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We describe a novel approach to the detection and parameter estimation of a non–Gaussian
stochastic background of gravitational waves. The method is based on the determination of relevant
statistical parameters using importance sampling. We show that it is possible to improve the
Gaussian detection statistics, by simulating realizations of the expected signal for a given model.
While computationally expensive, our method improves the detection performance leveraging the
prior knowledge on the expected signal, and can be used in a natural way to extract physical
information about the background. We present the basic principles of our approach, characterize
the detector performances in a simplified context and discuss possible applications to the detection
of some astrophysical foregrounds. We argue that the proposed approach, complementarily to the
ones available in literature, might be used to detect suitable astrophysical foregrounds by currently
operating and future gravitational wave detectors.

I. INTRODUCTION

Over the last seven years, the Advanced Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) [1] and
Advanced Virgo [2] have collected data and released,
together with the KAGRA collaboration [3], three in-
cremental catalogues of gravitational-wave (GW) detec-
tions, amounting to a total of 90 confident events [4].
In addition, the LIGO, Virgo and KAGRA collaboration
(LVKC) have performed a population study on a sub-
set of 76 of them [5]. Further upgraded second genera-
tion interferometers [6] and third generation GW detec-
tors, such as the Einstein Telescope (ET, [7]), will pos-
sibly become operational during the next decade: these
experiments promise to be sensitive enough to observe
both the cosmological and astrophysical stochastic grav-
itational wave background (SGWB). In addition, when
the Large Interferometer Space Antenna (LISA) [8] will
be operational, our sensitivity to astrophysical GW tran-
sients will broaden to lower frequencies and new source
categories.

The superposition from various unresolved astrophysi-
cal and cosmological sources generates a SGWB. Searches
for such a stochastic background have been performed
on available data: no evidence for a SGWB has been
found, nonetheless upper limits on its cosmological en-
ergy density have been placed [5, 9]. Among the sources
which may contribute to the SGWB: core-collapse su-
pernovae [10–12]; neutron stars [13–15]; compact binary
coalescences [16–19]; binary white dwarfs [20]; cosmic
strings [21–23] and gravitational waves produced during
inflation [24–26] or by primordial black holes [27]. A
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detection of the cosmological SGWB would give very im-
portant constraints on the earliest epochs of the Universe,
while the detection of an astrophysical SGWB would pro-
vide key information about the sources generating it, e.g.
the merger rate of compact binary systems, the star for-
mation history [28, 29] or the occurrence of gravitational-
wave lensing [30, 31].

Searches for SGWBs typically assume that the back-
ground is Gaussian, based on the central limit theorem
(see, e.g., [32, 33]). However, if the rate of events gener-
ating the background is not sufficiently high compared to
their duration or frequency bandwidth, a non–Gaussian
background is expected, characterized by discontinuous
or intermittent signals. For instance, predictions based
on population modelling suggest that, for many realistic
astrophysical models, there may not be enough overlap-
ping sources, resulting in the formation of such a non–
Gaussian background (see, e.g., [34, 35]). Furthermore, it
has been shown that the background from cosmic strings
could be dominated by a non–Gaussian contribution aris-
ing from the closest sources [22].

In the past decades several methods to search for non–
Gaussian SGWB have been proposed. For instance, [36]
derived an algorithm suitable for the detection of a
non–Gaussian component in a SGWB observed by two
co-located and co-aligned detectors with white Gaus-
sian noise. Later, [37] introduced a maximum likeli-
hood estimator to be used in a more realistic case of
a network of spatially separated interferometers with
coloured, non–Gaussian noise. Most recently, [38] de-
vised a Bayesian search strategy for a background of
unresolved binaries. Other approaches have also been
explored (see, e.g., [39, 40] and [41]), constructing al-
ternative parametrizations for SGWB non–Gaussianities.
In the context of LISA, various pipelines for the detec-
tion and characterization of an astrophysical SGWB have
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been developed [42–44], parametrizing a certain level on
non-Gaussianities in the signal model. The expected level
has also been assessed for confusion noise arising from ex-
treme mass ratio inspirals (EMRIs) and Galactic binary
white dwarfs [45].

In this paper, we explore a novel approach for a detec-
tion of non–Gaussian SGWBs –inherently complemen-
tary to the ones available in literature [38]– using a de-
tailed stochastic model of the underlying signal pop-
ulation. The paper is organized as follows: in Sec-
tion II we discuss the basic principles for the detec-
tion of a SGWB, and we give examples of application
for the case of an isotropic background; after a discus-
sion of the Neyman–Pearson detector in a frequentist
context (Section II A) we show how a Bayesian analysis
of a non–Gaussian stochastic background can be imple-
mented (Section II B); in Section III we discuss a sim-
plified model for a non–Gaussian stochastic background,
with the purpose of estimating the improvement in detec-
tion performance of the proposed approach; in Section IV
we give details about the application to a more realistic
case, namely an isotropic stochastic background of astro-
physical origin; we show how this can be represented by
a (generalized) dot process (Section IV A), and give de-
tails about the stochastic sampling procedure required by
the inference method (Section IV B); finally, in Section V
we draw some conclusions pointing at possible future de-
velopments, in particular toward applications to the non
isotropic case; in Appendix A we provide detailed proofs
of results shown in the main text. Some are available in
literature (see e.g.[46] and references therein), nonethe-
less we choose to reproduce them to ensure consistency
of notation across the text.

II. THE STATISTICAL PROBLEM

In this paper, observations are written as the sum of
signal and noise, however in our case it is more convenient
to write the data collected by a network of detectors in
a slightly different form, namely

sAi = gAi + hAi + nAi (1)

where g is a Gaussian part of the stochastic signal and h
a non–Gaussian one, while n is the noise of the detectors.
In this paper we always assume an additive and Gaussian
noise, although an extension is possible to account for
transient non-stationarities arising from the noise. Cap-
ital indices label the detector while lowercase ones enu-
merate generically the data series: we will specialize it
if needed by explicitly writing our expressions in time
or frequency domain. It is worth emphasizing that the
decomposition in Eq. (1) is not unique: one can always
add and subtract an arbitrary Gaussian contribution to
g and from h.

Under our hypotheses the noise is described by a mul-
tivariate Gaussian probability distribution that we can

write as

pn
[
nAi
]

= Nn exp

(
−1

2
Wn(n, n)

)
(2)

where Nn is a normalization constant and for future con-
venience we defined the scalar product over detectors and
data indices

Wx(u, v) ≡
∑
A,B

∑
i,j

[
C−1xx

]AB
ij

uAi v
B
j (3)

[Cxy]
AB
ij ≡

〈
xAi y

B
j

〉
(4)

Hereafter, following Einstein’s convention on repeated in-
dices, we drop the summation symbols over data and de-
tectors indices. Cnn is the noise cross–correlation array,
so Wn in Eq. (2) is the Wiener match between u and v
with respect to the noise n [47]. Explicitly we can write

Nx = exp

(
−1

2
Tr ln 2πCx

)
(5)

[Cxy]
AB
ij ≈

[
Čxy

]AB
ij

= xAi y
B
j (6)

where the trace is performed over detectors and data in-
dices. For simplicity, in auto–correlations Cxx we drop a
redundant index, therefore denoting them Cx.

In Eq. (6) and in what follows we often replace the true
cross–correlations Cxy – defined through the model and
frequently unmeasurable – with estimators obtained from
the data. We label them with an overhead check. Cor-
respondingly, averaging over the data indices is denoted
with an overline. [

Čxy
]AB
ij

= xAi y
B
j (7)

Due to statistical fluctuations, the uncertainty on Čxy
can be improved by averaging over chunks of data: as
we show in Eq. (24), this comes at the cost of a reduced
probability of detection.

We model the stochastic signal described by g as Gaus-
sian with a probability distribution analogous to Eq. (2),
namely

pg
[
gAi
]

= Ng exp

(
−1

2
Wg(g, g)

)
. (8)

However, we make no statistical hypothesis about the re-
minder h, which can be described by a generic probability
distribution ph

[
hAi
]
. Then we can write the probability

distribution for the observed signal as a convolution be-
tween pn, pg and ph, namely

ps [s]=

∫
h

∫
g

ps [s | h, g] ph [h] pg [g]

= NnNg
∫
h

∫
g

ph[h]e−
1
2Wn(s−h−g,s−h−g)− 1

2Wg(g,g) (9)
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The Gaussian integral over g can be performed explicitly.
By virtue of Woodbury’s identity (see Appendix A for
details), we observe that

Wn+g(u, v) =Wn(u, v)− G(u, v) (10)

or equivalently

C−1n − C−1n
(
C−1g + C−1n

)−1 C−1n = C−1n+g (11)

where we have defined for future convenience

G(u, v) ≡ GABij uAi v
B
j (12)

G ≡ C−1n
(
C−1n + C−1g

)−1 C−1n (13)

which go to zero when g = 0. Using Eq. (11) the integral
further simplifies to

ps [s] = Nn+g
∫
h

ph [h] e−
1
2Wn+g(s−h,s−h) (14)

The key point is that we can rewrite ps as

ps [s] = Nn+g
〈
e−

1
2Wn+g(s−h,s−h)

〉
(15)

where the expectation value 〈· · · 〉 is evaluated over an
ensemble of realizations for the non–Gaussian part h of
the SGWB. Note that this expectation value is evaluated
at fixed data s, which is considered here an independent
variable.

While it is difficult to write an explicit expression for
ph in the non–Gaussian case, realizations of a stochastic
background h can be simulated. This opens up the pos-
sibility of evaluating ps and connected quantities related
to detection statistics and parameter estimation proce-
dures.

A. The Frequentist approach

As a first example we show an expression for the opti-
mal Neyman–Pearson detector [48], under the hypothesis
of a known background and a known noise. The two hy-
potheses to be tested are

H1: presence of a known stochastic background, with a
given Gaussian part g and a given non–Gaussian
one h;

H0: absence of the background, g = h = 0, which means
s = n.

The detector is defined by the test statistic Ŷ (s) > λ
where

Ŷ (s) ≡ log
ps [s|H1]

ps [s|H0]
− log

Nn+g
Nn

(16)

=
1

2
G(s, s) + log

〈
e−

1
2Wn+g(h,h)eWn+g(s,h)

〉
(17)

We subtracted from the standard definition of Ŷ (s) a
data independent constant, whose effect can be compen-
sated by a redefinition of the relation between the thresh-
old λ and the false alarm probability [49]. Note that the
average in Eq. (17) is evaluated under the H1 hypothesis.

1. Gaussian case

We discuss shortly the particular case of a Gaussian
background, as this clarifies some aspects relevant in the
following sections. If the background is gaussian we can
assume, without loss of generality, that h = 0 and the
optimal statistic is given by

Ŷ (s) =
1

2
G(s, s)

'1

2

[
C−1n CgC−1n

]AB
ij
sAi s

B
j +O(‖CgC−1n ‖2) (18)

where we expanded Eq. (13) to lowest order, under the
hypothesis that the SGWB power spectrum is much
smaller than every detector’s noise spectrum. While the
frequentist approach makes direct use of such assump-
tion, the corresponding Bayesian approach in Sec. II B
does not assume it, hence making it suitable in other
contexts. As Ŷ is an approximately Gaussian variable
we are comparing two Gaussian distributions with given
means and variances.

Having only access to estimators of noise and signal
spectra ensemble averages, we use them to replace corre-
lations in the test statistics. Consequently, the average
of Ŷ (i.e. the optimal statistics using estimators for noise
correlations) under H0 is given by

µH0
=

1

2

[
Č−1n ČgČ−1n

]AB
ij
〈nAi nBj 〉 (19)

=
1

2
Tr
(
Č−1n ČgČ−1n Cn

)
(20)

where the trace is performed over detector and data in-
dices. In a similar way we find, under the hypothesis
H1,

µH1
= µH0

+
1

2
Tr
(
Č−1n ČgČ−1n Cg

)
(21)

and the variances are given by

σ2
H0

=
1

2
Tr
[
(Č−1n ČgČ−1n Cn)2

]
(22)

σ2
H1
' σ2

H0
+ Tr

(
Č−1n ČgČ−1n CnČ−1n ČgČ−1n Cg

)
(23)

where once again we included only the first correction
for σ2

H1
in the small signal approximation. The Receiver

Operating Characteristic (ROC) of the detector reads

PD =
1

2
erfc

(
σH0

σH1

erfc−1(2PFA)− µH1 − µH0

σH1

√
2

)
(24)

where PD (PFA) is the detection (false-alarm) probability,
and erfc is the complementary error function.

Note that, because of the two traces over the N dat-
apoints (µH1

− µH0
)/σH1

∝
√
N , so the detection prob-

ability improves with the square root of the measure-
ment time. On the contrary, the first term affects only
mildly the detector performance as it remains constant
while more data points are accumulated. For this reason,
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Eq. (24) is often rewritten with trivial definitions for the
“offset” o and “deflection coefficient” d as follows:

PD =
1

2
erfc

(
o−
√
d2
)

(25)

However, the approach just illustrated is not always
viable: to attain a detection we need to know µH0 with
an error of the order of the ratio between the signal’s
and the noise’s power spectra. This is because we need to
know µH1−µH0 with the same precision. This cannot be
done experimentally (we cannot switch off the coupling
of the detectors to the SGWB) and it is not realistic to
estimate theoretically the noise budget of a detector with
such precision.

Usually this issue is solved by the additional assump-
tion that noises across different detectors are uncorre-
lated, namely the matrix CABn is diagonal in detector’s
indices. Consequently, the noise dominated terms along
the diagonal A = B can be eliminated by defining a
“diagonal–free” statistic ŶG(s) by removing in the sum
of Eq. (18) all terms dominated by the noise

ŶG(s) ≡
∑
A6=B

1

2

[
Č−1n ČgČ−1n

]AB
ij

sAi s
B
j (26)

We get a new average µH0,G = 0 and the detector be-
comes robust with respect to errors in the noise model.
The new means and variances are given by

µH0,G
= 0 (27)

µH1,G
=

1

2
Tr
(
Č−1n /̌CgČ−1n Cg

)
(28)

σ2
H0,G

=
1

2
Tr
(

(Č−1n /̌CgČ−1n Cn)2
)

(29)

σ2
H1,G

' σ2
H0,G

+ Tr
(
Č−1n /̌CgČ−1n CnČ−1n /̌CgČ−1n Cg

)
(30)

where we label diagonal–free correlation matrices (with
no implicit summation over detector indices)[

/C
]AB

= [C]
AB (

1− δAB
)

(31)

Notably µH1,G
−µH0,G

< µH1
−µH0

based on Eq. (24):
the additional robustness introcuced affects the deflection
coefficient, i.e. its asymptotic performances.

2. Non–Gaussian case

In the more general case of a non–Gaussian model, we
rewrite Eq. (16) as

Ŷ (s)=
1

2
[Čg]ABij sAi s

B
j +χh

∞∑
n=1

1

n!
Γ̌A1···An
i1···in sA1

i1
· · · sAnin (32)

with

χh =
〈
e−

1
2Wn+g(h,h)

〉
(33)

Here sAi = [Č−1n ]ABij sBj is a “double whitened” signal, and

Γ̌A1···An
i1···in are estimators of the connected moments for an
h distributed according to

p′h[h] = χ−1h e−
1
2Wn+g(h,h)ph[h] (34)

and are fully contracted over a suitable number of signals
sAi , which we denote with a subscript {A, i}.

Now we can evaluate the expectation value of Ŷ (s)
under the hypothesis H0. We find

µH0
=

1

2
Tr
(
Č−1n ČgČ−1n Cn

)
+χh

∞∑
n=1

1

n!
Γ̌A1···An
i1···in NA1···An

i1···in (35)

where NA1···An
i1···in is the n–th order moment of the double

whitened noise. As the noise is Gaussian, by virtue of
Isserlis theorem [50] it can be written as a sum over all
pairings of products of second order moments, and using
the simmetry of the connected moments Γ we get

µH0 =
1

2
Tr
(
Č−1n ČgČ−1n Cn

)
+χh

∞∑
n=1

1

(2n)!!
Γ̌A1···A2n
i1···i2n

n∏
k=1

[Č−1n CnČ−1n ]
A(2k−1)A2k

i(2k−1)i2k

(36)

As for the Gaussian case, µH0
depends on an estimate

of the real spectral covariance of the noise, which is not
enough under control. We can set to zero the first term
in Eq. (36) by using the same approach discussed for the
Gaussian case, but this is not enough to eliminate the
second. In order to obtain a robust detector we define
the new statistic

Y̊ (s) ≡ Ŷ (s)− Ŷ (̊s) (37)

Here s̊ are the observed data, transformed in such a way
that s̊Ai satisfies the following〈̊

sAi s̊
B
j

〉
= δAB [Cs]ABij (38)〈̊

sAi s
A
j

〉
= 0 (39)

This can be done by introducing appropriate and large
enough shifts among detectors in time-domain, random-
izing the phases in frequency domain, or scrambling data
chunks, such that the original series of each detector and
the new ones are statistically independent, and the cross-
correlations across detectors are removed. Henceforth,
we will denote s̊ and Y̊ (s) – the latter not to be confused

with Ŷ (̊s), a statistics insensitive by construction to the
GW signal – as “scrambled data” and “scrambled detec-
tor”, respectively. . We defer a detailed characterization
of the statistical subtleties of this procedure in a realistic
scenario to future study.
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Under hypothesis H0 the correlations are computed
on noise–only data, therefore they are already diagonal
in detector’s indices, so 〈Ŷ (s)〉 = 〈Ŷ (̊s)〉 and we get

µ̊H0 ≡ 〈Y̊ (s)〉 = 0. (40)

Taking the expectation value under the hypothesis H1

we find

µ̊H1
=

1

2
Tr
(
Č−1n /̌CgČ−1n Cg

)
+

1

2
Tr
(
Č−1n /̌CgČ−1n Ch

)
+ χh

∞∑
n=1

1

n!
Γ̌A1···An
i1···in

(
SA1···An
i1···in − S̊A1···An

i1···in

)
(41)

where S are the momenta of the signal s and S̊ the mo-
menta of s̊.

When h = 0 only the first term is non-null, repro-
ducing the Gaussian result (on scrambled data). From
the sum we see that additional contributions arise in the
general case. These are expected to improve the detector
performances, and open up the possibility of a stricter
characterization of the SGWB statistical properties.

B. The Bayesian approach

The detection and parameter estimation proposed in
Sec. II A can be equivalently formulated in a Bayesian
context observing that Eq. (15) is the unnormalized prob-
ability distribution of the observed data conditioned on
a given model, i.e. the likelihood. The probability dis-
tribution of a model given some observed data (i.e. the
posterior) is obtained through Bayes theorem, as

p (M|s)∝Nn+g
∫
h

e−
1
2Wn+g(s−h,s−h)ph[h|M]π(M) (42)

whereM and π(M) are the model and its prior distribu-
tion, up to a model independent normalization constant.

The posterior can be estimated with importance sam-
pling using a Monte Carlo Markov-chain (MCMC), by
generating a sequence of Ms with the probability dis-
tribution defined by Eq. (42). In principle each MCMC
step would require a non trivial integration to be per-
formed, and this can also be obtained with a nested im-
portance sampling. This is a non-trivial task, as the es-
timation of the integral in Eq. (42) has statistical errors
roughly proportional to 1/

√
Ns, where Ns is the number

of the evaluation steps. A trade-off between the amount
of knowledge on the probability distribution and the com-
putational cost of the procedure would be required.

A better procedure can be devised by focusing on the
integrand of Eq. (42), i.e. the joint posterior on model
and non–Gaussian realization h:

p (h,M|s)∝ Nn+ge−
1
2Wn+g(s−h,s−h)ph[h|M]π(M) (43)

a single sequence of Ms and hs can be generated at the
same time with MCMC techniques. This does not solve

the computational cost issue, but makes evident that
in principle the model estimation can be improved at
will with a large enough number of MCMC steps. Each
step can be performed along the lines of the Metropolis–
Hastings algorithm as follows:

Step 1: Starting from a model Mk, a new one
Mk+1 is generated with transition distribution
T (Mk,Mk+1).

Step 2: A realization hk+1 is generated accordingly with
the distribution ph[hk+1|Mk+1]. In Sec. IV B we
provide a well defined procedure for this purpose.

Step 3: The value of

Ik+1 = Nn+ge−
1
2Wn+g(s−hk+1,s−hk+1) (44)

is compared with the one evaluated at the previous
step, and the new model is accepted with probabil-
ity

min

{
1,
Ik+1

Ik
T (Mk,Mk+1)

T (Mk+1,Mk)

}
. (45)

Otherwise the process is repeated.

Using this approach the prior probability π(M) is not
considered, and can be used later to obtain the posterior.
Alternatively π(M) can be incorporated simply with the
redefinition

Ik+1 = Nn+ge−
1
2Wn+g(s−hk+1,s−hk+1)π(Mk+1) (46)

This can be an advantage in some specific cases when the
prior is informative and optimization of convergence rate
is required.

In a generalized approach, Steps 2 and 3 are modified
as follows:

Step 2′: A set of Ns sequences hk+1,i are generated ac-
cordingly with the distribution ph[hk+1,i|Mk+1].

Step 3′: The value of

Ik+1 ≡
1

Ns

∑
i

Nn+ge−
1
2Wn+g(s−hk+1,i,s−hk+1,i) (47)

is compared with the one evaluated at the previous
step, and the new model is accepted or rejected
with the same rule described in Eq. (45).

The likelihood in Eq. (42) is obtained in the limit
Ns → ∞, and we can see Ns as a free parameter to
tune.

The MCMC sampler favours models with a low value
of Wn+g(s − h, s − h), and this can be interpreted as
follows: new models are accepted at each MCMC steps
when they perform better at removing the non–Gaussian
part of the signal. When such part is weak we can expect
that a decision based on a single sequence h could be
dominated by statistical fluctuations, so averaging over
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a large value of Ns provides additional robustness to the
algorithm. Note that the convergence of the sampler is
guaranteed for each value of Ns.

As we shall see in Sec. III (see Fig. 1, 3 and 4), the nat-
ural parameterization of the non–Gaussian components
in terms of higher-order cumulants, along the lines of
the Edgeworth or Gram–Charlier A expansions [45, 51],
appears to also fit in a Bayesian context as it provides
parameters inherently decorrelated upon inference. In
Sec. IV A we show how this is also a very convenient
parametrization for SGWBs characterized by the in-
coherent superposition of multiple independent signals,
with a significant reduction of the computational cost to
perform importance sampling. This is a crucial need of
our proposed algorithm: Eq. (15) is a sort of “Wiener
filter” with stochastic templates. If their sample space
is complicated to explore, e.g. when the duty cycle [52]
of the background is low, a large number of evaluations
might be needed to ensure the algorithm convergence.

III. A TOY MODEL EXAMPLE

Let us consider the very simplified model

sAi = hAi + nAi (48)

The noise is modeled by uncorrelated Gaussian variables
nAi with

〈nAi 〉 = 0 (49)

〈nAi nBj 〉 = σ2
Aδ
ABδij (50)

We set hAi = hi, where hi are independent variables with
probability distribution

p(hi) = γ+N (hi;σ+) + γ−N (hi;σ−) (51)

γ+ =
σ2
h − σ2

−
σ2
+ − σ2

−
, γ− = 1− γ+ =

σ2
+ − σ2

h

σ2
+ − σ2

−
(52)

Here N (x;σi) is a Gaussian distributions for x with
zero mean and variance σ2

i , and the parametrization of
ordered variances σ2

+ > σ2
h > σ2

− is chosen such that
for any values of σi the distribution variance is σ2

h. The
kurtosis is given by

β ≡
〈
h4i
σ4
h

〉
= 3

(
σ2
+

σ2
h

− σ2
+

σ2
h

σ2
−
σ2
h

+
σ2
−
σ2
h

)
(53)

which has a minimum of 3 when σ+ = σh or σ− = σh
(Gaussian cases with γ+,− = 1) and grows larger and
larger with σ+. The whole family of leptokurtic proba-
bilities, parameterized by σ+, σ−, σh can be equivalently
explored by three non-trivial cumulants kn, formally de-
fined by the power expansion of the cumulant generating
function K (see Suppl. A 6 for more details)

K(t) = log
〈
etX
〉

(54)

kn =
∂nK(t)

∂tn

∣∣∣∣
t=0

, n = 2, 4, 6 (55)
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FIG. 1. Cumulants values for the mixture toy model intro-
duced in Sec. III over the full parameter space. Solid and
dashed lines denote mixtures with equal fourth– and sixth–
order cumulants, k4 and k6 respectively. Dotted black lines
denote models with equal mixture weights γ+. The shaded
gray region denotes models with the brightest of the two com-
ponents, γ+ greater than the noise level of a single detector
σA. Any given two black lines intersect only once, hence
providing an alternative representation of the full parameter
space. Circles (squares, triangles) denote a discrete set of
models with various levels of non-Gaussianity. Their detec-
tion statistics is characterized in greater details, with results
and signal realizations shown in top (middle, bottom) panels
of Fig 2. The blue star denotes an additional model, exhibit-
ing significant correlations between σ+ and σ−. We use this
model to characterize the performance of a Bayesian param-
eter estimation, as described in Sec. III B. As shown by the
posterior in Fig. 4, parametrizing the mixture model through
its cumulants helps naturally decorrelate them.

For our toy model they are equal to

k2 = σ2
h (56)

k4 = 3(σ2
−σ

2
h + σ2

+σ
2
h − σ2

+σ
2
− − σ4

h) (57)

k6 = 15
(
σ2
+ − σ2

h

) (
σ2
− − σ2

h

) (
2σ2

h − σ2
+ − σ2

−
)

(58)

In Fig. 1 we plot contours of constant cumulants k4, k6
as a function of the mixture parameters σ+, σ−, at a
reference value of σh, alongside the mixture component
weights, uniquely specified by γ+. It is apparent that the
non-linear relation between ki and σ± could affect signif-
icantly the stochastic sampling involved in the Bayesian
analysis, while for a frequentist detection statistics it
serves only as an alternative parametrization.

Though very simple, this model is expected to capture
some features of a realistic non–Gaussian background.
For example, the particular case σ− = 0 represent back-
grounds with burst–like events which are so short that
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their structure can’t be resolved. One of them (and only
one) can be present or not at a given time with a specific
probability γ+, and their amplitude has a Gaussian dis-
tribution with standard deviation σ+, somewhat in the
spirit of the analysis in [38]. As only a single event can
contribute to the signal at a given time, statistical in-
dependence holds: P (h(t1), · · ·h(tk)) =

∏
k P (h(tk)). In

a realistic scenario this is not true. Assuming the event
waveform has a given shape ui, the strain at a given
time contains contributions from several events. In some
peculiar cases it is possible to factorize the probability
distribution by using a different domain to describe the
signal (e.g. frequency for monochromatic waveforms) but
this will be impossible in a generic setup, and the full
machinery of dot processes described in Sec. IV A should
instead be adopted.

A. Frequentist detection

The detection statistic in Eq. (16) can be evaluated
analytically for the chosen toy model. As the noise spec-
trum is white and the signal values across different dat-
apoints are independent we have (see Eq. (A79) for a
detailed proof)

Ŷ (s) =
∑
i

log

〈
exp

[
−
∑
A

hi(hi − 2sAi )

2σ2
A

]〉
(59)

The expectation value can be evaluated explicitly, ob-
taining

Ŷ (s) =
∑
i

ŷ [u (si)] (60)

with ŷ a non trivial function of a single datapoint

ŷ(u) =log

[ ∑
α=+,−

γασ√
σ2 + σ2

α

exp

(
σ2
αu

2

2(σ2 + σ2
α)

)]
(61)

u (si) = σ
∑
A

sAi
σ2
A

(62)

1

σ2
≡
∑
A

1

σ2
A

(63)

When the number of datapoints is large Ŷ becomes a
Gaussian variable according to the central limit theorem,
so mean and variance suffice to characterize the detection
performances.

Under the hypothesis H0 the variable u is by definition
normally distributed.

p(u)
H0= N (u; 1) (64)

Under the hypothesis H1 the expectation value of u is
still zero, but the variance gets an additive contribution
from the signal. For unscrambled data, we get

p(u)
H1= γ+N

(
u;

√
1 +

σ2
+

σ2

)
+γ−N

(
u;

√
1 +

σ2
−
σ2

)
(65)

while the equivalent formula for scrambled data is dis-
cussed in Suppl. A 4.

In both cases we rewrite Eq. (24)

PD =
1

2
erfc

(
r1erfc−1(2PFA)− d1

√
N

2

)
(66)

where r1 = σH0/σH1 and d1 = (µH1 − µH0)/σH1 can be
evaluated easily by numerical integration in the N = 1
case.

In Fig. 2 we show the performance of our detection
statistics for a discrete set of toy model parameters with
various levels of non-Gaussianity. Circles, squares, and
triangles identify sets of models with constant σ+ and
varying σ−. We illustrate the detection probability PD
as a function of the number N of datapoints, alongside
the respective signal realizations. We do this for three
reference false alarm probabilities, and both for original
and scrambled data.

For comparison, we also show the performance of a
Gaussian diagonal–free detector, namely

ŶG(s) =
∑
i

∑
A6=B

sAi s
B
i

σ2
Aσ

2
B

(67)

applied to the toy model data. The values of r1 and d1
for this particular case are evaluated in Suppl. A 4.

As expected, the non-Gaussian detector (without
scrambled data) outperforms the scrambled and Gaus-
sian one. However as discussed previously the opti-
mal, non scrambled detector cannot be practically imple-
mented. The relevant performances to look at are those
of the scrambled detector. It performs better than the
Gaussian one for large enough values of k4 and k6 (see
Fig. 1 where the set of parameters choosen for Fig. 2 is
shown). The Gaussian detector being better than the
scrambled one for small non–Gaussianity is not unex-
pected: when we evaluate the scrambled statistics Y̊ we
subtract two sets of data (see Eq. (37)) in order to have
zero average under H0. We pay a price for this, introduc-
ing additional fluctuations: the variance of the scrambled
detectors is the sum of the variances evaluated on normal
and scrambled data. For small enough values of non–
Gaussianity this price is larger than the gain obtained.

Further insight is obtained by introducing a mea-
sure of the improvement between Y̊ and ŶG. A sim-
ple possibility is to solve Eq. (66) for N , obtaining
N = N(PFA, PD, r1, d1) for a given detector. We evalu-

ate the ratio NG/N̊ for fixed values of PD and PFA in
the space of toy model’s parameters. This is a measure
of how much more data one needs to collect to achieve
with the Gaussian detector performances similar to those
of the scrambled one. The result is shown in Fig. 3. It is
evident that a significant advantage can be obtained in
the large–non Gaussianity regime. We plot our results
for different number of detectors in the network, and
we observe that large ND gives improved performance
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FIG. 2. Performances comparison between detection statistics for a selection of models across the parameter space in Fig. 1.
Black (red, blue) lines denote the probability of detection PD as a function of the number of datapoints N for the Gaussian

(“optimal“, non-Gaussian on scrambled data) detector, i.e. YG (Y , Y̊ ). Solid (dashed, dotted) lines corresponds to a probability
of false alarm PFA = 10−10 (10−15, 10−20). The level σh = 0.1 is kept constant for all models, resulting in an overall shift of
the black curves. Values for σ+/σh and σ−/σh are specified in each plot. Top (middle, bottom) row corresponds to models
identified with circles (squares, triangles) in Fig. 1 where higher order cumulants values can be recovered. Performances improve
as the non-Gaussianity is enhanced, (top-left panel). The non-Gaussian detector on unscrambled data (red lines) outperforms
the Gaussian detector everywhere in the parameter space, and it performs similarly to it only for signals with small non–
Gaussianity (bottom row, corresponding to triangles in Fig. 1). Data scrambling (blue lines) can suppress the advantage of
the optimal non–Gaussian detectors (red lines) if non–Gaussianity is not high enough. Upper left insets in each subplot show
a short signal realizations for the respective model in absence of noise. For reference, detector noise levels ±σA are shown as
horizontal dashed black lines.

of the scrambled statistics: this is expected because ad-
ditional fluctuations introduced by the scrambled data
do not scale with ND.

It is clear that the scrambled data subtraction proce-
dure is not optimal, and it is worth exploring alterna-
tive options. For example, the cumulant expansion in
Eq. (32) could be used to define the generalization of a
diagonal–free Gaussian detector, by removing terms not
enough under control order-by-order, i.e. with non-zero
expectation value under H0. This approach is useful es-
pecially in the mild non–Gaussian regime, where a trun-
cation in the cumulant expansion is accurate enough. We
leave this study to future investigation.

B. Bayesian parameter estimation

The study of the Bayesian procedure with the toy
model is simplified by the independence of noise and sig-
nal at different times. Taking advantage of it we can write
a recursive procedure which, given the posterior distribu-
tion for the model given k data, evaluate the posterior
distribution when we add the k + 1 measurement. As
we show in App. A 5, the likelihood (and subsequently
the posterior) can be obtained analytically from Eq. (15)
and can be written as the product of likelihoods over
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FIG. 3. Performance comparison between the Gaussian de-
tector and the non-Gaussian one on scrambled data, shown
across the toy model parameter space. We show contour levels
of NG/N̊ , the number of datapoints required to achieve the
same PD at a fixed PFA. Black, red and blue solid lines de-
note contours for a configuration with three, four and five de-
tectors, respectively. In the high non-Gaussianity limit (top-
left corner) the Gaussian detector requires as many as twenty
times more data to achieve comparable performances to the
non-Gaussian one on scrambled data. On the contrary, for
mild non-Gaussianities the two detectors perform similarly.
In comparison, increasing the number of detectors improves
the non-Gaussian detector performances moderately.

individual datapoints. Explicitly, it reads

L (si |M) ∝
∑

α=+,−

γα√
1 +

σ2
α

σ2

e−
1
2Q

α
ABs

A
i s
B
i −

∑
Alog

√
2πσA (68)

where QαAB, proportional to the transverse projector in
the detector space, is

QαAB =
1

σ2
Aσ

2
B

(
δAB −

σ2
α

σ2 + σ2
α

σ−1A σ−1B
σ−2

)
(69)

In Fig. 4 we show the results of an inference performed
on a representative model (identified by a blue star in
Fig. 1). We perform inference through stochastic nested
sampling [54], using the software package CPNest [55].
We use uniform priors for σ−,+ and σh, and enforce
their mutual ordering through hypertriangulation [53].
For ease of comparison with Fig. 1 we show posteriors
and confidence intervals for the dimensionless parame-
ters σ+/σh and σ+/σh.

Notably, the two-dimensional posterior for σ−,+ has
most of its support along regions of constant cumu-
lants. This suggests that the cumulant parameteriza-
tion of non-Gaussianities, beyond its naturalness in a
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FIG. 4. Corner plot of the Bayesian posterior for the toy
model analysis. The noise level is set to σA =

√
3 with

ND = 3, and is additive to the signal in the data. The
number of samples is set to N = 4 × 105 which grants the
likelihood significant constraining power on the model param-
eters within the chosen prior. The true signal parameters are
shown with solid blue lines, and correspond to the point in
Fig. 1 labelled with a star symbol. Black dashed lines denote
posterior 90% confidence intervals. Priors are uniform for
all parameters, and relative ordering is enforced through hy-
pertriangulation [53]. The non-linear correlation observed in
the bottom left subplot matches closely the levels of constant
cumulants shown in Fig. 1, which suggest that the cumulant
parametrization of the non-Gaussianities would be suitable for
an efficient exploration of the parameter space. No predomi-
nance of a single cumulant can be identified in the posterior,
as expected from contributions in Eq.(32).

statistical sense, is efficient at reducing correlations upon
stochastic sampling of the parameter space.

IV. APPLICATION TO ASTROPHYSICAL
BACKGROUNDS

An important example of an SGWB exhibiting non–
Gaussianity is that of astrophysical origin [56]. The
stochastic signal can be modelled as the result of many
uncorrelated events superpositions, each event contribut-
ing with a well-defined waveform (a function of the source
parameters, predictable only in a statistical sense). If
there is a strong overlap between these contributions, in
a sense that will be defined quantitatively below, the re-
sult is a Gaussian background. If this is not the case,
non–Gaussian effects appear: the background is no more
completely described by its power spectrum, and some
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additional modelling is required.

A. Dot processes

We parameterize the incoherent superposition of mul-
tiple signals as a stochastic process

hAi =

N∑
σ=1

uAi (θσ) (70)

where N is a discrete random variable, describing the
number of individual signals for a given realization of h.
uAi are effective description of gravitational wave signals,
as observed by a given detector A. The random dots
{θ1, · · · , θN} describe the intrinsic and extrinsic wave-
form properties. Such formalism allows to implement
dots distributions and correlations with high degree of
complexity (see [57] for detailed derivations and [58] for
a broader introduction to the topic).

For the sake of exposition, we restrict to the time do-
main and we isolate from θσ a parameter τσ associated
with the random arrangement of the individual signals
with respect to the i index (e.g. time of arrivals). The

remaining parameters will be referred to as θ̂σ. The sta-
tistical generative model reads as follows

N ∼ p (71)

{τσ}1,...,N | N ∼ QN (72){
θ̂σ

}
1,··· ,N

| N ∼ PN (73)

hA(t) =

N∑
σ=1

uA(t− τσ; θ̂σ) (74)

θσ = (τσ, θ̂σ) (75)

We will consider here a specific case of this model,
known in literature as marked Campbell process: inde-
pendent identically distributed dots, characterized by a
constant rate ρ for the time domain and a single distri-

bution for θ̂σ ∼ pθ.
For a realistic background, ρ will be the total rate of

all the events which contributes to the signal. The as-
sumption of independent dots means that the events are
not correlated, which is generally true for an astrophys-
ical background on the time scale of the experiment if
we neglect very peculiar scenarios, e.g. lensing effects.
It should be noted that the formalism is flexible enough
to be extended to such scenarios of correlated dots, by
replacing ρ with a more complex set of QN , PN [58]. The

parameters θ̂ describe the event properties which we are
interested in, e.g. their luminosity distance, their sky-
position, the intrinsic source parameters. We will employ
this machinery to evaluate the hAi cumulants

ΓA1···An(t1, · · · , tn) = 〈〈hA1(t1) · · ·hAn(tn)〉〉 (76)

we can replace such ensemble average, using 〈uA〉θ̂ = 0,
with

ΓA1···An(t1, · · · , tn)= ρ

∫ 〈 n∏
k=1

uAk(t− tk; θ̂)

〉
θ̂

dt (77)

The structure of this expression is quite straightforward
to understand: contributions to the cumulants come only
from the correlation of an event with itself, as seen by
the chosen set of detectors. In principle, the procedure
let us obtain a posterior probability distribution for the
parameter’s model, and upon suitable marginalization,
for those of astrophysical interest: e.g., studying a back-
ground generated by coalescence events, the mass distri-
bution as a function of redshift z. Remarkably, correla-
tions are not trivial as a consequence of the expectation
value taken over the parameters, which makes them non
factorized. Therefore each cumulant contains non-trivial
and independent information about the parameter distri-
butions, and it contributes directly to the inference (32).
Moreover, it is worth highlighting an interesting scal-
ing relation: scaling simultaneously the rate of events
ρ → ρ′ = αρ and their amplitude u → u′ = α−1/2u,
cumulants of order n become proportional to α1−n/2, i.e.
for n > 2 become negligible in the large ρ limit while for
n = 2 they stay constant. This a simple manifestation of
the central limit theorem.

Finally, we stress that our approach uses a population
based construction of relevant cumulants: as a conse-
quence, non-stationary noise contribution (i.e. glitches)
can be absorbed in Eq. (70) as additional population of
signals [59]–with different coupling to the detectors– and
integrated over in Eq. (77). This is subject of ongoing
study.

B. Importance sampling

The basic ingredient of the proposed approach is an
efficient procedure to simulate a background with some
target features. As we discussed in Sec. II B the building
block is a procedure to generate a sample h with the cor-
rect probability ph[hk+1|Mk+1] conditioned to a model
Mk+1.

A general parameterization of a given model can be
given in terms of the event rate in a given volume of the
parameter space, measured in the observer frame. This
can be written as

R0(θ̂)dθ̂1 · · · dθ̂P (78)

The total rate of events will be given by

ρ =

∫
dθ̂1 · · ·

∫
dθ̂PR0(θ̂) (79)

and using it is possible to simulate dots in a given time
interval. Notably, this rate can be very large, and it
would be unfeasible to simulate in details all the events.
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Instead, it is possible to introduce a threshold on events
with negligible contribution to the background. Alter-
natively, one can include it as a Gaussian contributions
to the model. This is in fact one of the two reasons for
introducing gAi in Eq. (1), the second being to include
other Gaussian components, e.g. of cosmological origin.

Once the dots are generated, we “decorate” them
by choosing a family of suitable individual waveforms
and associated parameters according to their distribution

ρ−1R0(θ̂). Finally the strain hij is generated, adding all
contributions once projected onto each detector.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a framework to construct
detections statistics and perform Bayesian inference for
non-Gaussian SGWBs.

The formalism is particularly suitable for stochastic
backgrounds arising from the superposition of multiple
overlapping sources. We discuss in details superposition
in the time domain, but the approach can be generalized
to the frequency domain. We provide a recipe for com-
puting the fundamental quantities required to perform
our search in the realistic case of a SGWB of astrophysi-
cal origin. We do so by making use of marked Campbell
processes. We provide detailed derivations for a number
of quantities related to the characterization of detector
performances, which we explore on a subset of represen-
tative points on the parameter space.

In a first application to a very simplified toy-model,
comparatively to the standard approach to detection of
Gaussian SGWBs, we observe significantly improved per-

formances, in terms of the number of samples (i.e. the ob-
servation time or the frequency band) required to reach a
target detection significance. As expected, this is milder
in the presence of smaller non-Gaussianities.

Our approach is inherently complementary to those
available in literature, since it rigorously models the
SGWB as a stochastic signal, whose properties arise from
the superposition of individual signals: we leverage the
knowledge about their distribution and make use of a nat-
ural language suited to the purpose, i.e. marked Camp-
bell processes. We argue that the large flexibility at-
tained in the data model through importance sampling
motivates further studies on aspects crucial for a realis-
tic application: (i) backgrounds with non trivial overlap
structure: a feature absent in our toy model, subject
of ongoing study; (ii) superpositions of multiple back-
grounds, as our framework offers a natural way to disen-
tangle them; (iii) realistic noise models (non-stationary,
correlated across detectors, non-Gaussian), to assess our
approach performances compared to the ones in litera-
ture.
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[27] S. Clesse, J. Garćıa-Bellido, and S. Orani, arXiv e-prints
(2018), arXiv:1812.11011 [astro-ph.CO].

[28] T. Callister, M. Fishbach, D. E. Holz, and W. M. Farr,
ApJ 896, L32 (2020), arXiv:2003.12152 [astro-ph.HE].

[29] S. S. Bavera, G. Franciolini, G. Cusin, A. Riotto, and
et al., A&A 660, A26 (2022), arXiv:2109.05836 [astro-
ph.CO].

[30] R. Abbott, T. D. Abbott, S. Abraham, F. Acernese, and
et al., ApJ 923, 14 (2021), arXiv:2105.06384 [gr-qc].

[31] R. Buscicchio, C. J. Moore, G. Pratten, P. Schmidt,
M. Bianconi, and A. Vecchio, Phys. Rev. Lett. 125,
141102 (2020).

[32] B. P. Abbott et al. (LIGO Scientific Collaboration, Virgo
Collaboration), Phys. Rev. Lett. 118, 121101 (2017),
[Erratum: Phys. Rev. Lett.119,no.2,029901(2017)],
arXiv:1612.02029 [gr-qc].

[33] B. P. Abbott et al. (LIGO Scientific Collaboration,
Virgo Collaboration), Phys. Rev. D 100, 061101 (2019),
arXiv:1903.02886 [gr-qc].

[34] X.-J. Zhu, E. Howell, T. Regimbau, D. Blair, and Z.-H.
Zhu, ApJ 739, 86 (2011), arXiv:1104.3565 [gr-qc].

[35] S. Mukherjee and J. Silk, MNRAS 491, 4690 (2020),
arXiv:1912.07657 [gr-qc].

[36] S. Drasco and E. E. Flanagan, Phys. Rev. D67, 082003
(2003), arXiv:gr-qc/0210032 [gr-qc].

[37] E. Thrane, Phys. Rev. D87, 043009 (2013),
arXiv:1301.0263 [astro-ph.IM].

[38] R. Smith and E. Thrane, Physical Review X 8, 021019
(2018), arXiv:1712.00688 [gr-qc].

[39] L. Martellini and T. Regimbau, Phys. Rev. D92, 104025
(2015), [Erratum: Phys. Rev.D97,no.4,049903(2018)],
arXiv:1509.04802 [astro-ph.CO].

[40] T. Regimbau, S. Giampanis, X. Siemens, and V. Mandic,
Phys. Rev. D85, 066001 (2012), arXiv:1111.6638 [astro-
ph.CO].

[41] L. Martellini and T. Regimbau, Phys. Rev. D89, 124009
(2014), arXiv:1405.5775 [astro-ph.CO].

[42] R. Flauger, N. Karnesis, G. Nardini, M. Pieroni, and
et al., J. Cosmology Astropart. Phys. 2021, 059 (2021),
arXiv:2009.11845 [astro-ph.CO].

[43] M. Georgousi, N. Karnesis, V. Korol, M. Pieroni, and
N. Stergioulas, arXiv e-prints (2022), arXiv:2204.07349
[astro-ph.GA].

[44] N. Karnesis, S. Babak, M. Pieroni, N. Cornish, and
T. Littenberg, Phys. Rev. D 104, 043019 (2021).

[45] E. Racine and C. Cutler, Phys. Rev. D 76, 124033 (2007),
arXiv:0708.4242 [gr-qc].

[46] A. I. Renzini, B. Goncharov, A. C. Jenkins, and P. M.
Meyers, Galaxies 10, 34 (2022), arXiv:2202.00178 [gr-qc].

[47] P. Jaranowski, Analysis of gravitational-wave data (Cam-
bridge University Press, Cambridge New York, 2009).

[48] J. Neyman and E. S. Pearson, Philosophical Transactions
of the Royal Society of London Series A 231, 289 (1933).

[49] S. Kay, Fundamentals of Statistical Signal Processing:
Detection theory , Fundamentals of Statistical Signal Pro-
cessing (PTR Prentice-Hall, 1993).

[50] L. Isserlis, Biometrika 12, 134 (1918).
[51] L. Martellini and T. Regimbau, Phys. Rev. D 89, 124009

(2014).
[52] T. Regimbau, Res. Astron. Astrophys. 11, 369 (2011),

arXiv:1101.2762 [astro-ph.CO].
[53] R. Buscicchio, E. Roebber, J. M. Goldstein, and C. J.

Moore, Phys. Rev. D 100, 084041 (2019).
[54] J. Skilling, Bayesian Analysis 1, 833 (2006).
[55] J. Veitch, W. Del Pozzo, A. Lyttle, M. Williams, et al.,

johnveitch/cpnest: v0.11.3, Zenodo (2021).
[56] D. Meacher, E. Thrane, and T. Regimbau, Phys. Rev. D

89, 084063 (2014), arXiv:1402.6231 [astro-ph.CO].
[57] R. Buscicchio, An improved detector for non Gaussian

stochastic background of gravitational waves., Master’s
thesis, Università di Pisa (2016).
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Appendix A: Supplemental material

We expand here on definitions, assumptions, and more detailed derivations for each expression in the paper, section
by section. We will omittrivial steps than can be performed easily with most symbolic computation softwares.
Moreover, we will omit full proofs, when a simplified version contains already the interesting concepts. This is
frequently the case, e.g., for proofs given for single datapoint and/or single detector.

1. Definitions & Assumptions

The signal is made of superposition of :

sAi = gAi + hAi + nAi (A1)

The noise and the Gaussian background are distributed as

pn
[
nAi
]

= Nn exp

(
−1

2
Wn(n, n)

)
(A2)

pg
[
gAi
]

= Ng exp

(
−1

2
Wg(g, g)

)
(A3)

Where the quadratic form W is defined by the sum of scalar products:

Wx(u, v) ≡
∑
A,B
WABx (u, v) (A4)

WABx (u, v) =
[
C−1xx

]AB
ij

uAi v
B
j (A5)

The cross correlation array defines the normalization and the inner structure of the quadratic form:

Nx = exp

(
−1

2
Tr ln 2πCx

)
(A6)

[Cxy]
AB
ij =

〈
xAi y

B
j

〉
(A7)

Cx ≡ Cxx (A8)

The trace is performed over detector and data indices, and implicit summation over repeated indices is assumed. We
make no assumptions on the distribution of h, ph

[
hAi
]
.

2. The statistical problem

We first prove Eq. (10):

Wn+g(u, v) =Wn(u, v)− G(u, v) (A9)

This is a straightfoward application of the Woodbury identity:

(A+ UBV )−1 = A−1 −A−1U
(
B−1 + V A−1U

)−1
V A−1 . (A10)

with U = I, V = I and A+B = Cn+g = Cn + Cg, A = Cn. We therefore obtain

C−1n+g = C−1n − C−1n
(
C−1g + C−1n

)−1 C−1n (A11)

hence Eq. (10). Now we can prove Eq. (14)

ps[s] = Nn+g
∫
h

ph[h]e−
1
2Wn+g(s−h,s−h) (A12)
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The probability distribution of the data s is specified by the knowledge of its components, and by the conditional
probability

ps[s | h, g] = pn[s− h− g] (A13)

through Eq. (A13) we express Eq. (9) as

ps[s] =

∫
h

∫
g

ps[s | h, g]ph[h]pg[g] (A14)

= NnNg
∫
h

∫
g

ph[h]e−
1
2 (Wn(s−h−g,s−h−g)−Wg(g,g)) (A15)

The Gaussian integral on g can be performed explicitly:

ps[s] =

∫
h

ph[h]

∫
g

NnNg exp

[
−1

2
(s− h)>C−1n (s− h)− 1

2
g>C−1n g − 1

2
g>C−1g g + (s− h)>C−1n g

]
(A16)

=

∫
h

ph[h]NnNg exp

[
−1

2
(s− h)>C−1n (s− h)

] ∫
g

exp

[
−1

2
g>
[
C−1n + C−1g

]
g + (s− h)>C−1n g

]
(A17)

where > denote transposing with respect to detectors and data indices. Defining

A ≡ C−1n + C−1g (A18)

v ≡ A−1C−1n (s− h) (A19)

one gets: ∫
h

ph[h]NnNg exp

[
−1

2
(s− h)>C−1n (s− h)

] ∫
g

exp

[
−1

2
g>Ag + v>Ag

]
= (A20)∫

h

ph[h]NnNg exp

[
−1

2
(s− h)>C−1n (s− h)

] ∫
g

exp

[
−1

2
(g − v)>A(g − v) +

1

2
v>Av

]
(A21)

Integrating over g’s with fixed correlation matrix Cg∫
h

ph[h]NnNg exp

[
−1

2
(s− h)>

[
C−1n − C−1n (C−1n + C−1g )−1C−1n

]
(s− h)

] ∫
g

exp

[
−1

2
(g − v)>A(g − v)

]
= (A22)

∫
h

ph[h]
2π−

K
2

√
det(C−1n )

√
det(C−1g )√

det(C−1n + C−1g )
exp

[
−1

2
(s− h)>

[
C−1n − C−1n (C−1n + C−1g )−1C−1n

]
(s− h)

]
(A23)

with K equal to the product between the number of detectors and the number of datapoints. Using the Woodbury
identity, Eq. (A15) becomes

ps [s] =
2π−

K
2√

det(Cg(C−1n + C−1g )Cn)

∫
h

ph [h] exp(−1

2
(s− h)>C−1n+g(s− h)) (A24)

=
2π−

K
2√

detCn+g

∫
h

ph [h] exp(−1

2
(s− h)>C−1n+g(s− h)) (A25)

By interpreting the integral as an average over realizations of h distributed according to ph [·] we obtain Eq. (15).

3. The Neyman-Pearson detector

We focus now on proving Eq. (17). From Eq. (16) we obtain using assumptions from respective hypotheses

log
ps [s | H1]

ps [s | H0]
= log

Nn+g
Nn

+ log
〈
e−

1
2Wn+g(s,s)e−

1
2Wn+g(h,h)eWn+g(s,h)

〉
H1

− log〈e− 1
2Wn(s,s)〉H0 (A26)

(A27)
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Averaging over h at fixed data s we obtain:

log
ps [s | H1]

ps [s | H0]
= log

Nn+g
Nn

+ log
〈
e−

1
2Wn+g(h,h)eWn+g(s,h)

〉
H1

− 1

2
(Wn+g(s, s)−Wn(s, s)) (A28)

= log
Nn+g
Nn

+ log
〈
e−

1
2Wn+g(h,h)eWn+g(s,h)

〉
H1

+
1

2
G (s, s) (A29)

hence Eq. (17).

a. Gaussian case

The expansion of the detector statistic reads as follows:

Ŷ (s) =
1

2
C−1n (C−1n + C−1g )−1C−1n =

1

2
C−1n (C−1g (CgC−1n + I))−1C−1n (A30)

=
1

2
C−1n CgC−1n +O(

∥∥CgC−1n ∥∥2) (A31)

As in the main text, we start from the detector statistic in Eq. (18)

Ŷ (s) '
[

1

2
Č−1n ČgČ−1n

]AB
ij

sAi s
B
j = ǍABij sAi s

B
j (A32)

We employ here estimates of Cn,Cg labelled with aˇsymbol. They contain our prior knowledge about the noise and

the Gaussian signal. The mean of Ŷ under H0 reads:

µH0 =
1

2

[
Č−1n ČgČ−1n

]AB
ij
〈nAi nBj 〉 = Tr

[
ǍCn

]
(A33)

Similarly for the variance (we drop the detector indices because they follow the same contractions as the data indices)

σ2
H0

= ǍABij ǍCDkl 〈nAi nBj nCknDl 〉 −
(
Tr
[
ǍCn

])2
(A34)

= ǍijǍkl
(

[Cn]ik [Cn]jk + [Cn]il [Cn]jk

)
(A35)

=
1

2
Tr
[
Č−1n ČgČ−1n CnČ−1n ČgČ−1n Cn

]
(A36)

Similarly under H1 (using in addition 〈nAi gBj 〉 = 0):

µH1
=

1

2

[
Č−1n ČgČ−1n

]AB
ij
〈(n+ g)

A
i (n+ g)

B
j 〉 (A37)

= Tr
[
ǍCn

]
+ Tr

[
ǍCg

]
(A38)

= µH0
+

1

2
Tr
[
Č−1n ČgČ−1n Cg

]
(A39)

and for the variance

σ2
H1

= ǍABij ǍCDkl 〈(n+ g)
A
i (n+ g)

B
j (n+ g)

C
k (n+ g)

D
l 〉 (A40)

= ǍABij ǍCDkl [〈ninjnknl〉+ 〈ninjgkgl〉+ 〈nigjgknl〉+ 〈nigjnkgl〉+ (“n”↔ “g”)]− µ2
H1

(A41)

All terms with an odd number of n’s cancel out after averaging (both g and n are multivariate Gaussians). The fourth
order averages simplify through Isserlis theorem to:

σ2
H1

= ǍijǍkl [〈ninj〉 〈nknl〉+ 〈nink〉 〈njnl〉+ 〈ninl〉 〈nknj〉] +

+ ǍijǍkl [〈ninj〉 〈gkgl〉] + ǍijǍkl [〈ninl〉 〈gkgj〉] +

+ ǍijǍkl [〈nink〉 〈gjgl〉] + (“n”↔ “g”)− µ2
H1

(A42)
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cancellations are again due to the uncorrelatedness and zero mean of the two series. Upon contraction the expression
simplifies to

σ2
H1

= Tr
[
ǍCn

]2
+ 2Tr

[
ǍCnǍCn

]
+ Tr

[
ǍCn

]
Tr
[
ǍCg

]
+ 2Tr

[
ǍCgǍCn

]
+ (”n”↔ ”g”)− µ2

H1
(A43)

= σ2
H0

+ 4Tr
[
ǍCnǍCg

]
+O

(
‖Cg‖2

)
' σ2

H0
+ Tr

[
Č−1n ČgČ−1n CnČ−1n ČgČ−1n Cg

]
(A44)

Eqs. (A33), (A36), (A39), and (A44) prove results from the main text.

b. Gaussian diagonal–free case

Assuming uncorrelated noises across detectors (i.e. ČABn ∝ δAB), we subtract by hand the diagonal terms from the
statistics. We label the two “diagonal–free” hypotheses H0,G,H1,G and we have

Ŷ (s) =
1

2

[
Č−1n ČgČ−1n

]AB
ij

sAi s
B
j −→ ŶG (s) =

1

2

[
Č−1n

]AC
ik

[
Čg
]CD
kl

[
Č−1n

]DB
lj

sAi s
B
j

(
1− δAB

)
(A45)

Therefore we obtain a robust cross–correlation statistic (although not necessarily optimal) with the following proper-
ties:

µH0,G ∝
1

2

[
Č−1n

]AC
ik

[
Čg
]CD
kl

[
Č−1n

]DB
lj

δAB
(
1− δAB

)
= 0 (A46)

µH1,G
=

1

2

[
Č−1n

]AC
ik

[
Čg
]CD
kl

[
Č−1n

]DB
lj

CABg
(
1− δAB

)
(A47)

=
1

2
Tr
[
Č−1n ČgČ−1n /Cg

]
(A48)

where /CABg = CABg
(
1− δAB

)
defines a “diagonal–free” signal correlation. Since the noise is diagonal across detector

indices, and detectors can have heterogeneous spectra, we write

[
Č−1n

]AC
=
∑
ε

cεδACε (A49)

δACε ≡
{

1 ε = A = C
0 otherwise

(A50)

Then the detector statistic becomes

ŶG (s) =
1

2
cεikδ

AC
ε

[
Čg
]CD
kl

cδljδ
DB
δ

(
1− δAB

)
sAi s

B
j (A51)

Diagonal terms of Čg equals zero because δACε δDBδ
(
1− δAB

)
= 0 for C = D. Therefore we are free to subtract them.

ŶG (s) =
1

2
cεikδ

AC
ε

[
Čg
]CD
kl

(
1− δCD

)
cδljδ
DB
δ

(
1− δAB

)
sAi s

B
j (A52)

For the same reason we can add them back in the rightmost factor, i.e. neglecting
(
1− δAB

)
, because its effect is now

taken care of by δCD. In conclusion

ŶG (s) =
1

2
cεikδ

AC
ε

[
Čg
]CD
kl

(
1− δCD

)
cδljδ
DB
δ sAi s

B
j (A53)

=
1

2

[
Č−1n

]AC
ik

[
/̌Cg
]CD
kl

[
Č−1n

]DB
lj

sAi s
B
j (A54)

Therefore we can equivalently neglect the diagonal in our modelled signal cross–correlation Čg or in the product of
realizations sAi s

B
j . Consequently, with obvious definition

/̌A
AB
ij =

1

2

[
Č−1n /̌CgČ−1n

]AB
ij

(A55)
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we obtain

µH0,G
= 0 (A56)

µH1,G
= Tr

[
Ǎ/Cg

]
= Tr

[
/̌ACg

]
(A57)

For the variances:

σ2
H0,G

= /̌A
AB
ij /̌A

CD
kl 〈nAi nBj nCknDl 〉 −

(
Tr
[
/̌ACn

])2
(A58)

=
1

4

[
Č−1n /̌CgČ−1n

]AB
ij

[
Č−1n /̌CgČ−1n

]CD
kl

(
[Cn]

AC
ik [Cn]

BD
jl + [Cn]

AD
il [Cn]

BC
jk

)
(A59)

= 2Tr
[
/̌ACn /̌ACn

]
(A60)

σ2
H1,G

= σ2
H0,G

+ Tr
[
Č−1n /̌CgČ−1n CnČ−1n /̌CgČ−1n Cg

]
+

1

2
Tr
[
Č−1n /̌CgČ−1n CnČ−1n /̌CgČ−1n Cg

]
(A61)

= σ2
H0,G

+ 4Tr
[
/̌ACn /̌ACg

]
+O

(
‖Cg‖2

)
(A62)

Hence Eqs (27,28,29), and (30). It is worth noting that σH0 , σH1 and σH0,G , σH1,G are respectively identical in

functional form, with the substitution of Cg with its diagonal–free version /Cg.

c. Non–Gaussian case

We turn now our attention to the non–Gaussian case. By defining as in the main text sAi =
[
Č−1n

]AB
ij

sBj , direct

substitution in the general expression of Eq. (17) yields

Ŷ (s) =
1

2
G(s, s) + log

〈
e−

1
2Wn+g(h,h)eWn+g(s,h)

〉
(A63)

=
1

2

[
Čg
]AB
ij

sAi s
B
j + logχh

∫
h

p′h [h] eWn+g(s,h) (A64)

where we have defined a (normalized) probability distribution

p′h [h] ≡ χ−1h exp

[
−1

2
Wn+g (h, h)

]
ph [h] (A65)

χh ≡
〈
e−

1
2Wn+g(h,h)

〉
(A66)

Now, focusing on

logχh

∫
h

p′h [h] eWn+g(s,h) (A67)

we expand Wn+g

eWn(s,h)−G(s,h) = exp
[
sAi h

A
i − sAi

[
Čg
]AB
ij

[
Č−1n

]BC
jk
hCk

]
(A68)

We stress here again an important point: the separation of the signal into a “Gaussian” and “non–Gaussian” compo-
nent is somewhat arbitrary. If we choose to set g = 0, the entirety of the gravitational wave signal is described by h.
The double-whitened datapoints s are not affected by this change, while Eq. (A64) becomes:

Ŷ (s) = log

[〈
e−

1
2Wn(h,h)

〉∫
h

ph [h] e−
1
2Wn(h,h)es

A
i h
A
i

]
(A69)

Therefore the rightmost term in Eq. (A64) is the generating function of of the non–Gaussian component “connected
moments” (or “cumulants”), with s acting as the auxiliary variable, and realizations h distributed according to

ph [h] e−
1
2Wn(h,h).

Ŷ (s) = log
〈
es
A
i h
A
i

〉
(A70)
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Therefore by definition we can rewrite it as a power series in s.

Ŷ (s) =
1

2
[Cg]ABij sAi s

B
j + χh

∞∑
n=1

1

n!
Γ̌A1...An
i1...in

sA1
i1
. . . sAnin (A71)

This proves the general expression for the non–Gaussian detector in Eq. (32). Evaluating the expectation values under
both hypotheses, we get Eqs.(35) for H0.

µH0 = Tr
[
ǍCn

]
+ χh

∞∑
n=1

1

n!
Γ̌A1...An
i1...in

sA1
i1
. . . sAnin (A72)

= Tr
[
ǍCn

]
+ χh

∞∑
n=1

1

n!
Γ̌A1...An
i1...in

NA1...An
i1...in

(A73)

using Isserlis theorem we express the N’s as products of over all pair of indices (i.e. over
[
Č−1n CnČ−1n

]AB
ij

). Terms with

odd n cancel out to zero. Out of n = 2m indices, we get (2m− 1)!! contractions in couples (the number of complete
graphs with 2m vertices), which due to the simmetry of the Γ’s contribute identically after full contraction:

µH0
= Tr

[
ǍCn

]
+ χh

∞∑
m=1
n=2m

(n− 1)!!

n!
Γ̌A1...An
i1...in

[
Č−1n CnČ−1n

]A1A2

i1j2
. . .
[
Č−1n CnČ−1n

]An−1An
in−1jn

(A74)

= Tr
[
ǍCn

]
+ χh

∞∑
m=1
n=2m

1

n!!
Γ̌A1...An
i1...in

[
Č−1n CnČ−1n

]A1A2

i1j2
. . .
[
Č−1n CnČ−1n

]An−1An
in−1jn

(A75)

Hence Eq. (36). Results for the detector statistic with “scrambled-data” (Eqs (40,41) are proven directly in the main
text.

4. Toy model derivations

We show here the detailed derivations of the quantities related to the detector statistic Ŷ (s) for the toy model. We
start from Eq. (16), and we drop the Gaussian component. Moreover we account for si, hi being independent and
diagonal across detectors, so we can factorize the 〈. . . 〉 into product of expectation values for each hi, obtaining

Ŷ (s) = log

〈
exp

[
−1

2
Wn(h, h) +Wn(s, h)

]〉
(A76)

= log

〈
exp

[
−1

2
hAi h

B
j

[
C−1n

]ij
AB + hCks

D
l

[
C−1n

]kl
CD

]〉
(A77)

= log

〈∏
i

exp

[
−1

2

hAi h
B
j

σ2
A

δABδ
ij +

hCks
D
l

σ2
A

δCDδ
kl

]〉
(A78)

=
∑
i

log

〈
exp

[∑
A
−hi

(
hi − 2sAi

)
2σ2
A

]〉
(A79)

where 〈. . . 〉 in the last line is performed over a single datapoint hi, but over multiple detectors. By using standard
results on Gaussian integrals and defining

Aα =
1

2σ2
α

+
∑
A

1

2σ2
A

(A80)

Bi =
∑
A

sAi
σ2
A

(A81)

we obtain

Ŷ (s) =
∑
i

log

[ ∑
α=+,−

γα√
2πσ2

α

∫
dhi exp

[
−Aαh2i +Bihi

]]
=
∑
i

ŷ

(
σ
∑
A

sAi
σ2
A

)
(A82)
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with

ŷ(u) = log

[ ∑
α=+,−

γασ√
σ2
α + σ2

exp

[
σ2
α

2 (σ2
α + σ2)

u2
]]

(A83)

1

σ2
=
∑
A

1

σ2
A

(A84)

hence Eqs. (60) to (63). The basic building blocks for estimating the performances of the toy-model Neyman-Pearson
detector are the means and variances of the ŷ statistic. It is a non-trivial function of a single scalar, combination of
all the detector signals, under both hypotheses. Evaluating them can be achieved numerically as follows.

a. Non-scrambled data

Under the H0 hypothesis we need

µ0 = 〈ŷ (u(s))〉 (A85)

σ2
0 =

〈
ŷ (u(s))

2
〉
− µ2

0 (A86)

where

u(s) = σ
∑
A

nAi
σ2
A

(A87)

is a Gaussian variable with zero mean and unit variance. Under H1 it u(s) becomes

u(s) = σ
∑
A

nAi
σ2
A

+
hi
σ
, (A88)

the sum of a normal variable (the first term) and a (scaled) variable distributed according to the mixture model. So
the overall distribution is given by

p1(u) = γ+N
(
u,

√
1 +

σ2
+

σ2

)
+ γ−N

(
u,

√
1 +

σ2
−
σ2

)
(A89)

Therefore we get

µ0 =

∫
duŷ(u)N (u, 1) (A90)

σ2
0 =

∫
duŷ(u)2N (u, 1)− µ2

0 (A91)

µ1 =

∫
duŷ(u)p1(u) (A92)

σ2
1 =

∫
duŷ(u)2p1(u)− µ2

1 (A93)

which can be easily evaluated numerically.

b. Scrambled data

The detector statistic is

Y̊ (s) = Ŷ (s)− Ŷ (̊s) (A94)

=
∑
i

ŷ(u(si))− ŷ(u(s̊i)) (A95)

=
∑
i

ŷ(u(si))−
∑
i

ŷ(u(s̊i)) (A96)
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We need to evaluate the mean and the variance of the detector statistic. Under the hypothesis H0 we get

u(s̊i) | H0 = σ
∑
A

n̊Ai
σ2
A

(A97)

scrambling the noise realizations makes them uncorrelated across detectors, however the non-scrambled ones were
already so. So u(̊si) is a zero-mean unit variance variable, and therefore when evaluating the differences in (A95), we
have

µ̊0 = 〈ŷ (u(s))〉 − 〈ŷ (u(̊s))〉 . (A98)

The two averages are identical, as s̊ and s are identically distributed. Therefore µ̊0 = 0 as expected. Computing
explicitly the variance

σ̊2
0 =

〈
(ŷ(u(s))− ŷ(u(̊s)))

2
〉
− µ̊2

0 (A99)

=
〈
ŷ (u(s))

2
〉

+
〈
ŷ (u(̊s))

2
〉
− 2 〈ŷ (u(s))〉 〈ŷ (u(̊s))〉 (A100)

= σ2
0 + µ2

0 + σ2
0 + µ2

0 − 2µ2
0 (A101)

= 2σ2
0 . (A102)

where in Eq. (A102) we used the statistical independence by construction of the scrambled data s̊ upon the initial
ones. Under the hypothesis H1 we get

µ̊1 = 〈ŷ (u(s))〉 − 〈ŷ (u(̊s))〉 (A103)

where now

u(̊s) = σ
∑
A

n̊Ai
σ2
A

+ σ
∑
A

h̊Ai
σ2
A

(A104)

The first term is a normal Gaussian variable, as before. In the second term, each x = σh̊Ai /σ
2
A is a different realization,

distributed according to

pA(x) = γ+N
(
x,
σσ+
σ2
A

)
+ γ−N

(
x,
σσ−
σ2
A

)
(A105)

so the final distribution is given by the overall convolution

p̊(u) = N (u, 1) ? p1 (u) ? · · · ? pND (u) (A106)

where ND is the number of detectors available. This can be expressed as a sum of Gaussian distributions remembering
that

N (u, σ1) ?N (u, σ2) = N (u,
√
σ2
1 + σ2

2) (A107)

In closed form, it reads

p̊(u) =

ND∑
k=0

γk+γ
ND−k
−

∑
s∈Sk

N

u,
√√√√1 + σ2

ND∑
A=1

sA

σ4
A

 (A108)

where Sk is the set of ordered sequences of σ2
+ and σ2

−, of length ND, containing exactly k σ2
+s. For example, for

ND = 3

S0 = {σ2
−, σ

2
−, σ

2
−} (A109)

S1 = {σ2
+, σ

2
−, σ

2
−}, {σ2

−, σ
2
+, σ

2
−}, {σ2

−, σ
2
−, σ

2
+} (A110)

S2 = {σ2
+, σ

2
+, σ

2
−}, {σ2

+, σ
2
−, σ

2
+}, {σ2

−, σ
2
+, σ

2
+} (A111)

S3 = {σ2
+, σ

2
+, σ

2
+} (A112)



21

So the new mean is corrected by a term µD with respect to the statistics on the non-scrambled data

µ̊1 = µ1 − µD (A113)

µD =

∫
d̊sŷ(u)p̊(u) (A114)

And similarly for the variance, which gets a correction σ2
D =

∫
duŷ(u)2p̊(u)− µ2

D

σ̊2
1 =

〈
(ŷ (u(s))− ŷ (u(̊s)))2

〉
− µ̊2

1 (A115)

=
〈
ŷ (u(s))

2
〉

+
〈
ŷ (u(̊s))

2
〉
− 2 〈ŷ (u(s)) ŷ (u(̊s))〉 − µ̊2

1 (A116)

= σ2
1 + σ2

D (A117)

In conclusion, with respect to Eq. (A92) and Eq. (A93), Eq. (A113) and (A117) constitute a correction to the detection
statistics.

c. Gaussian search of a non–Gaussian background

If we ignore the non–Gaussianity of the toy model, and we model only its Gaussian part, we have〈
sAi s

B
j

〉
= δABδijσ

2
A under H0 (A118)〈

sAi s
B
j

〉
= δij

(
δABσ2

A + γ+σ
2
+ + γ−σ

2
−
)

= δij
(
δABσ2

A + σ2
h

)
under H1 (A119)

The standard Gaussian detector is

ŶG(s) =
∑
i

∑
A6=B

sAi s
B
i

σ2
Aσ

2
B

(A120)

Without loss of generality, we focus on a single datapoint and omit the i index. Under H0 we get mean and second
order moment

µ0,G =
∑
A6=B

〈
sAsB

〉
0

σ2
Aσ

2
B

=
∑
A6=B

σ2
AδAB
σ2
Aσ

2
B

= 0 (A121)

and

σ2
0,G + µ2

0,G =
∑
A6=B

∑
C6=D

〈
sAsBsCsD

〉
0

σ2
Aσ

2
Bσ

2
Cσ

2
D

=
∑
A6=B

∑
C6=D

δACδBDσ
2
Aσ

2
B

σ2
Aσ

2
Bσ

2
Cσ

2
D

+
∑
A6=B

∑
C6=D

δADδBCσ
2
Aσ

2
B

σ2
Aσ

2
Bσ

2
Cσ

2
D

= 2
∑
A6=B

1

σ2
Aσ

2
B

(A122)

Under H1 we get

µ1,G =
∑
A6=B

〈
hAhB

〉
1

σ2
Aσ

2
B

= σ2
h

∑
A6=B

1

σ2
Aσ

2
B

(A123)

and

σ2
1,G + µ2

1,G =
∑
A6=B

∑
C6=D

〈
nAnBnCnD

〉
1

σ2
Aσ

2
Bσ

2
Cσ

2
D

+
∑
A6=B

∑
C6=D

〈
hAhBhChD

〉
1

σ2
Aσ

2
Bσ

2
Cσ

2
D

+
∑
A6=B

∑
C6=D

〈
nAhBnChD

〉
1

σ2
Aσ

2
Bσ

2
Cσ

2
D

+

〈
nAhBhCnD

〉
1

σ2
Aσ

2
Bσ

2
Cσ

2
D

+

〈
hAnBnChD

〉
1

σ2
Aσ

2
Bσ

2
Cσ

2
D

+

〈
hAnBhCnD

〉
1

σ2
Aσ

2
Bσ

2
Cσ

2
D

(A124)

= 2
∑
A6=B

1

σ2
Aσ

2
B

+ 3
(
γ+σ

4
+ + γ−σ

4
−
)∑
A6=B

1

σ2
Aσ

2
B

4

+ 4σ2
h

∑
A6=B

∑
A6=C

1

σ2
Aσ

2
Bσ

2
C

(A125)
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5. Bayesian analysis for the toy model

The Bayesian inference can be constructed by parameterizing the signal hypothesis H1 with the model parameters
M. Therefore, the posterior reads:

p (M | s) = L(s | M)π(M) ∝ Nn+g
∫
h

e−
1
2Wn+g(s−h,s−h)ph [h | M]π (M) (A126)

For the toy model in Sec. III, M is specified by (σh, σ+, σ−) and, assuming stationary, uncorrelated noises across
detectors and g = 0, the following simplifications occur:

Nn+g = Nn =

(
ND∏
A=1

1√
2πσ2

A

)Ns
(A127)

Wn+g =Wn (s− h, s− h) =
∑
i

∑
A

(
sAi − hAi

)2
σ2
A

(A128)

Therefore the posterior reads:

p (M | s) ∝
(
ND∏
A=1

1√
2πσA

)Ns ∫ ∏
i

dhi exp

[
−1

2

∑
i

∑
A

(
sAi − hi

)2
σ2
A

]
p(hi | M)π (M) (A129)

which, as expected, decomposes into the product of likelihoods for each datapoint

p (M | s) = π(M)
∏
i

L(si | M) (A130)

L(si | M) =

(
ND∏
A=1

1√
2πσA

)∫
dh exp

[
−1

2

∑
A

(
sAi − h

)2
σ2
A

]
p(h | M) (A131)

=
∑

α=+,−

γα√
1 +

σ2
α

σ2

exp

{
−1

2
QαABsAi sBi −

∑
A

log
√

2πσA

}
(A132)

where the single datapoints collected across detectors are weighted by the quadratic form

QαAB =
1

σ2
Aσ

2
B

(
δAB −

σ2
α

σ2 + σ2
α

σ−1A σ−1B
σ−2

)
(A133)

6. Cumulants for the toy model

We provide here an explicit calculation for the cumulant generating function of the model presented in Sec. III. This
serves the reader with a mapping of previous approaches in literature into our formalism [41]. It is straightforward
to compute the cumulant generating function of a single h distributed according to Eq. (51)

K(z) = log

[
γ− exp

(
z2σ2
−

2

)
+ γ+ exp

(
z2σ2

+

2

)]
. (A134)

Being each hi independent (upon scrambling) and equally distributed across detectors, the cumulant generating
function of a set of N datapoints is simply a sum of K’s with independent auxiliary variables.

K
(
zA1
i1
, . . . , zAnin

)
=

n∑
j=1

K
(
z
Aj
ij

)
(A135)

Previous studies approximate p(h) with suitable asymptotic expansions (e.g. Gram-Charlier A or Edgeworth expan-
sions), and then make use of a subset of cumulants. Those approach may be reproduced by using
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ΓA1...An
i1...in

=∂A1
i1

. . . ∂Anin K
(
zA1
i1
, . . . , zAnin

)∣∣∣
z
Aj
ij

=0
(A136)

=1A1...Anδi1...inn

[
∂n

∂sn
K (s)

]
s=0

(A137)

≡1A1...Anδi1...innΓn (A138)

Differentiating k(s) yields the n-th cumulant Γn of the single h. The value is, as a function of the parameter models
(σ+, σ−, σh) (assuming without loss of generality γ+ > γ−) [65]

Γ2r =δ1rσ
2
+ −

2r∑
q=1

∞∑
k=1

kq−1
(
−γ−
γ+

)k
B2r,q

(
σ2
+, σ

2
−
)

(A139)

Γ2r+1 =0 (A140)

with Bk,q the partial exponential Bell polynomials [66].
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