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Abstract

In his paper from 1996 on quadratic forms Heath-Brown developed
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an unbounded quadric with a lattice of short period, if each point is
given a weight, and approximated this quantity by the integral of the
weight function against a measure on the quadric. The weight function
is assumed to be C§°-smooth and vanish near the singularity of the
quadric. In our work we allow the weight function to be finitely smooth,
not vanish at the singularity and have an explicit decay at infinity.
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1 Introduction

1.1 Setting and result

Let us consider a non-degenerate quadratic form with integer coefficients on
R?, d > 4,

F(z)=1Az 1z, (1.1)
which implies that A can be chosen as a non—degenerate symmetric matrix
with integer elements whose diagonal elements are even. If F' is sign—definite,

then for ¢ € R the quadric
Yy ={z:F'2z)=0}, F':=F—t, (1.2)

is either an ellipsoid or an empty set, while in the non sign—definite case ¥
is an unbounded hyper-surface in R¢, which is smooth if ¢ # 0, while X is
a cone and has a singular point at zero.

Let ZdL be the lattice of a small period L™,

74 = 17174, L>1,

and let w be a reqular real function on R which means that w and its Fourier
transform w(§) are continuous functions which decay at infinity sufficiently
fast:

jw(z)| <Clz|~", VaeR!,  [|[@()]<CETT7, VEeR?, (1.3)

for some v, C' > 0, where | - | denotes the Euclidean norm. Our goal is to
study the behaviour of series

Np(w; A,m) = Z w(z),

2ES,NZE
where m € R is such that L?m is an integer.! Let
wr,(z) :== w(z/L).
Then, obviously,
Np(w; A,m) = Ny(wp; A, L*m) =: N(wp; A, L*m). (1.4)

We will also write Np(w; A) := Np(w; A,0) and N(wr; A) := N(wg; A,0).
To study Np(w; A, m) we closely follow the circle method in the form, given

'E.g., m = 0 — this case is the most important for us.



to it by Heath-Brown in [10]. Our notation differs a bit from that in [10].
Namely, under the scaling z = 2//L, 2’ € Z% we count (with weights)
solutions of equation F(2') = mL?, 2’ € 7%, while Heath-Brown writes the
equation as F(2') = m, 2/ € Z%, so that his m corresponds to our L?m.

We start with a key theorem which expresses the analogue of Dirac’s
delta function on integers, i.e. the function ¢ : Z — R such that

1 forn=20
6(n).—{0 forn#£0 ’

through a sort of Fourier representation. This result goes back at least to
Duke, Friedlander and Iwaniec [4] (cf. also [11]) , and we state it in the form,
given in [10, Theorem 1]; basically, it replaces (a major arc decomposition of)
the trivial identity d(n) = fol e?men do, employed in the usual circle method.

In the theorem below for ¢ € N we denote by e, the exponential function
2mix
eq(z) :=e 9 ,and denote by > " the summation over residues a with
a(mod q)
(a,q) =1, i.e., over all integers a € [1, g — 1], relatively prime with q.

Theorem 1.1. For any Q > 1, there exists cg > 0 and a smooth function
h(z,y) : Rso x R = R, such that

5(n):cQQ_2i Z *eq(an)h g,i : (1.5)
e (G 3)

g=1 a(mod ¢

The constant cq satisfies cg = 1+ On(Q™N) for any N > 0, while h is
such that h(z,y) < c¢/x and h(z,y) =0 for x > max(1,2|y|) (so for each n
the sum in (1.5) contains finitely many non zero terms).

Since for any function @ on R? the quantity N(iw;A,t) may be writ-
ten as Y, ;4 w(2)6(F"(z)), then Theorem 1.1 allows to represent the series
N(w; A,t) as an iterated sum. Transforming that sum further using the
Poisson summation formula as in [10, Theorem 2] we arrive at the following
result: 2

Theorem 1.2 (Theorem 2 of [10]). For any regular function @, any t and
any QQ > 1 we have the expression

N(@; A,t) = Q™2 Y Y q *Sy(c)If(c), (1.6)

ceZd g=1

2In [10] the result below is stated for @ € C§°. But the argument there, based on the
Poisson summation, applies as well to regular functions .



with

Sq(c) = S4(c; A, t) Z Z 4(aF'(b) +c-b) (1.7)

a(mod ¢) b(mod q)

and

00 N R I GO A W
10c) = I(c; A, 1, Q) = /Rdw(z)h (Q, o ) S(—z-¢)dz.  (18)

We will apply Theorem 1.2 to examine for large L the sum N (wg; A, L?m)
= Np(w; A,m), choosing @ = wr, t = L?m and Q = L > 1 and estimating
explicitly the leading terms in L of Sy(c) and IY(c) as well as the remainders.
The answer will be given in terms of the integral

o (W) = oo (w3 A, 1) = /Z w(z) 1= (dz) (1.9)

(which is singular if ¢ = 0). Here y*t(dz) = |VF(z)|~'dz|s, = |Az| 1dz|s,,
with dz|y, representing the volume element over ¥, induced from the stan-
dard euclidean structure on R and A the symmetric matrix in (1.1). For
regular functions w this integral converges (see Section 7).

To write down the asymptotic for Ny (w; A, m) we will need the following
quantities, where p ranges over all primes and ¢ € Z%:

oo
o, = 0, (4, L*m) = Zp_dlsz (c; A, L?m), op =00

. e (1.10)
=0
where S1 =1,
oe(A) = [t =pNo5(A4,0),  o%(4) :=05(4) = [[(1 = p "o, (4,0),
and
o(A, L*m Ha (A, L’m) = [ [ op(A, L?m). (1.11)

p

The products in the formulas above are taken over all primes. In the asymp-
totics, where these quantities are used, they are bounded uniformly in L (see
Theorems 1.3 and 1.4, as well as Proposition 1.5).

Everywhere below for a function f € C*(R?) we denote

[fllnyny = sup max [0 f(2)[(2)"*,

zeRd |al; <na



where ny € NU {0}, ny <k, and ny € R. Here
(x) :=max{1, x|} for xeR!, leN,

and |a|; = Y a; for any integer vector a € (N U {0})4. By C"t"2(R9)
we denote a linear space of C™-smooth functions f : R¢ — R, satisfying
[ lln1ne < 00

Note that if w € C4TL4+1(RY) then the function w is regular, so The-
orem 1.2 applies. Indeed, the first relation in (1.3) is obvious. To prove
the second note that for any integer vector a € (N U {0})%, ¢*w(¢) =
(#)lah@({)' But if |a|; < d+ 1, then |[0¢w| < C(x)7971, so 0%w is
an Lj-function. Thus its Fourier transform 8/,‘(“;) is a bounded continuous
function for each |a|; < d+ 1 and the second relation in (1.3) also holds.

Now we formulate our main results. First we treat the case d > 5.

Theorem 1.3. Assume that d > 5. Then for any 0 < € < 1 there exist
positive constants Ki(d,e), Ka(d,e) and Ks(d,¢), with Ko(d,e) < K3(d,¢),
such that if w € CEVE2(RY) N COK3(RY) and a real number m satisfies
L?>m € Z, then

[Nz (s A, m) — 0 (w)o (A, L2m)LA2] < CLY4 ([ 1y ac, + o ).
(1.12)
where the constant C' depends on d, e, m and A. The constant o(A, L>m) is
bounded uniformly in L and m. In particular if e = 1/2, then one can take
Ki=2d(d*+d—1), Ka =4(d+1)?2+3d+1 and K3 = K1 + 3d + 4.

Next we study the case d = 4, restricting ourselves for the situation when

m = 0.
Theorem 1.4. Assume that d =4 and m = 0. Then for any 0 < e < 1/5
there exist positive constants Ki(e) and Ka(¢), such that for w € K152 (R9)
}NL(w; A,0) = 1(0)000 (w)o*(A) LY 2 log L — oy (w; A, L)Ld_2’

o (1.13)
< CoL 7 |wl gy e

where the constant Cy depends on & and A. The constant n(0) is 1 if the
determinant det A is a square of an integer and is 0 otherwise. The L-
independent constant o*(A) is finite while the constant o1 satisfies

lo1(w; A, L)| < Collw| ky,rcy

uniformly in L. In the case of a square determinant det A, when n(0) =1,
it is given by (1.24). In the case of a non-square determinant det A, when



n(0) = 0 and the term o1(w; A, L)L2 gives the asymptotic of the sum N,
the constant o1(w; A, L) does not depend on L and has the form

o1(w; A) = o5 (w)L(1,x) [ J(1 = x(p)p™")0p(A,0) (1.14)
p

det(A)

where x is the Jacobi symbol ( ) and L(1,x) is the Dirichlet L—function.?

If n(0)o*(A) = 0, then the asymptotic (1.13) degenerates. Similar (1.12)
also degenerates to an upper bound on Ny, unless we know that o (A, L?m)
admits a suitable positive lower bound, for all L. Luckily enough, the re-
quired lower bounds often exist, see below Proposition 1.5.

Theorems 1.3 and 1.4 refine Theorems 5, 6 and 7 from [10] in three
respects: firstly, now the weight function w has finite smoothness and suf-
ficiently fast decays at infinity, while in [10] w € C§°. Secondly, we specify
how the remainder depends on w. Thirdly and the most importantly, we
remove the restriction that the support of w does not contain the origin,
imposed in [10] in a number of crucial statements. These improvements are
crucial for us since in our work [6], dedicated to the problem of wave turbu-
lence, the two theorems above are used in the situation when w(0) # 0 and
the support of w is not compact. A similar specification of the Heath-Brown
method was obtained in [1, Section 5] to study an averaging problem, re-
lated to the questions, considered in [6]. Apart from wave turbulence and
averaging, the replacement of sums over integer points of a quadric by in-
tegrals, with careful estimating the remainders, is needed in Kolmogorov
Arnold Moser theory for partial differential equations, e.g. see (C.2) in
[8]. The publications [8, 1, 6] are recent. We are certain that these days,
when people, working in PDEs and dynamical systems, treat complicated
non-linear phenomena with resonances more and more often, there will be
increasing demand for the instrumental asymptotics (1.12), (1.13) and their
variations. Our paper uses only basic results from the number theory and
is well available to readers from Analysis.

We note that the papers [9] and [16] treat the sums N (w; A, m) for even
and odd dimensions d correspondingly, without the restriction that w(0) # 0,
in a more general context than our Theorems 1.3 and 1.4. However, due to
this generality the corresponding constants in the asymptotical in L formulas
in [9] and [16] are very implicit (e.g., the question whether they vanish or not
is highly non-trivial). The connection of the constants with singular integrals

3Concerning the classical notion of the Jacobi symbol and the Dirichlet L-function we
refer a reader without number-theoretical background e.g. to [15] and [12].



like (1.9) and the dependence of the remainders in the asymptotics on the
weight function w, crucial for application in analysis, is not clear. Another
feature of [9, 16] is the use of rather advanced adelic technique, which makes
it difficult for readers without serious number-theoretical background to use
the result and the method of the work.

Remarks. 1) Theorem 1.3 is a refinement of Theorem 5 of [10], while The-
orem 1.4 refines Theorems 6 and 7 of [10]. In [10] also is available some
asymptotic in L information about behaviour of the sums Ny (w; A, m) when
d=4,m+# 0 and d =3, m = 0. Since our proof of Theorems 1.3 and 1.4
is based on ideas from [10], strengthened by Theorem 7.3, which is valid
for d > 3, then most likely our approach allows to generalise the above-
mentioned results of [10] for d = 3,4 to the case when w € CK1:-52(R?) with
suitable K1, Ks.

2) In our work the dependence of constants in estimates on m is uniform on
compact intervals, while the dependence on the operator A is only via the
norms of A and A1,

3) The values of constants K;(d,¢) in (1.12), given in Theorem 1.3, are far
from optimal since it was not our goal to optimise them.

4) As the theorems’ proof are based on the representation (1.6), then the
function w should be regular (see (1.3)). But this holds true if w € C4+hd+1
and so is valid if the constants K71, Ko are sufficiently big. E.g. if Ky, Ko
are as big as in the last line of the assertion of Theorem 1.3.

Brief discussion of the proofs. We present in full only a proof of Theorem 1.3,
which resembles that of [10, Theorem 5] with an additional control of how
the constants depend on w. The significant difference from the argument of
Heath-Brown comes in Sections 3 and 4, where we do not assume that the
function w vanishes near the origin, the last assumption being crucial in the
analysis of integrals in Sections 6 and 7 of [10]. To cope with this difficulty,
which becomes apparent e.g. in Proposition 3.8 below, we have to examine
the smoothness at zero of function

t— ooo(w; A, t) (1.15)

and its decay at infinity. The corresponding analysis is performed in Sec-
tion 7. There, using the techniques, developed in [5] to study integrals (1.9),
we prove that function (1.15) is ([d/2] — 2)-smooth, but in general for even
d its derivative of order (d/2 —1) may have a logarithmic singularity at zero.
There we also estimate the rate of decay of function (1.15) at infinity.

The proof of Theorem 1.4 resembles that of Theorems 6 and 7 of [10] with
a new addition given by Proposition 3.8, based on the result of Section 7.



We thus limit ourselves to a sketch of the theorem’s demonstration, given
in Section 1.3 in parallel to that of Theorem 1.3, and point out the main
differences between the two proofs. Establishing Theorem 1.4 we use certain
results from [10] (namely, Lemmas 30 and 31) without proof.

Lower bounds for constant from the asymptotics. Let us now discuss lower
bounds for the constants o(A, L?m) and o*(A) from Theorems 1.3 and 1.4.

Proposition 1.5. (i) If d > 5 then there exist positive constants ¢(A) <
C(A) such that 0 < ¢(A) < o(A, L*m) < C(A) < oo for any non-degenerate
matriz A, uniformly in L and m.

(#i) If d = 4 and m = 0 we have c*(A) > 0 for any non-degenerate
matrix A such that the corresponding equation 2F(z) = Az -z = 0 has non-
trivial solutions in every p-adic field (in particular this holds if the equation
has a non-trivial solution in Z*).

See Theorems 4, 6 and 7 of [10]. We do not prove this result, but just
note that its demonstration uses a refinement of the calculation in the second
part of the proof of Lemma 2.3. Namely, while the lemma gives an upper
bound for the desired quantity, a more thorough analysis permits also to
establish the claimed lower bounds.

In Appendix B we give essentially a complete calculation, proving Propo-
sition 1.5 in the case of the simplest quadratic form F = E;Z %xiyi, d=2s>
4, and m = 0. A proof of the proposition for any A may follow the same lines,
replacing explicit formulas by some general results (e.g. Hensel’s Lemma).

Non-homogeneous quadratic polynomials. Now consider a non-homogeneous
quadratic polynomial F with the second order part, equal to F'in (1.1):

]:(z):%Az'z—l—z*-z+T, z, €RY TR,

and the corresponding set 7 = {z : F(z) = 0}, Np(w; F) = ZZGE;mZdL w(z).
Denote
s5=A"'z,, Z=z+3 m= %3-143—7,
and assume that 3 € Z¢ 4 and L*r € Z. Then L?m € Z, 7’ € Z4 if and only
if z € Z9, and F(z) = F(z') — m. So setting w?(z') = w(z’' — 3) we have
Np(w; F) = Np(w¥; A, m). Since
dZ/|E dz\ F
3 A,m) = 3z —— = — = F

otutim) = [ ) ey = | vl ey = el )

m

then we arrive at the following corollary from Theorem 1.3:

4This holds e.g. if det A = £1 and z. € Z¢.



Corollary 1.6. Ifd > 5, the quadratic form F is as in Theorem 1.8, F is a
non-homogeneous quadratic form as above and L is such that 3 := A 'z, €
7%, TL? € Z, then for any 0 < ¢ < 1 and w € CELE2(RY) N COK3(RY) we
have

| NL(w; F) = oo (w; F) o(A, LPm) L7 < OLY?* (|lw]| gy iy + lwlloscs)

Here the constants K1, Ko, K3 depend on d and e, while C depends on d, e, A
and T, |Zy|.

Notation and agreements. We write A S, B if A < CB, where
the constant C' depends on a and b. Similar, Og(||w|lm,,m.) stands for a
quantity, bounded in absolute value by C(a,b)||w||m, m,. We do not indicate
the dependence on the matrix norms ||Al|, ||[A™!| and on the dimension d
since most of our estimates depend on these quantities.

We always assume that function w belongs to the space C"™"(R?) with
sufficiently large m,n. If in the statement of an assertion we employ the
norm |w||,, then we assume that w € C+°(R%).

We denote e,(x) = €?™@/9 and abbreviate ej(x) =: e(x). By [-] we
denote the ceiling function, [z] = min,cz{n > z}. By N we denote the set
of positive integers.
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1.2 Scheme of the proof of Theorem 1.3

Let d > 5. As it has been already discussed, if w satisfies assumptions of the
theorem with sufficiently large constants K; then w is regular in the sense
of Section 1.1, so Theorem 1.2 applies. Then, according to (1.6) and (1.4),

Np(w; A,;m) = e, L2 0 g7 Sy(e)Iy(c), (1.16)
cezd q=1

9



where the sum S,(c) = Sy(c; 4, L*m) is given by (1.7) with ¢t = L?*m and
the integral I,(c) — by (1.8) with @ = wy, Q = L and t = L*m

I,(c;A,m, L) := /]Rd w (%) h (g, FLZZ(Z)> eq(—z-c)dz. (1.17)

Denoting
c; A,m, L) Zq—ds

we have Ny (w; A,m) = ¢y L2 Z . Then for any 1 € (0,1/2) we write
c€eZd
Ny, as
Np(w; Aym) = e, L2 (Jo + J2 + J2Y), (1.18)
where
Jo=n(0), JZ:= > (), JI':= > nc). (1.19)
c#0, |c|<LM le|>L71

Proposition 5.1 (which is a modification of Lemmas 19 and 25 from [10])
implies that
T2 Syim 1wl v 28 +a+1

with Ny := [d+ (d+1)/71] (see Corollary 5.2). In Proposition 6.1, follow-
ing Lemmas 22 and 28 from [10], we show that

T2 S L2 () 5 s + lwllo 5+ 3a44) (1.20)
= [&/] - 2d
To analyse Jy we write it as Jy = JSF + Jy , where
J= Y S, 000), Ty =Y S, 005,00, (121)
q>pL q<pL

with p = L™7 for some 0 < 72 < 1 to be determined. Lemma 4.2, which
is a combination of Lemmas 16 and 25 from [10], modified using the results
from Section 7, implies that

[T | LRl S LR D g .

10



Finally Lemma 4.3, which is a combination of Lemma 13 and simplified
Lemma 31 from [10] with the results from Section 7, establishes that J
equals

L0 () (A, Lm) + Oy ((I10llajoaa-1 + 1llo,as) L4>H2020/272))

0,d+1

(see (1.9) and (1.11)). Identity (1.18) together with the estimates above
implies the desired result if we choose v2 =¢/(d/2 —1) and v =¢/(d+ 1).
Uniform in L and m boundedness of the product o(A, L?m) follows from
Lemma 2.3.

1.3 Scheme of the proof of Theorem 1.4

In this section we assume that d = 4 and m = 0. The proof proceeds exactly
as in the previous section up to formula (1.20), which is not sharp enough
for the case d = 4 and should be replaced by

T2 = LYY “n(e)os(A)o (w; A, L)| Sqy LTI ] oo (1.22)
c#£0

for appropriate constants K, Ko, where the terms oi(A) are introduced in
(1.10), terms oS, (w; A) are given by

o (w; A, L) == L™y " q ' I,(c; A,0, L), (1.23)
q=1

and the constants n(c) = +1 are defined in Lemma A.1. In particular, n(0) =
1 if the determinant det A is a square of an integer and 7(0) = 0 otherwise.
The proof of the bound (1.22) makes use of Lemma A.1 (Lemma 30 of [10]),
involving only minor modifications of the argument in [10] and is left to the
reader.

The bound on Jy must be refined too and this is done in Appendix A. We
consider only the case when the determinant det A is a square of an integer,
so in particular n(0) = 1. The opposite case can be obtained by minor
modification of the latter, following [10] (see Appendix A for a discussion).
In Proposition A.3, which is a combination of Lemmas 13, 16 and 31 of
[10], modified using Proposition 3.8, we prove that in the case of square
determinant det A

Jo =0es(w)o*(A)Llog L 4+ K (0)L?
+ O (L (wllaje—2,4-1 + llwllo,a+1)) »

11



where a constant K(0) = K(0;w, A) is defined in Section A.1. Again, iden-
tity (1.18) together with the estimates above implies the desired result if we
choose 71 = (3 —¢)/(d +4) and put

o1(w; A, L) )+ > n(e)os(A)o, (wi A, L). (1.24)
c#0

Finiteness of the products o}(A) follow from Lemma A.2 while the claimed
in the theorem estimate for the constant o;(w; A, L) is established in Sec-
tion A.3.

2  Series S,

Now we start to prove Theorem 1.3, following the scheme presented in Sec-
tion 1.2. Part of the assertions, forming the proof, do not use that d > 5.
So below in all assertion involving the dimension d, we indicate the real re-
quirements on d. We recall that the constants in estimates may depend on d
and A, but this dependence is not indicated (see Notation and agreements).

In the present section we analyse the sums S,(c) = S,(c; A, L?m) en-

tering, in particular, the definitions of the singular series o(A, L?m) and
op(A, L?m).

Lemma 2.1 (Lemma 25 in [10]). For any d > 1 we have |Sy(c; A, L*m)| <
q¥2 L uniformly in ¢ € Z4.

Proof. According to (1.7), an application of the Cauchy-Schwarz inequality
shows that

S <6@) 3 | Y eqlaF (o) +e b

a(mod q) b(mod q)

Y Y P @) - FER ()t (u—v),

a(mod q) u,v(mod q)

(2.1)

where ¢(q) is the Euler totient function. Since F'(z) = 1Az -z —t, then

FEm(u) — FE*M(v) = (Av) - w + F(w) = v - Aw + F(w).
So

eq (a(FLQm(u) - FL2m(V)) +c-(u=v)) =¢y(aF(w)+c-w)eglav- Aw).

12



Now we see that the summation over v in (2.1) produces a zero contribution,
unless each component of the vector Aw is divisible by ¢. This property
holds for at most a finite number N of vectors w, where the constant N
depends only on det A. Thus,

SeeP o) Y. T D> 1
a(mod q) v(mod q)

O]

The lemma’s assertion shows that the sums oy, defined in (1.10), are
finite:

Corollary 2.2. If d > 5, for any prime p we have }JE(A, LQm)| <1.
Recall that o(A, L?>m) = [, op(A, L?m) (see (1.11)).

Lemma 2.3. Foranyd>5 and 1 < X < oo we have

Z q,dsq(()) =o(A, L*m) + O(X*d/2+2).

q<X

In particular, o(A, L*>m) = P q45,0). So |o(A, L*m)| < 1 in view
Lemma 2.1.

Proof. We start by showing the multiplicative property of trigonometric
sums

Sqq'(0) = 54(0)Sy(0), (2.2)
whenever (¢,¢’') =1 (cf. Lemma 23 from [10]). By definition

Sw@= S Y elaFPm(v)).

a(mod ¢¢') v(mod qq’)

When (gq,q’) = 1 we can replace the summation on a (mod ¢¢’') by a double
summation on ag modulo ¢ and ay modulo ¢’ by writing a = gay + ¢'aq.
Thus

Sqq(0) = Z Z Z eq(aqFLZm(V))eq/(aq’FL2m(V))-

aq(mod q) a,(mod ¢’) v(mod gq’)

Then we replace the summation on v (mod ¢¢’) with the double summation
on vy modulo ¢ and vy modulo ¢’ by writing v = qqvy + ¢'q'vy, where ¢

13



and ¢ are defined through relations ¢g = 1 (mod ¢') and ¢'¢’ = 1 (mod q).
We observe that

FE™M(v) = @ F(vg) + 020 F(vq) + 924 T Avy - vg — L*m,
so that
eq(aqFLQW(V)) = eq(agq*7*F(vq) — agL’m) = eq(aqFLQm(Vq))v
by the definition of ¢ and since e4(¢N) = 1 for any integer N. Similar,
ey (ag F7 7 (v)) = ey (ag F¥ " (vy)).

This gives (2.2).
Next we note that, due to Lemma 2.1,
Do a SO S D a P S X (2.3)
=X >X

By (2.2) and the definition of o,

o= lim o", o = H zn:pfdlspz (0) = Z q%5,(0),

n—00
p<n [=0 qePy

where p are primes and P,, denotes the set of natural numbers ¢ with prime
factorization of the form ¢ = p’fl -o-phm where 2 < py < pa--- < pm < 1,
kj <nand m > 0 (m = 0 corresponds to ¢ = 1). Since any ¢ < n belongs
to Py, then according to (2.3),

) Z qidsq(o) - Z qidsq(o)’ S X422y N > X,
qePN q<X

for any finite X > 0. Passing in this estimate to a limit as N — co we
recover the assertion if X < oo. Then the result with X = oo follows in an
obvious way. O

3 Singular integrals I)

3.1 Properties of h(z,y)

Following [10], Section 3, we construct the function h(z,y) € C*(Rs,R),
entering Theorem 1.1, starting from the weight function wy € C§°(R), de-
fined as

wo(z) = exp (—xil) for |z| < 1 . (3.1)
0 for |z| > 1

14



We denote ¢p := ffooo wo(z) dx and introduce the shifted weight function
w(x) = %wo(llm -3),

which of course belongs to C§°(R). Obviously, 0 < w < 4e™1/cp, w is
supported on (1/2,1), and [% w(z)dz =1.

The required function h : Ryg x R — R is defined in terms of w as
h(z,y) := hi(z) — ha(z,y) with

o0 o0

:Zf W), haley) = Zm (). @

oy

For any fixed pair (z,y) each of the two sum in j contains a finite number
of nonzero terms. So h is a smooth function.

In [10], Section 3, it is shown how to derive Theorem 1.1 from the defi-
nition (3.2).> Here we limit ourselves to providing some relevant properties
of h, proved in Section 4 of [10]. In particular these properties imply that
for small =, h(z,y) behaves as the Dirac delta function in y

Lemma 3.1 (Lemma 4 in [10]). We have:
1. h(z,y) =0 ifz > 1 and |y| < z/2.
2. Ifx <1 and |y| < x/2, then h(xz,y) = hi(x), and for any m > 0

1

pm+l '

‘3’”’1(56, Y| <

dx™ ‘ ~m
3. If |y| > z/2, then for any m,n >0
‘8m+"h(x y)‘ 1
dxmyn | Y gmAl|y|n
Lemma 3.2 (Lemma 5 in [10]). Let m,n, N > 0. Then for any x,y

Ot h (1) 1 N . N
Z VI -
gy | SV i (0™ +min {1 (/) })

Lemma 3.2 with m = n = N = 0 immediately implies

Corollary 3.3. For any =,y € Rs X R we have |h(z,y)| < 1/z.

IS

®Actually it is proved there that any function h defined through (3.2) with arbitrary
weight function w € C§°(R), supported on [1/2, 1], may provide a representation of d(n).

15



Lemma 3.4 (Lemma 6 in [10]). Fiz X € Ryp and 0 < 2 < Cmin {1, X'},
for some C > 0. Then for any N > 0,

X .TN
/ h(a:,y) dy =1+ ON,C (XI’N_I) + ON,C ()(N> .
-X

Lemma 3.5 (Lemma 8 in [10]). Fiz X € Ryp and n € N. Let z <
Cmin{l, X} for C > 0. Then

=N
‘/ h(z,y) dy’ Sne X" (XmN Ly XN> .

The previous results are used to prove the key Lemma 9 of [10], which
can be extended to the following

Lemma 3.6. Let a function f € CM=1O(R)N LY (R), M > 1, be such that
its (M — 1)-st derivative fM=1) is absolutely continuous on [—1,1], and let
0<ax<C for some C >0. Then for any 0 < 8 <1 and any N > 0,

x

[ sty =10+ 0 (S [ 1140wl ay) s
+O0n.c (@ +8%) (If -0 + 27 fl)) -
where X = min {1,z/8}.

Proof. By Lemma 3.2 with m = n = 0, for any N > 0 we have
\h(z,y)| Sn (@ + V)27t if |y] > X. So the tail-integral for [ fhdy

may be bounded as
/ F)h(z,y) dy| Sx (2N +5Y)z™! / [fw)ldy Sn (@ +6)2 7 f1,
ly|=X ly|>X
(3.4)
For the integral in |y| < X, instead we take the Taylor expansion of f(y)
X M-1
/X FWh(a,y)dy =Y

around zero and get that
£9(0) /
.| Yy
=0 J: -X

X
h(z,y)
O ({CM /_ilf(M)(y)ldy> :

dy
(3.5)

+



by Corollary 3.3. Next we use Lemma 3.4 with N replaced by N + 1 to get
that

X N o
10 [y =10+ Owe (Il (X" + $57) ) 30)
while by Lemma 3.5, for any j > 0 we have
Fa) X , 2N+
A ) v dy| Svge |l flleX? X"+ r ) - (3)

Putting together (3.4)—(3.7), we obtain the desired estimate. Indeed, since
X < z/pB, then the term Oy in (3.5) is bounded by that in (3.3). Moreover,
as (z/X)Nt = max(zV*1, N+ <o Oz 4 BV, then the brackets in (3.6)
and (3.7) are <¢ oV + BV, where we also used that X < 1. O

Lemma 3.6 is needed for the proof of Theorem 1.4, while for Theorem 1.3
we only need its simplified version:

Corollary 3.7. Let an integrable function f belong to the class CMO(R),
M eN, and 0 <z < C for some C > 0. Then, for any 0 < 6 < 1,

[ 1@kt ds = 70+ Onvs (21 (1o + 1f11)) -

Proof. The assertion follows from Lemma 3.6 by choosing for any 0 <
6<1,8=a%M+D)if x <1and f=1if z > 1. Indeed, then for 0 < 2 < 1
we have that M3~ (M+1) = M= and that

(N + M)zt <28Vt <22M70 i N> Ns= (M —8+1)(M+1)/6.

While if 1 < 2 < C, then ™ < C%2™~% and choosing N = 0 we get that
(N 4 1) = 2 < 22M =9, The obtained relations imply the assertion. O

3.2 Approximation for /,(0)

In what follows it is convenient to write the integrals I,(c; 4, L?m) as

I,(c) = LI,(c), (3.8)

I(c) = I(c; A,m, L) = /Rd w(z) h (%, Fm(z)) eq(—z-cL)dz. (3.9)



The proposition below replaces Lemmas 11, 13 and Theorem 3 of [10]. In
difference with those results we do not assume that 0 ¢ suppw. Since for
¢ = 0 the exponent e, in the definition of the integral I,(c) equals one, we
can consider I,(0) as a function of a real argument ¢ € R, and we do so in
the proposition below; we will use this in Appendix A.

Proposition 3.8. Let ¢ € R, ¢ < CL with some C > 0.
a) Ifd>5 and N> M < d/2 — 1, then for any 6 > 0,
1,(0; A,m, L) = Ldaoo(w; A,m)
e (3.10)
+ Omarcs (VL g )

b) Ifd=4, N> M <d/2—1 and m = 0, then for any 0 < 8 <1 and
N >0,

I,(0;A,0, L) =L%0s (w; A,0) + O (B—M—lqMLd—M< log (q)>llw||M,d+1)

7
+ 0o (@ 2N + 8Y)(wllr-ra1 + La~ wlloas))
(3.11)

Proof. For d > 4, applying the co-area formula (see [3], Theorem 6.3)
we re-write the integral in (3.9) with ¢ = 0 in terms of integrals over hyper-
surfaces ¥; as follows:

1,(0) = /R T(m+t)h(g/L,t)dt,  I(t)= /E w(z) p>(dz),  (3.12)

where the measure p*t is the same as in (1.9). By Theorem 7.3,
K+2-d

2 )
and k < d/2 — 1. Denote f™(y) = Z(m +y). Then | f™|, Sk I Zlx 2>
and by (3.13)

HIij{ S»k,K,f{ HwHkK if f( < K > d, (313)

/™y = 2l S 11T

0473 S llwllo.dt1- (3.14)

To prove a) we apply Corollary 3.7 with f = f™ and x = ¢/L to the first
integral in (3.12). Note that f™(0) = Z(m) = 0c(w; A,m). Then, using
(3.13) with K =0, K =d+ 1 and k = M jointly with (3.14) we get that

1,(0) = oo (w) + Onrm.cs (@ LM |wl|aras1)-

So (3.10) follows.
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To establish (3.11), we apply Lemma 3.6 to write the integral in (3.12)
with m = 0 as

/R T(#)h(z,t) dt = T(0) + Ops (5—M—1xM <)1( / o0y, dt))

-X
+O0cn (@ + BY) (12l ar-10 + 271 |Z]Ly))
where z = ¢/L and X = min{l,z/8}. By applying Theorem 7.3, with
k=M and M =d+ 1, we get

X
/X ZOD (6| dt < X (log X) wl s

Using this estimate jointly with (3.13) and (3.14) we arrive at (3.11).

4 The J; term

In this section we prove the following proposition concerning the term Jy
defined in (1.19):

Proposition 4.1. Let d > 5. Then for any 0 < v < 1,
o = Lloac(w)o (A4, L2m)| Sppm LG w4/ 2,011

Proof. To establish the result we write Jp in the form (1.21). Then the
assertion follows from Lemmas 4.2 and 4.3 below which estimate the terms
Jof and Jy , noting that |w|r, < [|[wllo.d+1- O

Lemma 4.2. Assume that w € Li(R?) and d > 3. Then we have the bound
[ | S L2022 D [, for any 2 € (0,1).

Proof. Since according to Lemma 2.1 |S,(0)] < ¢%/?*1, then

S Y a0

g>Li—72
d+1
Writing integral I, as in (3.8), by Corollary 3.3 we get |I,(0)| < lwlL,.
Therefore,
|| < L ), Z g2 < L4 ||, L2 D-)

g>Li—72

_ Ld/2+2+V2(d/2_1)|w|L1'
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Lemma 4.3. Let d > 5. Then for any v € (0,1),
Ty = Do) A, Lm) + sy (LY 20292 |y o 111).

Proof. Inserting (3.10) with C' = 1 into the definition of the term J,
we get J; = Ia + Ip, where

In:=Llos(w) Y q S4(0),

q<L'=72

1| Sarsm LM wllararn Y Se(0)g 4,
q<L'772

for M< d/2 —1 and any 6 > 0. Lemma 2.3 implies that

Z qidSq(O) = 0'(147 L2m) + O(L(fd/2+2)(1,72))7

g<LI-2
SO
Iy = Ldaoo(w)a(A, L2m) + O(000 (w)Ld/2+2+W(d/2_2)) )
whereas |00 (w)| = |Z(m)| < ||Zl0,0 < ||wllo,a+1 on account of (3.13). As

for the term Ip, Lemma 2.1 implies that

sl Sarsm LM wlaran Y. g VM
q<L1—72
Choosing M = [d/2] — 2 and § = 72/2, we get
1,4/242+72

Bl Ss.m Hw”(d/2]—2,d+1Ld/2+2+(S L Soym lwllfay2)-2,a41

5 The J!' term
We provide here an estimate of the term JJ' defined in (1.19). The key

point of the proof is an adaptation of Lemma 19 of [10] to our case. We
recall the notation (3.8).

Proposition 5.1. For anyd>1, N >0 and c # 0,

~ L,
[g(c)] Snum 5|C| Mlwll v 2n+ a1 (5.1)
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Proof. Let fy(z) :==w (z)h (%, F™(z)). Since

i q

-2 . — . — — .
Lol (¢ Va) g7+ L) = ey(~7 L),

then integrating by parts N times the integral (3.9) we get that

I(c)| < L|c|72 " (c-Vz)qu(z) dz
2L Rd

N
<N (%) lc| =N Z max
0SneN Rd 0<I<n/2

x |z[" 2 }Vi\[?"w(z)‘ dz,

n—I

! (17|

0
where a—h stands for the derivative of h with respect to the second argu-

ment.
Assume first that ¢ < L. Then, by Lemma 3.2 with N =0,

n—I
q m
oy (7. F"@)
(L))" ™ (2) = H|w|| N —nmrdr -

This implies (5.1) since n < N. Let now ¢ > L. Then, due to item 1 of
Lemma 3.1, h is different from zero only if

max
0<I<n/2

2" |V T w(z)| <

21F™(z)| > % (5.2)

Then for such z and for [ < n, item 3 of Lemma 3.1 implies that

it (£ 770) | o e 5 ()

82./"_[ L q
So
max [ h (2, 7)) | a2 95 () <
0<i<n/2 |Oyn—t \L’ z ~

(L))" " |Jwl| N—n 2N —ntds1
0<i<n <z>2(N—n+l) <Z>d+l

Since from (5.2) we have that q/L <, (z)?, then the first fraction above is

bounded by (L/q)V*!, and again (5.1) follows. O
As a corollary we get an estimate for J2':
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Corollary 5.2. For JI' defined in (1.19) with v € (0,1) and d > 3 we
have

’J%’ ~Y1,m HwHNo,QNOer+1 )
where Ny := [d+ (d+1)/71].

Proof. Denoting by | - |1 the I!-norm, by the definition of J' we have

VS Y s 1Zq sup |Sq(c)[[I(c)]

s>L7 cl1=s
<) st 12(11 204 sup |I(c)|
s>L ] leli=s
Snm Y s 12(] 25N lwl v anrart
s>L71

where the second line follows from Lemma 2.1, while the third one — from
Proposition 5.1. The sum in ¢ is bounded by a constant. Choosing N = Ny
we get that

Ld+1 Z Sd —-N < Ld+1 Z s —(d+1)/m < 1.

s>LM s>LM

This concludes the proof. ]

6 The J!' term

6.1 The estimate
Our next (and final) goal is to estimate the term J' from (1.18).
Proposition 6.1. For any d > 3 and v1 € (0,1/2),

d d
2] Sypm LD (] g a5 + [wllo,5-344) -

where N = N(d,v1) := [d?/y1] — 2d.

Proposition 6.1 will follow from the next lemma which is a modification
of Lemma 22 in [10] and is proved in the next subsection:

Lemma 6.2. For any d >3 and c # 0,

d d/2—1—
I (©)] Syuam LY (/1) 277 (ol 5 a5 + lwllo,v43ata)

where N and -y, are the same as above.
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Proof of Proposition 6.1. Accordingly to Lemma 2.1,

o0 o0

—d_d d —d

2 Y S L@ S L e )] g
C#Ov |C|SL71 q=1 ' - q=1

=2 (343 )P max |Ly(e)| = J-+ Jy

e c#0: [¢|<LM
with
J_ = Lm —d/2+1 g I,(c
Zq c;é0:|c|)§([ﬂl ’ q( )| )
q<L
J. = Lm —d/2+1 pax I,(c)|.
L s Vi)

Corollary 3.3 together with (3.8), (3.9) implies

Ld+1
g(c)| < . lwlL, (6.1)

so that

Jp S LML |, Y g S LR |, S LR g g
q>L

On the other hand, since |c| > 1, from Lemma 6.2 we get

d d -
= S LD (]| s + 0l 543004) S0
q<L

d d
< (lwllg.ass + lwllo 5134+4) J(d+1)+d/2+2

6.2 Proof of Lemma 6.2
We begin with

6.2.1 Application of the inverse Fourier transform

Note that the proof is nontrivial only for ¢ < L|c|: indeed, for any a > 0
the bound (6.1) implies that

—d/2+1 .
11()] Sa LY wlr, Sa L4(Llel/a) T wlp, it ¢ > alld,
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since |c¢| > 1 and —d/24+1+7; < 0. So, it remains to use again the inequality

lwlz, < llwllo,a+1-
Let us take a small enough o = «a(d,y1,A) € (0,1) and assume that
q < aL|c|. Consider the function wy(x) = 1/(1 + 22) and set

W(z) = ———— = w(z)(1 + F™(2)%). (6.2)

—+00 .
p(t) :== / wy(v)h(q/L,v)e(—tv) dv, e(z):=ei(x) = ™2, (6.3)

—00

This is the Fourier transform of function wa(-)h(q/L,-). Then, expressing
wah via p by the inverse Fourier transform and writing w(z) = w(z)ws(F™(z)),
we find that

+o0o
w(@h(a/LF" () = i(z) [ pl)e(tF" (2)) dt.
Inserting this representation into (3.9) we get
+o00
Iy(c) = / p(t)e(—tm) (/Rd w(z)e(tF(z) —u-z) dz) dt, u:=cL/q.

—00

Note that
lu| = [c|L/g>a "t >1

since ¢ < alc|L. Now let us denote Wy(x) = c5® ngl wo(z;) (see (3.1)).
Then Wy € C§°(RY), Wy > 0 and
supp Wo = [~1,1]¢ € {z e R?: |2| < Vd}, / Wo(z)der =1.  (6.4)
Rd

Let us set 0 = [u|~!/2 < /& and write @ as

o(z) = 51 /Rd W (Z - a) (z) da.

Then setting b := ? we get that

@< [ [ w0l dtda,
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where in view of (6.4),
Iyt = / Wy(b)w(z) e(tF(z) —u - z)db, z :=a+ ob.
{Ib|<Vd}

Consider the exponent in the integral I, ;:
f(b) = fa,t(b) = tF(a + 5b) —u- (a 4 (5b).

At the next step we will estimate integral I, ¢, regarding (a, t) as a parameter.
Consider another parameter R, satisfying

1< R < |ul'/?

its value will be chosen later. Below we distinguish two cases:
1. (a,t) belongs to the ”good” domain Sg, where

Sr={(a,t) : [Vf(0)| = d|tAa—u| > R(t/Iul) = R(5°1) };
2. (a,t) belongs to the "bad” set Sp¢ = (R x R) \ Sk.

6.2.2 Integral over Sg.
We consider first the integral over the good set Sg:

Lemma 6.3. For any d>1, N >0 and R > 2||A||vVd we have
L, N
()] Lo dadt Snm Pk [l w,d+s - (6.5)
Sr

Proof. Let 1:=V f(0)/|Vf(0)] and £ =1-Vy. Then for (a,t) € Sg and
[b| < Vd (see (6.4)),

LF(b)] = |LF(0) + 2V £(0) - Ab/[V£(0)]| > |VF(0)] — 62}¢]|Ab]
6.6
> R~ Al 2 IR0 2 R/ (66)

Since (2miLf(b))"1Le(f(b)) = e(f(b)), then integrating by parts N times
integral I, ; we get

a < [,N k.~ 5b (
| t| ~N |br|ﬂ<alXV7, Oir}ca{XN ( T a) (ﬁf(b))N-‘rk
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where we have used that £L™f(b) = 0 for m > 3. Since |£2f(b)| < &§2[t||1-
Al| < 82|t]||A||, then in view of (6.6)

‘EQf(b)’ _ RIAL _ 214 1
Lf(b) | = 1R(s2t) R ~Vd
1
Lf(b)

ol Sy R7Y max - max ‘Ekw(5b+a)‘.
|bs|<1Vi 0<k<N

2
So using that ‘ ‘ < = by (6.6), we find

Thus, denoting by 1g,, the indicator function of the set Sg, we have

((a)dHL max —max ‘L’ku?(éb + a)D _da_

Int|lg. da<y RN
/Rd’a’t’ Sr 04 N |bs|<1Vi 0<k<N (a)d+1

Rd
<N RN)0| nas1 Svm BNl

N,d+5

for every t. Then

+oo
Lhas. of (6.5) <am B lln.dss / Ip()] dt. (6.7)

—00

To prove (6.5) it remains to show that

/ b0l < L. (6.8)

—0oQ
In virtue of Lemma 3.2 with N = 2,
8k
Wh(x,v)‘ <p 2 ¥ Tmin{l,22/v?}, k>1,

and by Corollary 3.3, |h(x,v)| < 2~ !. Then an integration by parts in (6.3)
shows that, for any M > 0,

o] Sor ([ et o

o0

2
(M—k) —k—1_ - z )
1,—=;d
+1£r’1%>§w —oo‘w2 (v)|x min { ’v2} v),

where x := q/L. Writing the latter integral as a sum f‘v|<m + f|v|>x we see
that -
/ =g h 1 / \wéM_k) ()| dv <pp z™®
|v|<z [v|<z
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and

(M—k)
[
lv|>x [v|>z v

Then, for any M >0

a,\M .. 4 ANt -m
p@OISw (1) if £<1 and @] Su (5) WM i T

kel
L L

—
o
o |V
N—

Choosing M = 2 when [t| > (L/q) and M = 0 when |t| < (L/q) we get
(6.8). O

6.2.3 Integral over SR°.
Now we study the integral over the bad set Sg°.

Lemma 6.4. For any d>1,1<R < |u|"/? and 0< 8 < 1 we have

[ b0l sl dadt S Bl

SR
where K (d, B) = d + [d*/28] + 4.
Proof. On Sg° we use for I,; the easy upper bound
lncl £ e [@(8b+)| <[], (6.10)
The fact that (a,t) € Sg° implies that the integration in da for a fixed ¢ is
restricted to the region, where |Aa - t_1u| < (R/S]t|)(t/|ul), or

A~ tu
t

<Al ;,Z (t/ul) (6.11)

a—

We first consider the case [t| > |u['=#/¢. Since |u| > 1, then considering
separately the cases |t| < |u| and |t| > |u| we see that

R _
m(t/\ub < Rlu|~Y/2+8/d (6.12)

In view of (6.10) -(6.12),

T P e T
R
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Since |F™(z)| S (2)?, by definition (6.2) of the function @ we have |00 S,
|wllo.a- Then the r.h.s. above is <, R¥u|~%?+5||w|¢4. Taking into ac-

L
count that, by (6.8), / Ip(t)|dt < — < |ul, we get
[t[>[uft A/ q

L (L Ol ) e =252
>|ul'—

0,4 -

(6.13)

Now let |[t| < |u|'"#/¢. Then the r.h.s. of (6.11) is bounded by the

quantity ||A~Y||R/(5|t]), so that |a| > |[A~tul|/[t| — |A7Y||R/(0]t]). Since
|A="u| > Cylu| and R < |u|'/3, then

_ !
|a| ZA |u| RtC”A V |u‘ 2 (1 o Cjéllu‘il/(i)@ > EH > 1 u|/8/d

| b= 20— 2

with C*y = C;*|A™!|, since [u| ! < @, if @ is so small that 1-C%a!/6 > 1/2.
Then 1 < |a|/[ul?? on Sg° so that 1g,¢(a,t) < lu|~/2+5/d)|a#*/26-1 apd
we deduce from (6.10) that for such values of ¢

/ |Ia,t|1s5,¢(a, t)da
R‘i

< |u|-4/2+8/d / Al max [i5(5b+ a)] da
Rd S1<1Vi

Sm |u\_d/2+5/d||w||0,1((d,5) ;

where K (d, 3) = d+ [d?/2/3] +4. On the other hand, by (6.9) with M = 0,
f\t|<|u|1*5/d Ip(t)|dt < Ju|*=#/? from which we obtain

/|t<| —sa ( e Ip(t)|[1a,t| 1s4e(a,t) da) dt <m ’u‘_d/2+1HwHO,K(d,ﬁ)~
sjualt

(6.14)
Putting together (6.13) and (6.14) we get the assertion. O

6.2.4 End of the proof

In order to complete the proof of Lemma 6.2 we combine Lemmas 6.3 and
6.4 to get that

- L _
L0 Swvam (qR N 4 Ry d/““ﬁ) (vl

N,d+5 T ||w\|0,K(d,B)) :

We fix here v € (0,1/2), 8=7/2, R= |u|% < \u|% and pick N = [i—?] -
2d > 0 (notice that R > a~71/2¢ > 2||A||V/d if « is small enough, so that
assumption of Lemma 6.3 is satisfied). Then K (d,3) = N +3d+4, R~V <
ju| =42t < || (L|c|/q)~¥?t since |c| > 1. Moreover, R%u|~#/?+1+8 =
ju| =424 = (L|c|/q)~%/?+1*71. This concludes the proof. O
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7 Integrals over quadrics

Our goal in this section is to study integrals Z(¢; w) over the quadrics ;. We
start with a case of quadratic forms F', written in a convenient normal form
(Theorem 7.1), and show later in Section 7.4 (Theorem 7.3) how to reduce
general integrals Z(t; w) to those, corresponding to the quadratic forms like
that. In this section we assume that

d>3

and not use the bold font to denote vectors since most of variables we use
are vectors.
7.1 Quadratic forms in normal form

On R% = R? x R4 x ]Rgl ={z=(u,z,y)}, where d >3, n >0 and d; > 1,
consider the quadratic form

Fiz)=Luf+2-y=13A2 -2, A(u,z,y) = (u,y,2). (7.1)

Note that A is an orthogonal operator, |Az| = |z|. As in Section 1.1 we
define the quadrics ¥; = {z : F(z) = t}, t € R. Note that for ¢t # 0 ¥, is a
smooth hypersurface, while 3 is a cone with a singularity at the origin. We
denote the volume element on ¥; (on Xo\{0} if t = 0), induced from R?, as
dz|y, and set

§PH(dz) = | Az Ve, (7.2)

(see below concerning this measure when ¢ = 0).
For a k. € NU {0} and a function f on R? satisfying

feckMmry, M>d, (7.3)

we will study the integrals
I(t)=1(t:f) = . f(2)u™(dz). (7.4)
t

Our first goal is to demonstrate the following result:

Theorem 7.1. For the quadratic form F(z) as in (7.1) and a function
feck-M@RY), M > d, consider integral T(t), defined in (7.4). Then I(t)
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is C*—smooth if k < d/2 — 1, k < k., and is C*—smooth outside zero if
k <min(d/2 —1,k.). For 0 < |t| <1 we have

T Searlflear if b <d/2—1,

(7.5)
O T(t)| Sl flar (L =T ltl) if k< d/2 =1,
While for |t| > 1, denoting kK = W, we have
IOl lhart)™ 1Sk Sd2-Lksh,

T Saw | o () VE < k.

An example, see [7, Example A.3], shows that in general the log-factor
cannot be removed from the r.h.s. in (7.5).

The theorem is proved below in number of steps. In the proof for a given
vector z € R™ we consider its orthogonal complement in R% — the hyper-
space . We denote its elements Z, and provide z- with the Lebesgue
measure dz. If di = 1, then 2 degenerates to the space R = {0}, and dz
— to the d-measure at 0. Practically it means that when d; = 1, the spaces
ot and y (and integrals over them) disappear from our construction. It
makes the case d; = 1 easier, but notationally different from d; > 2. For
example, in formula (7.8) with d; = 1 the affine space of (u/, 2’) becomes
the point (v, 2/, (t — 3|u'[*)[2’|722), the measure du™ |5z in (7.14) becomes
du|z|tdx, etc. Accordingly, below we write the proof only for d; > 2,
leaving the case dy = 1 as an easy exercise for the reader.

7.2 Disintegration of the two measures

Our goal in this subsection is to find a convenient disintegration of the
measures dz |y, and p*t, following the proof of Theorem 3.6 in [5].

Recall that we write elements z € R? as z = (u,x,y), where u € R?
and z,y € R%. Let us denote ¥ = {(u,z,y) € ¥ : « # 0} (if t < 0,
then X¥ = ¥;). Then for any ¢ X¥ is a smooth hypersurface in R?, and the
mapping

07 : S = R x RM\{0},  (u,z,9) = (u,z), (7.7)
is a smooth affine euclidean vector bundle. Its fibers are
t— %’ul|2 /

of (v, 2') == (Hf)_l(u/,:p/) = (u/,l‘/,x/L +

2 :c) ) (7.8)

|z
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€1

where 2/~ is the orthogonal complement to 2/ in R%. For any z’ # 0 denote

1
Up ={2:|e—a| <Sla'[}, U=R"xUp xR".

Now we construct a trivialisation of the bundle IIf over U. To do this
we fix in R® any orthonormal frame (eq,...,eq, ) such that the ray R, e;
intersects U,,. Then

z1 >0 Vo= (r1,...,2q,) = (x1,%) € Uy .
We wish to construct an affine in the third argument diffeomorphism
P :R" x Uy x RM™1 5 UNY,
of the form

O (u,2,7) = (u, 2, ®7(7)),  ® () = (pi(u, z,7),7) € R, e R
(7.9)
We easily see that ®;(u,z,7) € 3; if and only if

t—glul* =77

(pt(u)xvﬁ) = (710)

x1
The mapping 77 — ®,"*(77) with this function ¢, is affine, and the range of
P, equals U N 2.
In the coordinates (u,z,m,7) € R™ x Uy x R x R%~1 on the domain
U c R? the hypersurface ¢ is embedded in R? as a graph of the function
(u,z,7) = m = ¢¢. Accordingly, in the coordinates (u,z,7) on U N %, the
volume element on ¥; reads as py(u, x, 7)du dx dfj, where

2 1512 4 ]2 g 2 1,12 _ = =\2
_ 1/2 ul® + (7| + |z + 27t — 5|ul* —z-7)7\1/2

Ly

Passing from the variable 7 € R~ to y = ®}"(7) € oF(u,z) we replace
dn by |det @?’x(ﬁ)|d05(u7x)y. Here dyz(y0)y is the Lebesgue measure on
the (d; — 1)-dimensional affine euclidean space of (u,z) while by det ®,"*
we denote the determinant of the linear mapping ®,"*, viewed as a linear
isomorphism of the euclidean space R%1—1 = {7} and the tangent space to
o¥(u, x), identified with the euclidean space 2 C R%. Accordingly we write
the volume element on ¥, NU as p(u, x,y)du dz Ao (u,z)y With

pt(ua z, y) = ﬁt(u, xz, 77)‘ det q)qtl’m(ﬁ” ) (U, z, y) € Zta where q)qtl’z(ﬁ) =Y.
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Now we will calculate the density p;. Let us take any point z, =

(s, s, yx) € UNX; and choose a frame (ey, ..., eq,) such that e; = . /||
Then
t—glu?y -
Ty = (|z4],0), y*:(y*lvy*); Y1 = (|;7|*>, y*ERdl L
*

So (see (7.9)~(7.10)) the mapping ®; is such that ®;"*(7) = (y«1,7) =
U € of (ux,xx) (1.e. p1(24) = ys1). In these coordinates pi(tx, Tx, Ys1, Us) =
pt(Us, Tx, s ), which equals

e (el & ol 415+ lga )

(14 foal 72 (el + 132 + gl o

That is, pi(zs) = ||;T|| Since z, is any point in U N X, then we have proved

Proposition 7.2. The volume element dz|sy with respect to the projection
I} disintegrates as follows:

dz|sr= du |z| " dx 2] do2 (u,0)Y - (7.11)

That is, for any function f € C§(X¥),

[r@azts= [ [ e[ ) o Jdodu.
R JR%4 of (u,x)

Similarly, if we set XY = {(u,2,y) € Xt : y # 0} and consider the
projection

Y : 2 = R* x RU\{0},  (u,2,y) = (u,y),
then
dz|gy= du ly|tdy 2] d s ()T - (7.12)

Let us denote XY = {(u,z,y) € ¥4 : * = y = 0}. Then %,\¥? is a
smooth manifold and dz|x, defines on it a smooth measure.

By (7.11) and (7.12), for any ¢ the volume of the set {z € Z,\¥? : 0 <
|z|? + |y|> < €} goes to zero with e. So assigning to XY zero measure we
extend dz |y, to a Borel measure on ¥; such that each set {z € 3; : |z| < R}
has a finite measure and

(dz]s,) (BFUE)) =o0. (7.13)
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By (7.11) and (7.12) function |z| 7! is locally integrable on % with respect
to the measure dz|x,. So u*t (see (7.2)) is a well defined Borel measure on
¥t. Since |Az| = |z|, then, in view of (7.11) and (7.12),

d:uZt |Ef: du |$|_1d$ daf(u,ac)ya d:uzt |E%: du |y|_1dy do‘f(u,y)x : (714)

The measure >t defines on R? a Borel measure, supported by ;. It
will also be denoted p>t.

7.3 Analysis of the integral Z(¢; f)
Note that for any ¢ the mapping

Ly X =57, (u,2,y) = (u, 2,y + tjz|22)

defines an affine isomorphism of the bundles Il ‘Eg; and II; [zy. Since Ly
preserves the Lebesgue measure on the fibers, then in view of (7.11) it sends
the measure p™° to u~t. Using (7.14) we get that for any ¢ the integral Z(t),
defined in (7.4), may be written as

I(t: f) | f(Le(2)p™ (dz)

3o

= / |x\1(/ f(u,ac,y+t|x\*2a:)dgx(um)y>dudaz.
R7xR% o(u,z) ’

)

(7.15)

Here o(u, z) := of (u, ) = 2+ — L{u?|z| 22

We recall that f(u,z,y) satisfies (7.3). Taking any smooth function
©(t) > 0 on R which vanishes for |t| > 2 and equals one for [t|] < 1 we

write f = foo + f1, where foo = ¢(|(z,y)*)f and fi = (1 —¢(|(z,y)*))f-
Denoting B, (R™) = {€¢ €e R™ : |{] <7} and B"(R™) = {£ e R™ : |£{] > r}
we see that

supp foo C R™ x Bﬂ(del), supp f1 C R" x B} (R%d1) (7.16)
Setting next fi1(z) = fi(2)(1 — ¢(d[z[*)), fio(2) = fi(2)p(4]z[*) we write
J = foo+ f11 + fi0-

Since (z,y) € B'(R?¥) implies that |z| > 1/v/2 or |y| > 1/4/2, then in view
of (7.16),

supp f11 C R" x BY2(R4) x Y,

(7.17)
supp fio C R" x R% x Bl/ﬁ(le).
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Obviously, for i,j = 0,1 we have ||fijllx;m < Cramllfllkm, for all & < ks,
m< M.
Setting Z;;(t) = Z(t; fi;) we have:

Z(t; f) = Zoo(t) + Z1o(t) + Taa (¢) -

7.3.1 Integral Zyo(t).

By (7.15) Zpo(t) is a continuous function, and for 1 < k < k,,

ahoo(t):/ (/ |a:|_1dx>du
n Bﬁ(Rdl)

/yEJ(u o (d¥/dt*) foo(u, 2,y + t|z]">2) dy )Y

_/ / |l”_1</ dlyff()o(u,x,y—i-t‘.ﬁ‘_Ql') [|$’_2[E] da(u,x)y)dxdua
n B\@(Rdl) y€o(u,x)

(7.18)

where by d’zj foo Uw\*zm} we denote the action of the differential d’; foo on the
set of k vectors, each of which equals to |z|72z. Setting 7 =t — 1[u/?, for
y € o(u,z) we have

Y+ tlz| e = g + 7]z %z, for some g € . (7.19)

Then we write the integral over y in (7.18) as

/l dl;foo(u, T,y + 7'|:1:|_2;v) [|x|_2x} dy. (7.20)
x
Since |y + 7z|z|72|* = |g|? + 72|x| 72, then on the support of the integrand
T <VE R+l <2 (7.21)
In particular,
1
7| = |t — 5\u|2] <V2)z| <2 in (7.20). (7.22)

By (7.16) the diameter of the domain of integration in (7.20) is bounded by
V2. So, for any m > 0 integral (7.20) is bounded by Ck n|2| =% (w) =™ | £l k.m-
Denoting R = |u|, r = |z| we get that

V2 d1—k—2 > 1 M
‘k,M/O pi1=rT (/0 R (R)~ X|T|§\/§rdR)d7"-
(7.23)

105 Zoo ()| Sieont ||
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If n = 0, then the integral in dR should be removed from the r.h.s. Below
we estimate 9" Ty (t) separately for the cases n =0 and n > 1.

a) If n = 0, then 7 = t, we get from (7.22) that |z| > ¢/v/2 and see from
(7.16) that, for t # 0, Zoo(t) is C**-smooth (since f € C**). Then from
(7.23) we obtain

V2
10*To0()] <nar Il / Pk dr (7.24)
[t|/vV2

From here it follows that

0" Too(8)| Sk | Flleas if & < min(dy — 2, k),

) _ , _ (7.25)
|8 Ioo(t) Sk HfHk,M(l + |ln\tH) lf k‘ :mm(d1 — 1,]{7*) s

while Zgpo(t) = 0 for [¢| > 2.

b) If n > 1, then to estimate 9*Zno(t) we split the integral for Zoo(t) in a
sum of two. Namely, for a fixed t # 0 we write fog as fog = foo< + foos>, with
foo< = foop(8|z|?/t?), where ¢ is the function, used to define the functions
fij» 0 <4,7 < 1. Then

supp foo< C {2|z| <|t[}, supp foos C {2V2]z| > |t[}. (7.26)

With an obvious notation we have Zyo(t) = Zoo<(t) + Zoo> (t), where

Tuc)= [ [ 2]
" JB 5(RU)NBy /2 (R)

yeoluz) foo< (u, 2,y + t|z| " 2z) da(uw)y) dzdu,

|22 +|y+t]z| 2z <2

Zoo> (1) Z/ / |
R™ JB 5(RA)NBIH/2V2(RMA)

veotuay Jo0s (s, y + 2] 720) dogo 0y ) dadu.

|2 +Hy -+t e[ <2
Consider first function Zgo<(t). We observe that, by (7.19), for y €
o(u,z) and |z| < |t|/2 (cf. (7.26))

1
ly + tlz| "2z > |7||z| 7t = ‘t - §]u\2 2|7t > —tx| Tt > V2, fort<0,
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so that Zypo<(t) = 0 for ¢t < 0. For ¢ > 0, performing the change of variables
Viu = wu, ta’! = x, we get

oo () =142 / / &/ (8l ?)
" JB. /5, (RT1)NB; o (R)

foo(Vtu! t' y + || 72a) dg(u/@/)y> dx'du

yeo(u',a')
|2/ |22 +y+[a'| 22! [P <2
where we notice that o(u/,2') = o(u,x). We differentiate with respect to ¢,
observing that, by induction in &, for any [ and k& we have

d* la
e ORI DI ey (L
Litla+is=k

(x'l?’ : Vm)lg gVt ta'),

for any sufficiently regular function g and suitable constants ¢, j,;,. From
this we get

[ D l —

0 To0c(8)] Sar a2 p g [ A
1+la+1l3=k R™

‘.’L'/’lgil ;o dg(u/@/)y)dx/du/.

/Bﬂ/t(Rdl)mBl/Q(Rdl) |I/‘2t2_€|eyo_;_(|i/’|x—%m/|2§2

Denoting points of the space z=+

is bounded by

as y, we see that the integral over dy (s 41)y

1
seat ldy, 1=1- 5|u'|2 : (7.27)
[’ 22+ g+’ | 2|2 <2

By (7.22), on the support of the integrand |7/| < v/2|2’|. So there
ju/|?
1—V2|2| < - < 14+V2|2|. (7.28)

As the the domain of integration in y is bounded, then integral (7.27) is
bounded by a constant. So putting |2’| = 7/, |u/| = R’ and using (7.28) we
have

1/2
0" Too< ()] Shar | max || fllpart/2-te/2t [t
T Lo +H3=k ’ 0

V2 1+V2r
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Since 7’ < 1/2, then on the domain of integration v/2 —v2 < R’ <

V2 + V2, while V2V 14+ V21" — V21— 21" < 7/, So the integral in

dR’ is bounded by C(t)~M/2y'. Therefore
1/2
0o (8)| Skr | max_ [f st /270122 ) =2 / P
U L Hla+l3=k ’ 0

This implies that for 0 < ¢t < 4, for any k < k, and any d; > 1 we have
10" Zoo< (t)] Sk |1 f Ikt > F1 (7.29)

While for any ¢t > 4 and any k < ki,

05 Too< ()| Spor . max || flpagat?? M2 l/270
li+la+l3=k

(7.30)

~

VR
y / P gt < gt MR )/2
0

We recall that Zpp<(t) vanishes for ¢ < 0.

For Zyo~ (t) we first note that by (7.21) and (7.26) function Zyp~ (t) van-
ishes if |t| > 4. Next, by induction in k, we observe that

k

poltala (1= el /) = 3 g fafP S
li+la+i3=k (7.31)
l d>
(V") gri-9),

where ¢, 1,1, = 0 if I3 > 0 and > = 0. Since ¢’ # 0 only for |t|/2v2 < |z| <
t|/2, then

lo

—3ly—L;
@(1 —QtTETE S

s 2] 7227B 1> 0,
so that
dk —2 2 /42 —k
Sarattalal )0 = e )| S el Fllio

From here, in a way analogous to (7.23), putting again |z| = r and |u| = R,
we get that

V2 00
*Toos> )] s 11 F1x / phi—k=2 / R Y RY™My _dR)dr
9 Tans O St Ikar [ o422 ([ R HRY M ey dR)
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(here and below fab dr = 01if b < a). Since on the integration domain, due
to (7.26) and the factor X|r|<y2r» We have R? < 6y/2r, then

V2
10" Too (O] Sotan I1f s / i /22
[t]/2v2

<I<:M{ ”fHk,Mv k<d/2_17
~ [ fllepr (L + I ft]]), k< d/2-1.

(7.32)

If k < d/2 — 1, then by the above 9*Zyo(t) is bounded for all t. In
this case, modifying the integrand in (7.18) by the factor x|, >., we see
that thus obtained functions Z§,.,Zj,. satisfy the same estimates as the
functions Zgo~,Zoo< above, so the function I, also does. The functions
OFT5,(t) with & > 0 obviously are continuous in ¢ and converge to 9¥Zno(t)
uniformly on bounded intervals. So the latter function also is continuous.
Similar 9*Zgo(t) with k = d/2 — 1 is continuous on any set [t| > & > 0, so
is continuous for ¢ # 0.

7.3.2 Integral 7;,(t).

Due to (7.17) and similar to (7.18), (7.20), for any k < k, we have
T (1) = / / 2] L (/ b fio (o2, 5+ rale|2)xle| %) dg)drdu.
n J)|z|>1/2 xt

We easily see that Z11(¢) is a C*-smooth function and, since M > d and
|5+ 7z|z[7*| > |g], then

0* 11 (8)| Skonr |1 fllens VL. (7.33)

Now let [t| > 1. Let us write 0%Z;; as

3k111(t)—/ / |:c]k1/ y(2) dydxdu , (7.34)
n J]z|>1/2 zl

where z = (u,z,7), ¥ € 2, and
|@x(D)ISk I llene(2) Y, 2= (u, 2,5+ Ta|z| 7). (7.35)

Obviously,

21> |2, |2 =272 (|2 + |l 7). (7.36)

Below we separate the cases n > 1 and n = 0.
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1) Let n > 1.
a) We first integrate in (7.34) over u in the spherical layer

O:={u:|r|= ‘t — %\uﬂ < %t}
It is empty if ¢ < 0, while for t > 0, O = {u : t < |u|? < 3t}. By (7.35) and

the first relation in (7.36), for ¢ > 0 the part of the integral in (7.34) with
u € O is bounded by

. _ -M/2 . _
K = ck\fuk,M// || 7F 1/ (1t + |=|* + |9/%) 2 dgdadu.
O Jiz|>1/2 x+

Since [, 1du < Ct"/2, then by putting r = |z, [t| + 72 = T2 and R = |j|/T
we find that

n/2 ® di—2—k di—1—M [ pdi—2 o\ —M/2

K Skl 1k art re e R"72 (14 R?) dRdr .
1/2 0

The integral in dR is bounded since M > di, so that

KSk,MHfllk,Mt"/Z/ =2k (g g p2) BT g
1/2

Recalling that we are considering the case t > 1, we put » = v/tI. Then

n+l+dy—2—k+dy—1—M o0 dy—1-M
RS flhart™ 72500 [0tk ) S an
7 t=1/2/2

Since M > 2d;, the integral over [ converges and we get

K S | f It~ A2 2 g ax@bt=an 2y )

with Y =1Int if Kk =d; — 1 and Y = 1 otherwise. Then, in the case Y =1
the component of (7.34), corresponding to u € O, is bounded by

M+2-d

C(kva d)”f”k,M’t’_R, K 9 )

(7.37)
for all |t] > 1, since max(0,k +1 —dy) < k. If Y = Int the same estimate
holds in the case d; > 2 since max(0,k + 1 — dy) < k. In the case d; =1
and Y =1Int (i.e. k£ =0) we get (7.37) with x replaced by any ' < x (and
constant C' depending on x').

b) Now consider the integral for u € O° = R"\O. There || = |t —
$|u?| > 11t|. So, by inequalities (7.35) and (7.36), |®x(2)|Sk((u, 7)) ™™ and
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|@x(2)|Sk(t]|z| 24 |2]) =M. Let M = M;+Mj for some integers My, My > 0.
Then the part of the integral (7.34) for u € O€ is bounded by

—M
Clflhar [ ™ et o)™ (] (o)™ )
nJx

Choosing My = n+d; — 1+ v with 0 < v < 1 (then M, My > 0 since
M > d) we achieve that the integral over du dy is bounded by C(7), for any
7. Since by Young’s inequality ¢

(A+B)'<C,A*B* ', 0<a<l,

for any A, B > 0, then (t|z|~! + \$|)_M1 < Cy|z|Re—DMij—aM (0 < ¢ <
1). So the integral above is bounded by

C(’V)Hf\lk,M!tl‘“Ml/| / |7 Mgy h =20 —1 € (=1,1).
x|>1/2

Denote b, = %Idl. Then for b = b, the exponent for |z| in the formula
above equals —dj, and b, > —1 if y is sufficiently small, since M > d. Noting
that

by +1 M+2+k—-d— v _ kv

b )M, = M E_ v
a(be) My 9 1T 2 it g5

(k was defined in (7.37)), we see that the part of integral (7.34), correspond-
ing to u € O°,

is bounded by (7.37) if k£ > 1, while for k£ = 0 it is bounded by

7.38
(7.37) with & replaced by any k' < k. ( )

2) Now let n = 0. Then
04T (1) g/ ]w|1k/ By(z) dyde, z=(z,5),  (7.39)
|z|>1/2 x+

where |®(2)|<p(2)™M with 2 = (x,7 + tz|z|~?). Repeating literally the
step 1b) above with n = 0 we get that for |¢| > 1 the integral in (7.39) may
also be bounded by (7.37). We recall that for |t| < 1 the derivative 9*Zy;(t)
was estimated in (7.33).

Indeed, by Young’s inequality with p = 1/a, ¢ = 1/(1 — a) we have that A*B(-9) <
aA+ (1 —a)B < Cq(A + B). This proves the assertion.
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7.3.3 Integral Zyo(t).

Now we use the second disintegration in (7.14) instead of the first. Since
by (7.17) on the support of the integrand |y| > 1/4/2, then repeating the
argument above with x and y swapped we get that Z;o(t) meets the same
estimates as Z;1(t).

7.3.4 End of the proof of Theorem 7.1

Finally,
— combining together relations (7.25), (7.29), (7.32) and (7.33) we estimate
OFT(t) for 0 < |t| < 4,
while
— combining together (7.30), (7.37), (7.38) and using the fact that 9*Zyo- (¢)
and 9%Zoo(t) vanish for [t| > 4 when n = 0, we estimate OFZ(t) for t > 4.
For the reason, explained at the end of Section 7.3.1, the involved deriva-
tives are continuous functions. This proves the theorem.

7.4 Linear transformations of quadrics

In this subsection we denote by Cj spaces of continuous functions with
compact support.

In RY = {2} let us consider a quadratic form with real coefficients”
F(z) = Az z of signature (ng,n,n_) such that ng =0, ny >n_ =:dy >
1. Denote n = ny —n_.

Using the standard diagonal normal form for a symmetric quadratic

form, we construct a linear transformation
L:RESRY 20 Z=(u,z,y), weR® z,yecRH,

such that Q(L(z)) = F(z), where Q(Z) = 3|u|> + - y. Consider the cor-
responding quadrics EtQ ={Z:Q(Z)=t}, ¥ ={z: F(2) = t}, and the
J-measures u?,,uf on them (e.g. see [13, Section I1.7]):

i 59 =t 5 | 12(2)dz. (7.40)

o1
(ut', f7) = lim / F7(2) dz,
e—0 2¢ t—e<F(z)<t+e

"Sections 7.4-7.5 is the only part of our work, where quadratic forms are allowed to
have non-rational coefficients.
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where f9, fF € Co(RY) and (u, f) signifies the integral of a function f
against a measure pu. Then M? and pf” are Borel measures in R?, supported

by E? and X respectively, and for fQ € Cy (E? \ {0}) and f¥ € Co(=f\
{0}) we have

Qiz F(2)
QfQ:/f()dZQ FfF:/f(ZdZF.
</’Lt ) > EtQ |VQ(Z)| ‘Zt ) <1ut ’ > Ef !VF(2)| |Et
Here dZ | ,o(r r) is the volume element on Z?(Or F) \ {0}, induced from R?,
t
see [13]. Now let ff' = f@ o L. Then the integral in (7.40) equals

/ f2(2)dZ = | det(L)| 1 (2) dz,
t—e<Q(Z)<t+e t—e<F(2)<t+e

so passing to the limit we get that
Lo (|det(L)|uf) = p?. (7.41)

Thus,
to examine the function

t IV f) = (uf )y nf = [VE()| dz g, (7.42)

we are free to use any linear coordinate system in R¢ since changing the
coordinates we only modify function Z¥ by a constant factor.

7.5 Sign definite forms

Finally let us consider the case when ng = 0 and min(ny,n_) = 0, i.e. when
the form F(z) = %Az - z is sign—definite and non degenerate. Suppose for
definitenes that n_ = 0. Then there exists a linear transformation L such
that F(z) = Q(L(z)), where Q(Z) = §|Z|?, Z € R%. The quadric ; reduces
to the empty set for ¢ < 0, so function Z7 (¢) (see (7.42)) vanishes for ¢ < 0.
The calculation of previous subsection remains true in this case, so (7.41)

and the change of coordinates Z = V2t Z' show that
) =CA D [ A2 g (d2)
2t

|Z1=v2t v
=C(d, L)td/21/

fOWV2UZ ) pgaa(dZ'),  t>0, fO=foL,
12'|=1
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where figa-1 is the volume element on the d — 1 sphere of radius 7. From
this relation we immediately get that for any & < min(d/2 — 1, k),

OTE @) Sk lflko i 0<E<T,

and
[MTE ()] s 1 ast™ D2 g >

7.6 General result

We sum up the obtained results in the following

Theorem 7.3. Consider any nondegenerate quadratic form F(z) = %Az -z

on R%, d > 3, and a function f € C*M(R?), M > d. Then the cor-
responding integral TF (t; f) = (uf', f) (see (7.42)) meets the assertions of
Theorem 7.1.

Proof. i) If ny > n_, then by means of a linear change of variable F' may
be put to the normal form (7.1), where d; > 0. Now the assertion follows
from the argument in Subsections 7.4, 7.5 and Theorem 7.1.

ii) If n_ > ny, then the quadratic form —F' is as in i), and the assertion
follows again since obviously Z=F(t; f) = ZF (—t; f). O

A The J) term: case d =4

In this section we find asymptotic for the term Jy from (1.19) in the case
d=4 and m=0. (A.1)

Below in this section we always assume (A.1).

A.1 Preliminary results and definitions

We will need Lemmas 30 and 31 of [10], restricted for the case m = 0 and
d = 4, which we state below without a proof. Recall that constants o7 (A)
are defined in (1.10) and 0*(A) = o§(A). Set a := 7/2 and recall (A.1).

Lemma A.1 (Lemma 30 of [10]). For any e >0 and X € N,

D Sy(c;A,0) = nc)oi(A) > ¢+ O(XFE(1+ c))), (A2)
q<X q<X

where n(c) = 1 if c- A7lc = 0 and at the same time det A is a square of
an integer, and n(c) = 0 otherwise. Moreover, |c5(A)| Se 1+ [c|® when

n(c) # 0.
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Lemma A.2 (Lemma 31 of [10]). Assume that the determinant det A is a
square of an integer. Then for any e >0 and X € N,

Z q_dSq((]; A0) =0*(A)log X + OA + OE(XoH—a—d) :
<X

where Cy is a constant depending only on A. Otherwise, if det A is not a
square of an integer, then for any e >0 and X € N

Z q*dSq(O; A, 0) = L(l, X) H(l — X(p)pil)ap(A, 0) + Oa(X—l/QJrE) ,
g<X p

det(A)

where x is the Jacobi symbol ( ) and L(1, x) is the Dirichlet L—function.

We will also need the following construction. Let us define for r € Ry

I*(r) := L1(0) = /Rd w(z) h (r, F%(z)) dz. (A.3)

Consider a function K(p;w, A), p € Rsg, given by

K(p) :=n(0)c*(A) (aoo(w; A,0)log p + /OO A (r) dr) +000(w; A,0)Ca,
p
(A.4)

where constant 7(0) is defined according to Lemma A.1 and C 4 — according
to Lemma A.2. Note that functions I*(r) and K(p) do not depend on L.

We claim that function K(p), p > 0, can be extended at p = 0 by
continuity. Indeed, for 0 < p; < p2 <1

K(p2) — K(pr) = n(0)o"(A) (awm; A0)tog(pa/pr) ~ [T dr) |
p1

(A.5)
Using that I*(r) = L™%I.1(0) (see (3.8)), we write the term I*(r) from
(A.5) in the form, given by Proposition 3.8b). Then I*(r) takes the form
of the r.h.s. of (3.11), divided by L%, with ¢ = rL. The leading term in
the obtained formula for I*(r) is oo (w; A, 0) and the corresponding integral
ppf 7o dr in (A.5) cancels the first term in the brackets of (A.5). Then,
setting M =d/2 -1, =17, 5 =~/d and 0 < v < 1 in the just discussed
formula for I*(r), obtained from (3.11), we get the estimate

P2 _ _
K(p2) = Kol Sl [ (#2092 logr) 4724575 2) ay
p1

d/2—1—
Sy Pz/ ’waHd/2fl,d+1 .
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The last inequality here is obtained by choosing N = N(v) to be suffi-
ciently large and writing r4/20=7)"2(logr) <, rd/20-7)72-7/2 = pd/2=2=7,
Therefore K (p) extends at p = 0 by continuity and

1K (p) = K(0)] Sy p”* 7 wlaja-1.a11+ (A.6)

so the function K is (d/2 — 1 — «y)-Hélder continuous at zero, for any v > 0.

A.2 Estimate for J,

Argument in this section is related to Section 13 of [10]. Here we restrict
ourselves for the case when the determinant det A is a square of an integer,
so in particular n(0) = 1. We use this specification only in the proof of
Lemma A.5, when applying Lemma A.2. The case of non-square determi-
nant is easier and can be obtained similarly, using the second assertion of
Lemma A.2.

Proposition A.3. Assume that the determinant det A is a square of an
integer. Then for any 0 < e < 1/5,

Jo =000 (w; A,0)0*(A)L41og L 4+ K (0; w, A) LY
+ O0(L*# (|wllajoa—1,4-1 + llwllo.g+1))-
Proof. To establish Proposition A.3 we write Jy in the form (1.21),
Jo = Jar + J, , where
T =" q78,(0)I,(0) and Jy =Y ¢ “S4(0)1,(0),
q>pL q<pL

with p < 1. Then the assertion follows from Lemmas A.4 and A.5 below.
Recall that oo = 7/2.

Lemma A.4. Let w € L1(RY). Then for any v > 0, any p < 1 and L
satisfying pL > 1,

S’y (pa+’Y*d71LOl+’Y 4 prLdfl)‘w’Ll )

JS‘ — Ldn(O)a*(A) /OO L () drr
p

Proof. To simplify the notation, in this proof we denote I, := I,;(0) and
Sy = S¢(0). Let us recall the summation by parts formula for sequences

(fq) and (gq):

Z fq(gq - gq—l) = fngn - fm+lgm - Z (fq—i—l - fq)gq'

m<q<n m<g<n
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We take arbitrary R € N and apply the latter with m = R, n = 2R,
fq = q_qu and g, = ZR<q,§q Sy, so that gr = 0 and S; = g4 — g¢—1 for
q > R. We find

Z qidSqu :(QR)idIQR Z Sy

R<q<2R R<q<2R

freas2 (A7)
- Z 9q(q 1) Z Sq
R<q<2R R<q'<q

where for a sequence (a,) we denote dyaq := a,11 — a,. By (3.8)-(3.9),

I, = Ld/ w(z)h(q/L, F°(2)) dz .

Rd

So,

d+1 Ld+1

|Iq, S |w‘L1 and ‘anQ‘ S qT’w‘L1 ) (A8)

where the first estimate above follows from Corollary 3.3 while the second
one — from Lemma 3.2 with m = 1,n = N = 0. Then, |9,(¢"%,)| <
L1 q=9=2y|1,. According to (A.2) with ¢ replaced by v, for R < 2R

> Sy =n0)0"(A) Y ¢"+0,(R), (A.9)

R<q<R' R<q<R'

where we recall that o§(A) = 0*(A). Let us view the r.h.s. of (A.7) as a
linear functional G((Sg)) on the space of sequences (S;). Then, inserting
formula (A.9) in the r.h.s. of (A.7), we get

> S0, =n(0)a*(A)G((¢" )
R<q¢<2R

+ O»y <Ld+1 ‘w|L1 (R—d—l—i-a—i-'y + Z q_d_2+a+7)>a
R<q<2R

(A.10)

where the O, term is obtained by applying (A.8) together with the estimate
for 9,(g~%1,) above and replacing the sums Y. .S,, > S, in the r.hs. of
(A.7) by O,(R**7). According to the summation by parts formula (A.7)
with S, replaced by ¢?~1, we have > R<q<2R g %%, = G((¢"")). Thus,
by (A.10),

S S, = n(0)0*(4) Y ¢+ 0, (Ld+1Rfd71+a+'Y|w’L1) '
R<q<2R R<q<2R
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Then, setting R; = |[2'pL| we get

JJ:Z Z q_quSq

1=0 Ri<q<Rii1

=n(0)o"(A) Z q¢ I, +0, (;)O”Wdl[/0”w|wL1 Z 2[(d+1a'y)>

q>pL =0

=n(0)0"(4) 3~ ¢~ 1y + O, (o L s, )
q>pL

It remains to compare the sum A := Zq>pL q_llq with the integral B :=
L fpoo r~1I*(r) dr. Since LI*(r) = I,1, then changing the variable of inte-
gration r to ¢ = rL, B takes the form fpoz q 'I,dq. Then,

B Sy 00 . lpL]+1 .
A-Bl<|> ¢, ¢ ‘1, dg| + ¢\, dg|. (A.11)
g>pL lpL]+1 oL

Due to (A.8), ¢ g| S ¢ 2L w[p and [94(q )| S ¢ L w]p.
Thus,the both terms in the r.h.s. of (A.11) are bounded by (pL) 2L |jw|;: =
—2Ld—1| | 0

P wlra.

Recall that Cj4 is a constant arising in Lemma A.2.

Lemma A.5. Assume that the determinant det A is a square of an integer.
Then for any v >0, N > 1, any p <1 and L satisfying pL > 1,

Jy =L (w; A,0) (U*(A) log(pL) + C’A) + O%N((po“"”—dlf“M
+ L7 (plog L + N+ Llfd)) ”de/Zfl,dJrl)-

Proof. Inserting Proposition 3.8 b) with M =d/2—-1=1and g =1
into the definition of the term J; , we get J, = I4 + Ip, where

Iy = Llos(w) 3" a798,(0),  Tn= > 5,000 (fy+9q),

q<pL q<pL

with
- q
|fal S qLd ! <10g(z)> Hw||d/2—1,d+1a

90l S (VLN +1) g~ wloin.
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By Lemma A.2,

Z qidSq(O) = o'*(A) log(pL) + C’A + OA/((pL)O‘JF’Y*d)'
q<pL

So,
Iy = Lo (w) (0—* (A)log(pL) + C’A) + O (050 (w) LT po 7=
whereas

|00 (w)] = [000(w; A, 0)| = |Z(0)] < [[Zllo0 Sa [lw

0,d+1 (A.12)

on account of (3.13). As for the term Ip, since d = 4, Lemma 2.1 implies
that

151 £ 3 a (ol +laal) S L9 (plog L+ N+ L) fwllaja-rain
q<pL

for N > 2. The obtained estimates on I 4 and I imply the assertion. [

Now we conclude the proof of Proposition A.3. The leading term of
Jo is given by the sum of leading terms from formulas for Jar and J; in
Lemmas A.4 and A.5. Since 1(0) = 1, it takes the form

Lio*(A) ( /oo () dr 4 oo (W) log(pL)) + Lo (w)Ca
P
= 0oo(w)o*(A) L log L + K(0)L* + O, (Ldpd/2717’yHde/Zfl,dJrl)a
where in the last equality we used (A.4) and (A.6). Then we find
Jo =000 (w)o* (A) L log L + K (0)L% + O,y ((paﬂ—d—lL‘“7 4 p2Ldt
+ LYt plog Lt pN 7+ L) o141 )

since [w|r, < [Jwlloar1. We now pick p = L71/% and N = 2, and, using that
d = 4, get the assertion of proposition. O

A.3 Estimate for o,(w; A, L)

In this section we get an upper bound for the subleading order term o7 of
the asymptotics from Theorem 1.4.

In the case when the determinant det A is not a square of an integer,
o1 is given by (1.14) and the task is not complicated. Indeed, according to
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Lemma A.2, the product [,(1—x(p)p~")op(4,0) is finite (and independent
from L). On the other hand, by (A.12), [0 (w; A,0)| S ||wl|o,a+1. Thus,

o1 (w; A, L)| S [Jw

‘07d+1~

In the case when det A is a square, o7 is given by (1.24) and the required
estimate is less trivial.

Proposition A.6. Assume that det A is a square of an integer. Then
lo1(w; A, L)| < HwHN,N+3d+47 where N := d?(d + 3) — 2d.

Proof. Since n(c) takes values 0 or 1, then according to the definition
(1.24) of o1, we have

o1 ()| < [KO)+ D |oa(A)os(w)]. (A.13)
c#0:n(c)=1
Let us first estimate the term K(0). According to (A.6),
[K(1) = K(0)] S lwlla/2—1,d+1- (A.14)
On the other hand, 6*(A) is independent from L and, in view of Lemma A.2
is finite. Then, by the definition (A.4) of K (p),
K (1) 5/ I dr -+ oo (ws A,0)Cal
1

Due to the definition (A.3) of the integral I*(r) and Corollary 3.3, |I*(r)| <
r~Hwlp, < 7Y wlloar:. Then, in view of (A.12), |K(1)| < ||wllo.at1, s0
that, by (A.14),

|K(0)] S Hw”d/%l,dﬂ- (A.15)

Let us now estimate the terms ¢S (w), which are given by (1.23):

oS (w) =L~ ¢ ', (c; 4,0, L) = Yi(c) + Ya(c),
q=1

-M
where Y; = L4 Zquj ¢ (c), Yo = L7 2 g>Lic|-M q 'I,(c) and M €
N will be chosen later. Using that d = 4, according to Lemma 6.2,

Lle|=™

Yi(e)] Sy L7 el C(w) Y g7 S le|m TN C (w),
q=1
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where we denoted C(w) = ||w||§ 415 + [[wllo y13414- On the other hand,
by Proposition 5.1, |I,(c)| <y L¥ gt e| N ||w|| nan+as1 for every N € N.
So,

Ya(e)| Sn Llel Mwlvavtarn Y, a7 Slel M |wlvanara
q>Lle|=M

Thus,

oS ()] Sy (Jel” D e M) (wll g 54 g0 + 0]l v zvarn).

By Lemma A.1, [05(A)] Sy 1+ [c|7 if n(c) =1, so we get

Y 108(A)0S (W) Syn w5 54 sara + @l vonrart,
c#0:n(c)=1

once M and N —M are sufficiently large and + is sufficiently small. Choosing
M=d, N=2d+1and v=1/(d+3), we get N = d?>(d+ 3) — 2d. Together
with (A.13) and (A.15), this implies the assertion of the proposition.

B Constants 0(A,0) and 0*(A)

It is clear that our result provides an approximation to the series Nz, (w; A, m)
through the singular integral o (w) only if the singular series o(A, m) or
0*(A) are strictly positive. In fact, the singular series is known to be strictly
positive under a very general condition, namely, for non-singular forms of
any degree that have non-singular solutions in R and in every p-adic field
(provided the singular series is absolutely convergent), see, e.g., Section 7 of
[14]. However, since the most interesting case in applications to mathemat-
ical physics is the case of the quadratic form Fy(x,y) below, we give in this
Appendix a direct elementary treatment of the evaluation of the constants
0(A,0) for d > 5 and 0*(A) for d = 4 in this case, independent of the general
theory.
In this section we consider the case when the quadratic form reads as

F(z,y) = Ejflxzyl =: Fy(z,y) where d=2s5s>4 (B.1)

and x = (z1,...,2s), ¥y = (y1,...,ys). Our goal is to evaluate the constants
0(A,0) for d > 5 and 0*(A) for d = 4. Below we use the usual notation
for the relation that an integer m divides or non-divides an integer vector s

(e.g. 2/(8,6) and 21 (8,7)).
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In view of the definitions (1.10)—(1.11), our first aim is to compute the
constants o,(A,0). For a prime p and k € N let consider the set

Sp(k) = {(z,y) mod p" : Fy(z,y) =0 mod p*}

and denote N, (k) := #5,(k). Note that the set S,(k) and the constant N, (k)
depend on d. Then the constants o, can be rewritten as

op(d) :=0p(A,0) = lim Ny (k)

Jim (B.2)

This relation is mentioned in [10], p. 199, without a proof; we sketch its
rigorous derivation at the end of this appendix.

Let Np(d) := Np(1) be the number of F,-rational points on {Fy = 0
mod p}.

Lemma B.1. For any prime p,

Up(d) = 'il\ipl(d) !

m. (B.3)

Proof. For j = 0,1,...,k we define S,(k,j) as a set of (x,y) € Sp(k)
such that

(z,y) =P/ (2/,y/) mod p*, where pt(2',y)).

So Sp(k,0) = {(z,y) € Sp(k) : p 1 (x,y)} and Sy(k,k) = {(0,0)}. Sets
Sp(k,j) and Sp(k,j") with j # j' do not intersect, and denoting N,(k,j) =
85y (k, j) we have

Sp(0) = _Sold)s Nok) =32 Ny(hog)
In particular, Ny(1,0) = N, — 1 since Np(1,1) = 1. We claim that
Np(k,0) = Np(k —1,0)p",
and thus
Np(k, 0) = N,(1,0)p = DED = (A, — 1) pld DG, (B.4)
Indeed, we argue by induction in k. Let k = 2 and (z,y) € Sp(2,0). Let us
write (x,y) as (o + pa, yo + pb) with (z0,%0), (a,b) € Fi. Then p 1t (x0,%0),

so (zo,Y0) € Sp(1,0). Let us now fix any (zo,y0) € Sp(1,0) and look for
(a,b) € Iﬁ‘g such that (zo + pa,yo + pb) € Sp(2,0). Since p?F(a,b) = 0 mod
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p? and p 1 (wo,%0), then relation F(z,y) = 0 mod p? implies a non-trivial
linear equation on (a,b) € Fg. So each (x0,y0) € Sp(1,0) generates exactly
p? ! vectors (z,y) € S,(2,0), which proves the formula for k = 2. This
argument remains valid for any k > 2, by representing (z,y) mod p* in the
form (zg + p*ta, yo + p¥~1b) with (zg,yo) € sz_l and (a,b) € Fg.

Let now (x,y) € Sp(k,7) with j > 1. Then (x,y) = p/(z',y’) mod pF,
where p { (z',y) and (', 3/) satisfies p> F(2/,y') = 0 mod p*. Thus (2/,y') €
Sp(k — 27,0), if j < kgl, ie. j < Lkglj =: jx. The correspondence
(z,y) — (2/,y') is a well defined mapping from S,(k,j) to Sp(k — 24,0).
Indeed, if (z1,y1) ~ (z,y) in Sp(k,J), then pk_j]((m’l,y’l) — (x’,y’)), o)
(), y)) ~ («/,y) in Sp(k — 27,0). Since this map is obviously surjective,
then it is a bijection of S,(k,j) onto S,(k — 24,0), which in view of (B.4)
implies

Ny(k, ) = Ny = 25,0) = (A — 1) pld- D20,

By (B.4) this formula as well holds for j = 0.
Any (x,y) such that p/|(z,y) with j > j, + 1 satisfies F(z,y) = 0
mod pF. Thus

k

> Ny(k,j) = #{(z,y) mod p”: (z,y) = 0 mod piT1} = pHh=dk=1) < pik/2,
J=ik+1

Therefore

Jk
Ny(k) = (j\/p — 1)p(d_1)(k—1)zp—2j(d—1) + O(pdk/Q),
j=0

So

. Np(k & L I=d(N — 1
op = lim #:(/\fp—l)pl dzp 2j(d 1):]71_(175_%)7
7=0

which proves (B.3). O

Let then deduce a formula for A,(d) using induction in d/2 = s. For
d = 2 we have Nj(2) = #{(z,y) € F5 : 2y = 0 mod p} = 2p — 1. Next,

N, (d + 2) = {solutions with z,1; = 0} + #{solutions with x5 # 0}
= pNp(d) + (p — 1)p.
Therefore for any even d = 2s > 2,

Nyp(d) = p*=t +p* —p*,
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and thus
L4ps—ps—p=d  (14+p)(1—p9)

op(d) = 1—p2-2d 1—p2-2d

Since by Euler’s formula [],(1 — p~Y) = 1/¢(l) for any | > 1, then in the
case d = 4 we get from (1.11) and the obtained formula for o,(d) that

¢(6)

o(A,0;d=4)=[]op(@) =S [[@+p71).
: (@1

This does not converge, but

e " _4(6)_471'2N

o*(A;d=4) = 1;[(1 p Ho,(4) = C? = 108 = 0.376,
converges. Further,
e $(2)¢(10) Ly S(3)c(14)
(A, 0;d=06) = B = 1.265, o(A,0;d=28) = UKo 1.092,

whereas

s—1)¢(2d — 2 14+ 2179)(1 4224
1 < 0(A,0:d) = C(C(S)g(ﬁ_ 5 ) _ ((11 2_5))((1 :22_23)) Fo(1) = 1+0(1)

tends to 1 when d = 2s > 10 grows.
It remains to prove (B.2). By definition (1.10), o, = > 7% p~%S,:(0),

where
S0 = 37 N eu(aF(b)).

amod pt b mod p?

Note that p~#5,:(0) = 1 for ¢t = 0, while for ¢ = 1:

p—1
p5,(0) =p~"Y " Y eplaF (b))

a=1bmodp
p—1 p—1

=pY Y 1Y Y eleR(D)
a=1 b mod p, p|F(b) a=1 b mod p, ptF(b)

=p " (p = DN(d) +p~ (1) (p? = Np(d)) = p'Np(d) — 1,

m—1
Z em(an) = -1, (B.5)
a=1
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for any n,m # 0 such that (m,n) = 1. Therefore Zizop*dtspt(O) =
PN (1).
We proceed now by induction, supposing that, for k > 1,

k
> p%8,(0) = pU VN, (k) .

Then we write
Spk+1 (0) = Z Z €pk+1(CLF<b)) = 21 + 22 =+ 23 ,
amodpFtl bmodpkt!
where we have defined

Si= ST Y 1= - DNk + 1),

amod pkt+ipktl|F(b)

S Y Y eplal) = —pF(IN (k) — Np(k+1))

amod pk+1F(b)—lpk

Z ZZ k+1sal ,

amod pk+1s=0 F(b

232

with a non-zero [ = [(b) such that p 1 I. The equalities above essentially
follow by a repeated application of (B.5).
This way we have got

Sp’““(o) PkHNp(k + 1) - pd+kNp(k7) Np(k + 1) Np(k)

pd(k+1) pd(k+1) — pd-D(k+1) o pld=Dk

which completes the induction step, thus proving (B.2).
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