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H I G H L I G H T S  

• Three-component electrolytes with sulfolane, water and lithium salt were studied. 
• The highest concentrated electrolyte is coupled with LTO and LMO as the anode and the cathode. 
• The cell shows has excellent cycling stability and safety. 
• The interactions among the different components were studied by solvation models.  
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A B S T R A C T   

Moving from organic to aqueous lithium-ion batteries (ALIBs) would be an interesting feat. As of today, we have 
water-in-salt electrolytes (WISEs) that were developed primarily to expand the electrochemical stability window 
of traditional aqueous electrolytes. However, their cathodic limits do not enable the use of high-capacity negative 
electrodes and the very high concentrations of expensive heavily fluorinated salts, often >20 mol kg− 1, hinder 
any feasible implementation of LIBs based on WISEs. A hybrid organic/aqueous electrolyte based on LiFTFSI 
dissolved in sulfolane and water is here presented as an alternative, where sulfolane is used to tune and reduce 
the water activity, by altering the Li+ cation first solvation shell, and thereby the cathodic limit can be pushed to 
<1.0 V vs. Li+/Li even at a comparatively moderate salt concentration (7.8 mol kg− 1). This enables long-term 
operation of an Li4Ti5O12⎪hybrid electrolyte⎪LiMn2O4 2.4 V cell with a specific energy of 156 Wh kgAM

− 1 .   

1. Introduction 

Aqueous lithium-ion batteries (ALIBs) have the potential to offer 
safety advantages and lower cost as compared to traditional LIBs [1,2], 
but most often their energy densities are severely limited by the narrow 
electrochemical stability window (ESW) of the water employed in the 
electrolytes [3]. As a remedy, highly concentrated aqueous electrolytes 
(water-in-salt electrolytes or WISEs) have been introduced, that signif
icantly extend the ESW from the conventional ca. 1.23 V to >3 V due to a 
combination of bulk, interfacial, and interphase effects [4]. Indeed, 

“superconcentration” influences water activity and changes the solva
tion structure by incorporating almost all water molecules and some salt 
anions into the (Li+) cation first solvation shells, resulting in over
potentials for water decomposition [4–7]. Furthermore, the preferential 
reduction of the Li-salt anions over water in WISEs leads to the forma
tion of different and more stable solid electrolyte interphases (SEIs) on 
the negative electrode surface, significantly increasing the cathodic 
stability [8], but this is heavily dependent on the use of perfluorinated 
anions [5,9–11]. The accumulation of anionic species at the surface of 
the positive electrode, creating a water-depleted region, also increases 
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the oxidative stability [8]. However, the cathodic stability of WISEs is 
not yet sufficient to support even rather high potential and high-capacity 
commercial LIB negative electrodes, such as Li4Ti5O12 (LTO) operating 
at ca. 1.5 V vs. Li+/Li, and in addition, the substantial salt concentrations 
required raise significant economic concerns alongside elevated vis
cosities, posing practical challenges [12]. An alternative is to create 
hybrid aqueous/organic electrolytes (bi-solvent-in-salt-electrolytes or 
BSiSEs), where the organic component both improves the SEI [13,14] 
and the cathodic stability by replacing the cation coordinated water 
molecules with an electrochemically more stable co-solvent. This 
effectively hinders solvated water molecules from migrating into the 
inner Helmholtz layer, which would trigger the hydrogen evolution 
reaction (HER) [15,16]. Several co-solvents have been successfully 
employed: dimethyl carbonate [13], acetonitrile [17], tetraethylene 
glycol dimethyl ether (TEGDME), and 1,3-dioxolane [18,19], and very 
recently sulfolane which improves the ESW by breaking the hydrogen 
bond network rather than by stabilizing the SEI itself [20–22]. All the 
BSiSEs above use salt concentrations >10 mol kg− 1, which while 
admittedly is only 50 % of most WISEs, this is still high and using a 
co-solvent may allow less expensive electrolytes, even if perfluorinated 
anions are employed. 

Despite the large amount of literature on the various approaches, 
there are still a number of unresolved practical issues relating to the 
actual development of these technologies. In particular, due to the 
corrosive properties of superconcentrated electrolytes, titanium current 
collectors are often used, which are expensive and of little practical use. 
In addition, as mentioned above, the use of highly concentrated per
fluorinated salts poses problems in terms of both cost and environmental 
sustainability. 

In this work, we report the use of water containing electrolytes with 
sulfolane as co-solvent and LiFTFSI as salt. The asymmetric FTFSI anion 
was chosen as it has been demonstrated to inhibit crystallization in 
concentrated electrolytes, as compared to similar electrolytes based on 
the more common symmetric anions such as TFSI and FSI [23]. In 
particular, we studied the properties of three different solutions by 
keeping the sulfolane/water ratio constant (3:1) and varying that of the 
salt until a maximum solubility of 7.8 mol kg− 1 was reached. This limit is 
lower than that which defines a BSiSE, but this is an advantage in terms 
of cost and sustainability, considering the use of fluorinated salts. We 
commence our analysis by thoroughly characterizing the physico
chemical properties, with a particular focus on thermal and phase 
characteristics, before delving into the evaluation of electrochemical 
properties. Subsequently, the prospect of these electrolytes for ALIBs is 
demonstrated by constructing a Li4Ti5O12 (LTO)⎪electrolyte⎪LiMn2O4 
(LMO) full cell on standard current collectors. 

2. Methods 

2.1. Electrolyte preparation 

The electrolytes were prepared by mixing LiFTSFI (>97 %, TCI), 
sulfolane (99 %, Sigma Aldrich) and Milli-Q water (σ = 6.3 μS cm− 1). 
Keeping the sulfolane/water ratio constant at 3:1 and changing the 
molar ratio of LiFTFSI respect to water from 1 to 3, three samples were 
obtained, namely 3S:H2O:1L, 3S:H2O:2L, and 3S:H2O:3L. All the sam
ples were stirred for 30 min to ensure complete dissolution of the salt, 
then stored and used at room temperature. 

2.2. Thermal studies 

Thermal characterization of the electrolyte samples was done with 
Differential Scanning Calorimetry (DSC) using DSC 1 Star® (Mettler 
Toledo). The data was evaluated using STARe® software. Thermal 
analysis was performed in a temperature range of − 120 to 80 ◦C. The 
experimental protocol included four steps: 1) equilibration at 25 ◦C for 
10 min; 2) cooling from 25 ◦C to − 120 ◦C at 5 

◦

C/min; 3) isotherm at 

− 120 ◦C for 10 min; 4) heating from − 120 ◦C to 80 ◦C at 5 
◦

C/min. 

2.3. Conductivity measurement 

The conductivity was measured using electrochemical impendence 
spectroscopy in the frequency range 1 Hz–400 kHz, with a sine ampli
tude of 25 mV, using a dip-probe symmetric platinum electrode cell 
having a cell constant of 1.06 cm− 1. Impedance spectra were obtained 
vs. temperature in the range of 0 ◦C–75 ◦C using a climatic chamber 
(Angelantoni, Italy) and the bulk ohmic resistance was determined 
through the high-frequency intercept with x-axis of the Nyquist plots. 

2.4. Raman studies 

Raman analysis was performed with a Labram Dilor spectrometer 
(JobinYvon) in backscattering mode using a 488 nm Ar+ laser having a 
resolution of 2 cm− 1. The laser beam was focused on a circular point 
through a microscope with a long working distance objective lens hav
ing 50× magnification and an aperture of 0.60. The spectra were ob
tained by accumulating three acquisitions (30 s of integration). All the 
measurements were performed at room temperature. 

2.5. Electrochemical studies 

The electrochemical measurements included cyclic voltammetry 
(CV), linear sweep voltammetry (LSV) and galvanostatic charge/ 
discharge with potential limitation (GCPL). The CV measurements were 
performed in a three-electrodes Swagelok cell using LTO on Al and LMO 
on carbon-coated Al (CC–Al) foil as working electrodes (WE, see below) 
and free-standing activated carbon (F400) and silver/silver chloride 
(Ag/AgCl, 3.5 KCl) as counter (CE) and reference (RE) electrodes, 
respectively. All the CV measurements were performed at room tem
perature with a scan rate of 0.5 mV s− 1. The LSV measurements were 
carried out in a three-electrodes Swagelok cell using Al, CC-Al and 
stainless steel (SS) foils as WE, and free-standing activated carbon 
(F400) and silver/silver chloride (Ag/AgCl, 3.5 KCl) as CE and RE, 
respectively. The scan rate was set the 0.5 mV s− 1 from 0.0 V vs. RE up to 
− 2.5 V and 2.0 V vs. RE during the cathodic and anodic polarizations, 
respectively. GCPL measurements were performed in R2032 coin cells at 
room temperature. For the LMO and LTO electrodes, a slurry of active 
materials (LiMn2O4, Li4Ti5O12), PVDF (6020 by Solvay) binder and 
carbon black (Super P from Erachem Comilog, Inc.) in weight ratio 8:1:1 
was prepared in anhydrous N-methyl-2-pyrrolidone and coated on 
carbon-coated Al (for LMO) and pristine Al foil (LTO). LMO and LTO 
electrodes mass loading was 6.7 and 5.2 mg cm− 2, respectively. Glass 
microfilter separator was used in all measurements and 50 μl–70 μl of 
electrolyte was used in the coin cells. The round trip efficiency is defined 
as: 

round trip efficieny=
Ed

Ec
%  

where Ed is the energy retrieved from the battery when it’s discharged 
and Ec is the energy stored in it when it was charged. 

2.6. ARC measurements 

Accelerated Rate Calorimetry (ARC) tests were performed using an 
ES-ARC instrument (THT Ltd., UK). Two coin cells, both assembled with 
LTO as anode, LMO as cathode, glass microfiber (Whatman) as sepa
rator, with the only difference in the electrolyte (LP30 or 3S:H2O:3L, 
respectively) were charged up to 2.5V and then tested in the ARC. The 
experimental procedure, as depicted in the SI (Fig. S10), involves in
cremental heating in 5 ◦C steps, followed by 10-min isotherm intervals 
to ensure thermal equilibrium across the entire chamber. Subsequently, 
the temperature is monitored for an additional 10 min to allow for 
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potential exothermal processes. In the absence of observed exothermal 
reactions, the temperature is increased by another 5 ◦C, restarting the 
loop. If an exothermal process is detected, the chamber’s temperature is 
adjusted to match that of the cell. 

3. Results and discussion 

3.1. Physico-chemical characterization 

Three BSiSEs were prepared by keeping the molar ratio between 
sulfolane and water (3S:H2O) constant while varying the salt concen
tration XL (3S:H2O:XL where X = 1,2,3). First, using DSC to assess phase 
changes, we find glass transition temperatures (Tgs) in the range − 70 to 
− 100 ◦C (Fig. 1a and S1, Table 1). The Tgs increase as a function of salt 
content, likely due to dynamic cross-linking by ionic interactions [24], 
and there is also an increased endothermic overshoot, due to structural 
relaxation [25]. The most concentrated electrolyte (3S:H2O:3L) thus 
requires more energy to move from the glassy to the viscous liquid state 
and has an intrinsic lower mobility. As no other thermal features, such as 
cold crystallization or melting, were observed the electrolytes do remain 
in a supercooled liquid state – which arguably is an advantage in terms 
of battery cell cycling stability [23]. 

The ionic conductivities decrease as a function of salt concentration, 
probably due to increased viscosity, and follow a Vogel-Tammann- 
Fulcher (VTF) behavior (Fig. 1c) as described by: 

σ = σο exp
(

− B
T − T0

)

(eq.1)  

where σο is the ionic conductivity at infinite temperature, B is the 
pseudo activation energy (Epa=kBB, kB is the Boltzmann constant) for 
ionic motion, T is the absolute temperature, and T0 is a parameter 
relatable to the ideal glass transition temperature [26] at infinitely low 
heating/cooling rate (thermodynamic equilibrium) [27]. For polymer 

electrolytes and ionic liquids, T0 is typically 10–50 ◦C below Tg due to 
decoupling from the liquid relaxation and in this case, it is 12–18 ◦C 
below Tg, and increases with salt concentration. 

The ESWs, as obtained by linear voltammetry (LSV) using either 
AISI-304 stainless steel (SS), aluminum (Al), or commercial carbon- 
coated aluminum (CC–Al) as current collectors show that Al gives the 
best result (Fig. S2) in terms of cathodic stability, probably due to the 
high overpotential for the HER [28], while the anodic limit is very 
different between the bare metals (Al, SS) and CC-Al, probably due to 
metal dissolution. Using the optimized pair of current collectors 
(Fig. 1b), the cathodic current remains below the threshold of 0.05 mA 
cm− 2 up to − 2.4 V vs. Ag/AgCl, with a trend inversely proportional to 
the salt concentration. The least concentrated electrolyte, however, 
shows significantly worse anodic stability. The here introduced use of 
Al-based current collectors is a breakthrough innovation, as previously 
only high cost and high specific weight titanium current collectors have 
provided the anodic stability needed for ALiBs [6,21,22]. 

Using the 3S:H2O:3L electrolyte, the lithiation of LTO occurs at 
− 1.64 V vs. Ag/AgCl and the corresponding de-lithiation at − 1.20 V vs. 
Ag/AgCl (Fig. 1d). Similarly, for LMO, two redox pairs appear at +1.17/ 
+1.34 V vs. Ag/AgCl and +0.89/+1.07 V vs. Ag/AgCl. All the redox 
reactions are thus just barely within the ESW of the electrolyte (Fig. 1c). 

3.2. Full cell performance 

From the basic electrochemistry results above, a set of 2032-type 
coin cells were fabricated: Al⎪LTO⎪3S:H2O:XL⎪LMO⎪CC-Al, with 
active material loadings >5.0 mg cm− 2 and an electrolyte volume of 50 
μl. Possible future scale-up and transfer to higher TRLs are facilitated 
both by the use of relevant loadings and conventional current collectors. 
All cells were subjected to galvanostatic cycling in the potential range 
between 2.0 and 2.8 V using a rate capability test protocol of different 
currents, 10 cycles at each, corresponding to 0.5C, 1.0C, 2.0C and 4.0C, 
and back to 0.5C, where 1C = 150 mA gLTO

− 1 (0.78 mA cmLTO
− 2 ). Another 

Fig. 1. Characterization of the three electrolytes: (a) DSC traces during heating; (b), Electrochemical stability windows obtained using Al ans Al-CC current collectors 
during the cathodic and anodic scan, respectively; (c) ionic conductivity as a function of temperature; (d), Cyclic Voltammetry of Al/LTO and Al-CC/LMO electrodes 
using the 3S:H2O:3L electrolyte and comparison with the LSV data of Fig. 1b. 
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set of coin cells was used for the long-term galvanostatic cycling (1000 
cycles) at 0.5C (0.39 mA cmLTO

− 2 ). 
The 3S:H2O:1L electrolyte, with its modest stability (Fig. 1b), ex

hibits large irreversibility during the first two charge/discharge cycles 
(<65 %, Fig. S3), which is why no further cycling was carried out. In 
contrast, the cells with the two more concentrated electrolytes showed 
similar performance at 0.5C (Fig. 2a and S4) during the first 50 cycles, 
with an average discharge potential of 2.4 V and specific capacities of ca. 
140 mAh gLTO

− 1 . However, after ca. 70 cycles, the 3S:H2O:2L based cell 
showed a significant drop in performance, resulting in a capacity 
retention of 89 % and 38 % after 100 and 500 cycles, respectively, while 
the 3S:H2O:3L based cell showed 100 % and 78 % (Figures S4, S5 and 
S6). For the latter, the average charge efficiency between cycles 100 and 
1000 was 99.58 ± 0.08 % and at cycle 1000 the capacity retention was 
65 % with a loss per cycle of 0.055 mAh g− 1. The high active material 
loading, the good specific capacity, and the high discharge potential 
result in an initial areal energy density of 1.30 mWh cm− 2 decreasing to 
1.00 and 0.79 mWh cm− 2 at cycles 500 and 1000, respectively (Fig. 2c). 
The round-trip efficiency calculated from cycle 2 to 1000 was 90.4 ±
0.5 %. In addition, the rate capability is quite acceptable at 1C and 2C 
(108 and 69 mAh g− 1 respectively), while at 4C it dropped down to 20 
mAh g− 1, but not irreversibly (Fig. 2b). 

This improved stability for the cell with the 3S:H2O:3L as compared 
to 3S:H2O:2L electrolyte cannot be explained by the simple LSV mea
surements (Fig. 1b), but LMO induced electrolyte oxidation may play a 
role. To better understand these aspects detailed Raman characteriza
tion was performed to reveal the interactions present, with special 

emphasis on the cation solvation. 

3.3. Cation solvation 

The Raman spectral region 500-600 cm− 1 contains the characteristic 
SO2 scissoring vibrational mode of sulfolane (568 cm− 1) [29], as also 
supported by DFT calculations [30], a mode which is known to shift to 
higher wavenumbers upon complexation with either water or Li+ [22, 
31]. Here, the slight shift to 570 cm− 1 in the 3S:H2O spectrum became 
more pronounced as LiFTFSI was introduced; the mode gradually shifted 
from 572 via 573 to finally reach 574 cm− 1 for 3S:H2O:1L, 3S:H2O:2L, 
and 3S:H2O:3L, respectively (Fig. 3a). The latter indicates that almost all 
sulfolane molecules are now coordinated by Li+ [21,29]. This spectral 
region also contains other bands, originating either in the anion, such as 
the δas-CF3 bending mode (556 cm− 1) [32], which simply increased in 
intensity as a function of salt concentration, and/or from both the anion 
and the sulfolane, such as the broad feature at 510-540 cm− 1 which is 
related both to the sulfolane ring deformation mode at ca. 516-520 cm− 1 

[30] and an FTFSI combined δas-CF3+δ-SO2 bending vibration mode at 
ca. 535 cm− 1 [32]. 

The broad feature in the region 700-800 cm− 1 is deconvoluted into: 
(i) a band at 737 cm− 1 attributed the C–S–C asymmetric stretching of 
free sulfolane molecules [33,34], (ii) a band around 760 cm− 1 that 
correspond to a combination of CF3-bending and SF-stretching of the 
FTFSI anion [32], and (iii) a band at 729 cm− 1 due to con
traction/expansion of the full anion [32] (Fig. 3b–Table S1), which, in 
the presence of solvents, depending on the salt concentration, can give 

Table 1 
Physicochemical properties of the hybrid electrolytes.  

Electrolyte Sulfolane:H2O:LiFTFSI 
Molar ratio 

Molality mol kg− 1 Density g mL− 1 Tg 
◦C T0 

◦C Tg-T0 
◦C σRT mS cm− 1 Epa eV 

3S:H2O:1L 3:1:1 2.6 1.35 − 98 − 116 18 3.5 0.056 
3S:H2O:2L 3:1:2 5.2 1.53 − 83 − 100 17 1.2 0.060 
3S:H2O:3L 3:1:3 7.8 1.78 − 76 − 88 12 0.5 0.063 

Molality = mol of salt over kg of solvent; Tg from DSC; T0 from VTF fit; sRT from conductivity measurements, Epa from VTF fit. 

Fig. 2. Galvanostatic charge/discharge profiles at 1C (150 mA g− 1) and 0.5C (a), rate capability test (b), and long cycling (c), of the Al|LTO|3S:H2O:3L|LMO|CC-Al 
full cell. 
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rise to various solvation structures, such as: solvent-separated ion-pairs 
(SSIPs, ~730 cm− 1), contact ion-pairs (CIPs, ~747 cm− 1) and larger 
aggregates (AGGs, ~751 cm− 1) (Fig. 3b and c), [35]. At the lowest salt 
concentration (sample 3S:H2O:1L, with a concentration of 2.6 mol 
kg− 1), the dominant solvation structure is SSIP (grey band in Fig. 3b), 
but there still exist a significant population of free sulfolane (cyan band 
in Fig. 3b) [21]. As the salt concentration increases, the solvation 
structure undergoes significant modification, with negligible free sul
folane remaining in the most concentrated sample (3S:H2O:3L, 7.8 mol 
kg− 1). This transition is marked by the transformation of SSIPs, preva
lent in dilute concentrations, into CIPs (purple band) and further into 
AGGs (green band) [36,37]. While any quantitative Raman analysis of 
the speciation in highly concentrated electrolytes is laden with problems 
of communal ion solvation [38], as well as differences in the Raman 
cross-sections, the increase in CIPs and AGGs correlates well with the 
observed decreased ionic conductivities. 

Turning to the 3000-4000 cm− 1 region, which contains the bands of 
the water OH stretching modes, we find that the broad band (3200-3450 
cm− 1) due to hydrogen bonding [39] decreases in intensity with 
increasing sulfolane content and finally disappears with the addition of 
Li-salt (Fig. S9). This shows that, as hypothesized, sulfolane reduces the 
hydrogen bonding network, which is also manifested as a reduced glass 
transition temperature, as observed in the DSC measurements, 

attributed to an increase in non-hydrogen bonding water molecules. 

4. Conclusions 

We believe that the modification of the cation solvation structure via 
an electrochemically inert co-solvent, such as sulfolane, combined with 
the use of standard current collectors is a viable strategy to develop next- 
generation, highly safe, and high-energy aqueous batteries. 

To substantiate the proclaimed safety improvements, we performed 
Accelerated Rate Calorimetry measurements on coin cells that differed 
only in the electrolyte used; 3S:H2O:3L vs. 1 M LiPF6 in EC-DMC. The 
measurement has been performed following the protocol in Fig. S10. 
While any detailed discussion of the degradation mechanism is beyond 
the scope of this paper, the heating curves (Fig. 4a) show both cells to 
remain thermally stable up to 180 ◦C, above which exothermic processes 
occurred. This similar behavior suggests that the underlying processes 
likely originate in the electrodes rather than the electrolytes. Notably, as 
heat is released, the organic electrolyte cell demonstrated a persistent 
self-heating trend, progressing gradually, possibly towards a thermal 
runaway. In the cell utilizing the hybrid electrolyte, however, we 
observe significantly improved behavior. This is primarily due to the 
heating process automatically shutting down at 200 ◦C. Following this, 
the instrument resumes heating mode, yet no heat-generating reactions 

Fig. 3. Raman spectra in the (a) 500–600 and (b) 700–800 wavenumber regions. (c) Sketch of different solvation interactions: SSIP = solvent-separated ion-pair, CIP 
= contact ion-pair; AGG = aggregate. 
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are detected until reaching the final temperature. Therefore, we 
consider the ARC measurement as compelling evidence showcasing the 
superior stability of our electrolyte when compared to the standard 
carbonate-based and water-free LIB electrolyte. 

Expanding beyond safety considerations, our investigation delves 
into the energy performance of Al⎪LTO⎪3S:H2O:3L⎪LMO⎪CC-Al cell. A 
Ragone plot (Fig. 4b) encompassing various similar cells and chemis
tries, based on the total mass of active material at both electrodes, 
provides compelling insights. Notably, our cell configuration exhibits 
the highest energy density at low currents and maintains commendable 
power densities. This underscores the potential of our devised electro
lyte system to not only ensure safety but also deliver competitive energy 
storage performance, positioning it favorably in the landscape of 
advanced aqueous battery applications. 
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