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Abstract: Human Activity Recognition (HAR) has been studied extensively, yet current approaches
are not capable of generalizing across different domains (i.e., subjects, devices, or datasets) with
acceptable performance. This lack of generalization hinders the applicability of these models in
real-world environments. As deep neural networks are becoming increasingly popular in recent
work, there is a need for an explicit comparison between handcrafted and deep representations in
Out-of-Distribution (OOD) settings. This paper compares both approaches in multiple domains
using homogenized public datasets. First, we compare several metrics to validate three different
OOD settings. In our main experiments, we then verify that even though deep learning initially
outperforms models with handcrafted features, the situation is reversed as the distance from the
training distribution increases. These findings support the hypothesis that handcrafted features may
generalize better across specific domains.

Keywords: human activity recognition; deep learning; domain generalization; accelerometer

1. Introduction

Human Activity Recognition (HAR) has the objective of automatically recognizing
patterns in human movement given sensor-based inputs, namely inertial measurement
units (IMUs), currently available in most wearables and smartphones [1]. HAR is an impor-
tant enabling technology for applications such as remote patient monitoring, locomotor
rehabilitation, security, and pedestrian navigation [1].

The IMU itself may contain several sensors, such as accelerometers and gyroscopes,
which possess microelectromechanical properties, allowing their capacitance to vary with
movement [2]. The accelerometer measures acceleration, while the gyroscope measures
angular velocity [3]. Usually, Machine Learning (ML) is applied to enable an associa-
tion between the signals obtained from these sensors and specific human activities [2].
The typical HAR system comprises the following steps [4]: data acquisition, preprocessing,
segmentation, feature extraction, and classification.

Similar to most ML tasks, HAR models perform well when testing on a randomly
sampled subset of a carefully acquired dataset (i.e., out-of-sample validation) and struggle
in Out-of-Distribution (OOD) settings (i.e., external validation). These settings occur when
the source and target domains are different, such as when the models are tested across
different datasets or sensor positions [5–7].
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Deep learning is becoming increasingly popular in HAR applications [8]. While the
typical pipeline includes a feature extraction step before training a classifier, deep neural
networks automatically learn and extract features through a continuous minimization of a
cost function. In principle, a neural network may have millions of learnable parameters,
which translates into a large capacity to learn more complex and discriminative features [9].
These models have potential for HAR applications since sensor signals may have many
inherent subtleties that may not be recognized by Handcrafted (HC) features. Although a
promising approach, significant limitations have been discussed when deep learning
models are deployed in real-world environments. Current methods for training deep
neural networks may converge to solutions that rely on spurious correlations [10], resulting
in models that lack robustness and fail in test domains that are trivial for humans [11].

On the other hand, HC features in this field are well-studied [1,12], more interpretable,
and can reach high performance. In HAR, results with HC features approximate those of
deep learning [13,14] even in tasks where the latter thrives, namely when the train and test
sets are split by randomly shuffling the data, thus showing similar distributions [15].

Since both methods have advantages and limitations, there is a need for a more detailed
comparison between them in various domains. This translates into a need for benchmarks
where the similarity between train and test distributions has considerable variability.

As HAR naturally includes many kinds of possible domains, it can be considered an
excellent sandbox to study the OOD generalization ability of learning algorithms (Domain
Generalization), being previously used for this purpose [16].

This paper compares the performance of learning algorithms based on HC features
with deep learning approaches for In-Distribution (ID) and OOD settings. For this com-
parison, we use five public datasets, homogenized to have the same label space and input
shape, so that the models can be easily trained and tested across them. To validate whether
the tasks are in fact OOD, several metrics are considered and compared with the purpose
of assessing the disparity between train and test sets. To extract HC features, Time Series
Feature Extraction Library (TSFEL) [12] was used. We use one-dimensional Convolutional
Neural Networks (CNNs) for our deep learning baselines.

In summary, the major contributions of this work are the following:

1. A comparison between different data similarity measures and their relationship to
generalization performance.

2. A validation of the hypothesis that models based on HC features can be more robust
than deep learning models for several HAR tasks in OOD settings.

3. An empirical demonstration that a hybrid approach between HC features and deep
representations can bridge the gap in OOD performance.

2. Related Work

Several studies compared classic ML approaches using HC features with deep learning
methods. The authors from [13,14,17,18] compare CNNs with models based on support
vector machines, multilayer perceptrons, and random forests. In all these studies, deep
learning approaches outperformed classic methods. However, in their experiments, data
splits were created by randomly shuffling the datasets, so samples from possibly different
domains are represented in both the train and test sets with similar data distributions.

In regard to the use of data similarity to quantify the degree of OOD, associated with
generalization, this is both an old and important question in the ML literature, as several ML
methods implicitly rely on properties related to similarity (e.g., the large margin assump-
tion in SVM learning) to guarantee good generalization performance [19]. The potential
relationship between data similarity and the generalization properties of ML models was
first investigated from an empirical point of view in [20], where the authors discovered that
datasets found to be substantially dissimilar likely stemmed from different distributions.
Based on these findings, the authors of [21] demonstrated that information about similar-
ity can be used to understand why a model performs poorly on a validation set, while
the same information can be used to understand when and how to successfully perform
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domain adaptation (see, for example, the recent review [22]). To that end, several metrics
for measuring data similarity have been proposed in the literature. Bousquet et al. [20]
developed a measure (Data Agreement Criterion, DAC) based on the Kullback–Leibler
divergence, which has since become frequently used to assess the similarity of distribu-
tions [23]. More recently, Schat et al. [24] suggested a modification to the DAC measure
(Data Representativeness Criterion, DRC), and investigated the link between data similarity
and generalization performance. Cabitza et al. [25] proposed instead a different approach
based on a multivariate statistical testing procedure to obtain a hypothesis test for OOD
data, the Degree of Correspondence (DC), and also studied the correlation between DC
scores and the generalization of ML models. By contrast, in the Deep Learning literature,
approaches based on the use of statistical divergence measures, such as the Wasserstein
distance [26] or the Maximum Mean Discrepancy (MMD) [27], have become increasingly
popular to design methods for OOD detection. See also, the recent review by Shen et al. [28].

Deep learning approaches have been explored in OOD settings by testing the models
on data from unseen domains [4,29–32]. Gholamiangonabadi et al. [33] verified that the
accuracy went from 85.1% when validating using leave-one-subject-out (LOSO) cross-
validation to 99.85% when using k-fold cross-validation. Bragança et al. [34] had similar
results with HC features, reporting an accuracy of 85.37% for LOSO and 98% for k-fold.
The most important features used by each model differed significantly. They concluded
that LOSO would be a better validation method for generalization. Li et al. [4] and Lo-
gacjov et al. [30] compared several deep learning models with classic ML pipelines using
LOSO validation. As opposed to what was verified in the previous studies involving ID
settings, in the context of OOD, classic methods were mostly on par with deep learning
approaches, outperforming them in some cases. Still, data acquired from different subjects
of the same dataset may not be as diverse as the data encountered by HAR systems in
real-world environments since datasets are usually recorded in controlled conditions with
similar devices worn in the same positions. In Hoelzemann et al. [7], significant drops
in performance were reported when testing on different positions and different datasets,
which were then mitigated by the use of transfer learning techniques.

Transfer learning has previously been applied to HAR in cases where feature represen-
tations can be used in downstream tasks or across domains [6,35]. These methods leverage
information about the target task or domain to approximate the source and target repre-
sentations [5]. For example, Soleimani et al. [5] used a Generative Adversarial Network
(GAN) to adapt the model to each user, outperforming other domain adaptation methods.
However, the performance was poor when no transfer learning method was used (see
Table 2 of [5]). The same phenomenon can be noticed in [35], where the domain adaptation
methods outperformed the baseline model, which did not have access to data from the
target domain. These studies illustrate the difficulty of generalizing to different domains,
even when using deep learning models.

Gagnon et al. [16] included a HAR dataset in a benchmark to compare domain gen-
eralization methods applied to deep neural networks. The results indicate a 9.07% drop
in accuracy from 93.35% ID to 84.28% OOD on a dataset where different devices worn in
different positions characterize the possible domains. The same study showed that domain
generalization techniques [11,36] did not improve results in a significant manner, and that
empirical risk minimization (ERM) is still a strong baseline [37].

Boyer et al. [38] compared HC features and deep representations on an ID supervised
classification task and on an OOD detection task. They concluded that, while a k-nearest
neighbors (KNN) model using deep features as input outperforms the same model using
HC features on the ID task, the situation partially reverts for the OOD detection task, where
models based on HC features achieve the best results in two out of three datasets. However,
the ID and OOD tasks are not directly comparable, since they are of different kinds and
use different evaluation methods.

Trabelsi et al. [39] compared three deep learning approaches and a random forest
classifier with handcrafted features as input. Similar to the experiments in our work,
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the datasets were homogenized by including only common activities and separated the
test sets by the user. They concluded that only one of the deep learning approaches
outperformed the baseline model with handcrafted features. While they formulated two
different domain generalization settings (OOD-U and OOD-MD), the results for each of
these settings are not directly comparable since the test sets were combined when reporting
the results for the OOD-MD setting.

This paper adds to previous work by explicitly comparing the OOD robustness of HC
features and deep representations in four domain generalization settings with different
distances between train and test sets.

3. Methodology
3.1. Datasets

The datasets used in this study include human activity data recorded using smart-
phones and wearable inertial measurement units (IMUs). Table 1 contains a detailed
description of these publicly available datasets.

Table 1. Description of the datasets, including activities, positions, devices, and number of subjects.

Dataset Description Devices Source

PAMAP2—Physical Activity Monitoring
9 subjects;
18 physical activities
including sitting, lying,
standing, walking, ascend-
ing stairs, descending stairs
and running.

Heart rate monitor
(≈9 Hz);
3 inertial measurement
units each containing
a triaxial accelerome-
ter, a gyroscope and a
magnetometer (100 Hz);
Positions: wrist, chest
and ankle.

[40,41]

Sensors Activity Dataset (SAD)
10 subjects;
7 physical activities: sit-
ting, standing, walking, as-
cending stairs, descending
stairs, running and biking.

5 smartphones containing
an accelerometer, a gyro-
scope and a magnetometer
(50 Hz);
Positions: jeans pocket,
arm, wrist and belt.

[42]

DaLiAc—Daily Life Activities
19 subjects;
13 physical activities
including sitting, lying,
standing, walking outside,
ascending stairs, descend-
ing stairs and treadmill
running.

4 sensors, each with a triax-
ial accelerometer and gyro-
scope (200 Hz);
Positions: hip, chest
and ankles.

[43]

MHEALTH
10 subjects;
12 physical activities
including sitting, lying,
standing, walking, climb-
ing/descending stairs,
jogging and running.

3 wearable sensors contain-
ing an accelerometer, a gy-
roscope and a magnetome-
ter. One of the sensors also
provides 2-lead ECG mea-
surements (50 Hz);
Positions: chest, wrist
and ankle.

[44,45]

RealWorld (HAR)
15 subjects;
8 physical activities includ-
ing sitting, lying, standing,
walking, ascending stairs,
descending stairs and run-
ning/jogging.

6 wearable sensors contain-
ing accelerometers, gyro-
scopes and magnetometers
(50 Hz). Also includes
GPS, light and sound
level sensors;
Positions: chest, forearm,
head, shin, thigh, upper
arm, and waist.

[46]

Several criteria were followed to select the datasets for this study. Only datasets with
a sampling rate close to or over 50 Hz were considered, to avoid the need for oversampling.
The search was restricted to datasets that included most of the main activities seen in
the literature (e.g., walk, sit, stand, run, and ascending/descending stairs). For better
compatibility and to avoid large drops in performance caused by having considerably
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different sensor positions [7], we selected datasets that included overlapping positions with
at least one of the other datasets that fulfilled the remaining criteria.

The accelerometer was the selected sensor for this work. The magnitude values
were computed as the Euclidean norm of all three axes (x, y, and z), as this quantity is
invariant to the orientation of the device and can give information that is more stable across
domains. The magnitude signal was used along with the signal from each axis, so that
all the information given by the accelerometer was retained. From those four channels,
five-second windows were extracted without overlap.

All selected datasets were homogenized [47] so that a model trained on a specific
dataset could be directly tested in any other. This procedure included resampling all the
recordings to 50 Hz and mapping the different activity labels to a common nomenclature:
walking, running, sitting, standing, and stairs. Stair-related labels were joined into a
general “stairs” label, as having to distinguish between going up and down the stairs would
add unnecessary complexity to the task, since it is hard to infer the direction of vertical
displacement without access to a barometer [48]. The RealWorld dataset [46] generated
considerably more windows than the other datasets, so one-third of these windows was
randomly sampled and used in the experiments. The final distribution of windows and
activities per dataset is shown in Table 2. This table contains the percentage of samples
(five-second windows) of each activity in a given dataset, as well as the total number of
samples and corresponding percentage of each activity and dataset. In this table, it can be
seen that, while not being very well balanced, the activities have a substantial amount of
samples for all the datasets. On the other hand, even with the effort of reducing samples,
the RealWorld and SAD datasets have a larger influence in the experiments, which should
not be an issue, since the conditions remain the same for both deep and classic approaches.

Table 2. Distribution of samples and activity labels per dataset. The # symbol represents the number
of samples.

Activity
Datasets (%) Total

PAMAP2 SAD DaLiAc MHEALTH RealWorld % #

Run 10.5 16.9 20.0 33.3 19.1 18.3 7975
Sit 19.8 16.9 10.6 16.7 17.0 16.3 7102
Stairs 23.6 32.2 12.3 16.7 30.0 26.3 11,460
Stand 20.4 16.9 10.6 16.7 16.4 16.2 7047
Walk 25.7 16.9 46.5 16.7 17.5 22.8 9927

Total % 12.7 24.4 15.3 4.96 42.6 - -
# 5541 10,620 6644 2160 18,546 - 43,511

3.2. Handcrafted Features

To extract HC features, TSFEL [12] was used. This library extracted features directly
from the 5-second accelerometer windows generated from each public dataset. To decrease
computation time, we removed the features that included individual coefficients, such
as Fast Fourier Transform (FFT), empirical Cumulative Distribution Function (eCDF),
and histogram values. Nonetheless, the high-level spectral features computed from the
FFT were kept. We did not extract wavelet and audio-related features, such as MFCC and
LPCC. The total number of features per window was 192.

After the features were computed, samples were split according to each task (see
Section 4). Subsequently, features were scaled by subtracting the mean of the train set
and dividing by its standard deviation (Z-score normalization). The classifiers used were
Logistic Regression (LR) and a Multilayer Perceptron (MLP) with a single hidden layer of
128 neurons and Rectified Linear Unit (ReLU) activation. These classifiers were chosen to
enable a fair comparison with deep learning, as they resemble the last layer(s) of a deep
neural network, usually responsible for the final prediction after feature learning.
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3.3. Deep Learning

Convolutional neural networks were the selected deep learning models for this study
since they achieved significantly better performance and converged faster when compared
with recurrent neural networks (RNN) in preliminary experiments, which was consistent
with the literature [49,50]. A scheme of the baseline CNN architectures is presented in
Figure 1. We chose three different architectures, which we named CNN-base, CNN-simple,
and ResNet. The training process was identical for all the architectures and is explained in
Section 4. CNN-simple is a simplified version of the CNN-base with only two convolutional
layers and a logistic regression directly applied to the flattened feature maps. ReLU was
used as the activation function for the hidden layers of both architectures. The ResNet
(Figure 1c) is a residual network inspired by Ferrari et al. [18], with a few modifications. Its
convolutional block is represented in Figure 2.

In an attempt to bridge the performance gap between HC features and deep repre-
sentations, we built a hybrid version of each architecture. There, the HC features are
concatenated with the flattened representations of each model and fed to a fusion layer
before entering the final classification layer. The number of hidden units for the fusion
layer was 128 on both CNN-simple and CNN-base, increasing to 256 for the ResNet.
An illustration of the hybrid version of CNN-base is in Figure 3.

For all these models, the input windows were scaled by Z-score normalization,
with mean and standard deviation computed across all the windows of the train set.

5 × 1

250 × 4 243 × 32

60 × 32 53 × 32

8 × 32

256 × 1

Input
Signals

Flatten Fully Connected 
Layers

Pooling 
Layer

(k = 1 × 4)

Conv.
Layer

(k = 1 × 8)
(nr_f = 32)

Conv.
Layer

(k = 1 × 8)
(nr_f = 32)

Pooling 
Layer

(k = 1 × 6)

(a)

Conv.
Layer

(k = 1 × 8)
(nr_f = 64)

Input
Signals

Pooling 
Layer

(k = 1 × 2)
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Layer

(k = 1 × 8)
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Pooling
Layer
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(k = 1 × 8)
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(k = 1 × 8)
(nr_f = 128)
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Pooling
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Flatten

250×4 243×64
121 × 64

114 × 128
57 × 128 50 × 128

25 × 128 21 × 64 10 × 64

640 × 1    128 × 1    5 × 1

(b)

Figure 1. Cont.
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Conv.
Layer + Batch 
norm + ReLu

(k = 1 × 3)
(nr_f = 90)

Input
Signals

Pooling 
Layer

(k = 1 × 2)

Conv.
Block

(k = 1 × 3)
(nr_f = 90)

Global 
Average 
Pooling

Layer

(k = 1 × 7)

Fully Connected 
Layers

Flatten

250 × 4 248 × 90

62 × 90

124 × 90

31 × 90 15 × 90 7 × 90

630 × 1 256 × 1 5 × 1

Conv.
Block

(k = 1 × 3)
(nr_f = 90)

Conv.
Block

(k = 1 × 3)
(nr_f = 90)

(c)

Figure 1. Convolutional neural network architectures. The values above the representation of each
feature map indicate their shape (Signal length × Number of channels). Convolutional layers (1D):
k = kernel size; nr_f = number of filters; stride = 1; padding = 0. Max pooling layers: k = kernel
size; stride = 1; padding = 0. (a) CNN-simple Architecture. (b) CNN-base Architecture. (c) ResNet
Architecture. The convolutional block is depicted in Figure 2.

Conv1D (k=3)

BatchNorm

MaxPool1D (k=2)

Input

MaxPool1D (k=2)

ReLU

Conv1D (k=3)

BatchNorm

Add

ReLU
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Figure 2. ResNet convolutional block. The letter k stands for “kernel size”.
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Figure 3. Simplified illustration of the hybrid version of CNN-base (excluding the CNN backbone for
ease of visualization).

3.4. Evaluation

To quantify the degree to which a test domain is OOD, different metrics were applied,
namely Euclidean distance, Cosine similarity, Wasserstein distance, MMD, and DC. Each
metric was applied to the representations of each model before the classification stage.
Regarding the Wasserstein distance [51], the Wasserstein-1 version was used and is given by:

W1(X, Y) = inf
π∈Γ(X,Y)

∫
R×R
|x− y|dπ(x, y), (1)

where Γ(X, Y) is the set of distributions whose marginals are X and Y on the first and
second factors, respectively. x and y are samples from each distribution π(x, y) from the
set. Intuitively, the distance is given by the optimal cost of moving a distribution until
it overlaps with the other. In our experiments, x and y are the feature representations of
subsets of the train and test data, thus W1 represents the cost of mapping the distribution
of x into the distribution of y (or vice versa).

Regarding the MMD , this is a kernel-based statistical procedure that aims at determin-
ing whether two given datasets come from the same distribution [52]. Given a fixed kernel
function k : X× X 7→ R and two datasets X, Y with sizes |X| = n, |Y| = m, the MMD can
be estimated as:

MMD(X, Y) =
1

n(n− 1) ∑
i 6=j

k(xi, xj) +
1

m(m− 1) ∑
i 6=j

k(yi, yj)−
2

nm ∑
i,j

k(xi, yj) (2)

Intuitively, the MMD measures the distance between X and Y by computing the av-
erage similarity in X and Y separately, and then subtracting the average cross-similarity
between the two datasets, where the similarity between two instances is quantified by
means of the selected kernel k. In this work, a simple linear kernel was selected. Fur-
thermore, as for the Wasserstein distance, x and y represent the feature representations
of subsets of the train and test data. Thus, MMD quantifies the average kernel similarity
among instances in x and y, discounted by the cross-similarity between the two datasets.

The DC, by contrast, is a multivariate hypothesis testing procedure for the hypothesis
that two samples of data come from the same distribution: having fixed a representative
data sample, the obtained p-value, then, can be considered as a measure of how much any
other data sample is OOD with respect to the representative one. In particular, scores close
to 0 can be interpreted as being most likely OOD (since, assuming the null hypothesis of
the two data samples coming from the same distribution, observing a p-value close to 0 has
low probability). While the DC cannot be defined and computed by means of a closed-form
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procedure, in [25] a permutation-resampling algorithm (see Algorithm 1) was defined to
compute the corresponding p-value, based on the selection of a base distance metric.

Algorithm 1 The algorithm procedure to compute the similarity between the two dataset T
and V, using the Degree of Correspondence (DC).

procedure DC(T, V: datasets, d: distance, ∂ distance metrics)
dT = {d(t, t′) : t, t′ ∈ T}
For each v ∈ V, find tv ∈ T, nearest neighbor of v in T
T|V = {t ∈ T : @v ∈ Vs.t.t = tv} ∪V
dT|V = {d(t, t′) : t, t′ ∈ T|V}
δ = ∂(dT , dT|V )

Compute DC = Pr(δ′ ≥ δ) using a permutation procedure
return DC

end procedure

The selection of the distance metrics ∂ in Algorithm 1 is important to obtain sensible
results for the DC. Intuitively, ∂ should represent the appropriate notion of distance in the
instance space of interest. In [53], lacking any appropriate definition of distance in the
instance space, the authors suggest the use of a general baseline, e.g., the Euclidean or
cosine distance, or robust non-parametric deviation metrics, e.g., MMD or Kolmogorov–
Smirnov statistics.

In previous work, model performance has been evaluated using metrics such as
accuracy, sensitivity, specificity, precision, recall, and f1-score [1]. As class imbalance is
common in most publicly available HAR datasets (see Table 2), f1-score is used as the main
performance metric since it is more robust than accuracy in these settings [30]. To be able
to compare deep learning models and classic models with HC features, the f1-scores are
compared in tasks across different OOD scenarios and including five public HAR datasets.

4. Experiments and Results

The main purpose of this paper is to compare the performance of HC features and
deep representations in different OOD settings for HAR. A scheme of the full pipeline used
for the experiments is presented in Figure 4.

HAR is a classification task that usually involves multiple domains, easily turning into
a domain generalization task if the domains are considered when splitting the data. We
devise four domain generalization settings, starting with a baseline ID setting where 30%
of each dataset is randomly sampled for testing, and three OOD settings: (a) splitting by
user within the same dataset, where approximately 30% of the users were assigned to the
test set—OOD by user (OOD-U); (b) leaving a dataset out for testing, while including all
the others for training—OOD with multiple source datasets (OOD-MD); (c) training on a
dataset and leaving another for testing, running all the possible combinations—OOD with
a single source dataset (OOD-SD). To obtain a direct comparison, the test set of OOD-U is
used as a test set for all the OOD settings. Of the three OOD settings, OOD-U is the one that
is expected to be closest to the training distribution since it is drawn from the same dataset,
where devices and acquisition conditions are usually similar. It is followed by OOD-MD,
since joining all the datasets (except one) for training averages their distributions onto a
more general space. Subsequently, as it includes only a single dataset for training, OOD-SD
should capture the largest distances between train and test distributions.
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Public HAR Datasets 

x5

• PAMAP2
• SAD
• DaLiAc
• MHEALTH
• RealWorld

• Resampling to 
50 Hz
• Label 
homogenization
• Window 
splitting (5 s)

Preprocessing

Feature Extraction

• TSFEL
• Z-score normalization

Deep Learning

• CNN-base 
• CNN-simple
• ResNet

Hybrid

• CNN-base 
• CNN-simple
• ResNet

HC Models

• MLP
• LR

Figure 4. Scheme of the experimental pipeline.

In order to validate our hypothesis about the ordering of the distances between the
train and test splits on our four settings, different metrics were applied to the feature
representations. This experiment has the following objectives: (1) to validate that our three
OOD settings are in fact OOD; and (2) to obtain the best metric for our main experiments,
which should output values that agree with our ordering hypothesis for both HC features
and deep representations. For models based on HC features, metrics were computed
directly from the features. In contrast, for deep models, metrics were calculated from the
hidden representations of the last layer before classification.

We note that different distance metrics have different scales, therefore, making their
interpretation and comparison more difficult. For this reason, we computed distance
ratios instead of raw distances, so as to make the values of the different metrics more
consistent across tasks. The distance ratios were computed for each task, i.e., setting/dataset
combination, using the following equation:

Distance_ratio =
∂(tr1, ts1)

∂(tr2, tr3)
, (3)

where ∂ is a distance metric and tri and tsi are subsets randomly sampled (with replacement)
from the train and test sets, respectively. The sample size is half the minimum of the train
and test set lengths. By contrast, for the DC, the raw value without any ratio-based
normalization was used, since it is already normalized in the [0, 1] range and is able to deal
with any data representation directly.

A comparison of the considered metrics based on the TSFEL features is presented in
Table 3. It is easy to observe that all the metrics agree with the OOD ordering hypothesis
stated above. Indeed, the value of all metrics was higher for the OOD-U, OOD-MD,
and OOD-SD (respectively, in this order) than for the ID setting. In particular, it can be seen
that DC with Euclidean-based metrics saturates to values close to zero for all three OOD
settings, indicating that, by the comments above on the interpretation of this score, the test
sets are likely to be OOD.

Table 4 shows a comparison of the considered metrics based on the CNN-base represen-
tations. In contrast to the case of TSFEL features, the metrics showed a much lower degree
of agreement with the OOD ordering hypothesis. First, it can be noted that only Wasserstein
and MMD have values that clearly increase with the expected degree of OOD, being in
agreement with the results of the TSFEL representations and, consequently, with our OOD
ordering hypothesis. Nonetheless, it can be verified that both metrics had a large degree
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of variation, with the confidence intervals for the ID, OOD-U, and OOD-MD partially
overlapping. In the case of DC Cosine, the score for the OOD datasets was higher than that
for the ID one. This seemingly paradoxical behavior may have an intuitive geometric expla-
nation, as it may be a consequence of the transformations that take place during training,
which influence the shape of the instance space and possibly make the representations of
instances that would otherwise be OOD closer to the training data manifold. In support of
this hypothesis, it can be easily observed that most metrics reported a significantly different
value for the OOD-SD setting than for the other OOD settings, showing that the training of
the deep learning model had an important influence on the natural representation of the
data manifold. In this sense, both the Wasserstein and MMD metrics seemed to be more
apt at naturally adapting to this change of representation.

Table 3. Comparison of metrics over all four domain generalization settings based on the TSFEL
feature representations. For each setting, values were averaged over every test set. All metrics are
ratios except the ones with (*).

Metric
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

Wasserstein 1.02± 0.04 1.42± 0.37 2.27± 1.25 3.31± 2.39 2.33± 0.91
MMD 0.95± 0.86 30.47± 56.25 800.05± 1513.29 1072.20± 2619.40 634.24± 1008.55

Euclidean 1.00± 0.01 1.08± 0.11 1.33± 0.48 1.53± 0.73 1.31± 0.29
DC Euclidean * 0.55± 0.10 0.05± 0.08 0.00± 0.00 0.00± 0.00 0.02± 0.03

Cosine 0.95± 0.33 0.85± 0.31 0.39± 0.52 0.10± 0.84 0.45± 0.35
DC Cosine * 0.60± 0.17 0.32± 0.34 0.12± 0.16 0.12± 0.21 0.19± 0.14

Table 4. Comparison of metrics over all four domain generalization settings based on the CNN-base
representations. For each setting, values were averaged over all the datasets. All metrics are ratios
except the ones with (*).

Metric
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

Wasserstein 1.06± 0.09 1.39± 0.27 1.95± 0.45 5.71± 5.05 3.02± 1.69
MMD 1.25± 1.00 1.80± 0.92 35.23± 56.10 245.27± 402.93 94.10± 135.60

Euclidean 1.00± 0.02 1.01± 0.05 1.02± 0.15 1.12± 0.27 1.05± 0.11
DC Euclidean * 0.49± 0.15 0.51± 0.32 0.53± 0.45 0.10± 0.18 0.38± 0.19

Cosine 1.01± 0.01 0.98± 0.01 0.98± 0.03 1.03± 0.06 1.00± 0.02
DC Cosine * 0.55± 0.10 0.92± 0.10 0.65± 0.43 0.52± 0.43 0.70± 0.21

Thus, as a consequence of these results, we chose the Wasserstein distance ratio as
our main metric to quantifiy the degree of OOD due to the fact that it agrees with our
hypothesis when using both TSFEL features and deep representations as input. This metric
has also been applied by Soleimani et al. [5] to compute distances between source and
target distributions.

Our experiments were run on an NVIDIA (Santa Clara, CA, USA) A16-8C GPU and an
AMD (Santa Clara, CA, USA) Epyc 7302 processor with python version 3.8.12 and Visual
Studio Code (Microsoft, Redmond, WA, USA) as the development environment. All the
learning models were implemented using the PyTorch library [54]. Adam [55] was adopted
as the optimizer used for the training process. To reduce bias [16], results were averaged
over nine combinations of three different batch sizes (64, 128, and 256) and three learning
rates (0.0008, 0.001, and 0.003). To account for class imbalance, the percentage of instances
per class in the training set was given to the cross-entropy loss function as class weights.

To make the experiments as agnostic to the training method as possible, the same
procedure was used for training the classifiers based on HC features and the deep learning
models. Figure 5 shows the training and validation loss over the course of training for a
single task. The chosen task was the OOD-U setting on the SAD dataset, an example of a
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task in which there was a verified occurrence of instability in training. One of the ways to
handle this instability is by ending the training process earlier—early stopping [56].
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Figure 5. Evolution of loss by epoch on SAD dataset in the OOD-U setting. The red dots indicate the
minimum loss of each curve.

Over all the tasks, most models reached plateaus on validation performance after 30 to
50 epochs, so the training process was limited to 140 epochs to leave a margin for models to
converge, but not so much as to fully overfit the data. For validation, we randomly sampled
a 10% subset of the training data without replacement. While training, a checkpoint model
was saved every time the validation loss achieved its best value since the start of training.
Our early stopping method consisted of stopping training if the validation loss did not
improve for 30 epochs in a row, which proved helpful in cases where training was not very
stable. In these cases, the validation error oscillates, increasing for a certain number of
epochs before decreasing again and, on many occasions, achieving a slightly lower error
rate than in any of the previous epochs, which can be seen in the loss curves for the CNN
models in Figure 5. This resembles the effects of double descent [57]. In our case, one
of the causes of such unstable training may be the fact that these datasets are noisy, due
to the diversity in users, devices, and positions, among other factors. It may also be a
consequence of overparameterization, as the phenomenon was much more pronounced
when training CNNs, which have significantly more parameters than our MLP and LR
models. Both these potential causes were documented by Nakkiran et al. [57].

The evolution of the f1-score over the Wasserstein distance ratio for the best performing
model of each family (CNN-base and TSFEL+LR) is documented in Figure 6. For each
combination of model, dataset, and setting, the average and standard deviation of the
f1-score were computed over nine different runs with varying learning rates and batch
sizes. The CNN-base embeddings were chosen to compute distance ratios for this figure
since they contain less outliers when compared to the distance ratios computed from
TSFEL representations (see Figure A2). It can be verified that, initially, the CNN model
outperforms the model using HC features. However, as the distance between train and
test domains increases, the situation is reverted, with the classic approach outperforming
the CNN. This suggests that HC features are more robust to the shifts that occur in OOD
data. The regression curves reinforce the idea of OOD stability. As expected, there is
a negative correlation between f1-score and distance ratio, meaning that performance
decreases as the test data becomes more distant from the distribution seen during training.
In general, the distance ratios given by the Wasserstein distance appear to agree with the
previously stated OOD ordering hypothesis, with OOD-SD being the most OOD of the
three settings, followed by OOD-MD and OOD-U, respectively. Still, a few outliers can be
seen in the figure. The higher values of standard deviation for the CNN indicate that these
models are more susceptible to the choice of hyperparameters, which is reasonable due to
the much larger number of trainable parameters. However, it is not always ideal to have
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such variability, as it indicates that the validation loss has become less correlated with the
test loss. In practice, an apparently good model may perform surprisingly well in some
settings while failing in situations that would otherwise be trivial to a simple model.
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Figure 6. F1-score vs. log(distance ratio). Each marker represents a different task. Distance ratios are
based on the CNN-base embeddings. Error bars represent one standard deviation away from the
mean. The natural logarithm was applied to the distance ratios to make the regression curves linear.

More detailed results are presented in Table 5. For each combination of model and
setting, the average and standard deviation of the f1-score were computed over all five
datasets. The last column represents the average of the three OOD settings, which gives
an idea of the overall generalization performance. The significant overturn from the ID
to the OOD settings can be noticed in the table. TSFEL + LR, which had the worst ID
f1-score (90.54%), turned out to be the best overall in the OOD regime, with an f1-score
of 70% for the average of all three OOD settings. Using an MLP instead of LR slightly
decreased the overall OOD performance to 69.55%, while increasing the ID performance to
92.87%, becoming closer to the deep learning results. This phenomenon may be related to
an increase in the number of trainable parameters. Including HC features as an auxiliary
input to deep models improved both ID and OOD results, with the hybrid version of
CNN-base being the deep learning model with the strongest generalization performance
(average OOD f1-score of 66.95%). However, this improvement is still insufficient to reach
the OOD robustness of models solely based on HC features.

Table 5. Average f1-score in percentage over all the tasks in a given setting. Values in bold indicate
the best performance for each setting.

Model
Setting

Avg. OOD
ID OOD-U OOD-MD OOD-SD

CNN-simple 92.09± 5.26 79.65± 10.75 63.71± 3.54 45.21± 6.57 62.86± 4.36
CNN-base 92.10± 5.06 80.79± 9.68 66.94± 5.19 48.30± 5.41 65.34± 4.08

ResNet 92.46± 4.73 81.16± 9.60 67.22± 4.89 46.57± 4.84 64.98± 3.94
CNN-simple hybrid 93.64± 4.55 85.13± 7.69 66.60± 3.31 47.87± 2.21 66.53± 2.89

CNN-base hybrid 93.48± 4.35 85.28± 6.64 67.74± 3.37 47.84± 3.24 66.95± 2.71
ResNet hybrid 93.79± 4.2193.79± 4.2193.79± 4.21 84.71± 7.72 67.87± 3.40 47.73± 2.11 66.77± 2.90
TSFEL + MLP 92.87± 4.70 87.09± 5.3587.09± 5.3587.09± 5.35 70.11± 3.57 51.45± 5.3151.45± 5.3151.45± 5.31 69.55± 2.78
TSFEL + LR 90.54± 5.15 87.08± 5.5587.08± 5.5587.08± 5.55 71.94± 3.1971.94± 3.1971.94± 3.19 50.97± 3.29 70.00± 2.4070.00± 2.4070.00± 2.40

Despite being simpler than the ResNet, the CNN-base model achieves a slightly higher
generalization performance. On the other hand, CNN-simple, the simplest deep learning
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model, did not perform well in OOD tasks. There appears to be an optimal number of
parameters, possibly dependent on the architecture, so more studies should be conducted
to understand this trade-off.

5. Discussion

This work aimed to compare the generalization performance of HC features and deep
representations, focusing in particular on generalization in OOD settings.

In the first experiment, several metrics were compared to validate and quantify our
OOD settings. For TSFEL representations, all the considered metrics were in agreement
with our ordering hypothesis. In particular, the DC was able to clearly identify each of the
OOD settings as such. In contrast, for the case of deep representations, there was some
disagreement among the considered metrics. Still, the MMD and Wasserstein distance
ratios remained in agreement with the adopted hypothesis. They were seen as more robust
concerning the change of data representation induced by the deep learning model.

In our experiments involving HAR tasks, despite reaching lower f1-scores in the ID
setting, models based on HC features were more robust in OOD settings. This difference
in OOD performance supporting higher robustness for HC features may be due to their
stability since they are fixed a priori based on domain knowledge, which should be valid
across tasks. Conversely, deep features are automatically learned and could thus fail to
identify generally helpful features, as there are known inefficiencies in the current methods
for training neural networks. These are typically biased toward simple solutions [15] and
rely on spurious correlations [10] rather than previous knowledge or causal relations.

In regard to the generalizability of our results to other settings, we note that even
though we focused on HAR, with minor adaptations, our experiments and analyses could
be replicated in a wide range of fields. For example, similar deep learning models and
handcrafted features could be used and compared in fields that depend on sensor data,
such as fall detection, predictive maintenance, or physiological signal processing (e.g.,
EEG, EMG, and ECG). Different deep learning architectures and feature extraction libraries
would have to be employed for image or video processing.

Concerning practical purposes, HC features, being more robust, appear to be better
suited for real-world HAR systems. However, their reimplementation in mobile or edge
devices may be an arduous task. CNNs do not show this limitation, as the representations
are encoded in weight matrices and can, in principle, be ported to these devices without
significant effort [58]. More studies should, thus, be devoted to exploring this trade-off
between increased robustness and reimplementation efforts, possibly considering the
application of hybrid approaches (such as the ones also considered in this paper), as well
as alternative training techniques for CNNs that attempt to improve robustness.

6. Conclusions

This paper hypothesizes that models using HC features generalize better than deep
learning models across domains in HAR tasks. Three OOD settings were implemented by
testing on unseen users and (single or multi-source) datasets. Five public datasets were
homogenized so that they could be combined in different ways to create diverse tasks.

Several metrics were used to quantify the degree of OOD of four domain generalization
settings. The DC metric was used to validate our OOD settings. In turn, the Wasserstein
distance ratio was chosen as our primary metric for the study since it was able to quantify
our three OOD settings in the expected order.

In our main experiments, it was verified that, although deep models have better ID
performance, they are outperformed in all three OOD settings by shallow models using
features that were computed based on domain knowledge. Furthermore, as the drop in
f1-score in OOD settings is less accentuated for classic models, it can be inferred that
HC are more robust. Hybrid models achieved intermediate results between deep and
classic methods, supporting the idea that HC features can stabilize training, which helps to
validate our hypothesis.
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Acknowledging the limitation of current deep learning techniques in being robust
with respect to OOD settings, as compared to models based on HC features, we believe
our work could pave the way for further research on the development of novel training
methods for making deep learning models more robust and thus bridge the generalization
gap toward new, more trustworthy, gold standards in the field of HAR.
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Appendix A. Supplementary Experiments

Figure A1 shows the behavior of different models over all four domain generalization
settings addressed in the study in comparison to TSFEL+LR, the approach with the highest
generalization performance. Similarly to the main results, an inversion tendency can be
observed from the ID to the OOD regime.

Figure A1a shows a larger gap in performance for the OOD regime. This gap is
mitigated in the hybrid model (Figure A1b) and becomes much smaller in Figure A1c,
where handcrafted features are the only source of information.
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Figure A1. F1-score vs. log(distance ratio). Each marker represents a different task. Distance ratios
are based on the CNN-base embeddings. Error bars represent one standard deviation away from
the mean. (a) TSFEL + LR vs. ResNet. (b) TSFEL + LR vs. CNN-base hybrid. (c) TSFEL + LR vs.
TSFEL + MLP.

By using TSFEL features to compute the distance ratios (see Figure A2), we reach the
same conclusions. However, the plots in Figures 6 and A1 were based on the CNN-base
embeddings, as the distance ratios presented less outliers.

Figure A3 shows the confusion matrices for the ID, OOD-U, and OOD-MD settings
of the SAD dataset. It can be verified that, as expected, performance decreased in OOD
settings.
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Figure A2. TSFEL + LR vs. CNN-base. Distance ratios are based on TSFEL features.

run sitting stairs standing walk
Predicted label

run

sitting

stairs

standing

walk

Tr
ue

 la
be

l

521 0 1 0 0

0 522 0 10 0

2 0 1002 0 2

0 14 0 560 0

0 0 3 0 549

0

200

400

600

800

1000

(a)

run sitting stairs standing walk
Predicted label

run

sitting

stairs

standing

walk

Tr
ue

 la
be

l

504 0 36 0 0

0 456 36 48 0

0 0 900 0 0

0 31 37 471 1

0 0 71 0 469

0

100

200

300

400

500

600

700

800

900

(b)
Figure A3. Cont.
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Figure A3. Confusion matrices for the SAD dataset. (a) In-distribution (ID). Accuracy: 99.0%, F1-
score: 98.9%; (b) Out-of-Distribution leaving users out (OOD-U). Accuracy: 91.5%, F1-score: 91.6%;
(c) Out-of-Distribution leaving a dataset out (OOD-MD). Accuracy: 76.0%, F1-score: 73.5%.
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