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Background: During the COVID-19 pandemic, large-
scale diagnostic testing and contact tracing have 
proven insufficient to promptly monitor the spread of 
infections. Aim: To develop and retrospectively evalu-
ate a system identifying aberrations in the use of 
selected healthcare services to timely detect COVID-19 
outbreaks in small areas.  Methods: Data were retrieved 
from the healthcare utilisation (HCU) databases of the 
Lombardy Region, Italy. We identified eight services 
suggesting a respiratory infection (syndromic prox-
ies). Count time series reporting the weekly occur-
rence of each proxy from 2015 to 2020 were generated 
considering small administrative areas (i.e. census 
units of Cremona and Mantua provinces). The ability 
to uncover aberrations during 2020 was tested for two 
algorithms: the improved Farrington algorithm and the 
generalised likelihood ratio-based procedure for neg-
ative binomial counts. To evaluate these algorithms’ 
performance in detecting outbreaks earlier than the 
standard surveillance, confirmed outbreaks, defined 
according to the weekly number of confirmed COVID-
19 cases, were used as reference. Performances were 
assessed separately for the first and second semester 
of the year. Proxies positively impacting performance 
were identified. Results: We estimated that 70% of 
outbreaks could be detected early using the pro-
posed approach, with a corresponding false positive 

rate of ca 20%. Performance did not substantially dif-
fer either between algorithms or semesters. The best 
proxies included emergency calls for respiratory or 
infectious disease causes and emergency room visits. 
Conclusion: Implementing HCU-based monitoring sys-
tems in small areas deserves further investigations 
as it could facilitate the containment of COVID-19 and 
other unknown infectious diseases in the future.

Introduction
Early outbreak detection is essential to contain com-
municable disease epidemics [1]. Because these gener-
ally start in localised places, before expanding further, 
monitoring small areas should allow to improve epi-
demic control through more timely and targeted inter-
ventions [2].

In 2019, owing to human mobility and structural (i.e. 
demographic, socioeconomic, clinical vulnerability) 
factors, the highly transmissible severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [3], which is 
responsible for coronavirus disease (COVID-19), rapidly 
spread worldwide causing an ongoing pandemic [4,5]. 
To follow the occurrence of SARS-CoV-2 infections, 
national authorities mainly relied on tracking labora-
tory-confirmed cases. However, during the early stages 
of the pandemic, when COVID-19 symptoms were not 
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fully characterised, testing capacity was limited and 
SARS-CoV-2 transmissibility poorly understood, usual 
tools (i.e. large-scale diagnostic testing and contact 
tracing) were insufficient to promptly assess the extent 
and/or intensity of virus circulation. Subsequently, 
when in some countries, diagnostic tests in accredited 
laboratories (e.g. pharmacies and private laboratories) 
became more widely available, delays in identifying 
cases and their upsurge nevertheless remained [6]. 
Thus, finding alternative methods to those just moni-
toring confirmed cases became increasingly relevant 
[7], especially since developing event-based surveil-
lance has been recommended to improve the timeli-
ness of uncovering threats to human health [8].

While during the pandemic, analyses of digital resources 
(i.e. social networks and search engines) [9,10] and 
surveillance of wastewater [11] have been evaluated as 
early outbreak detection tools, warning systems based 
on syndromic surveillance [12] should also be explored. 
To the best of our knowledge, two main projects may 
be considered as European references in this field. 
The first, named ‘Triple-S’ (Syndromic Surveillance 
Systems), has the objective to increase the capacity for 
near real-time surveillance and monitoring of health-
related events [13]. The second, called ‘Assessment of 
electronic health records (HER) for infectious disease 
surveillance’ aims to investigate the current status 
of HER systems in the European Union and European 
Economic Area (EU/EEA) and their potential use for sur-
veillance of infectious diseases within the European 
Centre for Disease Prevention and Control (ECDC) remit 
[14]. In this respect, it is worth noting that the COVID-
19 pandemic has provided an unprecedented oppor-
tunity for several European [15,16] and non-European 
countries [17,18] to assess how electronic data can sup-
port conventional surveillance systems, though this 
approach started far earlier [19], mainly for influenza 
surveillance [20].

Healthcare utilisation (HCU) databases (i.e. those 
employed by health systems to monitor the use or 
consumption of services, procedures, devices, or med-
icines [21]) might be considered as syndromic surveil-
lance resources to detect localised outbreaks earlier 
than conventional surveillance. An alert system auto-
matically monitoring a variety of syndromic tracers in 
HCU databases has the potential to be applied in near 
real-time, as well as to cover an extremely large popu-
lation and to ensure small area analysis, while requir-
ing little expense. Nevertheless, HCU data have rarely 
been used in this setting [14], except for those con-
cerning emergency departments [22,23], which have 
recently enabled to reveal regional or national clus-
ters of COVID-19 cases or increases in their numbers 
[24,25].

The present investigation must be considered a pilot 
study to verify whether monitoring data recorded in 
electronic healthcare databases of the Italian National 
Health Service (NHS), and their processing to identify 

unexpected or anomalous use of healthcare services, 
may be helpful for early detection of COVID-19 out-
breaks in very small areas.

Methods

Setting
The study was a retrospective evaluation conducted as 
part of the Alert_CoV project, launched by the Italian 
National Institute of Statistics (ISTAT), which aims to 
develop a system capable of supporting health author-
ities in containing the spread of COVID-19. The Alert_
CoV project involves several institutions in addition to 
ISTAT, including the National Health Institute (ISS), six 
of the 20 Italian Regions (Lombardy, Marche, Abruzzo, 
Apulia, Campania, and Sicily), and three Academic 
Units (University of Milano-Bicocca, Polytechnic of 
Milan, and Polytechnic University of Marche), which 
share data, scientific expertise and technical skills to 
design and implement it.

The first complete data shared within the project 
framework were those from the provinces of Cremona 
and Mantua, which were used to conduct this pilot 
study. The two provinces are in the south-east of the 
Lombardy Region of Italy. Cremona has 113 municipali-
ties and a population of ca 350,000. It was one of the 
Italian provinces most hit by the COVID-19 pandemic, 
with 6,037 identified cases during its early stages 
(data refer to 30 April 2020). Mantua comprises 64 
municipalities and ca 400,000 inhabitants and regis-
tered 3,175 cases during the same period.

Data sources
The Italian population is covered by the NHS whose 
management is ensured within each Region and 
Autonomous Province by a system of databases col-
lecting a variety of information, including demographic 
and administrative data on residents who receive NHS 
assistance (the whole resident population), diagnosis 
at discharge from public or private hospitals, emer-
gency room (ER) visits, outpatient drug prescriptions 
reimbursable by the NHS, outpatient visits and diag-
nostic ascertainment [26]. In addition, information on 
calls received by the Emergency Medical Services Trust 
of the Lombardy Region (AREU) is available. Finally, 
the registry of patients with a confirmed diagnosis of 
SARS-CoV-2 infection is established since 21 February 
2020 (i.e. the date of the first confirmed diagnosis in 
Lombardy) to monitor infections and hospital admis-
sions and deaths associated with COVID-19. During 
2020, cases were ascertained according to results of 
real-time reverse transcription-PCR (RT-PCR) assay on 
nasopharyngeal swabs, processed by a laboratory 
accredited by the Regional Health Authority. For each 
case, the date of confirmed diagnosis reported in the 
registry was that of the day on which the swab process-
ing was completed and the patient tested positive.
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Description of the syndromic proxies
The current study is based on syndromic surveillance, 
that is on monitoring non-specific services provided 
by the NHS or individual actions recorded in the NHS 
database, which provisionally suggest a diagnosis of 
the clinical condition (or ‘syndrome’) under investiga-
tion (in our case a respiratory infection) [12]. A list of 
eight syndromic proxies of interest was developed by 
the clinical members of the Alert_CoV working group at 
the start of the project (i.e. September 2020) and com-
prised: (i) outpatient chest radiography, (ii) ER visits, 
(iii) emergency calls for any cause or (iv) for respira-
tory or infectious disease causes, and prescription of 
selected drugs such as (v) paracetamol, (vi) antibiotics 
for systemic use, (vii) non-steroidal anti-inflammatory 
drugs (NSAIDs) and (viii) corticosteroids for systemic 
use. The list was identified considering the availabil-
ity of data in HCU databases and the need to limit the 
choice to a manageable number of proxies representing 
a wide range of possible manifestations of the disease. 
Prescription of antibiotics, which are not adequate for 
a viral disease like COVID-19, was taken into account 
to also evaluate how monitoring of inappropriate pre-
scriptions could affect outbreak detection.

Time series generation
To ensure that the system was timely and that it would 
cover small geographical areas in sufficient detail, 
weekly data collected at the census-unit level were 
monitored. Census units are the smallest adminis-
trative areas that divide the Italian territory and they 
cover an average of 150 inhabitants each. Units located 
in the provinces of Cremona and Mantua were consid-
ered if they included at least 20 residents.

The use of the identified actions/services (i.e. those 
above listed as syndromic proxies of interest) was 
retrospectively evaluated using data collected from 

2015 to 2020. A given action/service provided by the 
NHS corresponded in our investigation to the occur-
rence of a syndromic event (i.e. a single ER visit, a 
chest radiography, a drug prescription, and so forth), 
and the number of events accumulated in a unit/week 
was the count variable of interest (that is, time series 
of weekly counts for the use of each proxy were gen-
erated for every unit). Emergency calls were assigned 
to the corresponding unit using the coordinates of the 
point from which the call originated. In contrast, the 
other services were assigned considering the residen-
tial address of the beneficiaries.

Defining confirmed outbreaks, outbreak-early 
and outbreak-free periods
Confirmed outbreaks were identified according to the 
weekly count of confirmed COVID-19 cases and used 
as reference for evaluating the performance of our 
approach in detecting outbreaks earlier than stand-
ard surveillance. For every census unit, each week of 
2020 affected by a confirmed outbreak was identified, 
and consecutive weeks affected by the same outbreak 
were denoted as ‘outbreak-confirmed period’. To iden-
tify outbreak-confirmed periods three points were 
taken into account. First, according to the best of our 
knowledge, there is no universally accepted criterion 
for establishing the start and the end of a localised 
outbreak by tracking laboratory-confirmed COVID-19 
cases. Second, during 2020, there were two major pan-
demic waves in Lombardy, whose peaks respectively 
occurred in March and November. Third, the real-time 
RT-PCR testing capacity improved over 2020, therefore 
our ability to identify confirmed cases increased over 
time. Considering these three points, we used two dif-
ferent definitions for establishing the start and the end 
of confirmed outbreaks for the two respective semes-
ters of 2020 (i.e. those covering the 6-month periods 
of January–June and July–December, respectively, 

What did you want to address in this study?

The aim of our work was to investigate whether a syndromic surveillance system monitoring routinely 
collected healthcare data in very small areas can support the early detection of COVID-19 outbreaks.

What have we learnt from this study?

Monitoring healthcare utilisation in very small areas can contribute to early detection of localised outbreaks. 
However, false alarm signals may be generated. In our study, emergency calls for respiratory or infectious 
disease causes and access to the Emergency Room were the best predictors of emerging outbreaks.

What are the implications of your findings for public health?

Warning systems based on monitoring healthcare utilisation in very small areas deserve further investigation 
as these could support timely interventions and health policies in the event of future pandemics.
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denoted as first and second semester hereafter). During 
the first semester, given the poor testing capacity, the 
detection of a minimum of two cases in a census unit 
was sufficient for establishing that an epidemic out-
break was starting in that week; the case count was 
increased to a minimum of five for the second semes-
ter. The end of the confirmed outbreaks was identified 
as described in Table 1 .

The 2 weeks preceding each outbreak-confirmed 
period were also identified and denoted as ‘outbreak-
early period’, the period for which it is reasonable to 
assume the outbreak was already present but not yet 
detected by an increase in laboratory-confirmed cases. 
The remaining weeks that did not belong to either con-
firmed or early periods were denoted as ‘outbreak-free 
period’.

Early warning algorithms
To identify localised weekly excesses in the use of the 
eight proxies during 2020, the improved Farrington 
algorithm (IMPF) and the generalised likelihood ratio-
based procedure for negative binomial counts (GLRNB) 
were used. Details of the current application of the two 
algorithms can be found in  Supplementary Appendix 
S1, while readers interested in further details may 
consider the methodological literature [27,28]. Briefly, 
both algorithms allow the identification of unusually 
high values (i.e. outliers) in count time series that can 
present temporal trends and seasonality. This is done 
by comparing the counts observed in the monitored 
period (the year 2020 in the present application) with 
those expected by applying a prediction model to his-
torical data (those available since 2015). Whenever 
an unusual value is detected, the algorithms gener-
ate an alarm signal. Expected counts are estimated 
using a quasi-Poisson model and a negative binomial 
model from the IMPF and GLRNB, respectively. While 
both algorithms can detect abrupt changes in the time 
series, GLRNB was developed as an extension of cumu-
lative sum control charts, enabling the identification of 
small but constant changes. This implies that GLRNB 
takes longer computing time than IMPF given the need 
to do repetitive calculations. In contrast, IMPF automat-
ically reweights historical observation to reduce the 
influence of past outlying counts. The performance of 
both algorithms strictly depends on a hyperparameter 

(denoted α for IMPF and  cγ  for GLRNB) that regulates 
the probability of generating an alarm signal (i.e. the 
difference between observed and expected for clas-
sifying a count as unusual). Algorithms were applied 
using the dedicated functions of the R package ‘sur-
veillance’ [29].

Outbreak detection and performance 
assessment
The province of Cremona was arbitrarily chosen as the 
training set. For each algorithm, we proceeded as fol-
lows. First, having set a value for the hyperparameter, 
the algorithm was applied to each census unit and each 
syndromic proxy to detect unusual counts in the weeks 
of 2020. Then, the alarm signals generated by the eight 
proxies were considered jointly (i.e. for a given unit/
week, at least one alarm signal generated by any of 
the eight proxies is sufficient to activate the warning 
system) and the following performance measures were 
calculated for each semester:

•	 Probability of early Detection (PoeD), i.e. the propor-
tion of confirmed outbreaks identified by at least 
one alarm signal in the outbreak-early period;

•	 True Positive Rate (TPR), i.e. the proportion of weeks 
with at least one alarm signal among those belong-
ing to outbreak-early periods (Sensitivity);

•	 False Positive Rate (FPR), i.e. the proportion of weeks 
with at least one alarm signal among those belong-
ing to the outbreak-free period (1 – Specificity).

This procedure was iterated by changing the hyperpa-
rameter value, α ranging from 0.01 to 1 for IMPF; cγ rang-
ing from  10−6 to 2.00 for GLRNB. For each algorithm, 
the chosen hyperparameter range allowed to observe 
the maximum achievable PoeD. Discriminant perfor-
mances (i.e. the algorithm ability of detecting true 
outbreaks by excluding false signals) were graphically 
reported as curves for each scenario (i.e. combination 
of algorithm and semester), showing PoeD against FPR 
by varying the hyperparameter. As a secondary analy-
sis, curves showing TPR against FPR were also pro-
duced; these are analogous to the standard Receiver 
Operating Characteristics (ROC) curve and share its 
interpretation.

Table 1
Respective criteria at the census-unit level, to define outbreak-confirmed periods in two semesters (January–June and July–
December), Italy, 2020

Semester First week of confirmed outbreak Last week of confirmed outbreak

First 
semester

First week with at least two 
laboratory-confirmed cases

Outbreaks were imposed a minimum duration of 3 weeks. If, at any time after the third 
outbreak-week, 2 consecutive weeks without new laboratory-confirmed cases occurred, 
the week directly preceding these 2 weeks was the last week of the confirmed outbreak

Second 
semester

First week with at least five 
laboratory-confirmed cases

Outbreaks were imposed a minimum duration of 3 weeks. If, at any time after the third 
outbreak-week, 2 consecutive weeks with ≤ 1 new laboratory-confirmed case each 
occurred, the week directly preceding these 2 weeks was the last week of the confirmed 
outbreak

For each census unit, after the end of an outbreak-confirmed period, the evaluation was resumed, making it possible to identify other 
outbreaks that occurred during 2020.
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With the aim to establish the contribution of each 
proxy to outbreak detection and exclude those that 
had a negative impact on the system performance, 
we proceeded with the following selection process 
for each scenario. First, considering all proxies jointly 
as described above, the value of the model hyperpa-
rameter that guaranteed FPR closest to 20% (arbitrar-
ily chosen) was retrieved. Second, using the selected 
hyperparameter, TPR and FPR were calculated indi-
vidually for each proxy. Third, the likelihood ratio (LR) 
defined as        was considered. An LR equal to 1 indi-
cates alarm signals generated at random regardless 
of the presence of epidemic outbreaks; the higher the 
LR value is, the greater the likelihood of a signal being 
generated in outbreak-early periods rather than in the 
outbreak-free period. Finally, the syndromic proxies 
with LR > 1 were selected and considered jointly to pro-
duce new performance curves. In addition, for the first 
semester, maps showing early detected outbreaks and 
false alarm signals were generated by setting the PoeD 
value at 70%. Performances obtained for the province 

of Cremona were then validated considering data from 
the province of Mantua.

Data management
Procedures for data exchange, storage and analysis 
were established within the Alert_CoV project. Raw data 
containing information on individual NHS beneficiaries 
were processed by the respective holders (i.e. regional 
institutions). After the appropriate aggregations, data 
were shared with ISTAT using a secure online data 
encryption and transfer platform (CrushFTP). Finally, 
remote access to the data and the processing system 
was provided by ISTAT to authorised users and analy-
ses were conducted using RapidMiner Studio, data sci-
ence software supporting both native operators and R 
script integration.

Results
Cremona comprised 1,682 census units with at least 20 
inhabitants, equal to 60% of the total (n = 2,809) units 
of the province, while Mantua comprised 1,999 census 
units with at least 20 inhabitants, equal to 72% of the 

Figure 1
Comparing performance of two algorithmsa for early detection of COVID-19 outbreaks in census units of the province of 
Cremona, according to semester of 2020, before the proxies’ selection processb, Italy
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b All syndromic proxies were considered for detecting outbreaks early including: (i) outpatient chest radiography, (ii) ER visits, (iii) emergency 
calls for any cause or (iv) for respiratory or infectious disease causes, and prescription of (v) paracetamol, (vi) antibiotics for systemic use, 
(vii) NSAIDs and (viii) corticosteroids for systemic use.
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total (n = 2,759) units of the province. In each prov-
ince, the considered units contained more than 98% 
(Cremona: 349,123/355,401; Mantua: 399,771/404,349) 
of the total resident population. During the first semes-
ter, 966 confirmed outbreaks occurred (Cremona: 591; 
Mantua: 375), while 426 confirmed outbreaks occurred 
in the second semester (Cremona: 147; Mantua: 279).

Figure 1 shows combinations of PoeD and FPR reached 
by the two algorithms in the province of Cremona 
before the proxies’ selection process. Similar perfor-
mances were observed at the start of the pandemic 
(first semester), while GLRNB outperformed IMPF in 
the second semester. By arbitrarily setting a 70% PoeD 
value (i.e. 7 of 10 outbreaks were detected early), a 
21% value of FPR was obtained by both algorithms in 
the first semester. FPR was 20% and 26% for GLRNB 
and IMPF, respectively, in the second semester. 
Corresponding curves showing TPR values instead of 
PoeD are reported in Supplementary Figure S1. For 
both algorithms, the curves are positioned above the 
main bisector of the Cartesian plane, suggesting that 
the services considered enable early outbreak identifi-
cation better than chance.
 
Table 2  reports LR values for each syndromic proxy in 
the Cremona province. Emergency calls for respiratory 
or infectious disease causes and ER visits were the 
best early syndromic proxies, with values ranging from 
4.43 to 5.60 (calls for respiratory or infectious disease 
causes) and from 3.90 to 4.81 (ER visits). Conversely, 
drug prescriptions rarely contributed to the model per-
formance, and the other services gave intermediate 
contributions.

Maps reported in Figure 2 provide the overview of the 
early detected outbreaks and the false positive alarm 
signals generated by the two algorithms during the 
first semester after the proxies’ selection process (that 

is, considering all the proxies with LR > 1 during the first 
semester, for each model). For the GLRNB algorithm, 
32% (533/1,682) of the census units had a maximum 
of 1 week affected by false positive signals, while the 
percentage decreased to 14% (242/1,682) for IMPF.

Figure 3 compares the performances of the algorithms 
in the training (Cremona) and validation (Mantua) sets 
after the proxies’ selection process. Although perfor-
mance profiles were similar for the two provinces, a 
PoeD value of 70% was always reached for Cremona, 
with FPR values equal to 21% and 18% in the first 
semester for IMPF and GLRNB, respectively, and to 17% 
in the second semester for both algorithms. The same 
result was not observed for Mantua, where a 70% PoeD 
value was obtained only by the IMPF algorithm in the 
first semester, with a corresponding FPR value of 25%.

Discussion
The use of HCU data for syndromic surveillance and 
early detection of local COVID-19 outbreaks was inves-
tigated. For this, approaches to use this potential 
resource were tested in two Italian provinces severely 
affected by the COVID-19 pandemic, using HCU data 
from 2020.

Literature on syndromic surveillance to detect influ-
enza-like illness is quite extensive [19,20,22-24]. 
However, the wide set of syndromic proxies evaluated 
in the current study, jointly with the high geographical 
resolution considered are novelties compared with the 
already existing European syndromic surveillance sys-
tems, which mainly consider large areas or, at best, the 
entire catchment area of individual emergency depart-
ments [22]. Our findings suggest that careful analysis 
of HCU data in smaller areas could be useful to timely 
detect emerging outbreaks of respiratory diseases 
during the early and advanced stages of a pandemic. 
Given the availability of HCU data, developing effective 

Table 2
Likelihood ratios associated with individual syndromic proxies according to algorithma and semester monitored in 
Cremona province, Italy, 2020

Proxies
IMPF GLRNB

First semester Second semester First semester Second semester
Drug prescriptions
Paracetamol 0.00 0.00 0.00 1.62
Antibiotics for systemic use 1.35 0.19 0.58 0.00
NSAIDs 1.15 0.35 0.69 0.20
Corticosteroids for systemic use 1.63 0.99 0.45 0.00
Other syndromic proxies
Chest radiography 1.44 1.52 2.15 3.40
Emergency room visits 4.42 4.81 3.90 4.53
Emergency call (any) 2.87 1.58 2.77 2.26
Emergency call (respiratory or infectious disease 
causes) 5.26 4.43 5.24 5.60

GLRNB: generalised likelihood ratio-based procedure for negative binomial counts; IMPF: improved Farrington algorithm; NSAID: non-steroidal 
anti-inflammatory drugs.

a GLRNB or IMPF.
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HCU-based early warning systems of this type could 
provide great opportunities for European countries 
to manage the ongoing COVID-19 pandemic and the 
spread of known and unknown infectious diseases in 
the future.

In addition to data from emergency department access 
and calls, which have already been extensively consid-
ered in previous applications [22,23], we also evalu-
ated the use of routinely collected data regarding drug 
prescriptions and outpatient chest radiography. All the 
monitored proxies contributed to outbreak detection in 
certain scenarios. However, alarm signals generated by 
emergency calls for respiratory or infectious disease 
causes and ER visits were the best early syndromic 

predictors according to the LR metric. Chest radiog-
raphy also contributed positively, albeit with lower 
predictive performance. Drug prescriptions yielded 
unstable results. Some drugs had LR > 1 during the first 
semester (mainly corticosteroids and antibiotics), while 
other drugs gave some contributions during the second 
semester (paracetamol). Drug prescriptions contrib-
uted inversely to outbreak detection in some cases. 
For this reason, their use should be carefully pon-
dered in future applications. It should be emphasised 
that, because medical approaches for treating COVID-
19 patients and mitigating the severity of the clinical 
manifestations evolved over time, the adequacy of the 
considered proxies, mainly those regarding drug pre-
scriptions, may have changed too. This could partially 

Figure 2
Early detected COVID-19 outbreaks and false alarm signals by census unit during the first semester of 2020 in Cremona 
province using two algorithmsa after the proxies’ selection processb, Italy
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COVID-19: coronavirus disease; ER: emergency room; GLRNB: generalised likelihood ratio-based procedure for negative binomial counts; 
IMPF: Improved Farrington algorithm; LR: likelihood ratio; NSAIDs: non-steroidal anti-inflammatory drugs.

a IMPF and GLRNB. For both algorithms, a probability of early detection of 70% was arbitrarily set.

b For each algorithm, the proxies considered to detect outbreaks early were all those with LR > 1 during the first semester (i.e. GLRNB: (i) 
outpatient chest radiography, (ii) ER visits, (iii) emergency calls for any cause or (iv) for respiratory or infectious disease causes; IMPF: 
(i) outpatient chest radiography, (ii) ER visits, (iii) emergency calls for any cause or (iv) for respiratory or infectious disease causes, and 
prescription of (v) antibiotics for systemic use, (vi) NSAIDs and (vii) corticosteroids for systemic use).

For maps reporting early detected outbreaks (top maps), only the first outbreak occurring in each unit was considered.
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Figure 3
Comparing performance of two algorithmsa for early detection of COVID-19 outbreaks in census units of the provinces of 
Cremona and Mantua, according to semester of 2020, after the proxies’ selection processb, Italy

0.0

0.2

0.4

0.6

0.8

1.0

First semester 2020

IMPF

0.0

0.2

0.4

0.6

0.8

1.0

False positive rate

Pr
ob

ab
ili

ty
 o

f e
ar

ly
 d

et
ec

tio
n 

Pr
ob

ab
ili

ty
 o

f e
ar

ly
 d

et
ec

tio
n 

Pr
ob

ab
ili

ty
 o

f e
ar

ly
 d

et
ec

tio
n 

Pr
ob

ab
ili

ty
 o

f e
ar

ly
 d

et
ec

tio
n 

Second semester 2020

0.0

0.2

0.4

0.6

0.8

1.0

GLRNB

0.0

0.2

0.4

0.6

0.8

1.0

Mantua Cremona

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

False positive rate

False positive rateFalse positive rate

0.0 0.2 0.4 0.6 0.8 1.0

COVID-19: coronavirus disease; ER: emergency room; GLRNB: generalised likelihood ratio-based procedure for negative binomial counts; 
IMPF: Improved Farrington algorithm; LR: likelihood ratio; NSAIDs: non-steroidal anti-inflammatory drugs.

a IMPF and GLRNB.

b For each algorithm, the proxies considered to detect outbreaks early were all those with LR > 1 during the respective semester (i.e. GLRNB/
first semester: (i) outpatient chest radiography, (ii) ER visits, (iii) emergency calls for any cause or (iv) for respiratory or infectious disease 
causes; IMPF/first semester: (i) outpatient chest radiography, (ii) ER visits, (iii) emergency calls for any cause or (iv) for respiratory or 
infectious disease causes, and prescription of (v) antibiotics for systemic use, (vi) NSAIDs and (vii) corticosteroids for systemic use; GLRNB/
second semester: (i) outpatient chest radiography, (ii) ER visits, (iii) emergency calls for any cause or (iv) for respiratory or infectious 
disease causes, and prescription of (v) paracetamol; IMPF/second semester: (i) outpatient chest radiography, (ii) ER visits, (iii) emergency 
calls for any cause or (iv) for respiratory or infectious disease causes).
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explain why we observed different performance in the 
two semesters.

Two algorithms with different underlying assumption 
were evaluated. Performance did not differ substan-
tially between methods, but the GLRNB algorithm mini-
mised false positive signals while keeping the PoeD 
within an acceptable range.

Our findings represent a useful and promising start-
ing point, however, there still some limitations at this 
stage. Indeed, while our best result estimates that 70% 
of the emerging outbreaks could be early identified by 
the system, a high number of false signals would also 
be generated (ca 20% of the time for geographical units 
not affected by outbreaks). Although the number of 
false positives considered acceptable depends on the 
type of public health intervention following the genera-
tion of an alarm (e.g. adoption of restrictive measures, 
localised diagnostic testing, alerting of hospitals and 
general practitioners), our findings are still not suffi-
cient at this stage to proceed with systematic applica-
tion as a warning method. On the other hand, the high 
number of false signals could be partially explained by 
the uncertainty in defining confirmed outbreaks. Some 
outbreaks that actually occurred were possibly not 
detected by standard surveillance (or did not match the 
confirmed outbreak definition used) but were detected 
by monitoring HCU. This might have generated a con-
servative estimate of the system performance [30].

We are currently moving towards three partly overlap-
ping ways to improve the system. First, because the 
census units differ greatly in structural features related 
to the likelihood of an outbreak (e.g. factors linked with 
demographic, social, economic, and clinical frailty), we 
are populating the data platform with structural infor-
mation for consideration in the alert system. Second, 
in addition to HCU data, unstructured data, such as 
free textual data reported in the ER acceptance records 
and social networks, can reasonably contribute to 
early outbreak detection. Such data are unrelated to 
HCU data but equally accessible, and thus, we are 
investigating use of a two-step procedure in series. 
The first step consists of the alarm signal generation 
process using HCU data, and the second aims at identi-
fying false positive signals from those emerging in the 
first step, retrieving information from textual data. Text 
mining methods will be applied to identify keywords 
to confirm the presence of infected people in the ter-
ritory. Of course, privacy issues need to be properly 
addressed to proceed. Finally, because in the current 
study, models were only based on one-at-a-time mar-
ginal analysis of the proxies, ignoring their correlation, 
and the spatial correlation between census units was 
not considered, the further adoption of a multivariate 
functional model, taking in account spatial correlation 
[31] in the setting of Functional Data Analysis [32], may 
enhance the performance of the alert system.

For 10 years now, a standardised system for collecting 
and coding HCU data on the services provided by the 
NHS, managed within each Region, has been consoli-
dated in Italy [26]. Timeliness with which regional insti-
tutions collect raw data and populate HCU databases is 
the current main restraint to the real-time applicability 
of the system. Indeed, regional data are currently made 
available with a delay of about 2 months from the pro-
vision of individual services. However, this issue could 
soon be overcome as the real-time transmission of indi-
vidual health records is currently being consolidated by 
almost all Italian Regions. Unfortunately, this is not the 
case for the emergency calls, currently recorded only 
in few Regions. Data availability, quality and timeliness 
issues need to be addressed in the future to ensure the 
applicability of the system, not only in Italy, but also 
in other European countries, which use quite heterog-
enous HCU database systems [33].

Conclusions
Our findings suggest that a system based on certain 
types of HCU data as syndromic proxies for early detec-
tion of infectious outbreaks emerging in localised areas 
is promising, and the performance evaluation deserves 
to be replicated in other periods, Regions of Italy and 
countries. Since syndromic surveillance could signifi-
cantly support health policies, further tools benefiting 
the system, mostly by reducing the likelihood of false 
alarm signals, must be urgently investigated to prepare 
health systems facing future pandemics.
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