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1. INTRODUCTION

In this paper we compare different implementations of a
numerical algorithm to compute contraction metrics for
dynamical systems introduced in Giesl et al. (2019). In the
method a system specific Riemannian metric is computed,
which can be used to determine the existence of an ex-
ponentially stable equilibrium and its basin of attraction.
The numerical computation consists of two parts: first,
mesh-free collocation based on radial basis functions is
used to approximate a particular contraction metric as the
solution to a matrix-valued partial differential equation
(PDE). Then, the values of the approximation at the
vertices of a given triangulation are used to compute a
continuous piecewise affine interpolation and a number
of conditions are checked to verify that the interpolated
function is indeed a contraction metric. In the paper, we
first give a short description of the numerical method
and then we will discuss various programming aspects of
achieving the computations. In particular, we will discuss
and compare MATLAB-, including the use of MEX files,
and C++-based implementations and investigate the effect
of using parallelization. Further, in the C++ implementa-
tion, we explore the running times on our AMD Ryzen
processor (2700X, 8 cores, 3.7 GHz) using different low-
level math-libraries. More exactly, we study the difference
between using OpenBLAS, as e.g. used by the Julia pro-
gramming language 2 , and the Intel Math Kernel Library
(MKL), as e.g. used by MATLAB and the open source
software Scilab 3 . In the latter case, we additionally apply
a fast codepath recently published online that speeds up
computations considerably on AMD processors.

1 Hafstein’s research is partially supported by the Icelandic Research
Fund (Ranńıs), grant number 163074-052, Complete Lyapunov func-
tions: Efficient numerical computation.
2 https://julialang.org/
3 https://www.scilab.org/

Let us give an overview of the paper: the mathematical
problem and the numerical method will be presented in
Section 2. In Section 3, we will describe the programming
approaches and some technical information about the
software and software packages we used. In Section 4,
we compare the results of the different implementation
approaches, in particular with regards to the running time.
Finally, in Section 5, we compare and summarize different
aspects of the approaches and give some conclusions.

2. NUMERICAL METHOD TO COMPUTE A
CONTRACTION METRIC

In this section, we will briefly introduce the concept
of a contraction metric and a numerical algorithm to
compute it. Since the main focus of this report is on the
computation methods, we have skipped many details, but
they can be found in Giesl et al. (2019).

We consider a general ordinary differential equation
(ODE) of the form

ẋ = f(x), (2.1)

which defines a dynamical system. Here, f : Rn → Rn is
a smooth function and x ∈ Rn. We are interested in the
determination of the basin of attraction of an equilibrium.
An equilibrium is a point x0 ∈ Rn with f(x0) = 0, i.e.
solutions starting at this point will remain at the point
for all future times. Its basin of attraction consists of all
initial conditions such that the corresponding solutions
converge to x0 as time tends to infinity. One way of
determining the basin of attraction, which is valid even
if one considers a perturbed system, is to compute a
contraction metric for the system. A contraction metric is
a particular kind of a Riemannian metric, i.e. a matrix-
valued function M : Rn → Rn×n, such that M(x) is a
positive definite, symmetric matrix for all x ∈ Rn and
thus defines a point-dependent scalar product through
〈v, w〉M := vTM(x)w for v, w ∈ Rn. It is called a
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In this paper we compare different implementations of a
numerical algorithm to compute contraction metrics for
dynamical systems introduced in Giesl et al. (2019). In the
method a system specific Riemannian metric is computed,
which can be used to determine the existence of an ex-
ponentially stable equilibrium and its basin of attraction.
The numerical computation consists of two parts: first,
mesh-free collocation based on radial basis functions is
used to approximate a particular contraction metric as the
solution to a matrix-valued partial differential equation
(PDE). Then, the values of the approximation at the
vertices of a given triangulation are used to compute a
continuous piecewise affine interpolation and a number
of conditions are checked to verify that the interpolated
function is indeed a contraction metric. In the paper, we
first give a short description of the numerical method
and then we will discuss various programming aspects of
achieving the computations. In particular, we will discuss
and compare MATLAB-, including the use of MEX files,
and C++-based implementations and investigate the effect
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Let us give an overview of the paper: the mathematical
problem and the numerical method will be presented in
Section 2. In Section 3, we will describe the programming
approaches and some technical information about the
software and software packages we used. In Section 4,
we compare the results of the different implementation
approaches, in particular with regards to the running time.
Finally, in Section 5, we compare and summarize different
aspects of the approaches and give some conclusions.

2. NUMERICAL METHOD TO COMPUTE A
CONTRACTION METRIC

In this section, we will briefly introduce the concept
of a contraction metric and a numerical algorithm to
compute it. Since the main focus of this report is on the
computation methods, we have skipped many details, but
they can be found in Giesl et al. (2019).
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determination of the basin of attraction of an equilibrium.
An equilibrium is a point x0 ∈ Rn with f(x0) = 0, i.e.
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An equilibrium is a point x0 ∈ Rn with f(x0) = 0, i.e.
solutions starting at this point will remain at the point
for all future times. Its basin of attraction consists of all
initial conditions such that the corresponding solutions
converge to x0 as time tends to infinity. One way of
determining the basin of attraction, which is valid even
if one considers a perturbed system, is to compute a
contraction metric for the system. A contraction metric is
a particular kind of a Riemannian metric, i.e. a matrix-
valued function M : Rn → Rn×n, such that M(x) is a
positive definite, symmetric matrix for all x ∈ Rn and
thus defines a point-dependent scalar product through
〈v, w〉M := vTM(x)w for v, w ∈ Rn. It is called a

contraction metric for the system (2.1), if the distance with
respect to the metric between adjacent solutions contracts
over time. The contraction property can be expressed by
the negative definiteness of

F (M)(x) := M(x)Df(x) +Df(x)TM(x) +M ′(x), (2.2)

where M ′(x) denotes the orbital derivative of M(x), i.e.
the derivative along solutions of the ODE, and is defined
by M ′

ij(x) := ∇Mij(x)·f(x), for i, j ∈ {1, . . . , n}, see Giesl
(2015) for more details.

Our numerical algorithm to construct such a contraction
metric for system (2.1) works in two steps. In the first
step, we characterize the contraction metric for the system
as the solution to a matrix-valued PDE, F (M)(x) = −I.
Numerically, we approximate the solution by fixing the
value of (2.2) at a finite number of collocation points and
then compute the norm-minimal interpolation (the opti-
mal recovery problem); in practice this is done by fixing
a radial basis function (RBF) as well as the collocation
points, and then solving a system of linear equations, see
Giesl and Wendland (2019). We refer to this approach
as the RBF method and to the numerical solution as the
optimal recovery ; more details are presented in Subsection
2.2. We have used a hexagonal grid (see Iske (1998)) for
the collocation points and a Wendland function as radial
basis function (see Wendland (2005)).

In the second step, we create a triangulation using a
set of simplices T =

⋃
ν Sν and interpolate the values

of the optimal recovery at its vertices by a continuous
piecewise affine (CPA) function P : Rn → Rn×n. This
is done because we can verify that the CPA function
is a contraction metric by checking the following four
constraints for P (xk), where xk is a vertex, and the
variables Cν , Dν ∈ R+ for each simplex Sν :

(VP1) For each vertex xk of the triangulation, P (xk) is
a positive definite matrix.

(VP2) For each simplex Sν and each vertex xk of Sν ,
Cν is an upper bound on ‖P (xk)‖2.

(VP3) For each simplex Sν and all 1 ≤ i ≤ j ≤ n, Dν is
an upper bound on the gradient of the continuous affine
functions Pij

∣∣
S◦

ν
on the simplex, i.e.
∥∥∥∇Pij

∣∣
S◦

ν

∥∥∥
1
≤ Dν .

(VP4) For each simplex Sν ∈ T and each vertex xk of
Sν , we have that

Aν(xk) + h2
νEνI

is negative definite. Here

Aν(xk) := P (xk)Df(xk) +Df(xk)
TP (xk)

+(∇Pij

∣∣
S◦

ν
· f(xk))i,j=1,2,...,n, (2.3)

where Df(xk) is the Jacobian matrix of f at xk,
and (∇Pij

∣∣
S◦

ν
· f(xk))i,j=1,2,...,n denotes the symmetric

(n× n)-matrix with entries ∇Pij

∣∣
S◦

ν
· f(xk) Further, hν

denotes the diameter of the simplex Sν ∈ T ,

hν := diam(Sν) = max
x,y∈Sν

‖x− y‖2

and

Eν := n2(1 + 4
√
n)BνDν + 2n3B3,νCν ,

where Bν , and B3,ν are, respectively, upper bounds
on the second-order and third-order derivatives of the
components of f on simplex Sν ; for details see Giesl
et al. (2019).

If the constraints are fulfilled, then the CPA function P (x)
is a contraction metric for the system (2.1). A similar
approach has been used for computing Lyapunov functions
Giesl and Hafstein (2015) for nonlinear systems.

Fixing a compact subset of the basin of attraction, it is
shown in Giesl et al. (2019) that the algorithm will succeed
in constructing a contraction metric if both the collocation
points are sufficiently dense and the triangulation is suffi-
ciently fine. Therefore, the idea is to increase the number of
collocation points and simplices gradually until we obtain
a contraction metric.

2.1 The Example Considered

In this paper we consider the following example of an ODE
for illustration,




ẋ1 = x2

ẋ2 = −Kd x2 − x1 − gx2
1

(
x2

Kd
+ x1 + 1

)
(2.4)

with Kd = 1 and g = 6. It models a speed control system
and has two asymptotically stable equilibria at (0, 0) and
(−0.7887, 0), and a saddle at (−0.2113, 0). The system fails
to reach the demanded speed, which corresponds to the
equilibrium at (0, 0), for some inputs since the basin of
attraction of x0 = (0, 0) is not the whole phase space, see
(Giesl, 2007, Section 6.1) for more details.

For the speed control system, we used N = 546 collocation
points around (0, 0) as a hexagonal grid with parameter
α = 0.030 (see Iske (1998)) inside the following area

{
(x, y) ∈ R2 \ (0, 0) : −0.18 ≤ y ≤ 0.85,

−2.11x− 0.3 ≤ y ≤ −1.79x+ 0.54,
}
.

Letting c = 0.9, we have used Wendland’s function
ψ6,4(cr) as the radial basis function given by

ψ6,4(cr) = (1− cr)10+
(
2145(cr)4 + 2250(cr)3

+1050(cr)2 + 250cr + 25
)
,

in which x+ = x for x ≥ 0, x+ = 0 for x < 0, and
xl
+ := (x+)

l. The triangulation was created over the area
[−0.6, 0.5] × [−0.4, 1] with different numbers of vertices
(varied between 10002 and 16002). All the triangulations
consisted of congruent rectangular triangles.
In Figures 1, and 2, we have illustrated the results of
computations for this example with 14002 vertices. The
blue area in Figure 1, indicate the vertices at which (VP1)
is not satisfied, and in Figure 2, the vertices at which
(VP4) is not satisfied are colored as red. Putting these
plots together, the intersected white area represents the
area where all constrains are fulfilled.
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Fig. 1. The black points are the collocation points. The Blue stars

indicate the vertices at which (VP1) is not satisfied. The Green

circles show the equilibrium points.

Fig. 2. The black points are the collocation points. The red dots

indicate the vertices at which (VP1) is not satisfied. The Green

circles show the equilibrium points.

2.2 Computational Complexity

In the first step of the method, we numerically solve the
matrix valued PDE

F (M)(x) = −I, (2.5)

where I is the (n × n) identity matrix, using the RBF
method. We set ψ0(r) := ψ6,4(cr) and denote ψq+1(r) =
1
r
dψq

dr (r) for q = 0, 1. Denote by N the number of the
collocation points used and by n the dimension of the
system; in our example N = 546 and n = 2. We first
compute the coefficients bk,�,i,j,µ,ν with

bk,�,i,j,µ,ν = ψ0(‖xk − x�‖2)
[ n∑

p=1

Dfpi(x�)Dfpµ(xk)δνj +Dfµi(x�)Dfjν(xk)

+Dfiµ(xk)Dfνj(x�) + δiµ

n∑
p=1

Dfpν(xk)Dfpj(x�)

]

+ψ1(‖xk − x�‖2)〈xk − x�, f(xk)〉

[Dfµi(x�)δνj + δiµDfνj(x�)]

+ψ1(‖xk − x�‖2)〈x� − xk, f(x�)〉

[Dfiµ(xk)δνj + δiµDfjν(xk)]

−ψ1(‖xk − x�‖2)〈f(x�), f(xk)〉δiµδjν

+ψ2(‖xk − x�‖2)〈xk − x�, f(xk)〉

〈x� − xk, f(x�)〉δiµδjν (2.6)

for 1 ≤ k, � ≤ N , and 1 ≤ i, j, µ, ν ≤ n (see (Giesl and
Wendland, 2019, Subsection 3.2) for more details).

Then we calculate the coefficients ck,�,i,i,µ,µ with

ck,�,i,i,µ,µ =
1

4

(
bk,�,i,j,µ,ν + bk,�,j,i,ν,µ + bk,�,i,j,ν,µ + bk,�,j,i,µ,ν

)
.

Finally, we determine the numbers γ
(µ,ν)
k , by solving the

linear system

N∑
k=1

∑
1≤µ≤ν≤n

ck,�,i,j,µ,νγ
(µ,ν)
k

= (F (S)(x�))i,j = −Iij (2.7)

for 1 ≤ � ≤ N , and 1 ≤ i ≤ j ≤ n. Note that (2.7) is a
system ofNn(n+1)/2 equations inNn(n+1)/2 unknowns.
Finally, we compute the (n×n) matrices βk ∈ Rn×n from

the numbers γ
(µ,ν)
k with the formulas

β
(j,i)
k = β

(i,j)
k =

1

2
γ
(i,j)
k if i �= j,

β
(i,i)
k = γ

(i,i)
k .

The optimal recovery now has the formula

S(x) =
N∑

k=1

[
ψ0(‖xk − x‖2)

[
Df(xk)βk + βkDf(xk)

T
]

+ ψ1(‖xk − x‖2)〈xk − x, f(xk)〉βk

]
. (2.8)

Analyzing these equations, we see that the number of
elementary operations (+,×) needed to compute the coef-
ficients for the linear equations (2.7) is of the order O(N2)
for a fixed n. The order in n for a fixed N is at least O(n5)
and might be higher depending on f and Df . To solve
the linear system we need elementary operations of the
order O((Nn2)3) = O(N3n6). Typically N is much larger
than n and therefore O(N3n6) is a reasonable estimate on
the complexity of the first step of the algorithm, or just
O(N3) if we consider the dimension n of the system to be
fixed. In the following we will disregard the dependance of
n, but keep in mind that the computational effort of the
method increases very fast with the dimension n of the
system considered.

In the second step of the method, we first evaluate formula
(2.8) at every vertex of the triangulation, and then we
verify the constraints (VP1)-(VP4). For the evaluation of
(2.8) at a point we need O(N) elementary operations,
again disregarding dependance of n. Since this must be
done for every vertex we need no less than O(NCPAN)
operations, where NCPA is the number of vertices of the
triangulation. It is easy to see that the number of simplices
in the triangulation is bounded above by NCPAn!. Thus, it
is not difficult to see that the complexity of the verification
of the constraints (VD1)-(VD4) is linear in NCPA and does
not depend on N . Therefore the complexity of the second
step of the method is O(NCPAN) for a fixed dimension n,
but again the computational effort grows very fast with
the dimension n of the system.

3. IMPLEMENTATION DETAILS

In this section we will describe the different softwares and
packages we have used with some details. In particular, we
will present a MATLAB-based approach and a C++-based
one. Furthermore, we describe how we optimized the code
to improve the speed in several steps.
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system ofNn(n+1)/2 equations inNn(n+1)/2 unknowns.
Finally, we compute the (n×n) matrices βk ∈ Rn×n from

the numbers γ
(µ,ν)
k with the formulas

β
(j,i)
k = β

(i,j)
k =

1

2
γ
(i,j)
k if i �= j,

β
(i,i)
k = γ

(i,i)
k .

The optimal recovery now has the formula

S(x) =
N∑

k=1

[
ψ0(‖xk − x‖2)

[
Df(xk)βk + βkDf(xk)

T
]

+ ψ1(‖xk − x‖2)〈xk − x, f(xk)〉βk

]
. (2.8)

Analyzing these equations, we see that the number of
elementary operations (+,×) needed to compute the coef-
ficients for the linear equations (2.7) is of the order O(N2)
for a fixed n. The order in n for a fixed N is at least O(n5)
and might be higher depending on f and Df . To solve
the linear system we need elementary operations of the
order O((Nn2)3) = O(N3n6). Typically N is much larger
than n and therefore O(N3n6) is a reasonable estimate on
the complexity of the first step of the algorithm, or just
O(N3) if we consider the dimension n of the system to be
fixed. In the following we will disregard the dependance of
n, but keep in mind that the computational effort of the
method increases very fast with the dimension n of the
system considered.

In the second step of the method, we first evaluate formula
(2.8) at every vertex of the triangulation, and then we
verify the constraints (VP1)-(VP4). For the evaluation of
(2.8) at a point we need O(N) elementary operations,
again disregarding dependance of n. Since this must be
done for every vertex we need no less than O(NCPAN)
operations, where NCPA is the number of vertices of the
triangulation. It is easy to see that the number of simplices
in the triangulation is bounded above by NCPAn!. Thus, it
is not difficult to see that the complexity of the verification
of the constraints (VD1)-(VD4) is linear in NCPA and does
not depend on N . Therefore the complexity of the second
step of the method is O(NCPAN) for a fixed dimension n,
but again the computational effort grows very fast with
the dimension n of the system.

3. IMPLEMENTATION DETAILS

In this section we will describe the different softwares and
packages we have used with some details. In particular, we
will present a MATLAB-based approach and a C++-based
one. Furthermore, we describe how we optimized the code
to improve the speed in several steps.

BLAS (Basic Linear Algebra Subprograms) 4 is a specifi-
cation that prescribes a set of common low-level routines
in linear algebra, such as matrix-vector multiplication or
dot-products. Several highly optimized implementations,
taking advantage of specific processor architectures and
SIMD (Single Instruction, Multiple Data) instructions are
available. LAPACK (Linear Algebra Package) 5 is a stan-
dard software library that provides routines for numerical
linear algebra operations.

For implementations of BLAS and LAPACK we will be
concerned with the Intel Math Kernel Library (MKL) 6

and OpenBLAS. 7 MKL is a library of optimized math-
ematics routines for science, engineering, and financial
applications and provides both the BLAS and LAPACK
routines. OpenBLAS provides the BLAS routines and
some of the more common LAPACK routines, adds opti-
mized implementations of linear algebra kernels for several
processor architectures, and claims to achieve performance
comparable to MKL. Both Matlab and Scilab use the
MKL library for internal computation, whereas the Julia
programming language uses OpenBLAS. The Armadillo 8

C++ library we use in our C++ code can be set to use
BLAS and LAPACK routines from MKL or from Open-
BLAS, see Sanderson and Curtin (2016, 2018).

3.1 MATLAB-based code

The first draft of the code for the algorithm was created
with the MATLAB software. The program in MATLAB is
composed of several m-files. Each m-file is a piece of code
or a function that could be called in another code.

The optimal recovery problem using RBF, reduces to solv-
ing the system of linear equations (2.7), i.e. a linear matrix
equation Ax = b, where b is a column vector generated in
accordance with the identity matrix; and the coefficient
matrix A is a big sparse matrix generated using formula
(2.6) using several m-file sub-functions representing the
radial basis function and its derivatives, the right-hand-
side function of the dynamical system equation ẋ = f(x)
and its derivative.

A matrix points, the rows of which store the coordinates
of collocation points, is generated by a sub-algorithm
implementing the creation of a hexagonal grid and the
coefficients new.m function reads points, and an integer N,
which is the total number of collocation points, and returns
points, N, and a vector β which are the coefficients in the
formula for S in (2.8). The total time for this procedure is
reported as the RBF time in tables in the next section.
It is clear from the discussion in Subsection 2.2 that this
step is much faster than evaluating S at all the vertices of
the triangulation in use and the subsequent CPA verifica-
tion step, and thus we focus on speed improvement for the
latter.

For each vertex xk in the CPA verification process,
P (xk) = S(xk) is calculated by using data from all the col-
location points, thus, too few collocation points result in a

4 see the official web-page http://netlib.org/blas/.
5 see http://www.netlib.org/lapack/
6 see https://software.intel.com/en-us/mkl
7 see https://www.openblas.net/ for more information.
8 see http://arma.sourceforge.net/

bad approximation, no matter how small the simplices are.
On the other hand, too many collocation points will make
the CPA verification step unnecessarily time consuming.
Therefore, we first optimize the number of collocation
points N , and then go to the next step, when we believe
that the optimal recovery S is a good approximate solution
to the PDE (2.5). This is the reason why the data reported
in the tables in next section is for different NCPA values
with a fixed N .

After having completed the first step of the algorithm, the
CPA.m sub-algorithm is called to create the triangulation
T , evaluate P (xk) = S(xk) at each vertex xk, and verify
the constraints (VP1)-(VP4). Positive definiteness of the
matrices is obtained from the built-in MATLAB function
chol, which gives the Cholesky factorization of a presumed
symmetric matrix. [∼ ,flag] = chol(A) returns the output
flag, indicating whether A is symmetric positive definite. If
flag= 0 then the input matrix is symmetric positive definite
and the factorization was successful. If flag is not zero,
then the input matrix is not symmetric positive definite
and flag is an integer indicating the index of the pivot
position where the factorization failed. It turns out that
using chol is faster than computing the eigenvalues and
checking them for positivity.

The program returns a matrix T, where each row repre-
sents a simplex, having the identifier number of vertices in
that simplex, a matrix Vertex containing the coordinates
of all vertices, matrices Peval, and Aeval containing the
coordinates of the vertices that fail (VP1) and (VP4),
respectively. The code saves these data in a .mat file, and
then the total time is measured. Plotting the results is
done after this and is not part of the comparison.

MEX file functions
Stated on the Mathworks website is that

a MEX file is a function, created in MATLAB,
that calls a C/C++ program or a Fortran
subroutine. A MEX function behaves just like
a MATLAB script or function.

MEX-file functions can increase the speed of a program
very effectively. In order to create a MEX-file one needs to
have the “MATLAB-coder” app included in the MATLAB
license. It is important to decide which parts of the code,
or which functions we want to change to a MEX file. In
our case, it seemed adequate to create two MEX files for
the two steps of the algorithm.

There are a few challenges when using MEX-files, for ex-
ample, not all predefined MATLAB functions can be used
inside a MEX-file function. This means that a function
might have to be modified to be able to convert it to a
MEX-file, and sometimes it may not be possible or not
worth the effort. Another disadvantage of MEX-files is that
unlike the MATLAB code itself, one cannot just modify it
and run it again. Even for small adjustments, one needs
to modify the code, recreate the MEX-file, and then use it
in the program.

Another important point to mention is that MEX-files
are dependent on the operating system or platform of
the computer on which it was created. So, for example,
if one has created a MEX file on a Windows based PC,
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it cannot necessarily be run on a Linux based server.
In the MATLAB documentation three binary MEX file
extensions for Linux, Apple Mac, and Windows (all 64-bit
versions) are discussed.

Parallel loops
In order to use modern multi-core CPUs efficiently, one can
attempt to run some parts of the code in parallel. To do
so in MATLAB, one needs to have the Parallel Computing
Toolbox. A very simple and effective way to start with, is
to change for-loops into parfor-loops.

A disadvantage of using parfor for multithreading is that
MATLAB must be able to recognize variables inside the
loop as one of the five types it can deal with. The in-
dexing variables of parfor should be consecutive increasing
integers. Also using the loop variable for working with
different components of a matrix or vector (called sliced
variables) can be hard and time-consuming. One cannot
just change for to parfor and then expect everything to
work. In our case, although we were sure the code could
be multithreaded the way it was without any problem (as
we did it in C++), MATLAB gives red flag warnings com-
plaining it cannot run parfor loops due to the ambiguity
in the way a loop variable is used or a sliced variable is
referred to. In the evaluation of constraints (VP2)-(VP4)
we were not able to fix the errors and use parfor. However,
as the most demanding computations are in evaluating P
at the vertices, this is not too important for the running
times.

Fast codepath for MKL on AMD processors
During our programming we got to an interesting case
of MKL not taking full advantage of SIMD instructions
on AMD processors, described in detail in the post “how
to force MATLAB to use a fast codepath on AMD” in
the MATLAB community on Reddit 9 . Because MATLAB
uses the Intel MKL for some operations this makes many
operations unnecessarily slow.
However, this can be overridden (or fixed) by adding and
setting a new system environment variable

MKL DEBUG CPU TYPE=5

After doing this all programs using the MKL on the system
are affected by the change. In our case, both MATLAB and
C++ using MKL show significant speed improvements. It
is worth mentioning that MEX files should be created after
having the new system variable set.

3.2 C++-based code

We transferred our MATLAB code to C++ in the hope
for a better performance. One can object that this may
not be the most efficient way to implement in C++ as the
language provides wider capabilities, but since we had the
MATLAB code this seemed sensible. In order to simplify
the transferral we used the Armadillo library, which is
described on its website 10 as:

Armadillo is a high quality linear algebra li-
brary (matrix maths) for the C++ language,

9 posted by blogger “nedflanders1976” accessible at this address:
https://www.reddit.com/r/matlab/comments/dxn38s/howto_

force_matlab_to_use_a_fast_codepath_on_amd/
10 see Armadillo website http://arma.sourceforge.net/

aiming towards a good balance between speed
and ease of use. It provides high-level syntax
and functionality deliberately similar to MAT-
LAB, and various matrix decompositions are
provided through integration with LAPACK,
or one of its high performance drop-in re-
placements (eg. multi-threaded Intel MKL, or
OpenBLAS).

As mentioned before, the fast code path for MKL on AMD
processors also affects the speed of C++ code when it
uses MKL. One of the very few changes in the code we
needed to do was for verifying the positive definiteness
of the matrices (in VP1 and VP4). The chol function,
which does the Cholesky decomposition in Armadillo,
had some problems with providing only a flag and not
a runtime error exception when the decomposition fails.
Therefore, we used another built-in function .is sympd(),
which returns true if the matrix is symmetric/hermitian
positive definite, and returns false otherwise.

Parallel loops
As we were using Microsoft Visual Studio on a Windows
based system, we decided to use the Parallel Patterns
Library (PPL) for multithreading the code. PPL provides
algorithms that concurrently perform work on collections
of data. These algorithms resemble those provided by the
C++ Standard Library.
We used concurrency::parallel for in the RBF sub-algorithm
when we write the matrix and we experimented with
having it in different parts of the CPA verification process.

It turns out that placing some functions from Armadillo
that use LAPACK in a concurrency::parallel for loop is
either very slow or even leads to hang-ups. However, we
only had this problem with the solve function and replacing
it with our own routine fixed the problem. Note that we
also had this problem when using a computer with an Intel
CPU. A possible reason is that the multithreading in our
program interferes with the multithreading in LAPACK.

4. RESULTS AND COMPARISON

In this section we provide the test results in several
tables and give some comments. All tests were run on an
MS Windows 10 system with an AMD Ryzen processor
(2700X, 8 cores, 3.7 GHz) and 64GB RAM. In all cases we
used the setting described in Section 2.1. In particular we
always used N = 546 collocation points and only changed
the triangulation using different values for the number of
vertices NCPA.

In Table 1 and Table 2, we have provided the running
times using the MATLAB code. In these tables code-path
indicates that the fast code-path was used, parallel refers
to the code having been parallelized, and MEX refers to
the use of MEX files. All this is discussed in Section 3.1.

The data in Table 1 suggests that the fast code-path can
make the program run more than 2.5 times faster. The last
column shows a significant decrease of run times due to the
multithreading of the evaluation of the optimal recovery
at the vertices.

The data from Table 2 shows that the MEX file version
of the MATLAB code is much faster in all cases and that
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it cannot necessarily be run on a Linux based server.
In the MATLAB documentation three binary MEX file
extensions for Linux, Apple Mac, and Windows (all 64-bit
versions) are discussed.

Parallel loops
In order to use modern multi-core CPUs efficiently, one can
attempt to run some parts of the code in parallel. To do
so in MATLAB, one needs to have the Parallel Computing
Toolbox. A very simple and effective way to start with, is
to change for-loops into parfor-loops.

A disadvantage of using parfor for multithreading is that
MATLAB must be able to recognize variables inside the
loop as one of the five types it can deal with. The in-
dexing variables of parfor should be consecutive increasing
integers. Also using the loop variable for working with
different components of a matrix or vector (called sliced
variables) can be hard and time-consuming. One cannot
just change for to parfor and then expect everything to
work. In our case, although we were sure the code could
be multithreaded the way it was without any problem (as
we did it in C++), MATLAB gives red flag warnings com-
plaining it cannot run parfor loops due to the ambiguity
in the way a loop variable is used or a sliced variable is
referred to. In the evaluation of constraints (VP2)-(VP4)
we were not able to fix the errors and use parfor. However,
as the most demanding computations are in evaluating P
at the vertices, this is not too important for the running
times.

Fast codepath for MKL on AMD processors
During our programming we got to an interesting case
of MKL not taking full advantage of SIMD instructions
on AMD processors, described in detail in the post “how
to force MATLAB to use a fast codepath on AMD” in
the MATLAB community on Reddit 9 . Because MATLAB
uses the Intel MKL for some operations this makes many
operations unnecessarily slow.
However, this can be overridden (or fixed) by adding and
setting a new system environment variable

MKL DEBUG CPU TYPE=5

After doing this all programs using the MKL on the system
are affected by the change. In our case, both MATLAB and
C++ using MKL show significant speed improvements. It
is worth mentioning that MEX files should be created after
having the new system variable set.

3.2 C++-based code

We transferred our MATLAB code to C++ in the hope
for a better performance. One can object that this may
not be the most efficient way to implement in C++ as the
language provides wider capabilities, but since we had the
MATLAB code this seemed sensible. In order to simplify
the transferral we used the Armadillo library, which is
described on its website 10 as:

Armadillo is a high quality linear algebra li-
brary (matrix maths) for the C++ language,

9 posted by blogger “nedflanders1976” accessible at this address:
https://www.reddit.com/r/matlab/comments/dxn38s/howto_

force_matlab_to_use_a_fast_codepath_on_amd/
10 see Armadillo website http://arma.sourceforge.net/

aiming towards a good balance between speed
and ease of use. It provides high-level syntax
and functionality deliberately similar to MAT-
LAB, and various matrix decompositions are
provided through integration with LAPACK,
or one of its high performance drop-in re-
placements (eg. multi-threaded Intel MKL, or
OpenBLAS).

As mentioned before, the fast code path for MKL on AMD
processors also affects the speed of C++ code when it
uses MKL. One of the very few changes in the code we
needed to do was for verifying the positive definiteness
of the matrices (in VP1 and VP4). The chol function,
which does the Cholesky decomposition in Armadillo,
had some problems with providing only a flag and not
a runtime error exception when the decomposition fails.
Therefore, we used another built-in function .is sympd(),
which returns true if the matrix is symmetric/hermitian
positive definite, and returns false otherwise.

Parallel loops
As we were using Microsoft Visual Studio on a Windows
based system, we decided to use the Parallel Patterns
Library (PPL) for multithreading the code. PPL provides
algorithms that concurrently perform work on collections
of data. These algorithms resemble those provided by the
C++ Standard Library.
We used concurrency::parallel for in the RBF sub-algorithm
when we write the matrix and we experimented with
having it in different parts of the CPA verification process.

It turns out that placing some functions from Armadillo
that use LAPACK in a concurrency::parallel for loop is
either very slow or even leads to hang-ups. However, we
only had this problem with the solve function and replacing
it with our own routine fixed the problem. Note that we
also had this problem when using a computer with an Intel
CPU. A possible reason is that the multithreading in our
program interferes with the multithreading in LAPACK.

4. RESULTS AND COMPARISON

In this section we provide the test results in several
tables and give some comments. All tests were run on an
MS Windows 10 system with an AMD Ryzen processor
(2700X, 8 cores, 3.7 GHz) and 64GB RAM. In all cases we
used the setting described in Section 2.1. In particular we
always used N = 546 collocation points and only changed
the triangulation using different values for the number of
vertices NCPA.

In Table 1 and Table 2, we have provided the running
times using the MATLAB code. In these tables code-path
indicates that the fast code-path was used, parallel refers
to the code having been parallelized, and MEX refers to
the use of MEX files. All this is discussed in Section 3.1.

The data in Table 1 suggests that the fast code-path can
make the program run more than 2.5 times faster. The last
column shows a significant decrease of run times due to the
multithreading of the evaluation of the optimal recovery
at the vertices.

The data from Table 2 shows that the MEX file version
of the MATLAB code is much faster in all cases and that

the effect of using the fast code-path is clear, but by far
not as impressive as when not using MEX files.

In Table 3 and Table 4 the running time for the code in
C++ is shown. In each table we run the program using
the MKL library without the fast code-path, then using
MKL with the fast code-path, and then using OpenBLAS
instead of MKL. In Table 3 the code is not multithreaded
and in Table 4 the code is multithreaded.

The data from Table 3 suggests that the fast code-path can
make the program 3 times faster and should definitely be
employed, just as in the MATLAB case. Comparing Tables
2-4, we come to the conclusion that for our application
using MATLAB with MEX-files and the fast code-path
results in programs that are as fast as the programs written
in C++, and that it does not matter whether we use the
MKL library or OpenBLAS, provided that we used the
fast code-path for MKL.

5. CONCLUSION

We have used two different ways with several settings for
each to compute a numerical algorithm, and have provided
the details in previous sections. Here we are going to list
a few merits of these methods.

Using MATLAB is simpler than programming with C++
for non professional programmers in need of scientific
computing. Although Armadillo has decreased the level
of difficulty of programming in C++, having the com-
mand window and editor at the same time in MATLAB
makes it much easier to translate a mathematical for-
mula/algorithm to a program, checking commands line by
line and seeing the changes in part without having a full
code written.

In case of time and memory consuming calculations, C++
becomes faster and more efficient. Although one can im-
prove the performance of MATLAB programs considerably
with several techniques like using MEX-files, it is impor-
tant to note that not all MATLAB functions adapt easily
to the speedy solutions.

Running the code in parallel is easier in C++ than in
MATLAB, even when not considering extra toolboxes and
apps that are needed for MATLAB and depend on the
operating system. For plotting and evaluating the results
after the computation, MATLAB’s graphical tools and
interface are much more user-friendly and developed than
what is available in C++. In fact, we transferred the

Table 1. Different settings and run times for
MATLAB

NCPA
MATLAB

MATLAB

code-path

MATLAB

code-path

parallel

10002
2 h 37
min

58 min 11 min

12002
3 h 48
min

1 h 25
min

16 min

14002
5 h 4
min

1 h 54
min

22 min

16002
6 h 30
min

2 h 27
min

28 min

Table 2. Different settings and run times for
MATLAB using MEX files

NCPA

MATLAB

MEX

MATLAB

code-path

MEX

MATLAB

code-path

parallel

MEX

10002 6 min 5 min 40 s

12002 9.5 min 8.5 min 54 s

14002 13 min 12 min 71 s

16002 17 min 15 min 91 s

Table 3. Different settings and run times for
C++, not multithreaded

NCPA

C++

MKL

C++

MKL

code-path

C++

OpenBLAS

10002 7 min 4 min 4 min

12002
12.5
min

5.5 min 5.5 min

14002 21 min 7.5 min 7.5 min

16002 32 min 10 min 10 min

Table 4. Different settings and run times for
C++, multithreaded

NCPA

C++

MKL

parallel

C++

MKL

code-path

parallel

C++

OpenBLAS

parallel

10002 43 s 39 s 38 s

12002 64 s 56 s 54 s

14002 87 s 75 s 72 s

16002 112 s 97 s 94 s

calculation results from C++ to MATLAB for plotting.
Thus, one should also consider the difference between time
saved using C++, and the time spent in loading these data
into MATLAB; which in turn, leads to the next point.
The format in which one can store the results in MATLAB,
as a .mat file, is very efficient and concise, though they
are not easily read into other programs not written in
MATLAB. In C++, it is not that simple to store arrays
with different sizes and dimensions in one single file. Thus,
being able to read a single file in a meaningful way or
storing several files and loading them properly becomes
laborious. Using the Hierarchical Data Format (HDF5)
might be a solution.

In summary for our application: provided that we use the
fast code-path for the MKL library, MATLAB with MEX-
files and parallelization delivers programs that are just as
fast as the programs we get using C++. In the latter case
MKL and OpenBLAS deliver programs with practically
identical running times, again assuming that we use the
fast-code path for MKL.
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