
EDUCATION

Ten quick tips for bioinformatics analyses

using an Apache Spark distributed computing

environment

Davide ChiccoID
1*, Umberto Ferraro PetrilloID

2, Giuseppe CattaneoID
3

1 Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada,

2 Dipartimento di Scienze Statistiche, Sapienza Università di Roma, Rome, Italy, 3 Dipartimento di

Informatica, Università di Salerno, Fisciano (Salerno), Italy

* davidechicco@davidechicco.it

Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Some scientific studies involve huge amounts of bioinformatics data that cannot be ana-

lyzed on personal computers usually employed by researchers for day-to-day activities but

rather necessitate effective computational infrastructures that can work in a distributed way.

For this purpose, distributed computing systems have become useful tools to analyze large

amounts of bioinformatics data and to generate relevant results on virtual environments,

where software can be executed for hours or even days without affecting the personal com-

puter or laptop of a researcher. Even if distributed computing resources have become piv-

otal in multiple bioinformatics laboratories, often researchers and students use them in the

wrong ways, making mistakes that can cause the distributed computers to underperform or

that can even generate wrong outcomes. In this context, we present here ten quick tips for

the usage of Apache Spark distributed computing systems for bioinformatics analyses: ten

simple guidelines that, if taken into account, can help users avoid common mistakes and

can help them run their bioinformatics analyses smoothly. Even if we designed our recom-

mendations for beginners and students, they should be followed by experts too. We think

our quick tips can help anyone make use of Apache Spark distributed computing systems

more efficiently and ultimately help generate better, more reliable scientific results.

Introduction

Distributed computing and high-performance computing (HPC) systems have become popu-

lar in many bioinformatics research groups worldwide, both in academic scientific environ-

ments and in companies. Large bioinformatics data, in fact, often can represent and encode a

particular biological problem that can be investigated by a principal investigator and their

team. By bioinformatics data, we refer to biological and omics data processed through a com-

puter, in contrast to the raw biological data collected in a wet lab. When data are so large they

cannot be processed on a singular personal computer, the setup and usage of a distributed

computing system becomes necessary to generate meaningful results. For example, distributed

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chicco D, Ferraro Petrillo U, Cattaneo G

(2023) Ten quick tips for bioinformatics analyses

using an Apache Spark distributed computing

environment. PLoS Comput Biol 19(7): e1011272.

https://doi.org/10.1371/journal.pcbi.1011272

Editor: Francis Ouellette, McGill University,

CANADA

Published: July 20, 2023

Copyright: © 2023 Chicco et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-9655-7142
https://orcid.org/0000-0002-4308-5126
https://orcid.org/0000-0002-6983-4818
https://doi.org/10.1371/journal.pcbi.1011272
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011272&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011272&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011272&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011272&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011272&domain=pdf&date_stamp=2023-07-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011272&domain=pdf&date_stamp=2023-07-20
https://doi.org/10.1371/journal.pcbi.1011272
http://creativecommons.org/licenses/by/4.0/


computing can be used to align reads of human reference genome in epigenetics studies [1],

which is a task that would be difficult or impossible to perform on a personal computer.

To this end, team leaders of bioinformatics laboratories around the world every year decide

to allocate resources and funds to create distributed computing environments that can be

exploited by bioinformaticians, students, analysts, and collaborators. Even if a distributed

computing resource can be useful, often its users did not receive any formal training on how

to use it and, therefore, might make mistakes and create problems to themselves and/or to the

other users.

In this study, we propose some easy guidelines on how to setup and use an Apache Spark

distributed computing system efficiently, by avoiding common mistakes and pitfalls that we

noticed or experienced several times in our career.

Distributed computing, parallel computing, and high-performance

computing

Although parallel and distributed computing both fall into the broader realm of HPC, that is,

the ability to pool huge computational capability to solve hard problems in a reasonable

amount of time, they have significant differences.

Distributed computing is based on distributed systems. By this term, we refer to a collection

of independent computer systems connected by a network, modeled as a single supercomputer

system thanks to the use of common middleware software. Distributed computing can be used

to solve complex problems by breaking them down into smaller problems that are then

addressed independently by the nodes of a distributed system. In contrast, parallel computing

takes advantage of parallel systems. These systems also exploit huge computational power, but

this is achieved by concentrating a large number of computational units on a single machine.

In principle, parallel systems would be more efficient than distributed systems for a number of

reasons. For example, the different computational units share the same memory space, and

communication between them is almost instantaneous. However, distributed systems are far

more elastic. A hardware failure that targets a parallel system makes it unavailable, while the

same failure that occurs on a node of a distributed system has little effect on its availability.

Another example is scalability. It is possible to increase or decrease the computational

capacity of a distributed system simply by increasing or decreasing the number of computa-

tional systems used. This is not the case with parallel systems.

Designing, building, configuring, and maintaining a distributed system from scratch can be

a challenging task that requires many nontrivial skills and also comes at a significant cost. This

may discourage adoption of this technology when one has to carry out analysis like those

required in bioinformatics. However, there is a much more convenient shortcut. Instead of

building a distributed system, the interested user can simply rent one from cloud computing

providers, just for the time needed to perform the proposed experiments. In such a case, no

special technical skills are required, and the requested distributed system is ready for operation

in a few clicks and in a few minutes.

The advantages of distributed computing

A distributed cluster is the best choice if one is looking for a computational platform able to

scale out when the size of input data increases. If time spent for reading the input dataset is too

long, the input/output (I/O) subsystem of the server (multicore shared memory) becomes the

bottleneck. A distributed platform decouples the storage from the computing resources leaving

each node to process locally stored data without affecting any other node. On the other hand,

such a distributed platform requires complex components like Resource Manager (RM),

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 2 / 16

https://doi.org/10.1371/journal.pcbi.1011272


distributed file system, job scheduler, etc. These components are crucial for the cluster

resource management and for the correct application execution. They are difficult to imple-

ment They are difficult to implement and install for beginners, but there are many commercial

proposals that provide computing resources with these components already installed and con-

figured, such as Amazon EMR (Elastic MapReduce), Google Dataproc, Databricks Lakehouse

Platform, Cloudera, and many others. These cloud enablers deliver fully managed and highly

scalable services for running Apache Hadoop and Apache Spark on cloud resources reducing

the installation and the setup effort. We are not inviting to use these platforms and of Dockers,

Containers, Singularity, and Kubernetes technologies in this article because we designed these

quick tips for beginners, who do not have the advanced skills necessary to correctly configure

and use these tools.

We recommend choosing a particular platform only if all its components are clearly

described. Do not write the software code to implement them by yourself, since it may result a

burdensome, difficult job.

The context

A study by Giuseppe Agapito [2] described the main applications of distributed computing in

computational proteomics, while an article by Terry Disz and colleagues [3] and an article by

Shih-Nung Chen and colleagues [4] reported the main challenges of distributed computing

usage in computational biology.

In the PLOS Computational Biology education series, Jamie J. Alnasir [5] proposed some

practical quick tips for an easy usage HPC clusters, and Cole and Moore [6] introduced some

quick tips for designing biomedical workflows on cloud computing resources. Although inter-

esting, these tips focus only on Linux-based HPC and on cloud computing workflows, respec-

tively, while our study here refers specifically to distributed computing, giving broader

recommendations on how to arrange and utilize a distributed computing resource.

Our guidelines for managing an Apache Spark distributed computing resources, if taken

into practice, can help you avoid many headaches and make your computational life easier.

Although we wrote our quick tips for beginners and students, we believe they should be kept

in mind by experts, too.

Tip 1: Use the distributed computing resources for your

bioinformatics analyses only if it is necessary

Even if the institute or the lab where you work or study provides a distributed computing sys-

tem, it does not mean that you need to use it for all the bioinformatics analyses that you need

to carry out. On the contrary, as simple as it might seem, we recommend you utilize the dis-

tributed computing resources only if it is necessary. For example, let us suppose you need to

analyze the GSE116660 dataset of microarray gene expression of patients with neuroblastoma

[7,8], contained in a tar file of 80 megabytes (MB). You can perform your bioinformatics anal-

ysis on your personal computer, if its computational power and its available memory is suffi-

cient, without using the distributed system. On the other hand, there are cases where one has

to analyze datasets so big, that they would be intractable on a personal workstation or even a

single computing server. Think, for example, of the huge matrices returned by single-cell

RNA-seq experiments. These can easily reach hundreds of gigabytes in size, and their analysis,

even if also for basic tasks like normalization [9], becomes likely out of reach for many non-

distributed computing systems.

This practice, if applied constantly, would leave the distributed system nodes uncongested

and more available to all the users and would give you the opportunity to keep your data and

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 3 / 16

https://doi.org/10.1371/journal.pcbi.1011272


scripts at hand on your computer. Generally speaking, when one has a huge amount of geno-

mic data (in terms of gigabytes) in a variety of formats that can be split and processed in

smaller autonomous subsets, then distributed computing can be the right technology to use.

On the other hand, keep in mind that a software program that works well on your personal

computer might not necessarily function on a distributed system, and vice versa.

Tip 2: If you have the possibility to build a new distributed

computing system from scratch, choose Apache Spark

We envisioned the tips of this article for users of distributed computing systems who are inter-

ested in doing bioinformatics analyses, but this tip is oriented to researchers who might have

the chance to design their own computational environment from scratch by choosing a tar-

geted distributed platform, such as principal investigators or team leaders starting their own

labs. For those having this privilege, we recommend Apache Spark [10,11]. In particular, we

suggest to pick Apache Spark, with the addition of Apache Hadoop because of its resource

scheduling capabilities as implemented by the YARN module.

Apache Spark is an open-source unified analytics engine employed in many applications

regarding computational biology [12] and machine learning [13]. Even if no common consen-

sus has been reached in the hi-tech community regarding the best framework for distributed

computing, we believe that, without any specific requirements, Apache Spark has some key

advantages that make it a better choice than other platforms, such as Apache Hadoop alone

and Apache Flink [14–21].

Apache Spark, in fact, results being usually faster than Apache Hadoop alone [22] when the

application and the input size exploit the ability to apply the transformations directly in-mem-

ory. On the other hand, Apache Flink is stream oriented and this feature makes this tool often

more complex to apply to genomic studies based on sequences analysis. Apache Spark has the

advantage of providing several abstract data types with the related highly specialized applica-

tion programming interfaces (APIs) (such as resilient distributed dataset (RDD) [23], dataset,

and dataframe) and multiple software packages such as the MLlib library for effective iterative

in-memory machine learning computations [24]. Moreover, Apache Spark has a high-level

graphical user interface (GUI) to profile the application and allows interactive shell mode. Pro-

grams can be written in Scala, R, Python, Java, and Apache Spark SQL [25].

Even if we recommend not using Apache Hadoop as distributed computing framework, we

suggest taking advantage of it as cluster manager, since it provides a full set of cluster services

like the Resource Manager, a coarse grain scheduler (YARN), a distributed file system, a node

failure recovery mechanism, low-level communication monitoring, and a user web GUI. Our

general tip, in fact, is about using the Apache Spark framework with Apache Hadoop as cluster

manager.

Tip 3: Use only the framework-native programming language if

sufficient, or open source programming languages and software

libraries otherwise

Framework-native programming language

When starting a new bioinformatics project on Apache Spark, you face the decision about

which programming language and software to use: In this scenario, this choice may heavily

affect the performance and the development time and is not simply a matter of taste. Often, it

is driven by the number of necessary functions already implemented by the libraries brought

by the language or by our experience gained in different previous contexts.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 4 / 16

https://doi.org/10.1371/journal.pcbi.1011272


As Apache Spark has been developed using Scala [26], we suggest you to develop your soft-

ware code in this framework-native programming language, if its software libraries offer good

coverage of your needs.

We define foreign programming languages as all programming languages that were not

used to implement the specific platform. Many foreign languages, such as R and Python, can

be used to implement Apache Spark tasks, but using Scala allows users to access all the APIs

offered by the Apache Spark environment included the public methods of its internal data

structures. On the other hand, Python or R can only allow users to access the end user Apache

Spark APIs that have been wrapped and exposed by Python or R high-level functions prevent-

ing the extension of the features provided by Apache Spark.

Choosing a foreign language has another side effect: In fact, the wrappers from developer

language to framework-native language may come to the execution of hidden huge operations

necessary to translate the basic data types (for example, the way data is stored in memory by

the Python or R interpreter) to the one used by the Apache Spark platform or Scala. In other

words, even if Apache has developed a language-independent columnar memory format for

flat or hierarchical data, called Arrow, the amount of work spent to collect a huge amount of

records to the Spark driver (as defined in S1 Fig) from the output of different tasks increase the

execution time because data should be translated in a foreign format. We represent the Apache

Spark’s stack layers in Fig 1.

Using the framework-native programming language will bring you several additional

advantages:

1. A lower overhead in terms of number of translation of data to be processed;

2. A better integration with the platform that will provide you with a lot of framework-native

tools to support monitoring and debugging;

3. A better integration with programming tools necessary for the distributed execution;

4. The availability of library highly optimized for the execution on the target platform (such as

serializers like Apache Avro [27], Apache Parquet [28], or Apache Thrift [29], which can

heavily affect the overall application performance when the amount of data increases).

The third point above is particularly meaningful when the platform hides the distributed

computing details. For instance, when your software code is packaged in a Java archive (JAR

file) with all its external dependencies, it requires only that the Java virtual machine (JVM)

must be installed on each worker node to be executed. On the other hand, Python or R pro-

gramming environment do not provide a utility like Apache Maven to produce such a self-

contained archive. In such a case, the user must take care of installing all the required modules

(choosing the right version) on each node of the cluster (Fig 1) and upgrading all the nodes

when a new version of a module is required. One possible solution to this problem is to use

containers to pack everything needed to run an Apache Spark worker into a single image file,

including the software to be run with all its external dependencies. This possibility is recog-

nized by the standard Apache Spark distribution, as evidenced by the availability of a reference

Docker image for new installations.

Even though we recommend to develop your software code in Scala on Apache Spark, we

know that this programming language is often uncommon in bioinformatics labs worldwide,

and, therefore, it might be difficult for someone to learn it from scratch or to find someone

who can use it in a bioinformatics team. If learning Scala was too time-consuming for you and

nobody in your team was able to use it for software implementation, we recommend settling

for Java, since Java software code can be executed on JVMs.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 5 / 16

https://doi.org/10.1371/journal.pcbi.1011272


Open source programming languages

If the software packages of the framework-native programming language within a distributed

system are insufficient for your bioinformatics analyses, we suggest you to always employ open

source programming languages such as R and Python and to avoid proprietary software.

Using open source software would make it easier for you to share code scripts and programs

among your collaborators, within your institute and outside of it, and to publish it online,

without worrying about license constraints.

R is currently the most used programming language in bioinformatics, especially thanks to

the spread of the Bioconductor [30] and Bioconda [31] software suites. Python is currently the

most utilized programming language worldwide, including in the machine learning commu-

nity [32]. Among software programs, it is worth mentioning Galaxy, a popular open source

program for bioinformatics analyses [33].

Regarding infrastructure for distributed computing, we suggest the open source project

Apache Spark, as explained in the previous tip. Apache Spark provides interfaces to R and

Python through SparkR [34] and PySpark [35]. For operating systems, we recommend Linux

Ubuntu, both for personal computers and for servers. Caveat emptor: At the beginning of each

bioinformatics project, make sure that all the software packages needed for your analyses are

Fig 1. The Apache Spark layered architecture. The colors are used only to distinguish the elements. From bottom to top, the first layer shows some of

the most common storage options used by Apache Spark applications to store and retrieve external data: the local file system, the Apache Hadoop

HDFS file system, the S3 file system, the Ceph file system, and the GCS file system. The second layer shows the scheduling engines that support the

ability to run Apache Spark computations across the nodes of a distributed system: Apache Hadoop YARN, Mesos, Kubernetes, and the cluster

manager integrated with Apache Spark. The Kubernetes option has been included despite missing some relevant features, such as resource

management and job queues, because it is frequently used in the real world. The third layer shows the core of the Apache Spark framework. The fourth

layer shows the standard libraries that are integrated with Apache Spark: SparkSQL, useful for querying very large datasets using a dialect of the SQL

language; MLlib, a library of ready-to-use machine learning algorithms and methods; GraphX, a library for representing and processing very large

graphs using a distributed approach; and Spark Streaming, a library for distributed processing of streaming data. The top layer lists the programming

languages that can be used to write Apache Spark applications.

https://doi.org/10.1371/journal.pcbi.1011272.g001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 6 / 16

https://doi.org/10.1371/journal.pcbi.1011272.g001
https://doi.org/10.1371/journal.pcbi.1011272


installed on each node of the distributed computing system and that they are all aligned to the

same package version. For example, if you know that your R script uses the GEOquery soft-

ware library version 2.64.2 from the Bioconductor project [36], before executing it, make sure

that exactly the GEOquery version 2.64.2 is installed on each node of the distributed comput-

ing system you use. If this package is absent from one of the nodes or is installed with a previ-

ous version, errors will happen during the analysis execution.

Tip 4: Keep the data files compressed

Genomic data can easily reach huge sizes. However, some popular encoding formats (for

example, FASTA and FASTQ) are space inefficient. Here, data compression is a standard solu-

tion for storing data on persistent devices while avoiding wasted space. The usual approach to

data analysis assumes that input data are uncompressed. Thus, before a compressed dataset is

loaded, it must be decompressed. This means that a (typically enormous) compressed file is

loaded into memory, where it is decompressed into a (usually huge) file that is progressively

saved back on persistent storage. When finished, the decompressed file is loaded into memory

again for analysis. Indeed, storage devices tend to have access times and latency that can be

orders of magnitude slower than those of internal memory. As a result, repeatedly saving and

loading large amounts of data can take more time than the analysis itself, in some cases. A solu-

tion is to avoid prior decompression altogether (especially for datasets that only need to be

processed once) and, instead, perform this operation directly in memory at analysis time. In a

nutshell, when performing a computational analysis on a distributed system, do not decom-

press your compressed data files in advance.

In distributed computing frameworks like Apache Spark, reading compressed files can be

done using input readers that support standard compression formats and can transparently

read and decompress compressed datasets (on the fly) [37]. A word of caution should be spent

here about nonsplittable compression formats. When they are used, the contents of an archive

can be decompressed only if the compressed file as a whole is available on a single computer.

This may imply a severe performance overhead, especially when working with very large com-

pressed files. Instead, splittable compression formats, on the other hand, fit well with Apache

Spark’s distributed approach, since each worker node can decompress a portion of a com-

pressed archive on its own, without interacting with the nodes that contain the remaining

portions.

Some recent advancements in this area [38] provide the possibility to easily extend this

capability to support either lossless or lossy compression formats specialized for genomic data,

such as DSRC [39] and FQZComp [40], even when these are not natively splittable.

Developing ad hoc input-reading functions is also an option that we suggest you consider

(Tip 5). However, in the general case, we recommend preserving the original format of com-

pressed files as their preliminary decompression or recompression using another format may

have a very negative impact on the overall analysis time.

Tip 5: Make your input functions specialized to the formats

preserving the original input representation

Always encode your data defining your own specialized data types. Whenever you are design-

ing your application from scratch, consider that it is always convenient to encapsulate in your

classes the basic functions in charge to process input data instead of using generic data types

(and functions). For example, genomic sequences could be represented by strings, but this

representation is inefficient for two reasons: First, each nucleotide will be coded in memory

with 8 bits (even 16 in some cases) instead of 2 bits; second, this redundant representation

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 7 / 16

https://doi.org/10.1371/journal.pcbi.1011272


could introduce errors if characters other than those allowed are entered in the genomic

sequence.

Moreover, often your application must read a huge input from storage. In this case, it is

always worth investing your programming effort to implement specialized input functions

(called input reader according to the Apache Hadoop terminology). To manage your data,

always use either specialized readers for standard input formats, or otherwise proprietary for-

mats based on extensible binary formats, if necessary. In this study, we recommend using only

open source programming languages, software programs, and formats (Tip 3). However, if

there are no open source formats to save specific files preserving all the information, it is okay

to employ proprietary formats.

So, if you have to read data in standard input formats, you must implement your functions

for hiding and encapsulating all the characteristics of your input format. If, on the other hand,

you can choose how data are stored on disk, it is necessary to use an extensible binary format

such as Apache Avro [27], Apache Parquet [28], or Apache Thrift [29]. In this case, you must

consider that each record is a structure stored in a sequence file. When you have to read or

write huge amounts of data, the JavaScript Object Notation (JSON) and, even worse, the

eXtensible Markup Language (XML) simply cannot be used for this purpose because of the

enormous effort (in terms of central processing units cycles) spent for parsing every record

[41,42]. Specific libraries to handle genomic files in particular formats are also available on

Apache Spark: Hadoop-BAM [43], Disq [44], Glow [45], Hail [46], Sequila [47], and ADAM

[48], just to mention a few. We report in Fig 2 the case of a distributed Apache Spark align-

ments counter built using the Disq [44] framework and able to process BAM/CRAM/SAM

files.

Fig 2. The Java source code of an Apache Spark–based distributed alignments counter implemented using the

Disq [44] framework.

https://doi.org/10.1371/journal.pcbi.1011272.g002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 8 / 16

https://doi.org/10.1371/journal.pcbi.1011272.g002
https://doi.org/10.1371/journal.pcbi.1011272


For example, considering the k-mer count problem for sequences in FASTA format [49], a

specialized input reader could provide filtered input data to the application containing only

the representations of the nucleotide sequence without any foreign character such as newline

or linefeed and, therefore, without requiring the developer to worry about the short or long

format options [50–53].

In this way, the development of software code will be much faster (and error free) while the

maintenance for the evolution of the supported formats will be more direct and effective.

Implementing your input readers can be a huge opportunity to separate the data processing

code from the code that performs I/O partitioning the data on different nodes.

Tip 6: Partition your data fairly

Computation occurs where data are. Also, the more data you have, the longer their processing

time will likely be. In a distributed setting, this roughly translates in the need of ensuring that

all the computation units are fed with input data requiring, approximately, the same process-

ing time. In many cases, it is enough to partition an input dataset in n parts of the same size

and then send for processing each part to one of the n computing units being used.

However, the processing time of a data batch may depend on several factors other than its

size. For instance, when building a distributed algorithm for counting the k-mers in an input

genomic sequence, one should consider that some k-mers tend to be much more frequent

than other ones [54,55]. So, the computing nodes responsible for those k-mers tend to have

much more work to do than other ones. In such a case, an optimal partitioning scheme should

know in advance the frequency distribution of the k-mers being counted (or at least an

approximation of it), for implementing a well-balanced partitioning scheme. Ideally, one

could use a problem-aware strategy able to return a partitioning for an input dataset yielding a

uniform workload distribution. This issue has been considered in many contributions [56,57],

and a popular solution is to determine an approximation of the k-mers distribution by running

the counting algorithm on a small sample of the input data. Then, use the outcoming experi-

mental k-mers distribution to derive a well-balanced partitioning scheme.

In the more general case, it is possible to use the user interface (UI) provided with Apache

Spark to analyze the way data is split in blocks and processed at each step of a distributed algo-

rithm and derive useful information about how this partitioning can be improved to achieve

an even distribution of workload.

Users of Apache Spark can also consider utilizing Adaptive Query Execution [58], which

might help by automatically optimizing the number of partitions and skew joins.

Tip 7: Keep in mind that more computing units do not imply faster

executions

Intuitively, the more computing units one can employ in a distributed computation, the shorter

the consequent execution time. This empirical rule tends to be true for embarrassingly parallel

problems, where it is easy to decompose a starting problem into smaller problems that can be

solved each by each computing unit, independently of the others. But that is not always the case.

In fact, there are several factors that come into play and influence the actual execution of a

distributed computation. Some of these factors concern the time required to move data over

the network, to reach nodes where it will be processed, as well as the time required to collect

the result of this processing. Indeed, scattering small portions of data over a large number of

computing nodes may become self-defeating, as the data transmission time might easily over-

come the performance gain arising from the distributed execution. This problem can indeed

be alleviated by using distributed file systems, like HDFS, to initially scatter the content of a

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 9 / 16

https://doi.org/10.1371/journal.pcbi.1011272


dataset. However, it is still true that, during a Spark execution, there may be still need of mov-

ing data from a computing unit to another one, when performing operations requiring scat-

tered data to be aggregated and transformed because of a Reduce operation.

Conversely, keeping the data in a few spots may completely eliminate the need for expen-

sive data transmission operation, even if at the cost of a reduced parallelism. For example, this

situation happens when evaluating the pairwise alignment-free distance between the elements

of a large genome collection [59]. Here, increasing the number of computing nodes reduces

significantly the time required to evaluate distances between genomes but requires as well

much longer executions due to the time needed to transmit genomic data from each node to

the other ones over the network.

In a few words, we recommend you experiment with the geometry of your distributed system

by assessing the trade-off between the usage of a larger number of computing units and the

increased communication overhead that this could imply. The most relevant parameters to take

into account for this purpose are those related to the number of computing nodes being used, the

number of computing units to use on each node, the number of Spark executors running on each

of these units, and the number of partitions used to scatter input data over distributed data struc-

tures. For a more extensive review of these parameters, we refer the interested reader to [60].

Tip 8: Properly tune your cluster configuration

Apache Spark is often thought to automatically provide the services to run the application on a

cluster. However, after implementing an application, it is always necessary to dynamically tune

Apache Spark’s behavior on the specific instances of both the available computing resources

(cluster architecture) and the input dataset characteristics (size, structure, etc.), for performance

optimization goals. This operation allows one to tailor the available resources to the application

context in order to exploit most of the opportunities provided by the programming environ-

ment, such as data locality. So, before implementing an Apache Spark program, it is crucial to

understand how Apache Spark will map it on its underlying execution model [61,62].

Although all the other tips of this study are meant for beginners, this topic requires a deep

knowledge of distributed computing. Beginners can skip this tip and pass it to their systems

administrators, while those interested in a complete understanding can find a detailed descrip-

tion of the Apache Spark execution model in S1 Text.

Apache Spark does not strictly follow the Apache Hadoop model

A common mistake is to extend the Apache Hadoop configuration principles to the Apache

Spark framework too. In fact, while Apache Hadoop has been designed to execute one (Map

or Reduce) task for each container, in the Apache Spark environment, the Driver automatically

tries to launch as many tasks as possible in a single container (according to the available

resources) exploiting the multithread capability of the JVM without any extra effort of the

application developer.

Therefore, instead of configuring several small containers on each node, it is much more

efficient (and comfortable for the user) to have one or a rather limited number of containers

on a single node. In this discussion, the following three aspects must be considered: the JVM

initialization is extremely slow and its memory footprint is relevant; memory fragmentation

may often lead to unused memory holes; and configuring many containers makes the resource

balancing much less efficient.

On the other hand, containers with a memory size bigger than 32 gigabytes (GB) can lead

to an extra effort during garbage collection operations. So, when your cluster has nodes with a

huge amount of memory, configuring multiple containers can help to reduce the overhead.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 10 / 16

https://doi.org/10.1371/journal.pcbi.1011272


Monitoring and profiling your application is the first choice

When the application is ready to run, it is always necessary to profile the entire execution with

dedicated tools both internal and external to the Apache Spark environment. On the Apache

Spark side, you must consider the monitoring and instrumentation tools provided by the

Apache Spark environment itself. During the execution (and also after the execution if the his-

tory server has been started), a web UI can be used to grab useful information about the follow-

ing: the list of scheduler stages and tasks; a summary of RDD sizes and memory usage; specific

environment configuration; and information about the running executors.

On the other hand, Apache Hadoop and Apache Spark during the job execution produce a

reach set of metrics that can be collected (via REST API or Java Management Extensions JMX

interfaces) by specialized tools like Apache Prometheus [63] or SparkMeasure [64].

It can be also useful to check the effective resource usage on each node during each stage of

the job execution, with resource-oriented monitoring tools like Zabbix [65] discovering any

bottlenecks that result in unused resources or under estimated running time and checking

how the application model fits with the available resources.

Tip 9: Run your bioinformatics analysis on a toy subset of your

data first, to test the functioning of your distributed computing

system

A common mistake of beginners, when launching a bioinformatics analysis for the first time,

is executing it on the whole dataset. This decision might start a software execution that can

take hours or days and, in case of execution error or configuration error, could make the bioin-

formatician waste a lot of time.

A general common practice in computer science to keep in mind is to generate a small toy

subset (derived from the complete dataset), to run the bioinformatics analysis that could last

few minutes, and, eventually, to check that everything went well and no errors were generated

during the usage of the distributing computing resources. Of course, the final results of these

executions would have no scientific meaning but would allow you to verify that your software

was developed and designed without mistakes. Instead, if errors were generated, handle them

and fix their corresponding bugs in your script.

Once you complete the execution of your bioinformatics analysis on this toy subset without

mistakes, you could relaunch the software execution on the whole dataset. When generating

the toy subset, make sure the data elements are selected randomly, and the execution does not

take more than 15 minutes. Randomly pick 0.1%, 1%, or 10% of the whole dataset. This toy

subset should be small, of course, but it also should large enough to let you test the computa-

tional resources of the distributed system. Make sure your output files contain the suffix “toy,”

such as test_results_2022-05-03_h1434_toy.txt, for example.

Tip 10: Document everything and software profile everything

Documentation is a key pillar of each successful project, not only in bioinformatics and not only

in scientific research [66]. To this end, we suggest you to keep a notebook where you document

all the aspects of your daily work: which commands, which libraries, which data, which methods

you use, and the reasons why you picked them [67]. Write down any dirty trick you need to use

to make software work, if applicable. And take note of your scientific decision, too: Why these

data? Why that method? What is the scientific question we are investigating here? Document

your software, by writing explanations related to the main functions and commands within the

code files. Having documentation detailed and complete will be invaluable later, especially when

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 11 / 16

https://doi.org/10.1371/journal.pcbi.1011272


you and your colleagues will write a scientific paper regarding your bioinformatics project [68].

Writing detailed documentation is the best gift you can do to your future self [69–71]. If docu-

mentation written by humans is important, so it is the documentation written by computers.

This is why the second part of our advice is to software profile everything [72]. Make your soft-

ware monitor all the resources and save logs of everything happening during its execution: which

partitions are used and when, which dataset files are read and when, etc. This software profiling

documentation will be useful, especially in case some error happens during the software execu-

tion. Software profiling is also crucial to identify possible performance bottlenecks in the execu-

tion of a software [73]. These bottlenecks could be caused by a variety of reasons like a

misconfiguration in the underlying distributed system, an inefficient algorithmic approach to a

problem being considered, or a bad implementation. By profiling its execution, it is possible to

pinpoint where a code spends most computational resources, and what it is doing.

Conclusions

With the exponential growth and availability of bioinformatics data, distributed computing

resources have become pivotal in many computational biology research groups worldwide.

Even if important, the arrangement and the usage of distributed computing systems might not

be easy, especially for biologists and medical principal investigators, who usually lack formal

training on these topics.

In this context, we propose these ten guidelines on how to set up and how to use an Apache

Spark distributed computing environment and resources to analyze bioinformatics data, by

avoiding common mistakes that we experienced or saw in our past projects. We designed our

guidelines for beginners, students, biologists, and unexperienced users, but we believe they

should be kept in mind by experts, too. We believe our quick tips, if taken into practice cor-

rectly, can guarantee a better and more efficient usage of Apache Spark distributed computing

clusters, ultimately contributing to generate more robust results and outcomes.

Supporting information

S1 Text. Description of the Apache Spark framework.

(PDF)

S1 Fig. The Apache Spark computational model. Here, we depict the Apache Spark compu-

tational model and how a user job and its related tasks are executed on the underlying cluster

managed by Apache Hadoop YARN. When the user launches their Job, first, Spark starts a

dedicated JVM to execute the Driver, which manages the so-called Spark Context. Then, it

splits the input applying the programmed Spark API (local or wide transformations on input

RDD) and planning a list of tasks (orange boxes). Each task is executed by an executor (the

green boxes) running on a node of the cluster according to the resource scheduled by the

Hadoop Resource Manager. Each executor is executed by a dedicated JVM and may run multi-

ple tasks concurrently. Each cluster node (yellow boxes) may be configured to run several

executors (each one in a Hadoop Container). The resources are managed by the Resource

Manager, which monitors container status (green arrows), while the task executions and the

related I/O are controlled by the Driver (blue arrows). API, application programming inter-

face; I/O, input/output; JVM, Java virtual machine; RDD, resilient distributed datasetAU : AnabbreviationlisthasbeencompiledforthoseusedinS1Fig:Pleaseverifythatallentriesarecorrectlyabbreviated:.

(PDF)

Author Contributions

Conceptualization: Davide Chicco.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 12 / 16

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011272.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011272.s002
https://doi.org/10.1371/journal.pcbi.1011272


Data curation: Davide Chicco, Umberto Ferraro Petrillo.

Formal analysis: Davide Chicco, Umberto Ferraro Petrillo, Giuseppe Cattaneo.

Investigation: Davide Chicco, Umberto Ferraro Petrillo, Giuseppe Cattaneo.

Methodology: Davide Chicco, Umberto Ferraro Petrillo, Giuseppe Cattaneo.

Project administration: Davide Chicco, Umberto Ferraro Petrillo.

Resources: Davide Chicco, Giuseppe Cattaneo.

Supervision: Davide Chicco.

Validation: Umberto Ferraro Petrillo.

Visualization: Davide Chicco.

Writing – original draft: Davide Chicco, Umberto Ferraro Petrillo, Giuseppe Cattaneo.

References
1. Eng A, Verster AJ, Borenstein E. MetaLAFFA: a flexible, end-to-end, distributed computing-compatible

metagenomic functional annotation pipeline. BMC Bioinformatics. 2020; 21(1):1–9.

2. Agapito G. Parallel and distributed computing methodologies in bioinformatics. In: Proceedings of IDCS

2019 –the 12th International Conference on Internet and Distributed Computing Systems. Springer;

2019. p. 498–507.

3. Disz T, Kubal M, Olson R, Overbeek R, Stevens R. Challenges in large scale distributed computing: bio-

informatics. In: Proceedings of CLADE 2005 –the International Workshop on Challenges of Large Appli-

cations in Distributed Environments. IEEE; 2005. p. 57–65.

4. Chen SN, Tsai JJ, Huang CW, Chen RM, Lin RC. Using distributed computing platform to solve high

computing and data processing problems in bioinformatics. In: Proceedings of IEEE BIBE 2004 –the

4th IEEE Symposium on Bioinformatics and Bioengineering. IEEE; 2004. p. 142–148.

5. Alnasir JJ. Fifteen quick tips for success with HPC, i.e., responsibly BASHing that Linux cluster. PLoS

Comput Biol. 2021; 17(8):e1009207. https://doi.org/10.1371/journal.pcbi.1009207 PMID: 34351904

6. Cole BS, Moore JH. Eleven quick tips for architecting biomedical informatics workflows with cloud com-

puting. PLoS Comput Biol. 2018; 14(3):e1005994. https://doi.org/10.1371/journal.pcbi.1005994 PMID:

29596416

7. Parodi M, Raggi F, Cangelosi D, Manzini C, Balsamo M, Blengio F, et al. Hypoxia modifies the transcrip-

tome of human NK cells, modulates their immunoregulatory profile, and influences NK cell subset

migration. Front Immunol. 2018; 9:2358. https://doi.org/10.3389/fimmu.2018.02358 PMID: 30459756

8. Gene Expression Omnibus. GSE116660: Human NK cells under normoxic and hypoxic conditions;

2022. Available from: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116660 URL visited on

4th May 2023.

9. Borella M, Martello G, Risso D, Romualdi C. PsiNorm: a scalable normalization for single-cell RNA-seq

data. Bioinformatics. 2021; 38(1):164–172. https://doi.org/10.1093/bioinformatics/btab641 PMID:

34499096

10. Spark Apache. Unified engine for large-scale data analytics; 2014. Available from: https://spark.

apache.org/ URL visited on 4th May 2023.

11. Shaikh E, Mohiuddin I, Alufaisan Y, Nahvi I. Apache Spark: a big data processing engine. In: Proceed-

ings of MENACOMM 2019 –the 2nd IEEE Middle East and North Africa COMMunications Conference.

IEEE; 2019. p. 1–6.

12. Guo R, Zhao Y, Zou Q, Fang X, Peng S. Bioinformatics applications on Apache Spark. GigaScience.

2018; 7(8):giy098. https://doi.org/10.1093/gigascience/giy098 PMID: 30101283

13. Assefi M, Behravesh E, Liu G, Tafti AP. Big data machine learning using Apache Spark MLlib. In: Pro-

ceedings of Big Data 2017 –the 5th IEEE International Conference on Big Data. IEEE; 2017. p. 3492–

3498.

14. Ahmed N, Barczak AL, Susnjak T, Rashid MA. A comprehensive performance analysis of Apache

Hadoop and Apache Spark for large scale data sets using HiBench. J Big Data. 2020; 7(1):1–18.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 13 / 16

https://doi.org/10.1371/journal.pcbi.1009207
http://www.ncbi.nlm.nih.gov/pubmed/34351904
https://doi.org/10.1371/journal.pcbi.1005994
http://www.ncbi.nlm.nih.gov/pubmed/29596416
https://doi.org/10.3389/fimmu.2018.02358
http://www.ncbi.nlm.nih.gov/pubmed/30459756
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE116660
https://doi.org/10.1093/bioinformatics/btab641
http://www.ncbi.nlm.nih.gov/pubmed/34499096
https://spark.apache.org/
https://spark.apache.org/
https://doi.org/10.1093/gigascience/giy098
http://www.ncbi.nlm.nih.gov/pubmed/30101283
https://doi.org/10.1371/journal.pcbi.1011272


15. Singh A, Khamparia A, Luhach AK. Performance comparison of Apache Hadoop and Apache Spark. In:

Proceedings of ICAICR ‘19 –the 3rd International Conference on Advanced Informatics for Computing

Research; 2019. p. 1–5.

16. Gopalani S, Arora R. Comparing Apache Spark and map reduce with performance analysis using k-

means. Int J Comput Appl. 2015;113(1).

17. Garcı́a-Gil D, Ramı́rez-Gallego S, Garcı́a S, Herrera F. A comparison on scalability for batch big data

processing on Apache Spark and Apache Flink. Big Data Analytics. 2017; 2(1):1–11.

18. BalaAnand M, Karthikeyan N, Karthik S, Sivaparthipan C. A survey on BigData with various V’s on com-

parison of Apache Hadoop and Apache Spark. Adv Nat Appl Sci. 2017; 11(4):362–370.

19. Perera S, Perera A, Hakimzadeh K. Reproducible experiments for comparing Apache Flink and Apache

Spark on public clouds. arXiv. 2016;arXiv:1610. 04493:1–10.

20. Akil B, Zhou Y, Röhm U. On the usability of Hadoop MapReduce, Apache Spark & Apache Flink for

data science. In: Proceedings of Big Data 2017 –the 5th IEEE International Conference on Big Data.

IEEE; 2017. p. 303–310.

21. Mavridis I, Karatza H. Performance evaluation of cloud-based log file analysis with Apache Hadoop and

Apache Spark. J Syst Softw. 2017; 125:133–151.

22. Gu L, Li H. Memory or time: performance evaluation for iterative operation on Hadoop and Spark. In:

2013 IEEE 10th International Conference on High Performance Computing and Communications &

2013 IEEE International Conference on Embedded and Ubiquitous Computing; 2013. p. 721–727.

23. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M, et al. A fault-tolerant abstraction for in-

memory cluster computing. In: Proceedings of NSDI 12 –the 9th USENIX Symposium on Networked

Systems Design and Implementation; 2012. p. 15–28.

24. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D, et al. MLlib: machine learning in

Apache Spark. J Mach Learn Res. 2016; 17(1):1235–1241.

25. Jevtic G. PhoenixNap.com: Hadoop vs Spark–detailed comparison; 2022. Available from: https://

phoenixnap.com/kb/hadoop-vs-spark URL visited on 4th May 2023.

26. Odersky M, Spoon L, Venners B. Programming in Scala. Artima Inc; 2008.

27. The Apache Software Foundation. Apache Avro; 2009. Available from: http://avro.apache.org URL vis-

ited on 4th May 2023.

28. The Apache Software Foundation. Apache Parquet; 2013. Available from: http://parquet.incubator.

apache.org URL visited on 4th May 2023.

29. The Apache Software Foundation. Apache Thrift; 2011. Available from: https://thrift.apache.org URL

visited on 4th May 2023.

30. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open soft-

ware development for computational biology and bioinformatics. Genome Biol. 2004; 5(10):1–16.

https://doi.org/10.1186/gb-2004-5-10-r80 PMID: 15461798

31. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable

and comprehensive software distribution for the life sciences. Nat Methods. 2018; 15(7):475–476.

https://doi.org/10.1038/s41592-018-0046-7 PMID: 29967506

32. TIOBE. Index for May; 2023. Available from: https://www.tiobe.com/tiobe-index/ URL visited on 4th

May 2023.

33. Jalili V, Afgan E, Gu Q, Clements D, Blankenberg D, Goecks J, et al. The Galaxy platform for accessi-

ble, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020; 48

(W1):W395–W402. https://doi.org/10.1093/nar/gkaa434 PMID: 32479607

34. SparkR. SparkR (R on Spark); 2022. Available from: https://spark.apache.org/docs/latest/sparkr.html

URL visited on 4th May 2023.

35. PySpark. PySpark Documentation; 2022. Available from: https://spark.apache.org/docs/latest/api/

python/ URL visited on 4th May 2023.

36. Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and Biocon-

ductor. Bioinformatics. 2007; 23(14):1846–1847. https://doi.org/10.1093/bioinformatics/btm254 PMID:

17496320

37. White T. Hadoop: the definitive guide. O’Reilly Media; 2012.

38. Ferraro Petrillo U, Palini F, Cattaneo G, Giancarlo R. FASTA/Q data compressors for MapReduce-

Hadoop genomics: space and time savings made easy. BMC Bioinformatics. 2021; 22(1):144. https://

doi.org/10.1186/s12859-021-04063-1 PMID: 33752596

39. Roguski L, Deorowicz S. DSRC 2—Industry-oriented compression of FASTQ files. Bioinformatics.

2014; 30(15):2213–2215. https://doi.org/10.1093/bioinformatics/btu208 PMID: 24747219

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 14 / 16

https://PhoenixNap.com
https://phoenixnap.com/kb/hadoop-vs-spark
https://phoenixnap.com/kb/hadoop-vs-spark
http://avro.apache.org
http://parquet.incubator.apache.org
http://parquet.incubator.apache.org
https://thrift.apache.org
https://doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pubmed/15461798
https://doi.org/10.1038/s41592-018-0046-7
http://www.ncbi.nlm.nih.gov/pubmed/29967506
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1093/nar/gkaa434
http://www.ncbi.nlm.nih.gov/pubmed/32479607
https://spark.apache.org/docs/latest/sparkr.html
https://spark.apache.org/docs/latest/api/python/
https://spark.apache.org/docs/latest/api/python/
https://doi.org/10.1093/bioinformatics/btm254
http://www.ncbi.nlm.nih.gov/pubmed/17496320
https://doi.org/10.1186/s12859-021-04063-1
https://doi.org/10.1186/s12859-021-04063-1
http://www.ncbi.nlm.nih.gov/pubmed/33752596
https://doi.org/10.1093/bioinformatics/btu208
http://www.ncbi.nlm.nih.gov/pubmed/24747219
https://doi.org/10.1371/journal.pcbi.1011272


40. Bonfield JK, Mahoney MV. Compression of FASTQ and SAM format sequencing data. PLoS ONE.

2013; 8(3):e59190. https://doi.org/10.1371/journal.pone.0059190 PMID: 23533605

41. Maeda K. Performance evaluation of object serialization libraries in XML, JSON and binary formats. In:

Proceedings of DICTAP 2012 –the 2nd International Conference on Digital Information and Communi-

cation Technology and its Applications. IEEE; 2012. p. 177–182.

42. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al. Adam: genomics formats

and processing patterns for cloud scale computing. University of California Berkeley; 2013. UCB/

EECS-2013.

43. Niemenmaa M, Kallio A, Schumacher A, Klemelä P, Korpelainen E, Heljanko K. Hadoop-BAM: directly

manipulating next generation sequencing data in the cloud. Bioinformatics. 2012; 28(6):876–877.

https://doi.org/10.1093/bioinformatics/bts054 PMID: 22302568

44. White T, Williams R. Disq–A library for manipulating bioinformatics sequencing formats in Apache

Spark; 2018. Available from: https://github.com/disq-bio/disq URL visited on 4th May 2023.

45. Team Glow. Glow: an open-source toolkit for large-scale genomic analysis; 2019. Available from:

https://projectglow.io/ URL visited on 4th May 2023.

46. Hail Team. Hail; 2018. Available from: https://github.com/hail-is/hail URL visited on 4th May 2023.

47. Wiewiórka M, Leśniewska A, Szmuro A, Stepień K, Borowiak M, Okoniewski M, et al. SeQuiLa: an elas-

tic, fast and scalable SQL-oriented solution for processing and querying genomic intervals. Bioinformat-

ics. 2019; 35(12):2156–2158. https://doi.org/10.1093/bioinformatics/bty940 PMID: 30428005

48. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD, et al. ADAM: genomics formats

and processing patterns for cloud scale computing. UCB/EECS-2013-207, EECS Department, Univer-

sity of California, Berkeley; 2013.

49. Ferraro Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. FASTdoop: a versatile and efficient library for

the input of FASTA and FASTQ files for MapReduce Hadoop bioinformatics applications. Bioinformat-

ics. 2017; 33(10):1575–1577. https://doi.org/10.1093/bioinformatics/btx010 PMID: 28093410

50. Ferraro Petrillo U, Roscigno G, Cattaneo G, Giancarlo R. Informational and linguistic analysis of large

genomic sequence collections via efficient hadoop cluster algorithms. Bioinformatics. 2018; 34

(11):1826–1833. https://doi.org/10.1093/bioinformatics/bty018 PMID: 29342232

51. Ferraro Petrillo U, Sorella M, Cattaneo G, Giancarlo R, Rombo SE. Analyzing big datasets of genomic

sequences: fast and scalable collection of k-mer statistics. BMC Bioinformatics. 2019; 20(4):1–14.

https://doi.org/10.1186/s12859-019-2694-8 PMID: 30999863

52. Ferraro Petrillo U, Palini F, Cattaneo G, Giancarlo R. Alignment-free genomic analysis via a big data

Spark platform. Bioinformatics. 2021; 37(12):1658–1665. https://doi.org/10.1093/bioinformatics/

btab014 PMID: 33471066

53. Cattaneo G, Ferraro Petrillo U, Giancarlo R, Palini F, Romualdi C. The power of word-frequency-based

alignment-free functions: a comprehensive large-scale experimental analysis. Bioinformatics. 2022; 38

(4):925–932. https://doi.org/10.1093/bioinformatics/btab747 PMID: 34718420

54. Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics.

2017; 33(17):2759–2761. https://doi.org/10.1093/bioinformatics/btx304 PMID: 28472236

55. Nyström-Persson J, Keeble-Gagnère G, Zawad N. Compact and evenly distributed k-mer binning for

genomic sequences. Bioinformatics. 2021; 37(17):2563–2569. https://doi.org/10.1093/bioinformatics/

btab156 PMID: 33693556

56. Pibiri GE. Sparse and skew hashing of k-mers. Bioinformatics. 2022; 38(Supplement):185–194. https://

doi.org/10.1093/bioinformatics/btac245 PMID: 35758794

57. Shibuya Y, Belazzougui D, Kucherov G. Space-efficient representation of genomic k-mer count tables.

Algorithms Mol Biol. 2022; 17(1):5. https://doi.org/10.1186/s13015-022-00212-0 PMID: 35317833

58. Fan W, van Hovell H, Xue M. Adaptive Query Execution: speeding op Spark SQL at runtime; 2023.

Available from: https://www.databricks.com/blog/2020/05/29/adaptive-query- execution-speeding-up-

spark-sql-at-runtime.html URL visited on 4th May 2023.

59. Cattaneo G, Ferraro Petrillo U, Giancarlo R, Roscigno G. An effective extension of the applicability of

alignment-free biological sequence comparison algorithms with Hadoop. J Supercomput. 2017; 73

(4):1467–1483.

60. Karau H, Warren R. High performance Spark: best practices for scaling and optimizing Apache Spark.

O’Reilly Media, Inc.; 2017.

61. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I. Spark: cluster computing with working sets.

In: Proceedings of HotCloud ‘10 –the 2nd USENIX Workshop on Hot Topics in Cloud Computing; 2010.

p. 1–7.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 15 / 16

https://doi.org/10.1371/journal.pone.0059190
http://www.ncbi.nlm.nih.gov/pubmed/23533605
https://doi.org/10.1093/bioinformatics/bts054
http://www.ncbi.nlm.nih.gov/pubmed/22302568
https://github.com/disq-bio/disq
https://projectglow.io/
https://github.com/hail-is/hail
https://doi.org/10.1093/bioinformatics/bty940
http://www.ncbi.nlm.nih.gov/pubmed/30428005
https://doi.org/10.1093/bioinformatics/btx010
http://www.ncbi.nlm.nih.gov/pubmed/28093410
https://doi.org/10.1093/bioinformatics/bty018
http://www.ncbi.nlm.nih.gov/pubmed/29342232
https://doi.org/10.1186/s12859-019-2694-8
http://www.ncbi.nlm.nih.gov/pubmed/30999863
https://doi.org/10.1093/bioinformatics/btab014
https://doi.org/10.1093/bioinformatics/btab014
http://www.ncbi.nlm.nih.gov/pubmed/33471066
https://doi.org/10.1093/bioinformatics/btab747
http://www.ncbi.nlm.nih.gov/pubmed/34718420
https://doi.org/10.1093/bioinformatics/btx304
http://www.ncbi.nlm.nih.gov/pubmed/28472236
https://doi.org/10.1093/bioinformatics/btab156
https://doi.org/10.1093/bioinformatics/btab156
http://www.ncbi.nlm.nih.gov/pubmed/33693556
https://doi.org/10.1093/bioinformatics/btac245
https://doi.org/10.1093/bioinformatics/btac245
http://www.ncbi.nlm.nih.gov/pubmed/35758794
https://doi.org/10.1186/s13015-022-00212-0
http://www.ncbi.nlm.nih.gov/pubmed/35317833
https://www.databricks.com/blog/2020/05/29/adaptive-query-
https://doi.org/10.1371/journal.pcbi.1011272


62. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, et al. Apache Spark: a unified engine for big

data processing. Commun ACM. 2016; 59(11):56–65.

63. Turnbull J. Monitoring with Prometheus. Turnbull Press; 2018.

64. Canali Luca. SparkMeasure is a tool for performance troubleshooting of Apache Spark jobs; 2019.

Available from: https://github.com/LucaCanali/sparkMeasure URL visited on 4th May 2023.

65. Olups R. Zabbix 1.8 network monitoring. Birmingham, England, United Kingdom: Packt Publishing

Limited; 2010.

66. Karimzadeh M, Hoffman MM. Top considerations for creating bioinformatics software documentation.

Brief Bioinform. 2018; 19(4):693–699. https://doi.org/10.1093/bib/bbw134 PMID: 28088754

67. Schnell S. Ten simple rules for a computational biologist’s laboratory notebook. PLoS Comput Biol.

2015; 11(9):e1004385. https://doi.org/10.1371/journal.pcbi.1004385 PMID: 26356732

68. Noble WS. A quick guide to organizing computational biology projects. PLoS Comput Biol. 2009; 5(7):

e1000424. https://doi.org/10.1371/journal.pcbi.1000424 PMID: 19649301

69. Chicco D. Ten quick tips for machine learning in computational biology. BioData Min. 2017; 10(1):1–17.

https://doi.org/10.1186/s13040-017-0155-3 PMID: 29234465

70. Chicco D, Agapito G. Nine quick tips for pathway enrichment analysis. PLoS Comput Biol. 2022; 18(8):

e1010348. https://doi.org/10.1371/journal.pcbi.1010348 PMID: 35951505

71. Chicco D, Oneto L, Tavazzi E. Eleven quick tips for data cleaning and feature engineering. PLoS Com-

put Biol. 2022; 18(12):e1010718. https://doi.org/10.1371/journal.pcbi.1010718 PMID: 36520712

72. Duesterwald E, Bala V. Software profiling for hot path prediction: less is more. ACM SigArch Comput

Archit News. 2000; 28(5):202–211.

73. Stephenson M, Sastry Hari SK, Lee Y, Ebrahimi E, Johnson DR, Nellans D, et al. Flexible software pro-

filing of GPU architectures. In: Proceedings of ISCA 2015 –the 42nd Annual International Symposium

on Computer Architecture; 2015. p. 185–197.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011272 July 20, 2023 16 / 16

https://github.com/LucaCanali/sparkMeasure
https://doi.org/10.1093/bib/bbw134
http://www.ncbi.nlm.nih.gov/pubmed/28088754
https://doi.org/10.1371/journal.pcbi.1004385
http://www.ncbi.nlm.nih.gov/pubmed/26356732
https://doi.org/10.1371/journal.pcbi.1000424
http://www.ncbi.nlm.nih.gov/pubmed/19649301
https://doi.org/10.1186/s13040-017-0155-3
http://www.ncbi.nlm.nih.gov/pubmed/29234465
https://doi.org/10.1371/journal.pcbi.1010348
http://www.ncbi.nlm.nih.gov/pubmed/35951505
https://doi.org/10.1371/journal.pcbi.1010718
http://www.ncbi.nlm.nih.gov/pubmed/36520712
https://doi.org/10.1371/journal.pcbi.1011272

