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Abstract
In this note, we provide a simple proof of some properties enjoyed by convex functions
having the engulfing property. In particular, making use only of results peculiar to
convex analysis, we prove that differentiability and strict convexity are conditions
intrinsic to the engulfing property.

Keywords Engulfing property · Soft engulfing property · Convex function

Mathematics Subject Classification 26B25 · 26A12

1 Introduction

The convex functions satisfying the so-called engulfing property have been studied in
connection with the solution to the Monge–Ampère equation. Several conditions on
such functions have been proposed in order to preserve the harmony between measure
theory (and, in particular, the Monge–Ampère measure related to a convex function)
and the shape of the sections, with their induced geometry; in this framework, we
would like to mention the celebrated C1,β -estimate due to Caffarelli [1,2], and the
exhaustive book by Gutiérrez [3]. This study involved many authors with different
points of view; very interesting are the papers by Gutiérrez and Huang [4], and by
Forzani andMaldonado [5,6]. Let us devote a few lines to thementioned C1,β -estimate:
One of the proposed conditions on a convex function, with bounded sections, is the
so-called (DC)-doubling property of the related Monge–Ampère measure (for details,
see, for example, [6]); this condition plays a fundamental role in the whole theory of
the Monge–Ampère equation, since it is equivalent to the engulfing property of the
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related function, and it implies that this function is strictly convex and in C1,βloc . Due
to this equivalence, the study of the engulfing property of a convex function is often
moved to the study of the regularity of the related Monge–Ampère measure.

The purpose of this note, differently from the literature, is to bring into focus that
strict convexity and differentiability are properties intrinsic to the engulfing. This is
done by means of purely convex analytic elementary techniques, and without taking
into account the properties of the related Monge–Ampère measure.

The paper is organized as follows: In Sect. 2, we recall the notion of engulfing for
a convex function and introduce the notion of soft engulfing. We provide a fine mono-
tonicity result for the subdifferential map of a convex function that enjoys the soft
engulfing property. Furthermore, we prove that this property of the function entails
continuous differentiability, as well as strict convexity. In Sect. 3, we prove the equiv-
alence between the class of functions satisfying the engulfing property and the class
of functions satisfying the condition, apparently milder, of soft engulfing. Finally, in
Sect. 4, some further directions of investigation are traced.

2 Study of the Soft Engulfing Property of a Convex Function

Given a convex function ϕ : Rn → R, for every x0 ∈ R
n, p ∈ ∂ϕ(x0), and s > 0,

we will denote by Sϕ(x0, p, s) the section of ϕ at (x0, p), with height s, defined as
follows:

Sϕ(x0, p, s) = {x ∈ R
n : ϕ(x) − ϕ(x0) − p · (x − x0) < s}. (1)

In case ϕ is differentiable at x0, we will denote the section at x0, with height s, by
Sϕ(x0, s), for short.

Definition 2.1 Wesay that a convex functionϕ satisfies the engulfing property (shortly,
ϕ ∈ E(n, K ), where n denotes the dimension of the domain), if there exists K > 1
such that, for any x ∈ R

n, p ∈ ∂ϕ(x), and t > 0, if y ∈ Sϕ(x, p, t), then

Sϕ(x, p, t) ⊂ Sϕ(y, q, Kt),

for every q ∈ ∂ϕ(y). Likewise, we say that a convex function ϕ satisfies the soft
engulfing property (shortly, ϕ ∈ E soft(n, K )), if there exists K > 1 such that, for any
x ∈ R

n, p ∈ ∂ϕ(x), and t > 0, if y ∈ Sϕ(x, p, t), then

x ∈ Sϕ(y, q, Kt),

for every q ∈ ∂ϕ(y).

Let us stress that, differently from the literature, in the previous definitions of the
engulfing properties, we do not require either that the functions involved are dif-
ferentiable or that their sections are bounded sets. Trivially, one has that E(n, K ) ⊂
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E soft(n, K ); however, this “soft” condition is only apparently milder that the previous
one, as we will see later on.

Let us recall some well-known notions and results. Given a multivalued map T :
R
n → P(Rn), we denote by dom(T ) and gph(T ), respectively, the sets

dom(T ) := {x ∈ R
n : T (x) �= ∅},

and

gph(T ) := {(x, p) ∈ R
n × R

n : p ∈ T (x)}.

Given a convex function ϕ : Rn → R, the subdifferential ∂ϕ(x0) of ϕ at x0 is defined
as the set

∂ϕ(x0) = {p ∈ R
n : ϕ(x) ≥ ϕ(x0) + p · (x − x0), ∀x ∈ R

n}.

The set ∂ϕ(x0) is nonempty, compact and convex, and, if ϕ is differentiable at x0,
then ∂ϕ(x0) = {∇ϕ(x0)}. From a classical result in convex analysis, the convexity
of ϕ is fully characterized by the nonemptiness of ∂ϕ(x), for every x ∈ R

n . The
subdifferential map ∂ϕ : R

n → P(Rn) is given by x 
→ ∂ϕ(x); its graph is a
maximal monotone set, i.e. for every (x, p), (y, q) ∈ gph(∂ϕ), we have that

(p − q) · (x − y) ≥ 0,

and gph(∂ϕ) cannot be extended to a monotone set without loosing the previous
property (see, for instance, Theorem 23.4 in [7]).

The celebrated and alreadymentioned result due to Caffarelli establishes that, given
a Borel measure ν defined in Rn , every strictly convex generalized solution (or Alek-
sandrov solution) ϕ of the Monge–Ampère equation

det D2ϕ = ν (2)

must be in the class C1,βloc , for some β ∈]0, 1[. Let us recall briefly (see [3] for all the
details) that the Monge–Ampère measure μϕ associated with ϕ is defined by

μϕ(E) = |∂ϕ(E)|,

where the set {E ⊂ R
n : ∂ϕ(E) is Lebesgue measurable} is a σ -algebra containing

the Borel sets, and | · | denotes the Lebesgue measure; moreover, ϕ is a generalized
solution of (2) if μϕ = ν.

The study of the Monge–Ampère measure μϕ with the doubling property turns out
to be intrinsically connected with the engulfing property of ϕ. Our point of view takes
advantage of convex analysis to investigate the properties of the functionsϕ ∈ E(n, K )

and, in particular, the behaviour of the sections Sϕ(x0, p, s), when we let x0 and s
vary.

123



Journal of Optimization Theory and Applications (2020) 187:408–420 411

In the sequel, our aim will be to shed some light on the properties enjoyed by
the functions in the class E soft(n, K ). The next proposition shows that the engulfing
property of ϕ is related to the monotonicity of the subdifferential map ∂ϕ. More
precisely, it is known that, for every convex function ϕ, the multivalued map ∂ϕ is
monotone; the following result highlights a finer behaviour of this map:

Proposition 2.1 Let ϕ : Rn → R be a function in E soft(n, K ). Then,

K + 1

K
(ϕ(y) − ϕ(x) −p · (y − x)) ≤ (p − q) · (x − y)

≤ (K + 1) (ϕ(y) − ϕ(x) − p · (y − x)) ,
(3)

for every (x, p), (y, q) ∈ gph(∂ϕ).

Proof Take any ε > 0; we have that

ϕ(x) < ϕ(x) + ε = ϕ(y) + q · (x − y) + ϕ(x) − ϕ(y) − q · (x − y) + ε.

Furthermore, q ∈ ∂ϕ(y) implies that ϕ(x) − ϕ(y) − q · (x − y) ≥ 0. Therefore,

x ∈ Sϕ(y, q, ϕ(x) − ϕ(y) − q · (x − y) + ε).

By the soft engulfing property, y ∈ Sϕ(x, p, K (ϕ(x) − ϕ(y) − q · (x − y) + ε)), for
every p ∈ ∂ϕ(x), i.e.

ϕ(y) < ϕ(x) + p · (y − x) + Kϕ(x) − Kϕ(y) − Kq · (x − y) + K ε.

Letting ε ↘ 0, we obtain

(K + 1)ϕ(y) ≤ (K + 1)ϕ(x) + (p + Kq) · (y − x),

for every (x, p), (y, q) ∈ gph(∂ϕ). By interchanging the roles of x and y, we get

(K + 1)ϕ(x) ≤ (K + 1)ϕ(y) + (q + Kp) · (x − y),

for every (x, p), (y, q) ∈ gph(∂ϕ). From the inequalities above, we easily get

p + Kq

K + 1
· (x − y) ≤ ϕ(x) − ϕ(y) ≤ q + Kp

K + 1
· (x − y). (4)
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From the first inequality in (4), it follows that

1

K + 1
(p − q) · (x − y) ≤ ϕ(x) − ϕ(y) − q · (x − y).

The second inequality in (4) gives

ϕ(x) − ϕ(y) − q · (x − y) ≤ K

K + 1
(p − q) · (x − y),

thereby showing the assertion. 
�
The property (3) in Proposition 3, in fact, requires a sort of uniform control over

the monotonicity of the subdifferential map in the whole R
n . By means of (3), it

is an easy task to verify that the function ϕ : R → R, defined by ϕ(x) = ex , is
not in E soft(1, K ), for any K ; the reason of this exclusion does not depend on the
asymmetry of this function, since one can easily prove that the function x 
→ ex

2
is

not in E soft(1, K ), too.
Furthermore, while every strictly convex polynomial enjoys the engulfing prop-

erty (see, for instance, [6]), not every strictly convex function with a “polynomial
behaviour” does. The following example gives an idea to the nonfamiliar reader:

Example 2.1 Let us consider the function ϕ : R → R defined by

ϕ(x) =
{
x4, x ≥ 0,
x2, x < 0.

(5)

We show that ϕ /∈ E soft(1, K ), for any K > 1. By contradiction, via Proposition 2.1,
by taking x > 0, and y = −xk for some positive k, we obtain

K+1
K

(
x2k + 3x4 + 4x3+k

) ≤ 4x4 + 4x3+k + 2xk+1 + 2x2k

≤ (K + 1)
(
x2k + 3x4 + 4x3+k

)
.

If k ∈]1, 3[, and x ↘ 0, then the previous inequalities fail.

We are now in the position to show that a function ϕ ∈ E soft(n, K ) enjoys some
regularity properties. Set

E soft(n) :=
⋃
K>1

E soft(n, K ).

The following result holds:

Theorem 2.1 Let ϕ : Rn → R be a convex function in E soft(n). Then,

i. ϕ ∈ C1(Rn);
ii. if, in addition, ϕ has bounded sections, then it is strictly convex.
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Proof i. By the well-known characterization of differentiability for a real-valued
convex function (see, for instance, Theorem 25.1 in [7]), ϕ is differentiable in R

n, if
and only if, for every x ∈ R

n, ∂ϕ(x) is a singleton. Suppose, by contradiction, that
there exists x ∈ R

n such that p, q ∈ ∂ϕ(x), p �= q, and set v = q− p. Since ∂ϕ(x) is
a convex set, the segment p+ tv,with t ∈ [0, 1], is contained in ∂ϕ(x). If we consider
the function

ψ : R → R, ψ(s) = ϕ(x + sv),

one can easily see that (p + tv) · v ∈ ∂ψ(0), for every t ∈ [0, 1]. The function
ψ is convex and belongs to E soft(1, K ), being the restriction to a line of a function
in E soft(n, K ). In particular, ψ ′ is defined on a dense subset of R, according to the
Rademacher theorem. Let s < 0 be a point in the domain of ψ ′. Taking into account
the inequalities guaranteed by Proposition 2.1, for every t ∈ [0, 1], we have that

K+1
K

(
ψ(0) − ψ(s) + ψ ′(s)s

) ≤ (ψ ′(s) − (p + tv) · v)s
≤ (K + 1)

(
ψ(0) − ψ(s) + ψ ′(s)s

)
.

Dividing by −s, we have

K+1
K

(
ψ(0)−ψ(s)

−s − ψ ′(s)
)

≤ (p + tv) · v − ψ ′(s)

≤ (K + 1)
(

ψ(0)−ψ(s)
−s − ψ ′(s)

)
,

for every t ∈ [0, 1]. In particular,

K+1
K

(
ψ(0)−ψ(s)

−s − ψ ′(s)
)

≤ p · v − ψ ′(s) < p · v − ψ ′(s) + ‖v‖2
≤ (K + 1)

(
ψ(0)−ψ(s)

−s − ψ ′(s)
)

,

and, therefore,

(
K 2 − 1

K

) (
ψ(0) − ψ(s)

−s
− ψ ′(s)

)
≥ ‖v‖2.

Setting K 2−1
K = K0, and

‖v‖2
K0

= T , we get that

ψ(0) − ψ(s)

−s
− ψ ′(s) ≥ T ;

this is equivalent to say that 0 /∈ Sψ(s, T ), for every s < 0 in the domain of ψ ′, and
for T independent of s. However, this cannot occur; otherwise, by the soft engulfing
property enjoyed by ψ, one would have s /∈ Sψ(0, (p + tv) · v, T /K ), for some
t ∈ [0, 1], not possible since Sψ(0, (p + tv) · v, T /K ) is open, 0 is in the interior,
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and s can be taken close enough to 0. This proves that, for every x ∈ R
n, ∂ϕ(x)

is a singleton, and therefore, ϕ is differentiable on R
n . Finally, taking into account

Theorem 25.5 in [7], since ϕ is a proper convex differentiable function, the gradient
mapping ∇ϕ is continuous within Rn .

ii. Firstly, note that the graph of ϕ does not contain any half-line; otherwise, ϕ would
have at least an unbounded section. Thus, we will argue by contradiction, assuming
that the graph of ϕ contains a segment, i.e. there exists x ∈ R

n, v ∈ R
n, such that

(x + sv, a + sb) ∈ gph(ϕ), if and only if s ∈ [−1, 0]. The problem can be reduced
to a one-dimensional problem, by considering the function

ψ : R → R, ψ(s) = ϕ(x + sv).

Since both the convexity and the engulfing property are invariant with respect to
perturbations by affine functions, we can assume, without loss of generality, that
ψ(s) = 0, if and only if s ∈ [−1, 0]. Note that, due to convexity and differentiability,
∂ψ(s) = {0} for every s ∈ [−1, 0]; moreover,

lim
s→−∞ ψ(s) = +∞, lim

s→+∞ ψ(s) = +∞,

and, in particular, ψ establishes a one-to-one correspondence of [0,+∞[ with itself.
Let us consider the section Sψ(−1, t); in particular,

cl Sψ(−1, t) ⊃ {s > 0 : ψ(s) ≤ t}.
Let st be the unique positive point in cl Sψ(−1, t) such that ψ(st ) = t . From the soft
engulfing property,

−1 ∈ cl Sψ(st , Kt),

i.e.

ψ(−1) − ψ(st ) − ψ ′(st )(−1 − st ) ≤ Kt,

or, equivalently,

ψ ′(st )(1 + st ) ≤ (1 + K )ψ(st ). (6)

From the first inequality in (3), taking x = 0, and y = st , we have that

(
1 + 1

K

)
ψ(st ) ≤ ψ ′(st )st . (7)

From (6) and (7), we get that

(
1 + 1

K

)
ψ(st ) + ψ ′(st ) ≤ (1 + K )ψ(st ),
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or, equivalently,

ψ ′(st ) ≤
(
K − 1

K

)
ψ(st ).

Since ψ : [0,+∞[ → [0,+∞[ is one-to-one, the previous inequality holds for all
s = st > 0. Then,

ψ ′(s)
ψ(s)

−
(
K − 1

K

)
≤ 0,

i.e.

d

ds

(
lnψ(s) −

(
K − 1

K

)
s

)
≤ 0, ∀s > 0.

This implies that lnψ(s)− (
K − 1

K

)
s is decreasing on ]0,+∞[, and therefore, there

exists

lim
s↘0

(
lnψ(s) −

(
K − 1

K

)
s

)
= L > −∞.

Since lims↘0 ψ(s) = 0+, we get a contradiction. 
�
Remark 2.1 From the theorem above, if ϕ ∈ E soft(n, K ), then ∂ϕ(x) = {∇ϕ(x)}, for
every x ∈ R

n , and relation (3) becomes, for every x, y ∈ R
n ,

K + 1

K
(ϕ(y) − ϕ(x) − ∇ϕ(x) · (y − x)) ≤ (∇ϕ(x) − ∇ϕ(y)) · (x − y)

≤ (K + 1) (ϕ(y) − ϕ(x) − ∇ϕ(x) · (y − x)) ,
(8)

exactly as in Theorem 4 in [6].

Proposition 2.2 Let ϕ : R
n → R be a convex function with bounded sections. If

ϕ ∈ E soft(n, K ), then ϕ ∈ E(n, K ′), where K ′ = 2K (K + 1).

Proof Let ϕ ∈ E soft(n, K ). From Theorem 2.1, this function is differentiable and
strictly convex. Thus, by applying Theorem 4 in [6], the assertion follows. 
�

3 Equivalence Between Engulfing and Soft Engulfing

In this section,wewill show that the soft engulfing property, apparently less demanding
than the engulfing one, requires in fact the same condition on the functions. We will
first prove this result in the one-dimensional case.

Proposition 3.1 The following equality holds: E soft(1) = E(1).Moreover, the unique
functions defined on R, with some unbounded sections and enjoying the engulfing
property, are affine.
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Proof Let ϕ ∈ E soft(1, K ); we have only to prove that ϕ ∈ E(1, K ′), for some
K ′ > 1. From Theorem 2.1-i, ϕ is differentiable everywhere. Firstly, let us assume
that ϕ is an affine function. It is easy to see that Sϕ(x, t) = R, for every x ∈ R and
t > 0; thus, ϕ ∈ E(1, K ), for every K > 1.

Let us now assume that ϕ is not affine; we will show that all the sections are bounded
and, by Proposition 2.2, the assertion will follow. Suppose, by contradiction, that there
exists x0 ∈ R, and t > 0, such that Sϕ(x0, t) is unbounded; since the sections are
open and convex subsets of R, and since ϕ is not affine, there exists x ∈ R such that,
either

]x,+∞[= Sϕ(x0, t), with x > x0,

or

] − ∞, x[= Sϕ(x0, t), with x > x0.

Let us consider only the first case, since the second one can be treated similarly.
For every x > x0, we have that x ∈ Sϕ(x0, t) and, by the soft engulfing property,
x0 ∈ Sϕ(x, Kt). Then,

ϕ(x) − ϕ(x0) − ϕ′(x0)(x − x0) < t,

ϕ(x0) − ϕ(x) − ϕ′(x)(x0 − x) < Kt,

for every x > x0. The two inequalities imply

(ϕ′(x) − ϕ′(x0))(x − x0) < (K + 1)t, ∀ x > x0. (9)

The convexity of ϕ implies that ϕ′(x) ≥ ϕ′(x0). Taking x → +∞ in (9), we must
have ϕ′(x) = ϕ′(x0), for every x > x0. Therefore, for every x ≥ x0, the equality
ϕ(x) = ϕ(x0)+ϕ′(x0)(x − x0) holds, and ]x,+∞[= Sϕ(x, t).Now, for every ε > 0,
we have that x + ε ∈ Sϕ(x, t), for every x > x0; the soft engulfing property implies
that x ∈ Sϕ(x + ε, Kt). Therefore,

ϕ(x + ε) − ϕ(x) − ϕ′(x0)(x + ε − x) < t,

ϕ(x) − ϕ(x + ε) − ϕ′(x + ε)(x − x − ε) < Kt,

for every ε > 0 and x ≥ x0. The two inequalities imply

(ϕ′(x0) − ϕ′(x + ε))(x − x − ε) < (K + 1)t, ∀ε > 0, x ≥ x0. (10)
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The convexity of ϕ gives that ϕ′(x0) ≥ ϕ′(x + ε). Taking x → +∞ in (10), we
obtain that ϕ′(x0) = ϕ′(x + ε), for every ε, i.e. ϕ′(x + ε) = ϕ′(x0). Hence, since
ϕ is continuous, ϕ(x) = ϕ(x0) + ϕ′(x0)(x − x0) for every x ≥ x . This implies that
x ∈ Sϕ(x0, t), which contradicts the assumption on Sϕ(x0, t). 
�

The proof of the previous result in the case n > 1 is more delicate, since there exist
convex functions, that are not affine, and whose graph contains lines:

Example 3.1 Let ϕ0 : R → R be defined by ϕ0(x) = x2; ϕ0 ∈ E(1, K ), for some
K . If we consider the function ϕ : R2 → R defined by ϕ(x, y) = x2, then, clearly,
Sϕ((x, y), t) = Sϕ0(x, t) × R. It is easy to verify that ϕ ∈ E(2, K ).

Taking into account the result of the previous proposition, we are now in the position
to state and prove our second main result, in the case n ≥ 2.

Theorem 3.1 For every positive integer n, the engulfing and the soft engulfing are
equivalent properties, i.e. E soft(n) = E(n).

Proof We will show that if ϕ ∈ E soft(n, K ), then ϕ ∈ E(n, K ′), for some K ′ > 1.
Let y ∈ Sϕ(x, t); we will show that Sϕ(y, t) ⊆ Sϕ(x, K ′t).

Suppose, first, that ϕ(0) = 0 and ∇ϕ(0) = 0, and take any z ∈ Sϕ(y, t), z �= x . Let
us consider the set

Ĩ = {w ∈ R
n : w = (1 − s)x + sz, s ∈ R} ∩ Sϕ(y, t)

and denote by I the convex subset of R defined as

I = {s ∈ R : (1 − s)x + sz ∈ Ĩ }.

I can be bounded, or unbounded. FromProposition 3.1, if I is unbounded, then I = R,

and the function s 
→ ϕx,z(s) = ϕ((1 − s)x + sz) is affine, i.e. there exists q ∈ R

such that ϕx,z(s) = ϕx,z(0)+ qs. This implies that, for every h ∈ R, for every l > 0,

Sϕx,z (h, l) = R.

In particular, if l = t, this implies that 0 ∈ Sϕx,z (h, t), for every h ∈ R. From the soft
engulfing property, by choosing h = 1, one has that 1 ∈ Sϕx,z (0, Kt), i.e.

ϕx,z(1) < ϕx,z(0) + ϕ′
x,z(0) + Kt,

or, equivalently,

ϕ(z) < ϕ(x) + ∇ϕ(x) · (z − x) + Kt .

This proves that z ∈ Sϕ(x, Kt).
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Suppose now that I is bounded. In this case, by the convexity of ϕx,z, let s1 < s2
be the real numbers such that

t = ϕx,z(s1) = ϕx,z(s2), I =]s1, s2[.

By the Rolle theorem, there exists s0 ∈]s1, s2[ such that ϕ′
x,z(s0) = 0. Then, for some

l > 0, one has that

I = Sϕx,z (s0, l),

i.e.

ϕx,z(s1) − ϕx,z(s0) = l = ϕx,z(s2) − ϕx,z(s0).

The function ϕx,z is nonnegative, and therefore, l ≤ t . Since ϕx,z(0) = ϕ(x), and
x ∈ Sϕ(y, t), we have that

0 ∈ Sϕx,z (s0, t).

Since ϕx,z ∈ E soft(1, K ), from Proposition 3.1, we get that ϕx,z ∈ E(1, K ′), with
K ′ = 2K (K + 1), and

Sϕx,z (s0, t) ⊆ Sϕx,z (0, K
′t).

In particular, z ∈ Sϕ(y, t) implies that 1 ∈ Sϕx,z (s0, t). Thus,

1 ∈ Sϕx,z (0, K
′t),

i.e.

z ∈ Sϕ(x, K ′t).

In the general case, we can consider the function ψ(x) = ϕ(x) − ϕ(0) − ∇ϕ(0) · x,
and note that ψ ∈ E(n, K ) (E soft(n, K )), if and only if ϕ satisfies the same engulfing
condition.


�
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4 Conclusions

The engulfing property of a convex function is a rather technical condition that arises in
connection with the Monge–Ampère measure. We introduce a relaxed version of that
property, called soft engulfing, and prove that it is actually equivalent to the original
property. Additionally, we show that a convex function with the engulfing property
is continuously differentiable, and, in case it has bounded sections, and it is strictly
convex. All this is done by means of purely convex analytic elementary techniques.
Following this line of investigation, our aim is to study the engulfing property in the
sub-Riemannian setting of the Heisenberg group H

n, by considering the so-called
H -convex functions, and the notion of sections for such functions, which takes into
account the peculiar geometry of Hn (see, for instance, [8]). In this framework, some
important results and tools of the classical convex analysis can be fruitfully extended
(see, for instance, [9]) and applied to the investigation of the engulfing property inHn

(see [10]).
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