 2017, 161, 277-287.
[CrossRef]

Lee, D.H.; Goldberg, A.L. Proteasome inhibitors cause induction of heat shock proteins and trehalose, which together confer
thermotolerance in Saccharomyces cerevisiae. Mol. Cell. Biol. 1998, 18, 30-38. [CrossRef] [PubMed]

Kregiel, D.; Berlowska, J.; Ambroziak, W. Succinate dehydrogenase activity assay in situ with blue tetrazolium salt in crabtree-
positive Saccharomyces cerevisiae strain. Food Technol. Biotechnol. 2008, 46, 376-380.

Guerra, D.G.; Decottignies, A.; Bakker, B.M.; Michels, P.A. The mitochondrial FAD-dependent glycerol-3-phosphate dehydro-
genase of Trypanosomatidae and the glycosomal redox balance of insect stages of Trypanosoma brucei and Leishmania spp. Mol.
Biochem. Parasitol. 2006, 149, 155-169. [CrossRef]

Gonzalez, B.; Francois, J.; Renaud, M. A rapid and reliable method for metabolite extraction in yeast using boiling buffered
ethanol. Yeast 1997, 13, 1347-1355. [CrossRef]


https://doi.org/10.3390/molecules25163682
https://www.ncbi.nlm.nih.gov/pubmed/32806771
https://doi.org/10.1016/j.indcrop.2016.09.034
https://doi.org/10.1016/j.indcrop.2022.115531
https://doi.org/10.1016/j.indcrop.2021.113639
https://doi.org/10.3390/agriculture8100156
https://doi.org/10.1016/j.indcrop.2016.10.020
https://doi.org/10.1016/j.indcrop.2004.03.004
https://doi.org/10.1039/D2RA03253H
https://doi.org/10.3390/plants11060772
https://www.ncbi.nlm.nih.gov/pubmed/35336654
https://doi.org/10.3390/ani12091082
https://doi.org/10.3390/ani12030295
https://doi.org/10.1038/s41580-019-0199-y
https://doi.org/10.15252/embj.201696010
https://www.ncbi.nlm.nih.gov/pubmed/28096180
https://doi.org/10.1038/s41556-024-01468-x
https://doi.org/10.1093/femsyr/foy020
https://doi.org/10.3389/fnut.2022.901944
https://www.ncbi.nlm.nih.gov/pubmed/35938110
https://doi.org/10.15698/mic2014.12.178
https://www.ncbi.nlm.nih.gov/pubmed/28357219
https://doi.org/10.1016/j.cell.2005.08.042
https://doi.org/10.1128/jb.156.3.1282-1291.1983
https://www.ncbi.nlm.nih.gov/pubmed/6358196
https://doi.org/10.3791/1156-v
https://doi.org/10.1016/j.mad.2016.06.006
https://doi.org/10.1128/MCB.18.1.30
https://www.ncbi.nlm.nih.gov/pubmed/9418850
https://doi.org/10.1016/j.molbiopara.2006.05.006
https://doi.org/10.1002/(SICI)1097-0061(199711)13:14%3C1347::AID-YEA176%3E3.0.CO;2-O

Antioxidants 2025, 14, 80 20 of 21

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Agrimi, G.; Brambilla, L.; Frascotti, G.; Pisano, L.; Porro, D.; Vai, M.; Palmieri, L. Deletion or overexpression of mitochondrial
NAD*" carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the
rate of glycolysis. Appl. Environ. Microbiol. 2011, 77, 2239-2246. [CrossRef] [PubMed]

Meisinger, C.; Pfanner, N.; Truscott, K.N. Isolation of yeast mitochondria. Methods Mol. Biol. 2006, 313, 33-39. [CrossRef]
Abbiati, F.; Garagnani, S.A.; Orlandi, I.; Vai, M. Sir2 and glycerol underlie the pro-longevity effect of quercetin during yeast
chronological aging. Int. J. Mol. Sci. 2023, 24, 12223. [CrossRef] [PubMed]

Orlandi, I.; Ronzulli, R.; Casatta, N.; Vai, M. Ethanol and acetate acting as carbon/energy sources negatively affect yeast
chronological aging. Oxid. Med. Cell. Longev. 2013, 2013, e802870. [CrossRef] [PubMed]

Parrella, E.; Longo, V.D. The chronological life span of Saccharomyces cerevisiae to study mitochondrial dysfunction and disease.
Methods 2008, 46, 256-262. [CrossRef] [PubMed]

Orlandi, I.; Stamerra, G.; Vai, M. Altered expression of mitochondrial NAD* carriers influences yeast chronological lifespan by
modulating cytosolic and mitochondrial metabolism. Front. Genet. 2018, 9, e676. [CrossRef]

Madeo, F,; Frohlich, E.; Ligr, M.; Grey, M.; Sigrist, S.J.; Wolf, D.H.; Frohlich, K.U. Oxygen stress: A regulator of apoptosis in yeast.
J. Cell Biol. 1999, 145, 757-767. [CrossRef] [PubMed]

Koning, A.J.; Lum, P.Y.; Williams, ].M.; Wright, R. DiOCg staining reveals organelle structure and dynamics in living yeast cells.
Cell Motil. Cytoskelet. 1993, 25, 111-128. [CrossRef] [PubMed]

Fabrizio, P.; Longo, V.D. The chronological life span of Saccharomyces cerevisiae. Methods Mol. Biol. 2007, 371, 89-95. [CrossRef]
Sun, S.; Gresham, D. Cellular quiescence in budding yeast. Yeast 2021, 38, 12-29. [CrossRef] [PubMed]

Zhang, N.; Cao, L. Starvation signals in yeast are integrated to coordinate metabolic reprogramming and stress response to ensure
longevity. Curr. Genet. 2008, 63, 839-843. [CrossRef]

Lopez-Otin, C.; Blasco, M.A; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186,
243-278. [CrossRef] [PubMed]

Baccolo, G.; Stamerra, G.; Coppola, D.P; Orlandi, I.; Vai, M. Mitochondrial metabolism and aging in yeast. Int. Rev. Cell Mol. Biol.
2018, 340, 1-33. [CrossRef] [PubMed]

Sun, N.; Youle, R.J.; Finkel, T. The mitochondrial basis of aging. Mol. Cell 2016, 61, 654—-666. [CrossRef]

Orlandi, I.; Casatta, N.; Vai, M. Lack of Achl CoA-transferase triggers apoptosis and decreases chronological lifespan in yeast.
Front. Oncol. 2012, 2, e67. [CrossRef] [PubMed]

Sharma, A.; Smith, H.J.; Yao, P.; Mair, W.B. Causal roles of mitochondrial dynamics in longevity and healthy aging. EMBO Rep.
2019, 20, e48395. [CrossRef]

Knorre, D.A.; Popadin, K.Y.; Sokolov, S.S.; Severin, EF. Roles of mitochondrial dynamics under stressful and normal conditions in
yeast cells. Oxid. Med. Cell. Longev. 2013, 1, €139491. [CrossRef] [PubMed]

Ocampo, A,; Liu, J.; Schroeder, E.A.; Shadel, G.S.; Barrientos, A. Mitochondrial respiratory thresholds regulate yeast chronological
life span and its extension by caloric restriction. Cell Metab. 2012, 16, 55-67. [CrossRef] [PubMed]

Aerts, A.M.; Zabrocki, P; Govaert, G.; Mathys, J.; Carmona-Gutierrez, D.; Madeo, F; Winderickx, J.; Cammue, B.P,; Thevissen,
K. Mitochondrial dysfunction leads to reduced chronological lifespan and increased apoptosis in yeast. FEBS Lett. 2009, 583,
113-117. [CrossRef] [PubMed]

Bonawitz, N.D.; Rodeheffer, M.S.; Shadel, G.S. Defective mitochondrial gene expression results in reactive oxygen species-
mediated inhibition of respiration and reduction of yeast life span. Mol. Cell Biol. 2006, 26, 4818-4829. [CrossRef]

Aguilaniu, H.; Gustafsson, L.; Rigoulet, M.; Nystrom, T. Protein oxidation in GO cells of Saccharomyces cerevisine depends on
the state rather than rate of respiration and is enhanced in pos9 but not yapl mutants. J. Biol. Chem. 2001, 276, 35396-35404.
[CrossRef] [PubMed]

Gnaiger, E. Mitochondrial Pathways and Respiratory Control. An Introduction to OXPHOS Analysis, 4th ed.; OROBOROS MiPNet
Publications: Innsbruck, Austria, 2014; pp. 1-81.

Breitenbach, M.; Rinnerthaler, M.; Hartl, ].; Stincone, A.; Vowinckel, J.; Breitenbach-Koller, H.; Ralser, M. Mitochondria in ageing:
There is metabolism beyond the ROS. FEMS Yeast Res. 2014, 14, 198-212. [CrossRef]

Barros, M.H.; da Cunha, EM.; Oliveira, G.A ; Tahara, E.B.; Kowaltowski, A.]. Yeast as a model to study mitochondrial mechanisms
in ageing. Mech. Ageing Dev. 2010, 131, 494-502. [CrossRef] [PubMed]

Zampar, G.G.; Kimmel, A.; Ewald, J.; Jol, S.; Niebel, B.; Picotti, P.; Aebersold, R.; Sauer, U.; Zamboni, N.; Heinemann, M.
Temporal system-level organization of the switch from glycolytic to gluconeogenic operation in yeast. Mol. Syst. Biol. 2013, 9,
e651. [CrossRef]

Samokhvalov, V.; Ignatov, V.; Kondrashova, M. Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of
chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation. Biochimie 2004, 86, 39—46. [CrossRef]
[PubMed]

Strijbis, K.; Distel, B. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell 2010, 9, 1809-1815. [CrossRef]


https://doi.org/10.1128/AEM.01703-10
https://www.ncbi.nlm.nih.gov/pubmed/21335394
https://doi.org/10.1385/1-59259-958-3:033
https://doi.org/10.3390/ijms241512223
https://www.ncbi.nlm.nih.gov/pubmed/37569599
https://doi.org/10.1155/2013/802870
https://www.ncbi.nlm.nih.gov/pubmed/24062879
https://doi.org/10.1016/j.ymeth.2008.10.004
https://www.ncbi.nlm.nih.gov/pubmed/18930829
https://doi.org/10.3389/fgene.2018.00676
https://doi.org/10.1083/jcb.145.4.757
https://www.ncbi.nlm.nih.gov/pubmed/10330404
https://doi.org/10.1002/cm.970250202
https://www.ncbi.nlm.nih.gov/pubmed/7686821
https://doi.org/10.1007/978-1-59745-361-5_8
https://doi.org/10.1002/yea.3545
https://www.ncbi.nlm.nih.gov/pubmed/33350503
https://doi.org/10.1007/s00294-017-0697-4
https://doi.org/10.1016/j.cell.2022.11.001
https://www.ncbi.nlm.nih.gov/pubmed/36599349
https://doi.org/10.1016/bs.ircmb.2018.05.001
https://www.ncbi.nlm.nih.gov/pubmed/30072089
https://doi.org/10.1016/j.molcel.2016.01.028
https://doi.org/10.3389/fonc.2012.00067
https://www.ncbi.nlm.nih.gov/pubmed/22754872
https://doi.org/10.15252/embr.201948395
https://doi.org/10.1155/2013/139491
https://www.ncbi.nlm.nih.gov/pubmed/23956814
https://doi.org/10.1016/j.cmet.2012.05.013
https://www.ncbi.nlm.nih.gov/pubmed/22768839
https://doi.org/10.1016/j.febslet.2008.11.028
https://www.ncbi.nlm.nih.gov/pubmed/19059240
https://doi.org/10.1128/MCB.02360-05
https://doi.org/10.1074/jbc.M101796200
https://www.ncbi.nlm.nih.gov/pubmed/11431467
https://doi.org/10.1111/1567-1364.12134
https://doi.org/10.1016/j.mad.2010.04.008
https://www.ncbi.nlm.nih.gov/pubmed/20450928
https://doi.org/10.1038/msb.2013.11
https://doi.org/10.1016/j.biochi.2003.10.019
https://www.ncbi.nlm.nih.gov/pubmed/14987799
https://doi.org/10.1128/EC.00172-10

Antioxidants 2025, 14, 80 21 of 21

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Lee, YJ.; Jang, J.W,; Kim, K.J.; Maeng, P.J. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces
cerevisiae. Yeast 2011, 28, 153-166. [CrossRef] [PubMed]

Borkum, .M. The tricarboxylic acid cycle as a central regulator of the rate of aging: Implications for metabolic interventions. Adv.
Biol. 2023, 7, €2300095. [CrossRef]

Janssens, G.E.; Grevendonk, L.; Schomakers, B.V.; Perez, R.Z.; van Weeghel, M.; Schrauwen, P.; Hoeks, J.; Houtkooper, R H. A
metabolomic signature of decelerated physiological aging in human plasma. Geroscience 2023, 45, 3147-3164. [CrossRef]

Jing, J.L.; Ning, T.C.Y.; Natali, F.; Eisenhaber, F.; Alfatah, M. Iron supplementation delays aging and extends cellular lifespan
through potentiation of mitochondrial function. Cells 2022, 11, 862. [CrossRef]

Mota-Martorell, N.; Jové, M.; Borrés, C.; Berdun, R.; Obis, E.; Sol, J.; Cabré, R; Pradas, I.; Galo-Licona, J.D.; Puig, J.; et al.
Methionine transsulfuration pathway is upregulated in long-lived humans. Free Radic. Biol. Med. 2021, 162, 38-52. [CrossRef]
[PubMed]

Kwon, Y.Y,; Choi, K.M.; Cho, C.; Lee, C.K. Mitochondrial efficiency-dependent viability of Saccharomyces cerevisiae mutants
carrying individual electron transport chain component deletions. Mol. Cells 2015, 38, 1054-1063. [CrossRef]

Goetzman, E.; Gong, Z.; Zhang, B.; Muzumdar, R. Complex II biology in aging, health, and disease. Antioxidants 2023, 12, 1477.
[CrossRef] [PubMed]

Wang, Q.; Li, M.; Zeng, N.; Zhou, Y.; Yan, J. Succinate dehydrogenase complex subunit C: Role in cellular physiology and disease.
Exp. Biol. Med. 2023, 248, 263-270. [CrossRef]

Kang, W.; Suzuki, M.; Saito, T.; Miyado, K. Emerging role of TCA cycle-related enzymes in human diseases. Int. J. Mol. Sci. 2021,
22,13057. [CrossRef] [PubMed]

Palmieri, L.; Lasorsa, EM.; De Palma, A.; Palmieri, F.; Runswick, M.]J.; Walker, ].E. Identification of the yeast ACR1 gene product
as a succinate-fumarate transporter essential for growth on ethanol or acetate. FEBS Lett. 1997, 417, 114-118. [CrossRef] [PubMed]
Cao, L.; Tang, Y.; Quan, Z.; Zhang, Z.; Oliver, S.G.; Zhang, N. Chronological lifespan in yeast is dependent on the accumulation of
storage carbohydrates mediated by Yak1, Mck1 and Rim15 kinases. PLoS Genet. 2016, 12, e1006458. [CrossRef]

Shi, L.; Sutter, B.M.; Ye, X.; Tu, B.P. Trehalose is a key determinant of the quiescent metabolic state that fuels cell cycle progression
upon return to growth. Mol. Biol. Cell 2010, 21, 1982-1990. [CrossRef] [PubMed]

Sauve, A.A.; Wolberger, C.; Schramm, V.L.; Boeke, ].D. The biochemistry of Sirtuins. Annu. Rev. Biochem. 2006, 75, 435—-465.
[CrossRef] [PubMed]

Lin, Y.Y;; Lu, J.Y,; Zhang, J.; Walter, W.; Dang, W.; Wan, J.; Tao, S.C.; Qian, ]J.; Zhao, Y.; Boeke, ].D.; et al. Protein acetylation
microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 2009, 136, 1073-1084. [CrossRef]
Vall-Llaura, N.; Mir, N.; Garrido, L.; Vived, C.; Cabiscol, E. Redox control of yeast Sir2 activity is involved in acetic acid resistance
and longevity. Redox Biol. 2019, 24, €101229. [CrossRef]

Casatta, N.; Porro, A.; Orlandj, I.; Brambilla, L.; Vai, M. Lack of Sir2 increases acetate consumption and decreases extracellular
pro-aging factors. Biochim. Biophys. Acta 2013, 1833, 593-601. [CrossRef]

Klein, M.; Swinnen, S.; Thevelein, ].M.; Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: Established knowledge
and ambiguities. Environ. Microbiol. 2017, 19, 878-893. [CrossRef] [PubMed]

Berry, B.J.; Trewin, A J.; Amitrano, A.M.; Kim, M.; Wojtovich, A.P. Use the protonmotive force: Mitochondrial uncoupling and
reactive oxygen species. J. Mol. Biol. 2018, 430, 3873-3891. [CrossRef] [PubMed]

Postmus, J.; Tuzun, I.; Bekker, M.; Miiller, WH.; Teixeira de Mattos, M.].; Brul, S.; Smits, G.J. Dynamic regulation of mitochondrial
respiratory chain efficiency in Saccharomyces cerevisiae. Microbiology 2011, 157, 3500-3511. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1002/yea.1828
https://www.ncbi.nlm.nih.gov/pubmed/21246628
https://doi.org/10.1002/adbi.202300095
https://doi.org/10.1007/s11357-023-00827-0
https://doi.org/10.3390/cells11050862
https://doi.org/10.1016/j.freeradbiomed.2020.11.026
https://www.ncbi.nlm.nih.gov/pubmed/33271279
https://doi.org/10.14348/molcells.2015.0153
https://doi.org/10.3390/antiox12071477
https://www.ncbi.nlm.nih.gov/pubmed/37508015
https://doi.org/10.1177/15353702221147567
https://doi.org/10.3390/ijms222313057
https://www.ncbi.nlm.nih.gov/pubmed/34884868
https://doi.org/10.1016/S0014-5793(97)01269-6
https://www.ncbi.nlm.nih.gov/pubmed/9395087
https://doi.org/10.1371/journal.pgen.1006458
https://doi.org/10.1091/mbc.e10-01-0056
https://www.ncbi.nlm.nih.gov/pubmed/20427572
https://doi.org/10.1146/annurev.biochem.74.082803.133500
https://www.ncbi.nlm.nih.gov/pubmed/16756498
https://doi.org/10.1016/j.cell.2009.01.033
https://doi.org/10.1016/j.redox.2019.101229
https://doi.org/10.1016/j.bbamcr.2012.11.008
https://doi.org/10.1111/1462-2920.13617
https://www.ncbi.nlm.nih.gov/pubmed/27878932
https://doi.org/10.1016/j.jmb.2018.03.025
https://www.ncbi.nlm.nih.gov/pubmed/29626541
https://doi.org/10.1099/mic.0.050039-0
https://www.ncbi.nlm.nih.gov/pubmed/21964735

	Introduction 
	Materials and Methods 
	Preparation and Purification of GSL Extract 
	Yeast Strain, Growth Conditions, and CLS Determination 
	Dosage of Metabolites and Enzymatic Activities 
	Subcellular Fractionation 
	Respiration Assays and Fluorescence Microscopy 
	Statistical Analysis 

	Results and Discussion 
	Characterization of GSL Extract 
	GSL Extract Increases CLS 
	GSL Extract Preserves Mitochondrial Functionality 
	GSL Extract Supplementation at the Diauxic Shift Correlates with a More Efficient Respiration 
	GSL Extract Supplementation at the Diauxic Shift Preserves TCA Enzymatic Activities 
	GSL Extract Supplementation at the Diauxic Shift Enhances Glyoxylate/Gluconeogenic Flux and Increased Trehalose Stores Without Affecting Ethanol/Acetate Catabolism 
	Glycerol Catabolism Is Enhanced in GSL-Supplemented Chronologically Aging Cells in Concert with ATP Increase 

	Conclusions 
	References

