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Thermal transport is a key feature for the operation of phase change memory devices which rest on
a fast and reversible transformation between the crystalline and amorphous phases of chalcogenide
alloys upon Joule heating. In this work we report on the ab-initio calculations of bulk thermal
conductivity of the prototypical phase change compounds Ge2Sb2Te5 and GeTe in their crystalline
form. The related Sb2Te3 compound is also investigated for the sake of comparison. Thermal con-
ductivity is obtained from the solution of the Boltzmann transport equation with phonon scattering
rates computed within density functional perturbation theory. The calculations show that the large
spread in the experimenal data on the lattice thermal conductivity of GeTe is due to a variable
content of Ge vacancies which at concentrations realized experimentally can halve the bulk thermal
conductivity with respect to the ideal crystal. We show that the very low thermal conductivity
of hexagonal Ge2Sb2Te5 of about 0.45 Wm−1 K−1 measured experimentally is also resulting from
disorder in the form of a random distribution of Ge/Sb atoms in one sublattice.

I. INTRODUCTION

Chalcogenide alloys are attracting an increasing inter-
est for their use in optical data storage (digital versatile
disk, DVDs) and, more recently, in electronic non volatile
memories (Phase Change Memories, PCM)1–5. These ap-
plications rest on a fast and reversible transformation be-
tween the amorphous and crystalline phases upon heat-
ing. The two phases can be discriminated thanks to a
large contrast in their electrical conductivity (in PCMs)
and optical reflectivity (in DVDs). In PCM operation,
read-out of the cell resistance is performed at low bias.
Programming the memory requires instead a relatively
large current to heat up the active layer and to induce
the phase change which can be either the melting of the
crystal and subsequent amorphization or the recrystal-
lization of the amorphous phase.
Thermal conductivity (κ) is a key property for PCM

operation, as the set/reset processes strongly depend
upon heat dissipation and transport6. Several exper-
imental works reported on the measurements of the
bulk thermal conductivity of the prototypical GeSbTe
phase change alloys6–9 and the related binary compounds
GeTe10–15 and Sb2Te311,16. These compounds have a rel-
atively low lattice thermal conductivity in the crystalline
phase which has been ascribed to a strong phonon scat-
tering by disordered point defects.
In the case of cubic Ge2Sb2Te5, which is the metastable

structure the amorphous phase crystallizes into in PCM
devices, disorder is present in the form of a random dis-
tribution of Ge, Sb atoms and 20 % of vacancies in one
sublattice of the rocksalt structure, the other being fully
occupied by Te atoms. Disorder leads to a lattice ther-

mal conductivity of κ=0.40 Wm−1K−1 which is close to
the value of 0.27 Wm−1K−1 measured for the amorphous
phase9.
In trigonal GeTe, vacancies in the Ge sublattice are

responsible for the large spread of the measured ther-
mal conductivity over the wide range of values 0.1-4.1
Wm−1K−1.10–15

The lattice thermal conductivity is very low (0.45
Wm−1K−1)9 also in the hexagonal phase of Ge2Sb2Te5,
the crystalline phase stable at normal conditions, in
which the vacancy concentration is much lower than that
of the cubic phase. In this latter case, disorder may
arise from a partial random distribution of Sb/Ge atoms.
Actually, the hexagonal phase of Ge2Sb2Te5 has P3̄m1

symmetry and nine atoms per unit cell in nine layers
stacked along the c axis, but the distribution of atoms
in the different layers are still a matter of debate in
literature. Two different ordered sequences have been
proposed, namely the ordered stacking Te-Sb-Te-Ge-Te-
Ge-Te-Sb-Te-Te-Sb-17 and the ordered stacking Te-Ge-
Te-Sb-Te-Sb-Te-Ge-Te-Te-Ge-18. Most recent diffraction
measurements suggested, however, a disordered phase
with Sb and Ge randomly occupying the same layer19

which is also confirmed by transmission electron mi-
croscopy imaging of GST nanowires20.
In this work, we quantify the effect of the different

types of disorder (vacancies and Ge/Sb distribution) on
the lattice conductivity of hexagonal Ge2Sb2Te5 and trig-
onal GeTe by means of density functional calculations.
Phonon dispersion relations and anharmonic force con-
stants are computed within Density Functional Pertur-
bation Theory (DFPT)21,22. Lattice thermal conductiv-
ity is then obtained from the variational solution of the
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Boltzmann transport equation introduced in Ref. 23. For
the sake of comparison we have also investigated thermal
transport in crystalline Sb2Te3 which is structurally sim-
ilar to Ge2Sb2Te5 and for which the effect of disorder is
marginal.

II. COMPUTATIONAL METHODS

Phonon dispersion relations were calculated by means
of DFPT21 as implemented in the Quantum-Espresso
suite of programs24. We used either the Local Density
Approximation (LDA) or the Perdew-Burke-Ernzerhof
(PBE)25 generalized gradient corrected approximation
(GGA) to the exchange and correlation functional. Van
der Waals (vdW) interactions, not accounted for in the
GGA schemes, were also included within the scheme pro-
posed by Grimme26. Norm conserving pseudopotentials
with only the outermost s and p valence electrons were
used. The spin-orbit interaction was neglected since it
has been shown to have negligible effects on the struc-
tural and vibrational properties of GeTe27. The Kohn-
Sham (KS) orbitals were expanded in a plane waves ba-
sis up to a kinetic cutoff of 30 Ry. The Brillouin Zone
(BZ) integration for the self-consistent electron density
was performed over Monkhorst-Pack (MP) meshes28.
Third order anharmonic force constants have been

computed within DFPT as described in Ref. 22. In this
approach the three-phonons anharmonic coefficients for
three arbitrary wave vectors (q,q’,q”) is computed by us-
ing the so-called 2n + 1 theorem as formulated in Ref.
29. This scheme is presently implemented only for the
LDA functional in the Quantum-Espresso package.
Phonons and anharmonic force constants are then used

to solve exactly the linearized Boltzmann transport equa-
tion (BTE) by means of the variational technique intro-
duced in Ref. 23 which we refer to for all the details.
This new scheme provides a full solution of the BTE be-
yond the most commonly used single mode phonon relax-
ation time approximation (SMA) which describes rigor-
ously the depopulation of the phonon states but not the
corresponding repopulation. The momentum-conserving
character of the normal (N) processes gives rise to a con-
ceptual inadequacy of the SMA description and its use
becomes questionable in the range of low temperatures
where the umklapp (U) processes are frozen out and N
processes dominate the phonon relaxation. The exact so-
lution of the BTE allowed us to conclude that the SMA
actually provides a good approximation for the lattice
thermal conductivity at 300 K of the phase change com-
pounds we are interested in for which the Debye temper-
ature is actually below 300 K.
The effect of disorder in the distribution of Sb/Ge

atoms in Ge2Sb2Te5 was included in the calculation of
the lattice thermal conductivity by considering only the
effect of the different mass. The disorder in either the
Petrov or Kooi structures is thus accounted for by adding
a rate of elastic phonon scattering from isotopic impuri-

ties according to Ref. 30 (Eqs. 9 and 10 in Ref. 23).
The presence of vacancies in the Ge/Sb sublattice was
also included as an isotope impurity scattering with a
mass change ∆M=3 M where M is the mass of the
atom removed according to Ratsifaritana and Klemens31.
The reliability of this approximation was validated for
GeTe by means of non-equilibrium molecular dynamics
simulations32 as discussed later on.

III. RESULTS

A. GeTe

At normal conditions, GeTe crystallizes in the trigonal
ferroelectric phase (space group R3m)33. This structure,
with two atoms per unit cell, can be viewed as a distorted
rocksalt geometry with an elongation of the cube diago-
nal along the [111] direction and an off-center displace-
ment of the inner Te atom along the [111] direction giving
rise to a 3+3 coordination of Ge with three short stronger
bonds (2.84 Å) and three long weaker bonds (3.17 Å).
In the conventional hexagonal unit cell of the trigonal
phase, the structure can be also seen as an arrangement
of GeTe bilayers along the c direction with shorter intra-
bilayer bonds and weaker interbilayers bonds (cf. Fig.
1). The trigonal phase transforms experimentally into
the cubic paraelectric phase (space group Fm3̄m) above
the Curie temperature of 705 K34.

FIG. 1. Geometry of the GeTe crystal seen as a stacking of
bilayers along the c axis of the conventional hexagonal unit
cell with the three short intrabilayers bonds and three long
interbilayers bonds. Green spheres denote Ge atoms and blue
spheres denote Te atoms.

The structural parameters of the trigonal phase consist
of the lattice parameter a, the trigonal angle α, and the
internal parameter x that assigns the positions of the two
atoms in the unit cell, namely, Ge at (x,x,x) and Te at
(-x,-x,-x)33. The theoretical structural parameters opti-
mized at zero temperature with the PBE functional with
or without vdW corrections are compared in Table I with
the LDA results and the experimental data. The Bril-
louin Zone (BZ) integration for the self-consistent elec-
tron density was performed over a 12x12x12 MP mesh.
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The equilibrium volume obtained with the PBE func-
tional is very close to experiments while it is somehow
underestimated with the LDA functional and the PBE
functional plus vdW corrections.

Structural PBE PBE LDA Exp.

parameters +vdW

a (Å) 4.33 4.22 4.23 4.31

α 58.14◦ 58.18◦ 58.79◦ 57.9◦

Unit Cell Volume 54.98 51.75 52.00 53.88

(Å3)

x 0.2358 0.2380 0.2384 0.2366

Short, 2.85 2.82 2.83 2.84

long bonds (Å) 3.21 3.11 3.11 3.17

TABLE I. Structural parameters of the trigonal phase of crys-
talline GeTe computed within DFT with the LDA functional,
the PBE functional with and without vdW interactions ac-
cording to Grimme26 and from experimental data33. The
length of short and long bonds are also given.

The ideal GeTe crystal is a narrow gap semiconduc-
tor with a DFT-PBE band gap of 0.45 eV. It turns into
a p-type degenerate semiconductor because of defects in
stoichiometry, in the form of Ge vacancies, which induce
the formation of holes in the valence band35. Hole con-
centrations are typically higher than 1019 holes/cm3 in
native p-type doped GeTe36. Higher hole concentration
of 1.6 · 1021 holes/cm3 which corresponds to a vacancy
content of about 4.3 atom% in the Ge sublattice (two
holes per Ge vacancy) was also reported27.

In the calculation of phonon dispersion relations we
considered the presence of holes at the lower content of
8 · 1019 holes/cm3 measured in Ref. 36, but at first
we did not consider the presence of the companion Ge
vacancies. We relaxed the atom positions by keeping the
lattice parameters fixed at the values of the ideal crystal
which leads to a very small shift of the internal coordinate
x to 0.2359 (for the PBE functional, cf. Table I). The Ge
vacancies, present in the real crystal but lacking in our
models of the p-type compound, are actually expected to
affect the lattice parameters, as much as the holes in the
valence bands do.
Phonons have been computed for the different func-

tionals at the theoretical lattice parameters and for the
LDA functional at the experimental lattice parameter as
well.
The results for the PBE functional at the theoretical

lattice parameter and, for LDA functional, at the ex-
perimental lattice parameters (close to the PBE ones)
are compared in Fig. 2. The effect of holes on the
phonon dispersions has been discussed in our previous
work (with the PBE functional)32 and in Ref. 27 (with
the LDA functional) to which we refer to for further de-
tails. Different functionals yield very similar results once
the calculations are performed with similar lattice pa-

rameters as it is the case for PBE and LDA phonons at
the experimental lattice parameters. The same is true
for PBE+vdW and LDA results at the theoretical lattice
parameters. Conversely sizable differences are observed
between the phonon dispersions computed with LDA at
the theoretical and experimental lattice parameters and
between the PBE and PBE+vdW phonons again due to
a large change in the corresponsing equilibrium volumes.
All phonon dispersion relations have been obtained by
Fourier interpolating the dynamical matrix computed in
a 6x6x6 MP grid in the BZ.
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FIG. 2. Phonon dispersion relations of GeTe from PBE calcu-
lations at the theoretical equilibrium lattice parameters and
from LDA calculations at the experimental lattice parameters
(cf. Table I).

We then computed the lattice thermal conductivity for
the ideal crystal at first without the effects of vacancies.
Anharmonic forces have been computed on a 4x4x4 q-
point phonon grid on the BZ, Fourier interpolated with a
finer 15x15x15 mesh for the BTE solution. Convergence
was checked with a 25x25x25 grid. Phonon energies have
been broadened with a Gaussian function with smearing
of 2 cm−1 for energy conservation in three-phonon scat-
tering processes. The anharmonic force constants were
computed only with the LDA functional by optimizing
the internal geometry with the lattice parameters fixed
to the values used in the corresponding calculations of
harmonic phonons.
The resulting lattice thermal conductivity at 300 K

computed with the exact variational solution of the BTE
and PBE phonons along the z direction, parallel to
the c axis in the hexagonal notation (cf. Fig. 1), is
κz=2.00 Wm−1 K−1 while the lattice thermal conduc-
tivity in the xy plane parallel to the GeTe bilayers (cf.
Fig. 1) is κx=2.90 W m−1 K−1. For a polycrystalline
sample the calculated average thermal conductivity is
κav=

2
3
κx + 1

3
κz= 2.6 W m−1 K−1, which is an upper

limit, as it neglects the effects of defects (vacancies in
particular) and grain boundary scattering. κav is com-
parable, although slightly larger, than the experimental
value of 2.35 ± 0.53 W m−1 K−1 of Ref. 10. Including
the Grimme’s van der Waals interaction in the phonons
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calculation at the theoretical lattice parameters leads to
a slightly higher thermal conductivities of κz=2.30 W
m−1 K−1, κx=3.38 W m−1 K−1 and κav=3.02 W m−1

K−1. By using the LDA functional for both the harmonic
and anharmonic force constants at the experimental lat-
tice parameters one obtains an even larger lattice thermal
conductivities of κz=2.37 W m−1 K−1, κx=3.62 W m−1

K−1 and κav=3.20 W m−1 K−1.
Using the equilibrium Boltzmann distribution of

phonons instead of the quantum Bose-Einstein distribu-
tion has no effect on the lattice thermal conductivity at
300 K (within the figures given here) due to the low De-
bye temperature (180 K). For the same reason the lat-
tice thermal conductivities computed within the SMA are
only slightly lower than the values obtained from the full
solution of the BTE.
The lattice thermal conductivity within SMA is given

by23

κx =
1

NqVo

∑

q,j

Cq,jv
2
q,jτq,j (1)

where the sum runs over the band index j and the
Nq points in the BZ, vq,j is the group velocity along
a generic coordinate x for band j at point q, Cq,j is
the contribution to the specific heat of the (q, j)-phonon
with frequency ωq,j obtained from the derivative of the
Bose-Einstein function fBE with respect to temperature
as !ωq,j∂fBE(ωq,j)/∂T , Vo is the unit cell volume, and
τq,j is phonon lifetime obtained in turn from anharmonic
force constants as discussed in Ref. 23 (cf. Eq. B1
therein). This approximation, when applicable, provides
a more straightforward physical insight of the system, al-
lowing to account separately for each contributing factor
to the thermal conductivity that appears in Eq.1, and
will be used with this purpose in the present paper after
checking its validity by comparison with the exact BTE
solution.
A summary of the resulting thermal conductivity com-

puted with the different functionals and the comparison
among the exact solution of the BTE and the SMA ap-
proximation are reported in in Tab.II.

Exact SMA

κz κx κav κz κx κav

PBE 2.00 2.90 2.60 1.80 2.61 2.34

PBE+vdW 2.30 3.38 3.02 1.92 2.91 2.58

LDA 2.37 3.62 3.20 2.00 3.10 2.70

TABLE II. Lattice thermal conductivity of ideal trigonal
GeTe at 300 K along the c axis in the hexagonal notation
(κz, cf. Fig. 1) in the perpendicular plane (κx) and their av-
erage for a polycrystalline sample (κav, see text), computed
with the exact variational solution of the BTE and within the
SMA.

The cumulative lattice thermal conductivity within the
SMA of ideal trigonal GeTe as a function of phonons fre-

quency is shown in Fig. 3 along with group velocities,
phonon lifetimes and mean free paths averaged over a
small energy window of 2 cm−1. The anharmonic broad-
ening of the phonon branches computed as the inverse
lifetime (Eq. 6 in Ref. 22) within the SMA are also
reported in Fig. 4. Another visualization of the an-
harmonic broading is obtained by plotting the spectral
function multiplied by the phonon frequency ω · σ(ω,q)
shown in Fig. 5 where σ(ω,q) defined by37

σ(q,ω) =
∑

j

2ωq,jτ
−1
q,j

[!2(ω2 − ω2
q,j)]

2 + 4!2ω2
q,jτ

−2
q,j

(2)

Comparison of Fig. 3a and Fig. 4 shows that the
thermal conductivity is mostly due to acoustic phonons
even at 300 K because of both low group velocities and
lifetimes of optical phonons. All the data in Figs. 3-
7 refer to LDA calculations at the experimental lattice
parameters.
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FIG. 3. (a) Cumulative lattice thermal conductivities within
the SMA (see text) along the c axis in the hexagonal notation
(κz, cf. Fig. 1) in the perpendicular plane (κx) and their
average for a polycrystalline sample (κav, see text), (b) group
velocities, (c) phonon lifetimes, and (d) mean free paths aver-
aged over a small energy window of 2 cm−1 shown a function
of phonon frequencies in the ideal GeTe crystal (no vacan-
cies) at 300 K. The data refer to LDA calculations at the
experimental lattice parameters.

We then included the effects of vacancies in the Ge
sublattice on the thermal conductivity by adding a rate
of elastic scattering as due to isotopic defects in the BTE
(cf. Sec. II). We considered two limiting vacancy con-
tents of 0.2 atom% on the Ge sublattice corresponding to
the hole concentration of 8 · 1019 holes/cm3 studied ex-
perimentally in Ref. 36, and of 3 atom% that corresponds
to a hole concentration of 1.1 · 1021 holes/cm3 close to
that studied experimentally in Ref. 27. The lattice ther-
mal conductivity (LDA phonons at the experimental lat-
tice parameters and exact solution of the BTE) turns into
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FIG. 4. Phonon dispersion relations of GeTe from LDA calcu-
lations at the experimental lattice parameters (cf. Table I).
The thickness of the curves corresponds to the anharmonic
broadening computed as the inverse lifetime within the SMA.

FIG. 5. Spectral function ω ·σ(q,ω) (cf. Eq. 2) of GeTe from
LDA calculations at the experimental lattice parameters and
only anharmonic broadening.

κz=2.0Wm−1 K−1, κx=3.0Wm−1 K−1 and κav=2.7W
m−1 K−1 for the low vacancy content or κz=0.9 W m−1

K−1, κx=1.4 W m−1 K−1 and κav=1.2 W m−1 K−1 for
the higher vacancy concentration to be compared with
the values for the ideal GeTe of κz=2.37 W m−1 K−1,
κx=3.62 W m−1 K−1 and κav=3.20 W m−1 K−1 as given
above. Even a small amount of Ge vacancies has thus
a dramatic effect on the lattice thermal conductivity of
GeTe which can be more than halved for a 3 atom% in
agreement with the experimental data in Ref. 15.
We remark that the effect of vacancies on the thermal

conductivity has been actually introduced perturbatively
as isotopic defects according to Ref. 31. To assess the
reliability of this approximation, we have performed non-
equilibrium molecular dynamics (NEMD) simulations by
using a highly transferable interatomic potential for GeTe
obtained by fitting a large database of DFT-PBE ener-
gies with a Neural Network Method39. The reliability

of the classical approximation for phonons population
at 300 K in GeTe, implicit in NEMD, has been demon-
strated above. The NEMD simulations reported in Ref.
32 yields an average lattice thermal conductivity κav of
3.2 W m−1 K−1 or 1.4 W m−1 K−1 for the ideal crystal
or with 3 atom% of Ge vacancies. The reduction of the
thermal conductivity due to vacancies is quantitatively
similar to the results obtained from BTE which yields
3.2 W m−1 K−1 or 1.2 W m−1 K−1 for the ideal and
defective (3 % of vacancies) crystal (LDA phonons at the
experimental lattice parameters). The good agreement
between the NEMD and BTE results assess the reliabil-
ity of the approximation used to deal with Ge vacancies in
the solution of the BTE. The cumulative lattice thermal
conductivity and average phonon mean free path within
the SMA is shown in Fig. 6 as a function of phonons fre-
quency for trigonal GeTe with 3 atom% of Ge vacancies.
These results have to be compared with the correspond-
ing data for ideal GeTe in Fig. 3.
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FIG. 6. (a) Cumulative lattice thermal conductivities within
the SMA (see text) along the c axis in the hexagonal notation
(κz, cf. Fig. 1) in the perpendicular plane (κx) and their
average for a polycrystalline sample (κav, see text), and (b)
mean free paths averaged over a small window of 2 −1 as a
function of phonon frequencies for GeTe with 3 atom% of Ge
vacancies at 300 K. The data refer to LDA calculations at the
experimental lattice parameters.

We further remark that in the presence of holes in the
valence bands the phonon lifetimes can be reduced also
by electron-phonon scattering processes. These effects
are, however, negligible in GeTe at the doping levels dis-
cussed above. To estimate the reduction of thermal con-
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ductivity due to electron-phonon scattering we removed
from the calculation of κ the contribution of all phonons
with wavevector q smaller than twice the larger wavevec-
tor on the Fermi surface. This would corresponds to a
large overestimation of the effects of the electron-phonon
coupling that, nevertheless, leads to a slight reduction of
the thermal conductivities to κz=2.2 W m−1 K−1 and
κx=3.1 W m−1 K−1.
Finally, we calculated the temperature dependence of

the thermal conductivity in GeTe with a 3% vacancies as
reported in Fig 7.
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FIG. 7. Temperature dependence of thermal conductivity of
polycrystalline GeTe with 3% of Ge vacancies. The data refer
to LDA phonons at the experimental lattice parameters.

B. Sb2Te3

Crystalline Sb2Te3 has a rhombohedral geometry
(R3̄m space group (D5

3d)) with five atoms per unit cell38.
The crystal structure can be better visualized in the con-
ventional hexagonal supercell with three formula units
(Fig. 8). In the hexagonal cell we recognize three slabs,
each formed by five hexagonal layers stacked along c in
the sequence Te-Sb-Te-Sb-Te, each layer containing a sin-
gle atom in the unit cell. The weak Te-Te bonds, 3.736 Å
long38, connecting adjacent slabs are not shown in Fig.
8 to emphasize the presence of Sb2Te3 structural units.
The three atoms independent by symmetry are at crys-
tallographic positions Te1 = (0, 0, 0), Te2 = (0, 0, x)
and Sb = (0, 0, y) (Fig. 8).
We computed the phonon dispersion relation of Sb2Te3

with the PBE functional in our previous work40. Here, we
consider the PBE functional supplemented by the vdW
corrections26 to better reproduce the weak Te-Te inter-
action. The equilibrium structural parameters obtained
with PBE and PBE+vdW functionals are compared in
Table III with the experimental data38. Integration of
the BZ for the self-consistent solution of the Kohn-Sham
equation is performed over a 6x6x6 MP mesh.
Experimentally this compound is a degenerate p-type

semiconductor with a hole concentration of about 1.0 ·

1020 holes/cm3 possibly due to an Sb excess subtituting
Te11. As for the case of GeTe, we introduced holes in the
valence bands compensated by a uniform negative back-
ground to ensure charge neutrality. The internal struc-

ture has been optimized by fixing the lattice parameters
to those obtained without holes. Phonon dispersion re-
lations have been obtained by Fourier transforming the
dynamical matrix computed on a 6x6x6 MP grid in the
BZ.
The dispersion curves computed with PBE+vdW func-

tionals at the theoretical equilibrium parameters are re-
ported in Fig. 9 together with the available experimental
data from neutron inelastic scattering41.
Anharmonic force constants have been computed fol-

lowing the same scheme used for GeTe and discussed in
the previous section. A 4x4x4 q-point grid has been used.
Fourier interpolation has been made over a 15x15x15 grid
with a smearing of 2 cm−1 for energy conservation.

FIG. 8. Structure of Sb2Te3 in the unit rhombohedral cell
and conventional hexagonal supercell (three formula units).
Blue and red spheres denote Te and Sb atoms.

Structural parameters PBE PBE+vdW Exp.

a (Å) 4.316 4.219 4.264

c (Å) 31.037 30.692 30.458

x 0.785 0.786 0.787

y 0.397 0.397 0.399

TABLE III. Structural parameters of crystalline Sb2Te3 from
DFT calculations with the PBE or PBE+vdW functionals
(see text) compared with the experimental data from Ref.
38.

The resulting lattice thermal conductivities at 300 K
computed with PBE+vdW phonons and solving exactly
the BTE are κz=0.8 W m−1 K−1, κx=2.0 W m−1 K−1,
and κav= 1.6 W m−1 K−1 which compares well with
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FIG. 9. Phonon dispersion relations of Sb2Te3 from
PBE+vdW calculations. The dots are experimental data
from neutron inelastic scattering measurements at room
temperature41.

the experimental value of κav= 1.3 W m−1 K−1 of Ref.
11 or 1.8 W m−1 K−1 of Ref. 16. Also in this case
the difference between the exact BTE solution and the
SMA is rather small with a SMA thermal conductivity
of κz=0.78 W m−1 K−1, κx=1.9 W m−1 K−1.

In our model of Sb2Te3 the sublattice is ordered, but
we expect a concentration of about 0.26 % of vacancy
in the Sb sublattice (fraction of Sb sites empty) due to
a hole concentration of 1020/cm211. This small vacancy
content could bring the slightly overestimated theoretical
thermal conductivity to a better agreement with experi-
ments. We remark that the experimental lattice thermal
conductivities are always obtained from the total ther-
mal conductivity and the subtraction of the electronic
contribution by applying the Wiedemann-Franz law.
The thermal conductivity is strongly anisotropic due

to the presence of weak Te-Te bonds between adjacent
quintuple layers. The cumulative lattice thermal conduc-
tivity within the SMA of Sb2Te3 as a function of phonons
frequency is shown in Fig. 10 along with average group
velocities, phonon lifetimes and mean free paths. The
contribution of optical modes to the thermal conductiv-
ity is marginally more important for Sb2Te3 than for the
GeTe reaching here a contribution of 35 %.
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FIG. 10. (a) Cumulative lattice thermal conductivities within
the SMA (see text) along the c axis in the hexagonal notation
(κz, cf. Fig. 1) in the perpendicular plane (κx) and their
average for a polycrystalline sample (κav, see text), (b) group
velocities, (c) phonon lifetimes, and (d) mean free paths aver-
aged over a small window of 2 cm−1 as a function of phonon
frequencies in Sb2Te3 crystal at 300 K.

C. Ge2Sb2Te5

The hexagonal phase of Ge2Sb2Te5 has P3̄m1 symme-
try and nine atoms per unit cell in nine layers stacked
along the c axis. Two different sequences have been
proposed, namely the ordered stacking Te-Sb-Te-Ge-Te-
Ge-Te-Sb-Te-Te-Sb-17 shown in Fig. 11 (stacking A in
Ref. 42 and hereafter) and the ordered stacking Te-Ge-
Te-Sb-Te-Sb-Te-Ge-Te-Te-Ge-18 (stacking B in Ref. 42
and hereafter). As already mentioned, recent diffraction
measurements suggested, however, a disordered phase
with Sb and Ge randomly occupying the same layers19

(stacking C in Ref. 42 and hereafter) which is also con-
firmed by transmission electron microscopy imaging of
GST nanowires20. The structure can be seen as a stack-
ing of Ge2Sb2Te5 quintuple layers with weak Te-Te bonds
between adjacent layers.
In a previous work42 we optimized the geometry of

Ge2Sb2Te5 in stackings A and B within DFT-PBE.
We also modeled the disordered phase C by doubling
the unit cell along the b axis and putting one Ge and
one Sb atom on each Ge/Sb layer (18-atom supercell).
The geometry chosen for stacking C corresponds to the
best quasi-random structure compatible with an 18-atom
supercell43. Stacking A is lower in energy than stacking B
(by 19 meV/atom). Stacking C is only marginally higher
in energy than stacking A, actually within the free en-
ergy contribution expected for configurational disorder,
and it is even marginally lower in energy than stacking
A if the hybrid B3PW functional44 is used. The crys-
tal structure of Ge2Sb2Te5 in stacking A was optimized
in Ref. 42 by constraining the P3̄m1 crystal symmetry.
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Stacking

Kooi Petrov Exp.

Energy (meV/atom) 0 (0) 16 (19)

Cell Parameters (Å)

a 4.191 (4.28) 4.178 (4.25) 4.225

c 17.062 (17.31) 17.41 (17.74) 17.239

TABLE IV. Relative energies (meV/atom) and theoretical
equilibrium lattice parameters (Å) for stacking A (Kooi) and
B (Petrov) optimized with the PBE+vdW functional. Data
without vdW corrections are reported in parenthesis. The
experimental data are from Ref. 19

This procedure was chosen because of the presence of an
unstable optical phonon at the Γ-point42. This insta-
bility is actually removed by adding a vdW interaction
according to Grimme26 as discussed in Ref. 45. There-
fore, the thermal conductivity has been computed here
using the PBE functional supplemented by the vdW in-
teraction of Ref. 26. The equilibrium theoretical lattice
parameters of Ge2Sb2Te5 in stacking A and B obtained
with the PBE functional with and without vdW correc-
tions are compared with experimental data in Table IV.
The BZ was sampled over a 8x8x8 MP mesh for the self-
consistent electron density. GST is a degenerate p-type
semiconductor as well with a hole density of about 2.73 ·

1020 holes/cm346. We consistently introduced holes (3 ·

1020 holes/cm3) compensated by a uniform background.
The internal structure has been relaxed by fixing the lat-
tice parameters to the values obtained without holes with
negligigle changes.
Phonon dispersion relations have been obtained by

Fourier transforming the dynamical matrix computed on
a 4x4x4 MP grid in the BZ. Phonon dispersion relations
are shown in Fig. 12 for the two stackings with and with-
out vdW correction.
Anharmonic force constants have been computed fol-

lowing the same scheme used for GeTe and discussed
in the previous sections. A 4x4x1 q-point grid has
been used. Fourier interpolation has been made over a
20x20x7 grid with a smearing of 2 cm−1 for energy con-
servation.
The thermal conductivities at 300 K for the ordered

Ge2Sb2Te5 crystal in stacking A and B obtained from
the full solution of the BTE with the PBE+vdW func-
tional are reported in Table V compared with the SMA
result which is lower by less than 5 % with respect to the
value obtained from the full solution of the BTE. The av-
erage thermal conductivity of about 1.6-1.2 W m−1 K−1

is sizably larger than the experimental value of 0.45 W
m−1 K−1 reported in Ref.9.
The spectral function (Eq. 2) of GST in stacking A and

B and including only anharmonic lifetimes are shown in
Fig. 13. The cumulative lattice thermal conductivity
within the SMA of Ge2Sb2Te5 as a function of phonons
frequency is shown in the side columns of Fig. 14 for
stacking A and B along with group velocities, phonon

FIG. 11. Structure of Ge2Sb2Te5 in the hexagonal cell in
stacking A (Kooi) and B (Petrov). Two formula units along
the c axis, and period replica of atoms at the edges of the
hexagonal cell in the ab plane are shown. Atoms independent
by symmetry are labeled. In stacking A and B, the positions
of Ge and Sb atoms are interchanged. The weak TeTe bonds
(3.7 Å long) connecting adjacent slabs are not shown to em-
phasize the presence of Ge2Sb2Te5 stacks. Blue, green and
red spheres denote Te, Ge and Sb atoms.

Exact SMA

κz κx κav κz κx κav

Kooi 0.34 1.59 1.20 0.34 1.51 1.12

Petrov 0.59 2.10 1.60 0.58 2.00 1.53

TABLE V. Lattice thermal conductivity of hexagonal
Ge2Sb2Te5 at 300 K along the c axis in the hexagonal notation
(κz, cf. Fig. 11) in the perpendicular plane (κx) and their av-
erage for a polycrystalline sample (κav, see text). Both stack-
ing A (Kooi) and B (Petrov) are considered. The thermal
conductivity are computed for the perfect crystals using the
exact variational solution of the BTE and within the SMA.

lifetimes and mean free paths averaged over a small en-
ergy window of 2 cm−1.
We then introduced in the BTE the scattering due to

vacancies in either the Sb or Ge sublattice with a concen-
tration assigned by the holes density of 3 · 1020 holes/cm3

close to the value measured by the Hall effect46. This
holes density corresponds to either 1.8 atom% vacancies
in the Ge sublattice (two holes per vacancy involving only
electrons from p orbitals) or to 1.25 atom% vacancies in
the Sb sublattice (three holes per vacancy). The aver-
age thermal conductivity is reduced to about 0.8-1.1 W
m−1 K−1 (Table VI) which is still much higher than the
experimental value. By increasing the vacancy concen-
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FIG. 12. Phonon dispersion relations of Ge2Sb2Te5 for
stacking A (Kooi) and B (Petrov) stackings from PBE and
PBE+vdW calculations.

tration up to 3 atom% in the Ge sublattice the average
thermal conductivity is further reduced to 0.64-0.86 W
m−1 K−1.
To better model the experimental conditions, we have

then introduced disorder in the Ge/Sb sublattice by
adding an isotopic phonon scattering rate in the BTE
(see Sec. II). By considering a full Ge/Sb mass mixing
and neglecting Ge/Sb vacancies the average thermal con-
ductivity is sizably reduced to 0.61-0.76 W m−1 K−1 (cf.
Table VI). By further adding on top of Ge/Sb disorder
the scattering due to 1.8 atom% Ge vacancies or 1.25
atom% Sb vacancies, the average thermal conductivity is
further reduced to 0.43-0.58 W m−1 K−1 or 0.28-0.42 W
m−1 K−1 (cf. Table VI).
The cumulative lattice thermal conductivity within the

SMA of Ge2Sb2Te5 as a function of phonons frequency
is shown in the central column Fig. 14 for stacking B
by including Sb/Ge disorder (Matsunaga model) and va-
cancies in the Sb sublattice. Group velocities, phonon
lifetimes and mean free paths averaged over a small en-
ergy window of 2 cm−1 are also shown in the same figure.
The temperature dependence of the thermal conductivity
for this latter system averaged over the three cartesian
directions is shown in Fig. 15.
From Figs. 13-14 it is clear that the acoustic phonons

mostly contribute to the thermal conductivity at 300 K,

FIG. 13. Spectral function ω · σ(q,ω) (cf. Eq. 2) of GST
in the stacking A (Kooi) and B (Petrov) with anharmonic
broadening only.

with a small contribution from the lower energy optical
modes and a negligible contribution from the high en-
ergy optical modes. In the disordered Matsunaga phase
in particular, the whole lattice thermal conductivity orig-
inates from the acoustic modes with energy below 30 cm1.
Note that disordering the Kooi or Petrov structures

with a 50-50 occupation by Sb and Ge in all layers leads
to the same structure and thus in principles to the same
lattice thermal conductivity. This is not the case for the
results in Table IV because disorder has been introduced
perturbatively. This approximation leads to a depen-
dence of the final resuts on the choice of the ordered start-
ing configuration. In the structural model proposed by
Matsunaga, the disorder in the occupation of the Ge/Sb
sites is actually not complete as the cationic lattice sites
closer to the vdW gap are occupied by Sb in a fraction of
56 % (with a reversed proportion for the inner cationic
sites). The uncertainties related to our perturbative ap-
proach to the disorder prevent us to assess such small
deviations from a 50-50 occupation of the Sb/Ge sites
on the basis of the calculated thermal conductivity. In
spite of these uncertainties, it is clear that both vacancies
and disorder are needed to achieve a good agreement be-
tween theoretical and experimental data (cd. Table VI).
This result strongly suggests that the low thermal con-
ductivity in the hexagonal phase of GST is actually an



10

C
um

ul
at

iv
e 

 T
he

rm
al

 C
on

du
ct

iv
ity

 (W
/m

K
) Petrov

(a)

0.0

0.5

1.0

1.5

2.0

     

Matsunaga

κave
κx
κz

 

 

 

 

 

     

Kooi

 

 

 

 

 

     

G
ro

up
 v

el
oc

iti
es

 (m
/s

)

(b)

0

500

1000

1500

2000

2500

3000

     
 

 

 

 

 

 

 

     
 

 

 

 

 

 

 

     

P
ho

no
n 

lif
et

im
es

 (p
s)

(c)

10−2

100

101

     

 

 

 

     

 

 

 

     

P
ho

no
n 

m
ea

n 
fre

e 
pa

th
 (n

m
)

Frequency (cm−1)

(d)

10−2

100

101

0 50 100 150 200
Frequency (cm−1)

 

 

 

0 50 100 150 200
Frequency (cm−1)

 

 

 

0 50 100 150 200

FIG. 14. (a) Cumulative lattice thermal conductivities within
the SMA (see text) along the c axis in the hexagonal notation
(κz, cf. Fig. 1) in the perpendicular plane (κx) and their
average for a polycrystalline sample (κav, see text), (b) group
velocities, (c) phonon lifetimes, and (d) mean free paths over
a small energy window of 2 cm−1 as a function of phonon fre-
quencies in Ge2Sb2Te5 crystal at 300 K for stacking A (Kooi,
left panels), B (Petrov, right panels) and for the disordered
stacking according to Matsunaga (central panel) including va-
cancies (see text)
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FIG. 15. Temperature dependence of thermal conductivity
of polycrystalline GST with disorder in the Sb/Ge sublattice
and including vacancies (see text).

indicator of the (Ge/Sb) sublattice disorder confirmed by
recent experimental data from Z-resolved TEM in GST
nanowires20.

We remark that the thermal conductivity obtained
from the solution of the BTE with the inclusion of disor-

A (Kooi) B (Petrov)

κz κx κav κz κx κav

Ideal 0.34 1.59 1.20 0.59 2.10 1.60

1.8 % Ge vac 0.28 1.19 0.83 0.42 1.49 1.13

1.25 % Sb vac 0.25 1.10 0.82 0.47 1.50 1.16

Ge/Sb disorder 0.20 0.77 0.61 0.30 0.99 0.76

Ge/Sb + Ge vac 0.16 0.56 0.43 0.25 0.75 0.58

Ge/Sb + Sb vac 0.11 0.37 0.28 0.23 0.51 0.42

TABLE VI. Lattice thermal conductivity of hexagonal
Ge2Sb2Te5 at 300 K along the c axis in the hexagonal notation
(κz, cf. Fig. 11) in the perpendicular plane (κx) and their
average for a polycrystalline sample (κav, see text). Both
stacking A (Kooi) and B (Petrov) are considered. The ther-
mal conductivity are computed for the perfect crystals (ideal)
for a crystal with 1.8 atom% of Ge vacancies (1.8 % Ge vac,
see text), for 1.25 atom% of Sb vacancies (1.25 % Sb vac, see
text), for a complete disorder in the Ge/Sb sublattice with
no vacancies (Ge/Sb disorder), and finally with both disorder
in the Ge/Sb and a content of Ge vacancies (Ge/Sb + Ge
vac) or Sb vacancies (Ge/Sb + Sb vac) as given above. All
the results refer to the exact BTE solution however the dif-
ferences between exact and SMA results are marginal. Data
are given in W m−1 K−1. The experimental lattice thermal
conductivity is 0.45 W m−1 K−19.

der in the Sb/Ge sublattice and vacancies in Ge2Sb2Te5.
(0.42 W m−1 K−1 in Table VI) is very close to the
miminum thermal conductivity obtained from the theo-
retical average transverse and logitudinal sound velocity
(vL, vT ) and atomic density na according to Cahill48 and
valid above the Debye temperature as given by

κmin =
1

2
(
πn2

a

6
)

1

3 (vL + 2vT )kB (3)

where kB is the Boltzmann constant. By plugging in
Eq. 3 the sound velocities averaged over the BZ vL=3120
m/s and vT=1950 m/s one finds κmin=0.43 W m−1 K−1

close to the full DFT solution and to the experimental
value of 0.45 W m−1 K−1 as already observed in Refs.
9 and 49. This result raises overall concern on the ap-
plicability of the BTE itself in the presence of such a
strong phonon scattering due to disorder. However, as
we can see in Fig. 14, disorder does not affect the phonon
mean free path in the same manner for all frequencies.
The disorder actually suppresses the contribution to the
thermal conductivity of phonons with frequency above 50
cm−1 which give instead an important contribution to the
thermal conductivity of the ideal crystal. On the other
hand phonons with frequency below 30 −1 that mostly
contribute to the thermal conductivity of the disordered
crystal still show a mean free path of several nm which
seems consistent with the use of a BTE approach.
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IV. CONCLUSIONS

We have computed the lattice thermal conductivity of
the phase change compound Ge2Sb2Te5 in the hexag-
onal crystalline phase from the full solution of the lin-
earized Boltzmann transport equation with phonons and
phonon-phonon scattering rates computed within Den-
sity Functional Perturbation Theory. Due to the weak
Te-Te bonds the lattice thermal conductivity is strongly
anisotropic with a low conductivity along the c axis.
However, scattering due to disorder in Sb/Ge sublattice
has to be introduced to bring the thermal conductivity
close to the value of 0.45 W m−1 K−1 measured experi-
mentally. These results confirm the presence of disorder
in the Sb/Ge sublattices emerged from most recent x-
ray diffraction data19 and from trasmission electron mi-

croscopy of nanowires20. The same calculations on the
GeTe trigonal crystal reveal that the presence of Ge va-
cancies, responsible for a degerenate p-type character,
leads to the large variability of the bulk thermal conduc-
tivity measured experimentally for this compound. A
similarly good agreement with experiments is obtained
for the thermal conductivity of Sb2Te3.
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