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A B S T R A C T

We present a model of the job market where the number of workers and companies is uncertain, representing
the job search activity as a Poisson game. We allow for heterogeneity of workers and companies and show
that in equilibrium more productive types choose higher terms of trade. The Poisson search model gives rise
to multiple, possibly inefficient equilibria.
. Introduction

The process of filling vacancies for companies and finding jobs for
orkers is often haphazard. The search literature models job market un-

ertainty assuming that the matching process of companies and workers
s stochastic. In this paper, we model job market uncertainty assuming
hat the number of market participants is stochastic, representing the
ob search activity as a game with population uncertainty. We assume
hat the number of market participants is a Poisson random variable, as
n the Poisson game literature à la Myerson (1998). Poisson games are
imultaneous move games, with several unique properties that improve
he tractability of a finite environment.

We begin with a centralized model of the job market in which a
umber of market places distinguished by the wage that is being offered
s established exogenously by a third-party market maker.1 The workers
nd companies can choose independently and simultaneously which
arket place to visit. The job search activity is represented as a Poisson

ame with a finite but unknown number of – possibly heterogeneous
workers and companies. Our focus is on the undominated Nash

quilibria of such a game.
We show that, at any such equilibrium, the workers and companies

f higher types choose market places with higher wages. This is an
mmediate consequence of the environmental equivalence property of
oisson games, whereby the posterior distribution of a player who has
een selected to play the game over the number of other players in
he game is the same as the prior distribution of an outsider over the
umber of all players. This property implies directly that the ranking
f market places by the different types of workers and companies is
riven by the wage offered in each market place.

∗ Corresponding author.
E-mail addresses: francesco.desinopoli@univr.it (F. De Sinopoli), leo.ferraris@unimib.it (L. Ferraris), claudia.meroni@unimi.it (C. Meroni).

1 This is inspired by Moen (1997). However, the market maker has no direct role in our setting.
2 A classic introduction to the random search model is Equilibrium Unemployment Theory by Pissarides (2000).
3 Except possibly in non-generic cases in which the ex-post division of the surplus offsets exactly the search externalities (see Hosios, 1990).

Next, we prove that if there is only one market place, then, the
equilibrium exists and is unique. When there exist equilibria with
several market places, they coexist with the equilibria with each single
market place. In some equilibria, there may be a failure of separation
of traders with different productivities, in others there may be a failure
of coordination among traders. The environmental equivalence mimics
the effect of competition, but strategic elements survive leading to the
coexistence of multiple – possibly inefficient – equilibria.

Finally, we move to a decentralized version of the model. Consistent
with the nature of Poisson games, we assume that, independently
and simultaneously, the companies announce wage offers, the workers
announce desired wages, and, if at least one company and one worker
announce the same wage, then, a market emerges. We show that there
is a one-to-one relationship between equilibria of the centralized model
with the market places organized by the market maker and equilibria
of the decentralized model with simultaneous wage announcements by
the companies and workers. Hence, all the properties derived in the
previous centralized model carry over to the decentralized one.

The job market has been represented in two main ways in the
search literature. In the random search model, trade is coordinated
by a stochastic process that matches bilaterally a continuum of com-
panies and workers who, then, bargain in pairs over the division
of the surplus.2 Typically, the model exhibits inefficient equilibria,
as the search externality built into the matching process fails to be
internalized through ex-post bargaining.3 In the directed search model,
first a continuum of companies post wages and then a continuum of
workers direct their search to the best offers, with random matching
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if several workers apply for the same job offer.4 Typically, the model
exhibits efficient equilibria, thanks to the working of competition in a
continuum economy.5

Finite versions of directed search models have also been developed.6
Peters (2000) has shown that the equilibrium outcomes of a directed
search model with a finite number of agents converge to those of the
corresponding competitive economy as the number of agents grows.7 In
finite settings, coordination failures due to strategic complementarity
become a source of frictions. Galenianos and Kircher (2012) have
pointed out that it may happen that more productive firms end up
posting lower offers than less productive ones due to the discontinu-
ities that arise from the competition among price posting companies.
This inefficiency disappears approaching a large economy, where the
discontinuities are smoothed out.

Despite the presence of a finite number of agents, this is not the
source of inefficiency in our setting where the forces of competition
are at work through environmental equivalence, which implies im-
mediately that more productive agents obtain better terms of trade.
However, coordination failures may still survive at equilibrium com-
promising efficiency, even when the number of agents becomes large.
Unlike the directed search framework, our setting allows for cases
in which, alongside efficient equilibria, there exist other equilibria
in which more productive types fail to separate themselves from less
productive ones, inducing a mismatch of workers and companies, so
that more productive agents find a counterpart with less than the
maximal feasible probability. This phenomenon may persist even in
a large economy. Moreover, even without productivity differences,
coordination failures may survive when multiple market places are
active. We note that the multiplicity of possibly inefficient equilibria
is reminiscent of the view of the labor market originally advocated
by Diamond (1982).

The Poisson game structure has become standard in economics to
model large but finite settings. It has been applied, so far, mostly to
voting games, as shown by Myerson (2000, 2002). The idea is that
in mass elections the voters ignore the exact size and identities of
the electorate. Applications to other economic environments with a
large number of agents have been flourishing in the past years.8 In
the macroeconomic literature, Poisson games have been studied in
connection with strategic complementarity by Makris (2008). Related
to our setting, the Poisson structure has been introduced in search the-
ory by Norman (2016), whose model embodies the standard directed
search element by assuming, first, a Poisson game among homogeneous
sellers and, then, a Poisson game among homogeneous buyers who
observe the realizations of the sellers and the posted price. In Norman
(2016), the Poisson framework is used to endogenize the restriction
to symmetric equilibria often made in the literature and to handle the
sellers’ entry problem. Equilibrium uniqueness is also established, like
in finite models that rely on symmetric continuation strategies (e.g. Kim
and Camera, 2014). Not surprisingly, the coordination problem em-
bedded in our simultaneous move setting may induce a multiplicity of
equilibria even when agents are homogeneous.

4 In some version of the model, there are market makers. The classic
eferences are Montgomery (1991), Moen (1997), Mortensen and Wright
2002).

5 There are exceptions when workers can make multiple applications, as
hown in Albrecht et al. (2006).

6 See, e.g., Peters (1991, 2000), Burdett et al. (2001), Galenianos and
ircher (2009). Wright et al. (2021) provide a survey of directed search
odels.
7 Convergence to competitive equilibrium relies on an appropriate selection

riterion for equilibria of the subgame, which is satisfied by symmetric
quilibria.

8 See, for instance, Makris (2009) for public good provision; Ritzberger
2009) and De Sinopoli et al. (2023) for, respectively, Bertrand and Cournot
ompetition; Lauermann and Speit (2023) for auctions.
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Let us stress that our model is framed in a job market setting for
concreteness, but can be applied to a variety of situations of frictional
trade where the number and identities of the market participants are
not common knowledge (as, for example, goods markets, marriage
markets, or general partnership formation situations).

In sum, population uncertainty captures in a simple way the anonymi
and noise that seem to be typical of large search markets, while keeping
the environment finite, so that the impact of individual behavior on
aggregate outcomes remains non-negligible and is fully taken into
account. At the same time, the environmental equivalence property
of Poisson games captures the effect of competition in a model where
mismatch inefficiencies due to the non-negligible role of individuals
survive even within a large population.

The paper proceeds as follows. The model is described in Section 2,
the main assumptions are discussed in Section 3 and in Appendix B.
Section 4 derives the equilibria and contains the existence results.
Section 5 explores the efficiency properties of equilibria. Section 6
presents the model with wage announcements. Section 7 concludes.
Appendix A outlines the basic structure of Poisson games, Appendices C
and D contain proofs omitted from Section 4.

2. The model

We consider an economy where the total number of agents is a
Poisson random variable with mean 𝑛.9 Agents divide in employers
and workers and can be of different types. There are 𝐼 types of em-
ployers who differ in their productivity levels, and 𝐽 types of workers
who differ in their unemployment incomes. The set of types is  =
{1,… , 𝐼, 𝐼 +1,… , 𝐼 +𝐽}. With probability 𝑟𝑖 a randomly sampled agent
is an employer with productivity 𝑦𝑖 (i.e. she is of type 𝑖), where 𝑖 =
1,… , 𝐼 , while with probability 𝑟𝑗 she is a worker with unemployment
income 𝑧𝑗 (i.e. she is of type 𝑗), where 𝑗 = 𝐼 + 1,… , 𝐼 + 𝐽 . We order
types so that 𝑦𝑖 < 𝑦𝑖′ for 𝑖 < 𝑖′ and 𝑧𝑗 < 𝑧𝑗′ for 𝑗 < 𝑗′. We let

𝑟𝑒 =
𝐼
∑

𝑖=1
𝑟𝑖

denote the probability that a randomly sampled agent is an employer,
and

𝑟𝑤 =
𝐼+𝐽
∑

𝑗=𝐼+1
𝑟𝑗 = 1 − 𝑟𝑒

denote the probability that a random agent is a worker.
We assume that there are 𝐾 given market places arranged exoge-

nously by a third-party market maker, each one characterized by a
wage. That is, all the jobs in the same market pay the same wage. We
let 𝑤𝑘 ∈ R+ be the wage paid in market 𝑘 and we order markets so that
𝑤𝑘 ≤ 𝑤𝑘′ for 𝑘 < 𝑘′, where 𝑘, 𝑘′ = 1,… , 𝐾.

Each employer chooses whether to open a vacancy in one of the
market places, sustaining a sunk cost 𝑐 ≥ 0, or not. We denote
employers’ action set with

𝐴𝑒 = {1,… , 𝐾,𝑂}

(with 𝐴𝑖 = 𝐴𝑒 for every 𝑖), where action 𝑘 corresponds to entering
market 𝑘 and action 𝑂 to not entering any market. Each worker chooses
whether to search for a job in one of the market places or to remain
unemployed. We denote workers’ action set with

𝐴𝑤 = {1̄,… , 𝐾̄, 𝑂̄}

(with 𝐴𝑗 = 𝐴𝑤 for every 𝑗), where action 𝑘̄ corresponds to entering
market 𝑘 and action 𝑂̄ to not searching for a job. The set of actions is
𝐴 = 𝐴𝑒 ∪ 𝐴𝑤.

9 Appendix A presents the basic structure of Poisson games and the
roperties that are relevant for our analysis (we refer to Myerson, 1998).
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For every 𝑘 = 1,… , 𝐾 we define 𝑥𝑘 = (𝑥(𝑘), 𝑥(𝑘̄)), where 𝑥(𝑘) and
𝑥(𝑘̄) are respectively the realized number of employers and the real-
ized number of workers who enter market 𝑘. The number of matches
between employers and workers in market 𝑘 is determined by the
matching function 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) ∶ Z2

+ → Z+. An employer fills her
vacancy in market 𝑘 with probability

𝑞(𝑥(𝑘), 𝑥(𝑘̄)) =
𝑓 (𝑥(𝑘), 𝑥(𝑘̄))

𝑥(𝑘)
,

while a worker finds a job in 𝑘 with probability

𝑠(𝑥(𝑘), 𝑥(𝑘̄)) =
𝑓 (𝑥(𝑘), 𝑥(𝑘̄))

𝑥(𝑘̄)
.

An agent’s payoff depends on her type, her action, and the realized
umber of other agents who choose each action, which is summarized
y the action profile 𝑥 ∈ Z|𝐴|

+ . For every 𝑥 ∈ Z|𝐴|
+ , 𝑖 = 1,… , 𝐼 ,

𝑗 = 𝐼 + 1,… , 𝐼 + 𝐽 , 𝑘 = 1,… , 𝐾 and 𝑘̄ = 1̄,… , 𝐾̄, the payoffs obtained
y an employer of type 𝑖 are given by

𝑖(𝑂, 𝑥) = 0,

𝑢𝑖(𝑘, 𝑥) = 𝑞(𝑥(𝑘) + 1, 𝑥(𝑘̄))(𝑦𝑖 −𝑤𝑘) − 𝑐,

while the payoffs obtained by a worker of type 𝑗 are given by

𝑢𝑗 (𝑂̄, 𝑥) = 𝑧𝑗 ,

𝑢𝑗 (𝑘̄, 𝑥) = 𝑠(𝑥(𝑘), 𝑥(𝑘̄) + 1)𝑤𝑘 + (1 − 𝑠(𝑥(𝑘), 𝑥(𝑘̄) + 1))𝑧𝑗
= 𝑧𝑗 + 𝑠(𝑥(𝑘), 𝑥(𝑘̄) + 1)(𝑤𝑘 − 𝑧𝑗 ).

Note that the payoff for an agent of entering a given market depends
only on the number of other agents who also enter that market.10

A strategy function (or, simply, strategy) maps each type 𝑡 ∈  to
the corresponding set of mixed actions 𝛥(𝐴𝑡). Strategy 𝜎 induces the
average behavior 𝜏(𝜎) ∈ 𝛥(𝐴) which is defined by 𝜏(𝜎)(𝑎) =

∑

𝑡∈ 𝑟𝑡𝜎𝑡(𝑎)
for each 𝑎 ∈ 𝐴. When agents play according to 𝜎, 𝜏(𝜎)(𝑎) is the
probability that a randomly sampled agent chooses action 𝑎.11

When the population’s average behavior is summarized by 𝜏, the
probability that in market 𝑘 there are exactly 𝑥(𝑘) employers and 𝑥(𝑘̄)
workers is equal to

𝑃 (𝑥𝑘 ∣ 𝜏) = 𝑒−𝑛(𝜏(𝑘)+𝜏(𝑘̄))
[𝑛𝜏(𝑘)]𝑥(𝑘)

𝑥(𝑘)!
[𝑛𝜏(𝑘̄)]𝑥(𝑘̄)

𝑥(𝑘̄)!
.

Then, the probability for an employer to fill her vacancy if she enters
market 𝑘 is given by

𝑄(𝜏(𝑘), 𝜏(𝑘̄)) =
∑

𝑥𝑘∈Z2
+

𝑃 (𝑥𝑘 ∣ 𝜏)𝑞(𝑥(𝑘) + 1, 𝑥(𝑘̄)),

and her expected payoff if she is of type 𝑖 is

𝑈𝑖(𝑘, 𝜏) =
∑

𝑥𝑘∈Z2
+

𝑃 (𝑥𝑘 ∣ 𝜏)𝑢𝑖(𝑘, 𝑥) = 𝑄(𝜏(𝑘), 𝜏(𝑘̄))(𝑦𝑖 −𝑤𝑘) − 𝑐.

Similarly, the probability for a worker to find a job in market 𝑘 is given
by

𝑆(𝜏(𝑘), 𝜏(𝑘̄)) =
∑

𝑥𝑘∈Z2
+

𝑃 (𝑥𝑘 ∣ 𝜏)𝑠(𝑥(𝑘), 𝑥(𝑘̄) + 1),

and her expected payoff if she is of type 𝑗 is

𝑈𝑗 (𝑘̄, 𝜏) =
∑

𝑥𝑘∈Z2
+

𝑃 (𝑥𝑘 ∣ 𝜏)𝑢𝑗 (𝑘̄, 𝑥) = 𝑧𝑗 + 𝑆(𝜏(𝑘), 𝜏(𝑘̄))(𝑤𝑘 − 𝑧𝑗 ).

10 Workers’ heterogeneity may also lie in their productivities rather than in
heir unemployment incomes. In particular, the results of our analysis remain
alid as long as more productive workers are better off than less productive
nes in case they do not find a counterpart, and the gain of matching with a
igher productivity worker is larger the higher is a firm’s productivity.
11 As explained in Appendix A, 𝜏 is a sufficient statistic for the analysis of
gents’ optimal behavior. Hence, we will often avoid to specify its dependence
3

n 𝜎.
To simplify notation, we will sometimes use 𝑄𝑘 and 𝑆𝑘 instead of
𝑄(𝜏(𝑘), 𝜏(𝑘̄)) and 𝑆(𝜏(𝑘), 𝜏(𝑘̄)).

Definition 1. The strategy function 𝜎 ∈ 𝛴 is a Nash equilibrium if
𝑈𝑡(𝜎𝑡, 𝜏(𝜎)) ≥ 𝑈𝑡(𝜎′𝑡 , 𝜏(𝜎)) for all 𝑡 ∈  , 𝜎′𝑡 ∈ 𝛥(𝐴𝑡).

We say that the average behavior 𝜏 is an equilibrium behavior (or,
imply, equilibrium) if it is induced by a Nash equilibrium.

The analysis will focus on undominated Nash equilibria. We recall
he standard concepts of dominated action and dominated strategy. An
ction is dominated if there is another action that gives higher utility
or every possible average behavior of the population, and strictly
igher utility for at least one. A strategy is dominated if it prescribes a
ominated action for some type.

efinition 2. Action 𝜎𝑡 is dominated by action 𝜎′𝑡 for agents of type 𝑡
f 𝑈𝑡(𝜎𝑡, 𝜏) ≤ 𝑈𝑡(𝜎′𝑡 , 𝜏) for every 𝜏 and 𝑈𝑡(𝜎𝑡, 𝜏′) < 𝑈𝑡(𝜎′𝑡 , 𝜏

′) for some 𝜏′.

efinition 3. The strategy function 𝜎 is dominated if there is a 𝑡 ∈ 
uch that 𝜎𝑡 is a dominated action for players of type 𝑡.

. Assumptions

atching function
We make the following natural assumptions on the matching func-

ion 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)):

(A1) 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) ≤ min{𝑥(𝑘), 𝑥(𝑘̄)},
(A2) 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) is not identically equal to zero,
(A3) 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) is non-decreasing in both arguments.

oreover, we make the standard assumption that

(A4) 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) is homogeneous of degree one.

In our discrete setting, this implies that the matching function is
ecessarily the min function, i.e. 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) = min{𝑥(𝑘), 𝑥(𝑘̄)}. To see
his note that, by (A1), we have 𝑓 (0, 0) = 0. Then, note that 𝑓 (1, 1) = 0
ould contradict (A2), as (A4) would imply that 𝑓 (𝑛, 𝑛) = 0 for every 𝑛

and then (A1) and (A3) would imply that 𝑓 (𝑛, 𝑛′) = 0 for every 𝑛 ≠ 𝑛′.
Thus, we have 𝑓 (1, 1) = 1, 𝑓 (𝑛, 𝑛) = 𝑛 for every 𝑛 by (A4), and then
𝑓 (𝑛, 𝑛′) = min{𝑛, 𝑛′} for every 𝑛 ≠ 𝑛′ by (A1) and (A3).

The assumption (A4) can be substituted by some sensible properties
of the probabilities 𝑞(𝑥(𝑘), 𝑥(𝑘̄)) and 𝑠(𝑥(𝑘), 𝑥(𝑘̄)), specifically, the fact
that 𝑞 is non-increasing in 𝑥(𝑘) and non-decreasing in 𝑥(𝑘̄), and that 𝑠
s non-decreasing in 𝑥(𝑘) and non-increasing in 𝑥(𝑘̄). These properties

readily imply (A3). In Appendix B, we show that if we assume these
properties in addition to (A1) and (A2) then the matching function
can be either the min function 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) = min{𝑥(𝑘), 𝑥(𝑘̄)} or the
in function with a threshold 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) = min{𝑥(𝑘), 𝑥(𝑘̄), 𝑥̂} for some

̂ ∈ Z+∖{0}. We employ the min function for simplicity, but all the
ualitative results remain valid for any strictly positive threshold.

emark. Alternatively to a deterministic matching function, we could
mploy a probabilistic matching function in the vein of Burdett et al.
2001).12 Assume that, once each worker has entered in a given market
, applies to all firms that are there with the same probability, as
n the equilibrium considered in that analysis. In this case, given the
ealizations 𝑥(𝑘) and 𝑥(𝑘̄) of the numbers of employers and workers
n the market, the total number of matches is a random variable with
xpected value

̃(𝑥(𝑘), 𝑥(𝑘̄)) = 𝑥(𝑘)

[

1 −
(

1 − 1
𝑥(𝑘)

)𝑥(𝑘̄)
]

.

12 We thank two anonymous referees for having suggested this.
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The probability for an employer to fill her open vacancy in the market
is

𝑞(𝑥(𝑘), 𝑥(𝑘̄)) =
𝑓 (𝑥(𝑘), 𝑥(𝑘̄))

𝑥(𝑘)
,

while the probability for a worker to find a job in the market is

𝑠̃(𝑥(𝑘), 𝑥(𝑘̄)) =
𝑓 (𝑥(𝑘), 𝑥(𝑘̄))

𝑥(𝑘̄)
.

he matching function 𝑓 is non-decreasing in both arguments. More-
ver, 𝑞 is non-increasing in 𝑥(𝑘) and non-decreasing in 𝑥(𝑘̄), while 𝑠̃ is

non-decreasing in 𝑥(𝑘) and non-increasing in 𝑥(𝑘̄).13 This implies that
all our qualitative results remain valid if we use the function 𝑓 instead
of 𝑓 .

Utilities
We assume that

𝑤1 > 𝑧𝐼+𝐽 ,

that is, the lowest paid wage is larger than the highest unemployment
income for workers. This simplifying assumption guarantees that, in
every undominated strategy, every worker searches for a job in some
market.

Also, we assume that employers’ highest productivity level 𝑦𝐼 is
such that

𝑄(0, 𝑟𝑤)(𝑦𝐼 −𝑤𝑘) − 𝑐 > 0

for every 𝑘 = 1,… , 𝐾. This implies that at least the highest produc-
tivity employers are willing to enter a market with strictly positive
probability when all the workers are there, ensuring the existence
of undominated equilibria in which matching occurs with positive
probability in some market.

4. Nash equilibria

We begin this section with an illustrative example.

Example 1. Consider an economy with two market places paying
wages 𝑤1 = 10 and 𝑤2 = 12, two types of employers with productivity
levels 𝑦1 = 15 and 𝑦2 = 20, and two types of workers with unemploy-
ment incomes 𝑧3 = 2 and 𝑧4 = 6. Let 𝑟1 = 𝑟2 = 1

4 , 𝑟3 = 1
6 , 𝑟4 = 1

3 , and
𝑐 = 1.

For computational purposes, we consider sufficiently large values
of 𝑛. Note that, if 𝑛 is large enough, for every average behavior 𝜏 and
action 𝑎 the number of agents choosing 𝑎 is sufficiently close to 𝑛𝜏(𝑎)
with probability sufficiently close to 1. Consider the strategy such that
every agent enters market 1. For 𝑛 sufficiently large, the probability for
ach agent to be matched in that market is sufficiently close to 1, while
he probability to be matched in market 2 is 0. Since, for each type, the
ayoff of entering market 1 is also larger than the payoff of staying
ut, the strategy under consideration is a Nash equilibrium. Similarly,
or sufficiently large 𝑛, there exists an equilibrium where every agent
nters market 2.

In addition to these two equilibria in which all the agents enter one
f the markets, we can show that there exists an equilibrium where
gents enter both markets. Consider the strategy such that employers
nd workers of low type enter market 1 while employers and workers
f high type enter market 2. For 𝑛 sufficiently large, the probability for
n employer to be matched in market 1 (resp. 2) is sufficiently close to
2
3 (resp. 1), while the probability for a worker to be matched in market

(resp. 2) is sufficiently close to 1 (resp. 3
4 ). Thus, we have

1(𝑦1 −𝑤1) > 𝑄2(𝑦1 −𝑤2)

13 See the discussion in Burdett et al. (2001).
4

t

and

𝑄1(𝑦2 −𝑤1) < 𝑄2(𝑦2 −𝑤2),

ince
3
5
<

𝑄1
𝑄2

< 4
5
.

Hence, every employer of low type strictly prefers to enter market 1
rather than market 2 and every employer of high type strictly prefers
to enter market 2 rather than market 1. Moreover, we have

𝑆1(𝑤1 − 𝑧3) > 𝑆2(𝑤2 − 𝑧3)

nd

1(𝑤1 − 𝑧4) < 𝑆2(𝑤2 − 𝑧4),

ince
5
4
<

𝑆1
𝑆2

< 3
2
.

That is, every worker of low type strictly prefers to enter market 1
rather than market 2 and every worker of high type strictly prefers to
enter market 2 rather than market 1. It can be easily verified that every
gent prefers to enter some market rather than not. It follows that the
trategy under consideration is a Nash equilibrium. In this equilibrium,
igher types enter the market paying the higher wage. This ordering of
ypes in equilibrium turns out to hold in general.

We now turn to the general analysis of the equilibria of the model.
t is clear that the strategy function that prescribes every agent to not
nter any market is a Nash equilibrium. The assumption that 𝑤1 > 𝑧𝐼+𝐽
mplies that this autarkic equilibrium is dominated.

emma 1. The average behavior 𝜏 such that 𝜏(𝑂) = 𝑟𝑒 and 𝜏(𝑂̄) = 𝑟𝑤 is
dominated equilibrium.

We focus on the undominated equilibria in which at least one
arket place is active.14 We say that market 𝑘 is active given the

average behavior 𝜏 if at least some employers and some workers
nter 𝑘 with positive probability, that is, 𝜏(𝑘)𝜏(𝑘̄) > 0. Environmental
quivalence implies that, given an average behavior 𝜏 and a market 𝑘,

the probability to fill the vacancy in 𝑘 is the same for every employer
and the probability to find a job in 𝑘 is the same for every worker,
independently of their type. This determines an ordering of types in
equilibrium that is in line with the findings of Moen (1997) with a
continuum of traders, where the environment is equivalent for every
agent because each agent is individually insignificant.

Consider an equilibrium behavior 𝜏 such that markets 𝑘 and 𝑘′ are
both active, with 𝑤𝑘 < 𝑤𝑘′ . Since some employers choose to enter

arket 𝑘′ in equilibrium, the higher wage they have to pay must be
ompensated by a larger probability of being matched in that market.
nalogously, since some workers enter market 𝑘 in equilibrium, the
robability for them to find a job in that market must be higher than
n market 𝑘′.15 We can therefore state the following.

Lemma 2. Let markets 𝑘 and 𝑘′ be active given the equilibrium 𝜏, with
𝑤𝑘 < 𝑤𝑘′ . Then 𝑄𝑘 < 𝑄𝑘′ and 𝑆𝑘 > 𝑆𝑘′ .

14 There may be undominated equilibria in which workers randomize over
entering different markets while employers choose to not enter any market.
However, these equilibria are equivalent to the autarkic equilibrium and we
exclude them from the analysis.

15 Clearly, if two markets 𝑘 and 𝑘′ pay the same wage and are both active
n equilibrium then, for every agent, the probability to be matched must be

′
he same in 𝑘 and in 𝑘 .
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We can show that, in equilibrium, employers and workers of higher
types choose markets that pay higher wages, as emerged from Exam-
ple 1. Types are not necessarily well-separated as in that example, but
some types may be indifferent between entering different markets (or
staying out) and play a mixed action, the other types being ordered
accordingly.16

The next lemma shows that, given an equilibrium behavior and two
active markets, if an employer prefers to enter the market that pays
the higher wage then all the employers with larger productivities also
do so (and the larger the productivity, the larger the gain of choosing
that market rather than the other). Likewise, if an employer prefers
to enter the market that pays the lower wage, then the same is true
for all the employers with smaller productivities (and the smaller the
productivity, the larger the gain of choosing that market rather than
the other).17 Recall that 𝑦𝑖 < 𝑦𝑖′ for 𝑖 < 𝑖′.

emma 3. Let markets 𝑘 and 𝑘′ be active given the equilibrium 𝜏, with
𝑘 < 𝑤𝑘′ , and let 𝑖 < 𝑖′. If 𝑈𝑖(𝑘′, 𝜏) ≥ 𝑈𝑖(𝑘, 𝜏) then 𝑈𝑖′ (𝑘′, 𝜏) > 𝑈𝑖′ (𝑘, 𝜏),

while if 𝑈𝑖′ (𝑘, 𝜏) ≥ 𝑈𝑖′ (𝑘′, 𝜏) then 𝑈𝑖(𝑘, 𝜏) > 𝑈𝑖(𝑘′, 𝜏).

Proof. We can prove that

𝑈𝑖′ (𝑘′, 𝜏) − 𝑈𝑖′ (𝑘, 𝜏) > 𝑈𝑖(𝑘′, 𝜏) − 𝑈𝑖(𝑘, 𝜏),

which implies both results. The above inequality is equivalent to

𝑄𝑘′ (𝑦𝑖′ −𝑤𝑘′ ) −𝑄𝑘(𝑦𝑖′ −𝑤𝑘) > 𝑄𝑘′ (𝑦𝑖 −𝑤𝑘′ ) −𝑄𝑘(𝑦𝑖 −𝑤𝑘).

Rearranging terms, we have

𝑄𝑘′ > 𝑄𝑘,

which is satisfied by Lemma 2. □

Analogously, given an equilibrium behavior and two active markets,
if a worker prefers to enter the market that pays the larger wage then
all the workers of higher types will do so (and the higher the type, the
higher the gain of choosing that market rather than the other). On the
other hand, if a worker prefers to enter the market that pays the lower
wage then the same holds for every worker with lower unemployment
income (and the lower the type, the lower the gain of choosing that
market rather than the other). The proof of this result resembles that
of Lemma 3, so we skip it. Recall that 𝑧𝑗 < 𝑧𝑗′ for every 𝑗 < 𝑗′.

Lemma 4. Let markets 𝑘 and 𝑘′ be active given the equilibrium 𝜏, with
𝑤𝑘 < 𝑤𝑘′ , and let 𝑗 < 𝑗′. If 𝑈𝑗 (𝑘′, 𝜏) ≥ 𝑈𝑗 (𝑘̄, 𝜏) then 𝑈𝑗′ (𝑘′, 𝜏) > 𝑈𝑗′ (𝑘̄, 𝜏),
while if 𝑈𝑗′ (𝑘̄, 𝜏) ≥ 𝑈𝑗′ (𝑘′, 𝜏) then 𝑈𝑗 (𝑘̄, 𝜏) > 𝑈𝑗 (𝑘′, 𝜏).

Given that equilibria are such that agents are ordered according to
their types, some market is active, and nobody chooses to enter markets
where the probability of being matched is zero, it is convenient to
conduct the equilibrium analysis fixing the number of active markets.

To this end, it is useful to examine the behavior of the functions
𝑄 and 𝑆 as their arguments vary. First, note that both functions are
continuous in their arguments. Consider then the extreme cases. The
probability that an employer fills her vacancy in market 𝑘 when no
other employer is expected to enter there is equal to

𝑄(0, 𝜏(𝑘̄)) =
∞
∑

𝑥(𝑘)=0
𝐏(𝑥(𝑘) ∣ 0)

∞
∑

𝑥(𝑘̄)=0

𝐏(𝑥(𝑘̄) ∣ 𝑛𝜏(𝑘̄))𝑞(𝑥(𝑘) + 1, 𝑥(𝑘̄))

=
∞
∑

𝑥(𝑘̄)=0

𝐏(𝑥(𝑘̄) ∣ 𝑛𝜏(𝑘̄))𝑞(1, 𝑥(𝑘̄)) =
∞
∑

𝑥(𝑘̄)=1

𝐏(𝑥(𝑘̄) ∣ 𝑛𝜏(𝑘̄)) = 1 − 𝑒−𝑛𝜏(𝑘̄),

16 For instance, if we modify Example 1 letting 𝑟3 = 𝑟4 = 1∕4, we obtain the
equilibrium 𝜎 with 𝜎1(1) = 1, 𝜎2(1) = 0, 𝜎3(1̄) = 3∕4, 𝜎4(1̄) = 0, where firms’
types are well separated while workers’ types are not, as low type workers
randomize over the two markets.

17 Of course, given any population behavior, if an employer prefers to enter
some market rather than not then all the employers of higher types also do
so, while if she prefers to not enter any market then the same is true for all
5

the employers of lower types. 𝑄
that is the probability that at least one worker enters market 𝑘 given
𝜏(𝑘̄) ≥ 0. On the other hand, if no worker enters market 𝑘 then an
employer will not fill her vacancy in that market, independently of
other employers’ behavior, i.e.

𝑄(𝜏(𝑘), 0) =
∞
∑

𝑥(𝑘)=0
𝐏(𝑥(𝑘) ∣ 𝑛𝜏(𝑘))

∞
∑

𝑥(𝑘̄)=0

𝐏(𝑥(𝑘̄) ∣ 0)𝑞(𝑥(𝑘) + 1, 𝑥(𝑘̄))

=
∞
∑

𝑥(𝑘)=0
𝐏(𝑥(𝑘) ∣ 𝑛𝜏(𝑘))𝑞(𝑥(𝑘) + 1, 0) = 0

or every 𝜏(𝑘) ≥ 0. Similar expressions define workers’ probabilities
f finding a job in market 𝑘. In particular, when no other worker is
xpected to enter that market, a worker will find a job with probability

(𝜏(𝑘), 0) = 1 − 𝑒−𝑛𝜏(𝑘)

iven 𝜏(𝑘) ≥ 0, while if no employer opens a vacancy in market 𝑘 then
worker will not find a job in that market, i.e.

(0, 𝜏(𝑘̄)) = 0

or every 𝜏(𝑘̄) ≥ 0.
Finally, the properties of the Poisson distribution imply that the

robability for an agent to be matched in market 𝑘 strictly increases
ith the probability that agents on the opposite side of the market enter
and strictly decreases with the probability that agents on the same

ide of the market choose 𝑘.

emma 5. 𝑄(𝜏(𝑘), 𝜏(𝑘̄)) is strictly decreasing in 𝜏(𝑘) and strictly increas-
ng in 𝜏(𝑘̄), while 𝑆(𝜏(𝑘), 𝜏(𝑘̄)) is strictly increasing in 𝜏(𝑘) and strictly
ecreasing in 𝜏(𝑘̄).

roof. See Appendix C. □

We can now examine the equilibria in which only one market
lace is active and then consider equilibria in which matching between
mployers and workers occurs with positive probability in a couple of
arket places. This analysis will provide some economic insights and

eveal characteristics of the equilibria that hold in general.

.1. One active market

Let market 𝑘 be the unique market that is active in equilibrium.
o agent enters any other market with positive probability, since the
robability of being matched there is zero. In fact, every undominated
trategy prescribes every worker to choose 𝑘 with probability 1 and,
n equilibrium, at least some employers choose market 𝑘 with positive
robability given the assumption on the highest productivity level. By
emma 3, there exists a type 𝑖∗ that separates employers entering the
arket and employers staying out. In particular, either there is a type

∗ who is indifferent between entering market 𝑘 and staying out, all
ypes 𝑖 > 𝑖∗ entering 𝑘 while all types 𝑖 < 𝑖∗ staying out, or there is a
ype 𝑖∗ such that all types 𝑖 ≥ 𝑖∗ enter market 𝑘 while all types 𝑖 < 𝑖∗

tay out. To characterize equilibria, we need to identify type 𝑖∗.
To this end, consider the average behavior 𝜏 such that 𝜏(𝑘̄) = 𝑟𝑤

nd 𝜏(𝑘) = 𝑟𝑒 − 𝑟1, that is, all the workers enter market 𝑘 as well as all
nd only the employers with productivity larger than 𝑦1. The expected
ayoff of entering 𝑘 for the employers with the lowest productivity level
1 is equal to

(𝑟𝑒 − 𝑟1, 𝑟𝑤)(𝑦1 −𝑤𝑘) − 𝑐. (4.1)

f this payoff is strictly positive, in equilibrium type 1 employers enter
with positive probability. In particular, in case their payoff
(𝑟𝑒, 𝑟𝑤)(𝑦1 −𝑤𝑘) − 𝑐



Journal of Mathematical Economics 112 (2024) 102981F. De Sinopoli et al.

𝑘

𝑄

𝑄

m

w

𝑄

w
w

u
i
m
i
𝑘
w

𝑆

S
e

𝑆

w
t
s

𝑆

w

𝑆

t
p
b

E

p
w

when every other employer enters the market is positive, they enter
market 𝑘 with probability 1.18 In case it is strictly negative, they enter

with probability 𝛼 ∈ (0, 1) such that

(𝑟𝑒 − (1 − 𝛼)𝑟1, 𝑟𝑤)(𝑦1 −𝑤𝑘) − 𝑐 = 0.

Since the function 𝑄 is continuous and strictly decreasing in the first
argument, 𝛼 exists and is unique. In both cases, all the employers of
higher types also enter market 𝑘 with probability 1. Thus, in the first
case we have the equilibrium 𝜏∗ with 𝜏∗(𝑘) = 𝑟𝑒 and 𝜏∗(𝑘̄) = 𝑟𝑤, while
in the second case we have 𝜏∗(𝑘) = 𝑟𝑒 − (1 − 𝛼)𝑟1, 𝜏∗(𝑂) = (1 − 𝛼)𝑟1, and
𝜏∗(𝑘̄) = 𝑟𝑤.

If (4.1) is negative, then in equilibrium all employers of type 1 do
not enter the market, and the incentives of employers with productivity
𝑦2 must be examined. In particular, if

𝑄(𝑟𝑒 − 𝑟1, 𝑟𝑤)(𝑦2 −𝑤𝑘) − 𝑐 ≥ 0

then they enter market 𝑘 with probability 1, and the same is true for
all the employers of higher types. In this case we have the equilibrium
𝜏∗ such that 𝜏∗(𝑘) = 𝑟𝑒 − 𝑟1, 𝜏∗(𝑂) = 𝑟1 and 𝜏∗(𝑘̄) = 𝑟𝑤. If

𝑄(𝑟𝑒 − 𝑟1, 𝑟𝑤)(𝑦2 −𝑤𝑘) − 𝑐 < 0

and

𝑄(𝑟𝑒 − 𝑟1 − 𝑟2, 𝑟𝑤)(𝑦2 −𝑤𝑘) − 𝑐 > 0,

then type 2 employers enter market 𝑘 with some probability 𝛽 ∈ (0, 1)
(where 𝛽 is derived analogously to the above 𝛼, exists and is unique
by Lemma 5), while all the employers of higher types enter 𝑘 with
probability 1. In this case we have 𝜏∗(𝑘) = 𝑟𝑒 − 𝑟1 − (1 − 𝛽)𝑟2, 𝜏∗(𝑂) =
𝑟1 + (1 − 𝛽)𝑟2, and 𝜏∗(𝑘̄) = 𝑟𝑤. If

(𝑟𝑒 − 𝑟1 − 𝑟2, 𝑟𝑤)(𝑦2 −𝑤𝑘) − 𝑐 ≤ 0,

then in equilibrium type 2 employers do not enter the market, and
incentives of employers with productivity 𝑦3 must be examined, and
so on.

This analysis can be done for each market place. It shows that
an equilibrium where a given market is the unique active one exists
given the assumption that firms are productive enough.19 The next
proposition establishes the uniqueness of such an equilibrium.

Proposition 1. For each market, there exists a unique equilibrium such
that that market is the only active one.

Proof. Suppose that there are two equilibria 𝜏∗1 and 𝜏∗2 such that market
𝑘 is the unique active market. We have 𝜏∗1 (𝑘̄) = 𝜏∗2 (𝑘̄) = 𝑟𝑤. Let 𝑥 be the
probability that a randomly sampled agent is an employer who enters
market 𝑘 in the first equilibrium, i.e. 𝑥 = 𝜏∗1 (𝑘). By Lemma 3, there is a
type 𝑖∗1 such that either

𝑄(𝑥, 𝑟𝑤)(𝑦𝑖 −𝑤𝑘) − 𝑐 < 0 for 𝑖 < 𝑖∗1 ,

𝑄(𝑥, 𝑟𝑤)(𝑦𝑖 −𝑤𝑘) − 𝑐 > 0 for 𝑖 ≥ 𝑖∗1 ,

where 𝑥 =
∑𝐼

𝑖=𝑖∗1
𝑟𝑖, or

𝑄(𝑥, 𝑟𝑤)(𝑦𝑖∗1 −𝑤𝑘) − 𝑐 = 0,

where 𝑥 = 𝛼𝑟𝑖∗1 +
∑𝐼

𝑖=𝑖∗1+1
𝑟𝑖 for some 𝛼 ∈ [0, 1]. Likewise, let 𝑦 ≠ 𝑥 be

the probability that an agent is an employer who enters market 𝑘 in
the second equilibrium, i.e. 𝑦 = 𝜏∗2 (𝑘), and let 𝑖∗2 be the type such that
either

𝑄(𝑦, 𝑟𝑤)(𝑦𝑖 −𝑤𝑘) − 𝑐 < 0 for 𝑖 < 𝑖∗2 ,

𝑄(𝑦, 𝑟𝑤)(𝑦𝑖 −𝑤𝑘) − 𝑐 > 0 for 𝑖 ≥ 𝑖∗2 ,

18 Note that, by Lemma 5, in this case the payoff of entering 𝑘 is the
inimum given 𝜏(𝑘̄) = 𝑟𝑤.
19 The same is true in Moen (1997).
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here 𝑦 =
∑𝐼

𝑖=𝑖∗2
𝑟𝑖, or

(𝑦, 𝑟𝑤)(𝑦𝑖∗2 −𝑤𝑘) − 𝑐 = 0,

where 𝑦 = 𝛽𝑟𝑖∗2 +
∑𝐼

𝑖=𝑖∗2+1
𝑟𝑖 for some 𝛽 ∈ [0, 1].

Let 𝑦 > 𝑥. By Lemma 5, we have 𝑄(𝑦, 𝑟𝑤) < 𝑄(𝑥, 𝑟𝑤). Hence, the
above conditions relative to the two equilibria hold simultaneously only
if 𝑖∗1 < 𝑖∗2. But this implies 𝑦 < 𝑥, leading to a contradiction. A similar
argument applies to the case 𝑦 < 𝑥. Therefore, the result follows. □

4.2. Two active markets

We now consider equilibria in which two market places are active,
namely 𝑘 and 𝑘′, with 𝑤𝑘 < 𝑤𝑘′ . In these equilibria every worker enters
one of the markets, while some employers may choose to stay out. Thus,
let 𝑠 be the probability that a randomly selected agent is a worker who
enters market 𝑘, i.e. 𝜏(𝑘̄) = 𝑠 and 𝜏(𝑘′) = 𝑟𝑤 − 𝑠, let 𝑥 be the probability
that an agent is an employer who enters market 𝑘 and let 𝑦 be the
probability she is an employer who enters 𝑘′, i.e. 𝜏(𝑘) = 𝑥, 𝜏(𝑘′) = 𝑦,
and 𝜏(𝑂) = 𝑟𝑒 − 𝑥 − 𝑦.

We begin extending to this case the previous procedure to derive
equilibria, and then we explore their existence.

Workers
Given the behavior of employers, we can determine the type 𝑗∗

that, in equilibrium, separates workers who enter market 𝑘 and workers
ho enter market 𝑘′ and, consequently, the equilibrium behavior of
orkers.

To this end, fix 𝑥 and 𝑦 and consider the workers with the largest
nemployment income 𝑧𝐼+𝐽 . Since markets 𝑘 and 𝑘′ are both active
n equilibrium, either these workers are indifferent between the two
arkets or they strictly prefer to enter 𝑘′ rather than 𝑘. They are

ndifferent if two conditions hold. First, their payoff of entering market
must be larger than that of entering market 𝑘′ when all and only the
orkers of highest type enter 𝑘′, i.e.

(𝑥, 𝑟𝑤 − 𝑟𝐼+𝐽 )(𝑤𝑘 − 𝑧𝐼+𝐽 ) ≥ 𝑆(𝑦, 𝑟𝐼+𝐽 )(𝑤𝑘′ − 𝑧𝐼+𝐽 ).

econd, their payoff of entering 𝑘 must be strictly smaller than that of
ntering 𝑘′ when no other worker is in 𝑘′, i.e.

(𝑥, 𝑟𝑤)(𝑤𝑘 − 𝑧𝐼+𝐽 ) < 𝑆(𝑦, 0)(𝑤𝑘′ − 𝑧𝐼+𝐽 ),

hich is the necessary condition for market 𝑘′ to be active. In this case,
he workers of highest type enter market 𝑘′ with probability 𝛼 ∈ (0, 1]
uch that

(𝑥, 𝑟𝑤 − 𝛼𝑟𝐼+𝐽 )(𝑤𝑘 − 𝑧𝐼+𝐽 ) = 𝑆(𝑦, 𝛼𝑟𝐼+𝐽 )(𝑤𝑘′ − 𝑧𝐼+𝐽 ),

hile all the workers of lower types enter market 𝑘, so 𝑠 = 𝑟𝑤−𝛼𝑟𝐼+𝐽 .20

On the other hand, if

(𝑥, 𝑟𝑤 − 𝑟𝐼+𝐽 )(𝑤𝑘 − 𝑧𝐼+𝐽 ) < 𝑆(𝑦, 𝑟𝐼+𝐽 )(𝑤𝑘′ − 𝑧𝐼+𝐽 )

hen in equilibrium the workers of highest type enter market 𝑘′ with
robability 1, and the incentives of the workers of lower types need to
e examined to determine type 𝑗∗.

mployers
Given the behavior of workers 𝑠, the equilibrium behavior of em-

loyers is described by two types. The type 𝑖∗ that separates employers
ho do not enter any market and employers who enter one of them,

20 Note that 𝛼 exists and is unique by Lemma 5.
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and the type 𝑙∗ that separates employers who enter market 𝑘′ and
employers who either enter market 𝑘 or stay out.21

To this end, fix 𝑠 and 𝑦. If 𝑦 > 𝑟𝑒 − 𝑟1, then the employers of
lowest type must be indifferent between the two markets while all the
employers of higher types enter market 𝑘′ with probability 1, so we
have 𝑖∗ = 𝑙∗ = 1. In particular, it can be either

𝑄(𝑟𝑒 − 𝑦, 𝑠)(𝑦1 −𝑤𝑘) = 𝑄(𝑦, 𝑟𝑤 − 𝑠)(𝑦1 −𝑤𝑘′ ) ≥ 𝑐,

so that every employer enters some market and 𝑥 = 𝑟𝑒 − 𝑦, or

𝑄(𝛼𝑟1, 𝑠)(𝑦1 −𝑤𝑘) = 𝑄(𝑦, 𝑟𝑤 − 𝑠)(𝑦1 −𝑤𝑘′ ) = 𝑐

for some 𝛼 ∈ (0, 1) with 𝛼𝑟1 < 𝑟𝑒 − 𝑦, so that employers of type
1 randomize over not entering any market, entering market 𝑘 and
ntering market 𝑘′, and 𝑥 = 𝛼𝑟1.

Let 𝑦 ≤ 𝑟𝑒 − 𝑟1. If the expected payoff for employers of type 1 of
ntering market 𝑘 when no employer stays out is positive, i.e.

(𝑟𝑒 − 𝑦, 𝑠)(𝑦1 −𝑤𝑘) − 𝑐 ≥ 0,

hen they enter market 𝑘 with probability 1, so 𝑖∗ = 1 and 𝑥 = 𝑟𝑒 − 𝑦.
If that payoff is strictly negative but their expected payoff of entering
market 𝑘 when all and only type 1 employers stay out is positive, i.e.

𝑄(𝑟𝑒 − 𝑟1 − 𝑦, 𝑠)(𝑦1 −𝑤𝑘) − 𝑐 ≥ 0,

then they are indifferent between staying out and entering market 𝑘.
In this case they stay out with probability 𝛽 ∈ (0, 1] such that

𝑄(𝑟𝑒 − 𝛽𝑟1 − 𝑦, 𝑠)(𝑦1 −𝑤𝑘) − 𝑐 = 0,

so we have 𝑖∗ = 1 and 𝑥 = 𝑟𝑒 − 𝛽𝑟1 − 𝑦.22 On the other hand, if

𝑄(𝑟𝑒 − 𝑟1 − 𝑦, 𝑠)(𝑦1 −𝑤𝑘) − 𝑐 < 0,

then type 1 employers do not enter any market in equilibrium, and one
has to consider employers of higher types to determine 𝑖∗.

Now, let 𝑠 and 𝑥 be fixed, and consider the employers with highest
productivity level 𝑦𝐼 . Note that for market 𝑘′ to be active it must be

𝑄(𝑥, 𝑠)(𝑦𝐼 −𝑤𝑘) < 𝑄(0, 𝑟𝑤 − 𝑠)(𝑦𝐼 −𝑤𝑘′ ).

If 𝑥 > 𝑟𝑒 − 𝑟𝐼 , then employers of type 𝐼 must be indifferent between
entering market 𝑘 and entering market 𝑘′, and all the employers of
lower types either enter market 𝑘 or stay out, so we have 𝑙∗ = 𝐼 .
In particular, the employers of highest type enter market 𝑘′ with
probability 𝛾 ∈ (0, 1) such that

𝑄(𝑥, 𝑠)(𝑦𝐼 −𝑤𝑘) = 𝑄(𝛾𝑟𝐼 , 𝑟𝑤 − 𝑠)(𝑦𝐼 −𝑤𝑘′ ), (4.2)

so we have 𝑦 = 𝛾𝑟𝐼 .
Let 𝑥 ≤ 𝑟𝑒 − 𝑟𝐼 . If employers of type 𝐼 are better off entering market

𝑘 rather than market 𝑘′ when all and only the employers of their same
type enter 𝑘′, that is, if

𝑄(𝑥, 𝑠)(𝑦𝐼 −𝑤𝑘) ≥ 𝑄(𝑟𝐼 , 𝑟𝑤 − 𝑠)(𝑦𝐼 −𝑤𝑘′ ),

then, as before, they must be indifferent between the two markets. So
we have 𝑙∗ = 𝐼 and 𝑦 = 𝛾𝑟𝐼 , where 𝛾 ∈ (0, 1] solves (4.2).23 On the other
hand, if

𝑄(𝑥, 𝑠)(𝑦𝐼 −𝑤𝑘) < 𝑄(𝑟𝐼 , 𝑟𝑤 − 𝑠)(𝑦𝐼 −𝑤𝑘′ )

then employers of type 𝐼 enter market 𝑘′ with probability 1, and the
incentives of the employers of lower types need to be explored to
determine 𝑙∗.

21 It is clear that 𝑖∗ and 𝑙∗ can coincide, either when there is a type who is
ndifferent between staying out and entering 𝑘 (and possibly also entering 𝑘′),
ll lower types staying out while all higher types entering 𝑘′, or when there
s a type who is indifferent between the two markets, all lower types staying
ut while all higher types entering 𝑘′.
22 Note that 𝛽 exists and is unique by Lemma 5.
23
7

Note that 𝛾 exists and is unique by Lemma 5.
Equilibrium
The above analysis leads to three equilibrium conditions. One condi-

tion summarizes workers’ equilibrium behavior, which is characterized
by the type 𝑗∗ that separates those entering market 𝑘 and those entering
market 𝑘′. Such a condition is either of the form

𝑆(𝑥, 𝑠)(𝑤𝑘 − 𝑧𝑗∗ ) = 𝑆(𝑦, 𝑟𝑤 − 𝑠)(𝑤𝑘′ − 𝑧𝑗∗ ) (4.3a)

r of the form

(𝑥, 𝑠)(𝑤𝑘 − 𝑧𝑗 ) > 𝑆(𝑦, 𝑟𝑤 − 𝑠)(𝑤𝑘′ − 𝑧𝑗 ) for 𝑗 < 𝑗∗

𝑆(𝑥, 𝑠)(𝑤𝑘 − 𝑧𝑗 ) < 𝑆(𝑦, 𝑟𝑤 − 𝑠)(𝑤𝑘′ − 𝑧𝑗 ) for 𝑗 ≥ 𝑗∗, (4.3b)

where 𝑠 =
∑𝑗∗

𝑗=𝐼+1 𝑟𝑗 − 𝛼𝑟𝑗∗ for some 𝛼 ∈ [0, 1].
Then, we have two conditions that describe employers’ equilibrium

behavior. One condition identifies the type 𝑖∗ who separates employers
not entering any market and employers entering market 𝑘, and can be
either of the form

𝑄(𝑥, 𝑠)(𝑦𝑖∗ −𝑤𝑘) − 𝑐 = 0 (4.4a)

or of the form

𝑄(𝑥, 𝑠)(𝑦𝑖 −𝑤𝑘) − 𝑐 < 0 for 𝑖 < 𝑖∗

𝑄(𝑥, 𝑠)(𝑦𝑖 −𝑤𝑘) − 𝑐 > 0 for 𝑖 ≥ 𝑖∗, (4.4b)

while the other condition identifies the type 𝑙∗ who separates employers
entering market 𝑘 and employers entering market 𝑘′, and can be either
of the form

𝑄(𝑥, 𝑠)(𝑦𝑙∗ −𝑤𝑘) = 𝑄(𝑦, 𝑟𝑤 − 𝑠)(𝑦𝑙∗ −𝑤𝑘′ ) (4.5a)

or of the form

𝑄(𝑥, 𝑠)(𝑦𝑖 −𝑤𝑘) > 𝑄(𝑦, 𝑟𝑤 − 𝑠)(𝑦𝑖 −𝑤𝑘′ ) for 𝑖 < 𝑙∗

𝑄(𝑥, 𝑠)(𝑦𝑖 −𝑤𝑘) < 𝑄(𝑦, 𝑟𝑤 − 𝑠)(𝑦𝑖 −𝑤𝑘′ ) for 𝑖 ≥ 𝑙∗, (4.5b)

where

𝑥 =
𝑙∗
∑

𝑖=𝑖∗
𝑟𝑖 − 𝛽𝑟𝑖∗ − 𝛾𝑟𝑙∗ and 𝑦 = 𝛾𝑟𝑙∗ +

𝐼
∑

𝑖=𝑙∗+1
𝑟𝑖

for some 𝛽 ∈ [0, 1] and 𝛾 ∈ [0, 1].24

Conditions (4.3a) and (4.3b) implicitly determine 𝑠 as a continuous
function of 𝑥 and 𝑦. Lemma 5 implies that 𝑠(𝑥, 𝑦) is weakly increasing
in 𝑥 and weakly decreasing in 𝑦. As intuition suggests, the higher is
the probability that employers enter one of the markets, the higher is
the probability that workers will also choose that market. Weakness
derives from the fact that, when the separating type of workers is not
indifferent between the two markets so that the relevant condition is
(4.3b), a small change in employers’ behavior does not induce a change
in workers’ optimal choices. On the other hand, when the separating
type is indifferent between the two markets, then 𝑠 must adjust if 𝑥 or
𝑦 vary, in order to maintain the equality in (4.3a). Similarly, conditions
(4.4a) and (4.4b) implicitly determine 𝑥 as a continuous and weakly
increasing function of 𝑠.25 Intuitively, if the probability that workers
enter market 𝑘 increases, then the probability that employers choose
that market also increases. Finally, given 𝑥, conditions (4.5a) and (4.5b)

24 Recall that we are considering 𝑤𝑘 < 𝑤′
𝑘. If 𝑤𝑘 = 𝑤′

𝑘, we have 𝑆(𝑥, 𝑠) =
(𝑦, 𝑟𝑤 − 𝑠) and 𝑄(𝑥, 𝑠) = 𝑄(𝑦, 𝑟𝑤 − 𝑠). Every worker will be indifferent between

he two markets and strictly prefer entering some market rather than not. As
egards employers, there will be types indifferent between the two markets
who may strictly prefer entering a market rather than staying out or may be
ndifferent) and, possibly, types who strictly prefer to not enter any market.
25 As before, when the separating type of employers is indifferent between
ntering 𝑘 and not entering any market, if 𝑠 increases then 𝑥 increases so that
he probability 𝑄(𝑥, 𝑠) remains constant, while if the separating type strictly
refers to enter market 𝑘 then a small increase in 𝑠 does not induce a change
in 𝑥, so 𝑄(𝑥, 𝑠) increases.
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implicitly determine 𝑦 as a continuous and weakly decreasing function
of 𝑠. In fact, the lower is the probability that workers enter market 𝑘′,
the lower will be the probability that employers choose that market.

An equilibrium is given by values of 𝑠, 𝑥 and 𝑦 for which the
opportune conditions are simultaneously satisfied. Hence, it is the
solution to a system of 3 equations (or 2 inequalities in place of some
of them) and 3 unknowns. Such a solution does not always exist. We
now illustrate an example in which there is no equilibrium where two
given market places are both active, even if the two equilibria where
each of the markets is the unique active one exist.

Example 2. The example is constructed as follows. We have an
economy with two market places, one type of employers, and one
type of workers. The probability of being an employer is close to 0
while the probability of being a worker is close to 1. In this case, the
probability for an employer to be matched in a market when all the
workers are there is close to the maximum. The wages paid in the two
markets are close, and the difference between employers’ productivity
and each of these wages is slightly larger than the cost of opening the
vacancy. When all the workers enter one of the markets, the probability
for an employer to be matched in that market is sufficiently high to
overcome the cost, implying the existence of the two equilibria in which
each market is the unique active one. However, when workers are
spread between the two markets, the probability for an employer to
be matched in the market that workers choose with lower probability
is too low to overcome the cost, implying that an equilibrium in which
both markets are active does not exist.

Formally, let the expected number of agents be 𝑛 = 4, let 𝑦1 = 3,
𝑧2 = 1, and 𝑐 = 0.9. To simplify computations, let 𝑤1 = 𝑤2 = 2, 𝑟𝑒 = 0,
and 𝑟𝑤 = 1. The results of this degenerate case will remain valid in a
neighborhood of these parameters values given the continuity of the
equilibrium conditions, which will involve strict inequalities. Consider
the equilibrium in which only one market is active, namely market 1.
Workers enter it with probability 1, and so do employers because

𝑄(𝑟𝑒, 𝑟𝑤)(𝑦1 −𝑤1) = 𝑄(0, 1) = 1 − 𝑒−4 ≈ 0.981 > 0.9 = 𝑐.

This implies that the two equilibria in which each market is the only
active one exist, and are such that all the agents enter the market.

Now, suppose that both markets are active in equilibrium. Workers
divide between the two markets, entering market 1 with probability
𝜎2(1̄) and market 2 with probability 1 − 𝜎2(1̄). Since 𝑟𝑤 = 1, we have
𝜏(1̄) = 𝜎2(1̄). Let 𝜎2(1̄) ≤

1
2 . Then

𝑄(0, 𝜏(1̄)) = 1 − 𝑒−4𝜏(1̄) < 1 − 𝑒−2 ≈ 0.865 < 0.9 = 𝑐.

It follows that an employer strictly prefers to not open her vacancy
rather than to open it in market 1, hence an equilibrium in which both
markets are active does not exist.

The non-existence of equilibrium in this example is due to the fact
that the cost for employers of opening the vacancy is relatively too high.
We can prove that an equilibrium in which a given couple of market
places are active exists as long as that cost is sufficiently small relative
to the other parameters.

To this end, consider the simplest case with one type of employers
and one type of workers, and let 𝑐 = 0. In an equilibrium where two
markets are active, each agent must be indifferent between entering
one or the other, and nobody chooses to stay out. In this case, the
equilibrium conditions are given by two equalities. Consider the con-
dition relative to employers. It implicitly defines employers’ behavior,
which is described in this case by one variable, as a continuous and
strictly increasing function of the behavior of the workers. Note that,
if workers enter one market with probability 0, then employers strictly
prefer to enter the other market rather than that one. By continuity,
employers’ indifference condition cannot be satisfied when the proba-
bility that workers enter one of the markets is in a neighborhood of 0.
By Lemma 5, there exists a (unique) minimum value of that probability
8

Fig. 1. Existence of equilibria with two active markets when 𝐼 = 𝐽 = 1.

such that employers’ equilibrium condition is satisfied. For that value,
an employer is indifferent between the two markets when no other
employer is in the one that workers choose with the lowest probability.
An analogous reasoning applies to the indifference condition relative to
workers. It follows that the functions defining employers’ and workers’
equilibrium behavior intersect at least once, as shown in Fig. 1 (where
𝑥 and 𝑠 are the probabilities that an agent is, respectively, an employer
and a worker entering the same market). This implies that at least
an equilibrium exists. Since in equilibrium employers strictly prefer
to enter some market rather than not, existence holds for sufficiently
small, but strictly positive values of 𝑐.

This result can be extended to the general – but more twisted –
case with 𝐼 types of employers and 𝐽 types of workers. We therefore
have the following proposition, the proof of which is provided in
Appendix D.

Proposition 2. For each couple of markets, if 𝑐 is sufficiently small then
there exists an equilibrium such that those markets are the only active ones.

To summarize, in an economy with 𝐾 market places there exist at
least 𝐾 equilibria. For each market, indeed, there exists a unique equi-
librium in which only that market is active, given the mild assumption
that the economy is productive enough. As regards strategic stability
considerations, all these equilibria satisfy every basic strategic principle
one can hope for, being stable sets as singletons.26 Equilibria in which a
given pair of markets are active exist under some additional conditions
on the parameters.

In general, equilibria can be derived from a simple and intuitive
procedure, are characterized by clean semianalytical equalities and
inequalities (see Meroni and Pimienta, 2017) and present the major
feature that higher types meet in markets that pay higher wages. As
discussed in the next section, this does not necessarily induce efficiency.

5. Efficiency

In this section we examine the question of efficiency. In our setting
efficiency does not always obtain. In fact, according to the character-
istics of the economy, it may require specific markets to be active in
equilibrium.

26 It is not difficult to see that each equilibrium is a stable set as defined
in De Sinopoli et al. (2014). In broad terms, a stable set of a Poisson game is
a minimal subset of Nash equilibria such that every close-by game obtained
through perturbations of the average behavior has a Nash equilibrium close
to the stable set. The equilibria under analysis prescribe strict best responses
for all types except at most one, i.e. the type of employers who is indifferent
between entering the market and staying out. However, whenever the best
response of this type is not strict, any perturbation of the average behavior in
the definition of stable set can be compensated by this type’s mixed action.
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When employers’ productivities are sufficiently close, as well as
workers’ unemployment incomes, efficiency essentially requires that,
for any realization of the population, the total number of matches
should be maximized. This implies that only equilibria with a unique
active market can be efficient, as equilibria with multiple active mar-
kets suffer from the misallocations of agents due to coordination fail-
ures among them.

To see this, consider the simplest case with one type of employers
and one type of workers, and let 𝑐 = 0. If one market place is active
in equilibrium, all the agents drawn from the Poisson distribution to
participate in the job market enter such a market with probability 1
and the number of matches is maximal, being the minimum between
the number of employers and the number of workers. If more than one
market place is active in equilibrium, the agents drawn to participate
in the job market randomize over the active markets and combinations
inducing less than the maximum number of possible matches occur
with positive probability.27 It is clear that if the cost 𝑐 is sufficiently
small then all the equilibria with a unique active market are efficient,
since they all attract every agent. However, if the cost is substantial,
the higher is the wage paid in a market the lower is the probability
that firms enter that market for the same behavior of the workers and,
consequently, the lower could be the resulting number of matches. For
this reason, an equilibrium with a unique active market paying a higher
wage could be less efficient than an equilibrium with a unique active
market paying a lower one.

When types are sufficiently heterogeneous, not only the number of
matches but also the types of agents that are matched become relevant
for welfare considerations.

In this case, equilibria with a unique active market are not necessar-
ily efficient, even if the cost 𝑐 is negligible. In fact, for a given behavior
of the workers, the higher is the wage that a market pays the fewer
are the employers it attracts, but the higher is the productivity of such
employers. Thus, an equilibrium with a unique active market paying
a higher wage could dominate in welfare terms an equilibrium with a
unique active market paying a lower one. Furthermore, efficiency may
even require multiple markets to be active, as this could significantly in-
crease the matching probabilities of types bearing on aggregate welfare
more, thanks to a better allocation of types among markets. However,
the inefficient equilibria with a unique active market would necessarily
coexist given Proposition 1.28

The next example presents an economy where an equilibrium with
two active markets exists and is more efficient than the equilibria in
which each of the markets is the only active one.

Example 3. Consider an economy with two market places paying
wages 𝑤1 = 8 and 𝑤2 = 14, two types of employers with productivity
levels 𝑦1 = 15 and 𝑦2 = 80, and two types of workers with unemploy-
ment incomes 𝑧3 = 1 and 𝑧4 = 5. Let 𝑟1 =

3
7 , 𝑟2 =

1
7 , 𝑟3 =

1
7 , 𝑟4 =

2
7 , and

et 𝑐 = 0 for simplicity. We can show that, if 𝑛 is sufficiently large, there
xists an equilibrium 𝜏∗ in which employers and workers of low type
nter market 1 while employers and workers of high type enter market
. That is, 𝜏∗(1) = 3

7 , 𝜏∗(1̄) = 1
7 , 𝜏∗(2) = 1

7 , and 𝜏∗(2̄) = 2
7 . Moreover, we

can show that the expected total welfare induced by this equilibrium
is larger than that induced by the two equilibria in which either only
market 1 or only market 2 is active.

Given 𝜏∗, if 𝑛 is sufficiently large then the probability a worker finds
a job in market 1 (resp. market 2) is sufficiently close to 1 (resp. 1

2 ),

27 With a continuum of agents this form of inefficiency cannot occur, as
robabilities and shares coincide. In our Poisson model, if 𝑛 is large enough

then it occurs with probability close to 0.
28 With heterogeneous agents, efficiency has been attained in different

models that feature continuum economies and allow firms to commit to richer
mechanisms (see, e.g., Shi, 2006; Eeckhout and Kircher, 2010; Jerez, 2014;
9

Cai et al., 2023).
while the probability an employer fills her vacancy in market 1 (resp.
market 2) is sufficiently close to 1

3 (resp. 1). It follows that

𝑆1(𝑤1 − 𝑧3) > 𝑆2(𝑤2 − 𝑧3),

1(𝑤1 − 𝑧4) < 𝑆2(𝑤2 − 𝑧4),

ince
13
7

<
𝑆1
𝑆2

< 3,

and that

𝑄1(𝑦1 −𝑤1) > 𝑄2(𝑦1 −𝑤2),

1(𝑦2 −𝑤1) < 𝑄2(𝑦2 −𝑤2),

ince
1
7
<

𝑄1
𝑄2

< 11
12

.

That is, agents of low type strictly prefer to enter market 1 rather than
market 2, while agents of high type strictly prefer to enter market 2
rather than market 1.

Besides this equilibrium 𝜏∗ where both markets are active, we have
the two equilibria in which each of the two markets is the only active
one. In particular, given that 𝑦1 > 𝑤2 and 𝑤1 > 𝑧4, these equilibria are
such that every agent enters the market with probability 1.

We can now derive the total welfare induced by each of the above
equilibria. Every match between an employer and a worker generates
the corresponding productivity, as the wage is a mere transfer from one
party to the other. Every worker that is not matched contributes to the
total welfare with her unemployment income. Thus, for 𝑛 large enough,
the expected total welfare induced by each equilibrium with a unique
active market can be approximated by
3
7
𝑛
( 3
4
𝑦1 +

1
4
𝑦2
)

= 375
28

𝑛,

while the expected total welfare induced by the equilibrium where both
markets are active is approximated by
1
7
𝑛𝑦1 +

1
7
𝑛𝑦2 +

1
7
𝑛𝑧4 =

380
28

𝑛 + 5
7
𝑛 = 100

7
𝑛.

6. Wage announcements

In this section, following Moen (1997), we show that the equilibria
of the model in which wages are established by the market maker can
be realized if one assumes that wages are announced by the agents.

Take a Poisson game with expected number of players 𝑛, 𝐼 types of
employers and 𝐽 types of workers whose characteristics are as defined
in Section 2. Differently from before, assume that agents can directly
announce the desired wage or decide to not announce any wage. That
is, the action sets are 𝐴𝑒 = 𝐴𝑤 = R+ ∪{𝑂}, where action 𝑂 corresponds
to not announcing any wage. A market is formed when at least one
employer and one worker post the same wage. As before, let the
number of matches in a market be equal to the minimum between the
number of employers and the number of workers who announce the
corresponding wage. Let the agents’ payoffs be as defined in Section 2,
taking appropriately into account the change in their action sets.

Consider an equilibrium of the original model in which the set of ac-
tive markets is 𝐾̃. Recall that no agent chooses with positive probability
a market that is not active. In the model with wage announcements, the
equivalent strategy combination is such that each type entering market
𝑘 ∈ 𝐾̃ (resp. not entering any market) with some positive probability
posts the corresponding wage 𝑤𝑘 (resp. does not announce any wage)
with the same probability. Then, an agent who expects opponents to
play according to this combination has no incentive to deviate and
choose a different wage 𝑤𝑘′ with 𝑘′ ∈ 𝐾̃, because the original profile is
an equilibrium. Moreover, no agent has incentive to announce a wage
that no market in 𝐾̃ pays, because the probability of being matched in
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that case would be zero. It follows that every equilibrium of the original
model is an equilibrium also in the model with wage announcements.

Take now an equilibrium of the model with wage announcements
with finite support 𝑊̃ ⊂ R+, and consider the original model in which
the market maker has established the corresponding set of markets; that
is, for every wage 𝑤 ∈ 𝑊̃ there is a market that pays 𝑤. The equivalent
strategy combination in that model is such that each type posting salary
𝑤 (resp. not posting any salary) with some positive probability enters
the market that pays 𝑤 (resp. stays out from any market) with the
same probability. It is clear that, under such a strategy combination,
no agent has incentive to deviate to any other action because the
profile under consideration is an equilibrium. On the other hand,
every equilibrium of the model with wage announcements with infinite
support is equivalent to the autarkic equilibrium of the original model,
since no matching occurs.29 We can conclude that every equilibrium of
he decentralized model with wage announcements is also induced by
he original model.

emark.
Since Poisson games are defined by Myerson (1998) as simultane-

us games, in which players do not observe the realization of their
pponents but have only some probabilistic information about their
umber and characteristics, we consider simultaneous announcements
y employers and workers. The labor literature has considered both
imultaneous and sequential wage determination. In particular, the
irected search literature has analyzed the case of wage announcements
ssuming a two-stage process, in which first employers announce the
age offers and then workers apply for a job after having observed

hose offers. In the Poisson framework, this would correspond to a
tructure with, first, a Poisson game in which employers announce
ages and, then, another Poisson game in which workers choose one of

hose wages knowing employers’ realization and choices (as in Norman,
016). However, this would be inconsistent with our setting in which
he agents’ strategies do not depend on the precise realization of
pponents’ behavior but only on their expectation of this behavior.

. Conclusion

This paper has presented a new model of the job market based
n the Poisson representation of a game with population uncertainty.
he game is finite and the Poisson structure allows to analyze the
quilibria in a fairly simple way and to obtain clean analytical solu-
ions. The undominated equilibria have properties that place the model
n between the random and directed search model typically used in
he labor literature. The forces of competition are at work through
he environmental equivalence property of Poisson games but strategic
ffects matter, giving rise to multiple, possibly inefficient equilibria
ven when the economy becomes large.
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Appendix A. Poisson games

In this appendix we outline the basic structure of Poisson games and
the properties that are relevant for our analysis.30

A Poisson game is given by a tuple
(

𝑛,  , 𝑟, 𝐴, (𝐴𝑡)𝑡∈ , 𝑢
)

. The num-
ber of players is distributed according to a Poisson random variable
with parameter 𝑛. Hence, the probability that there are 𝑚 players in
the game is equal to

𝐏(𝑚 ∣ 𝑛) = 𝑒−𝑛𝑛𝑚

𝑚!
.

The set  = {1,… , 𝑇 } is the set of player types. The probability
that a randomly selected player is of each type is given by the vector
𝑟 = (𝑟1,… , 𝑟𝑇 ) ∈ 𝛥( ). That is, a player is of type 𝑡 ∈  with probability
𝑟𝑡. A type profile 𝑦 ∈ Z𝑇

+ is a vector that specifies for each type 𝑡 ∈ 
the number of players 𝑦𝑡 of that type. The finite set of actions is 𝐴.
The set of actions that are available to players of type 𝑡 is 𝐴𝑡 ⊆ 𝐴.
An action profile 𝑥 ∈ 𝑍(𝐴) = Z|𝐴|

+ specifies for each action 𝑎 ∈ 𝐴 the
umber of players 𝑥(𝑎) that choose that action. Players’ preferences are
ummarized by the vector 𝑢 = (𝑢1,… , 𝑢𝑇 ), where 𝑢𝑡 ∶ 𝐴𝑡 × 𝑍(𝐴) → R

for every 𝑡 ∈  . We interpret 𝑢𝑡(𝑎, 𝑥) as the payoff obtained by a type
𝑡 player when she chooses action 𝑎 and the realization resulting from
the rest of the population’s behavior is the action profile 𝑥 ∈ 𝑍(𝐴).

The set of mixed actions for players of type 𝑡 is 𝛥(𝐴𝑡). A strategy
unction 𝜎 is an element of 𝛴 =

{

𝜎 ∈ 𝛥(𝐴)𝑇 ∶ 𝜎𝑡 ∈ 𝛥(𝐴𝑡) for all 𝑡
}

,
apping each type to the corresponding set of mixed actions. The

verage behavior induced by the strategy function 𝜎 is given by 𝜏(𝜎) ∈
(𝐴) and it is defined by 𝜏(𝜎)(𝑎) =

∑

𝑡∈ 𝑟𝑡𝜎𝑡(𝑎). Let 𝜏(𝛴) = {𝜏 ∈
(𝐴) ∶ 𝜏 = 𝜏(𝜎) for some 𝜎 ∈ 𝛴}. It is clear that the same average
ehavior can be induced by different strategy functions. However, 𝜏 is
sufficient statistic for the analysis of agents’ optimal behavior, as an

gent’s payoff depends only on the number of other agents who choose
ach action, independently of their specific types.

A Poisson game is characterized by the following properties.

ecomposition property. Let each player be independently assigned
ome characteristic in a set 𝑆 according to some given probability
istribution (𝜃(𝑠))𝑠∈𝑆 . Let 𝑤(𝑠) denote the number of players who have
haracteristic 𝑠. For every 𝑠 ∈ 𝑆, the random variables 𝑤(𝑠) are
utually independent, and each 𝑤(𝑠) has a Poisson distribution with
ean 𝑛𝜃(𝑠).

ndependent actions property. For every strategy function 𝜎 and
ction 𝑎, the random variables 𝑥(𝑎) are independent random variables.

30 We refer to Myerson (1998).
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Environmental equivalence property. Let (𝑦 ∣ 𝑡) be the conditional
robability that a player of type 𝑡 assigns to the event that the other
layers in the game have type profile 𝑦 = (𝑦1,… , 𝑦𝑇 ). We have

(𝑦 ∣ 𝑡) =
∏

𝑡∈

(

𝑒−𝑛𝑟𝑡
(𝑛𝑟𝑡)𝑦𝑡
𝑦𝑡!

)

for every 𝑦 ∈ Z𝑇
+ and 𝑡 ∈  . That is, a player of any type assesses the

same probability distribution for the type profile of the other players
as an external observer assesses for the type profile of the whole game.

The decomposition and independent actions properties imply that,
when the population’s aggregate behavior is summarized by 𝜏 ∈ 𝜏(𝛴),
the number of players who choose action 𝑎 is a Poisson random variable
with mean 𝑛𝜏(𝑎) and is independent of the number of players who
hoose any other action. Then, the probability that the action profile
∈ 𝑍(𝐴) is realized is equal to

(𝑥 ∣ 𝜏) =
∏

𝑎∈𝐴

(

𝑒−𝑛𝜏(𝑎)
(𝑛𝜏(𝑎))𝑥(𝑎)

𝑥(𝑎)!

)

.

Environmental equivalence implies that 𝑃 (𝑥 ∣ 𝜏) is also the probability
that each player assigns to the event that the action profile resulting
from the rest of the population’s behavior is 𝑥. Hence, the expected
payoff to a player of type 𝑡 who plays 𝑎 ∈ 𝐴𝑡 is given by

𝑈𝑡(𝑎, 𝜏) =
∑

𝑥∈𝑍(𝐴)
𝑃 (𝑥 ∣ 𝜏)𝑢𝑡(𝑎, 𝑥).

A Nash equilibrium of a Poisson game is a description of behavior
for the entire population that is consistent with the players’ utility
maximizing actions given that they use such a description to form their
beliefs about the population’s expected behavior.

Definition 4. The strategy function 𝜎 ∈ 𝛴 is a Nash equilibrium if

𝑈𝑡(𝜎𝑡, 𝜏(𝜎)) ≥ 𝑈𝑡(𝜎′𝑡 , 𝜏(𝜎)) for all 𝑡 ∈  , 𝜎′𝑡 ∈ 𝛥(𝐴𝑡).

Appendix B. Matching function

In this appendix we show that the min function and the min function
with a threshold are the only matching functions that satisfy the natural
assumptions that

(A1) 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) ≤ min{𝑥(𝑘), 𝑥(𝑘̄)} and
(A2) 𝑓 (𝑥(𝑘), 𝑥(𝑘̄)) is not identically equal to zero,

in addition to the reasonable assumptions that

(A3) 𝑞(𝑥(𝑘), 𝑥(𝑘̄)) is non-increasing in 𝑥(𝑘) and non-decreasing in 𝑥(𝑘̄),
and

(A4) 𝑠(𝑥(𝑘), 𝑥(𝑘̄)) is non-increasing in 𝑥(𝑘̄) and non-decreasing in 𝑥(𝑘).

To simplify notation, let 𝑥(𝑘) = 𝑥 and 𝑥(𝑘̄) = 𝑥̄. First, note that 𝑞(𝑥, 𝑥̄)
is not defined if 𝑥 = 0 while 𝑠(𝑥, 𝑥̄) is not defined if 𝑥̄ = 0. By (A1), we
have 𝑓 (𝑛, 0) = 𝑓 (0, 𝑛) = 0 for every 𝑛 ∈ Z+.

Let 𝑥, 𝑥̄ ∈ Z+∖{0}. Since 𝑞 is non-decreasing in 𝑥̄ we have that 𝑓
must be non-decreasing in 𝑥̄, and since 𝑠 is non-decreasing in 𝑥 we have
that 𝑓 must be non-decreasing in 𝑥. Now, consider the function 𝑞. For
𝑞 to be non-increasing in 𝑥 it must be that, for every 𝑥 and 𝑥̄,

𝑞(𝑥 + 1, 𝑥̄) − 𝑞(𝑥, 𝑥̄) ≤ 0,

which is equivalent to

𝑥𝑓 (𝑥 + 1, 𝑥̄) − 𝑥𝑓 (𝑥, 𝑥̄) − 𝑓 (𝑥, 𝑥̄) ≤ 0. (B.1)

Suppose that 𝑓 (𝑥 + 1, 𝑥̄) > 𝑓 (𝑥, 𝑥̄) + 1 for some 𝑥 and 𝑥̄. Then the lhs of
(B.1) would be strictly greater than 𝑥 − 𝑓 (𝑥, 𝑥̄), which is non-negative
by (A1), contradicting (B.1). So it must be 𝑓 (𝑥 + 1, 𝑥̄) ≤ 𝑓 (𝑥, 𝑥̄) + 1 for
every 𝑥 and 𝑥̄. Given that 𝑓 is non-decreasing in 𝑥, we have either
𝑓 (𝑥 + 1, 𝑥̄) = 𝑓 (𝑥, 𝑥̄) or 𝑓 (𝑥 + 1, 𝑥̄) = 𝑓 (𝑥, 𝑥̄) + 1. Consider 𝑥 ≤ 𝑥̄ and
11

suppose that 𝑓 (𝑥, 𝑥̄) < 𝑥. If 𝑓 (𝑥+ 1, 𝑥̄) = 𝑓 (𝑥, 𝑥̄) + 1 then the lhs of (B.1) 𝑛
would be equal to 𝑥 − 𝑓 (𝑥, 𝑥̄), again contradicting (B.1), so it must be
𝑓 (𝑥 + 1, 𝑥̄) = 𝑓 (𝑥, 𝑥̄).

An analogous reasoning applied to 𝑠 implies that, for every 𝑥 and 𝑥̄,
it must be either 𝑓 (𝑥, 𝑥̄+1) = 𝑓 (𝑥, 𝑥̄) or 𝑓 (𝑥, 𝑥̄+1) = 𝑓 (𝑥, 𝑥̄)+1. Moreover,
if 𝑥̄ ≤ 𝑥, whenever 𝑓 (𝑥, 𝑥̄) < 𝑥̄ it must be 𝑓 (𝑥, 𝑥̄+1) = 𝑓 (𝑥, 𝑥̄). Combining
this with the above result we have that, whenever 𝑓 (𝑥, 𝑥̄) < min{𝑥, 𝑥̄}
for some 𝑥 and 𝑥̄, it must be

𝑓 (𝑛, 𝑛̄) = 𝑓 (𝑥, 𝑥̄)

for every 𝑛 ≥ 𝑥 and 𝑛̄ ≥ 𝑥̄.
It can be easily seen that the matching function 𝑓 (𝑥, 𝑥̄) = min{𝑥, 𝑥̄}

satisfies all the assumptions. On the other hand, the above discussion
implies that, among the functions 𝑓 such that 𝑓 (𝑥, 𝑥̄) < min{𝑥, 𝑥̄} for
some 𝑥 and 𝑥̄, all the assumptions can be satisfied only by the functions
of type 𝑓 (𝑥, 𝑥̄) = min{𝑥, 𝑥̄, 𝑥̂} for some 𝑥̂ ∈ Z+∖{0}.

Appendix C. Proof of Lemma 5

Lemma 5. 𝑄(𝜏(𝑘), 𝜏(𝑘̄)) is strictly decreasing in 𝜏(𝑘) and strictly increas-
ing in 𝜏(𝑘̄), while 𝑆(𝜏(𝑘), 𝜏(𝑘̄)) is strictly increasing in 𝜏(𝑘) and strictly
decreasing in 𝜏(𝑘̄).

Proof. We can show that 𝑄(𝜏(𝑘), 𝜏(𝑘̄)) is strictly decreasing in 𝜏(𝑘) by
showing that, for every 𝜏′(𝑘) > 𝜏(𝑘),

𝑄(𝜏′(𝑘), 𝜏(𝑘̄)) −𝑄(𝜏(𝑘), 𝜏(𝑘̄)) < 0. (C.1)

The above inequality is equivalent to
∑

𝑥(𝑘)∈Z+

[

𝐏(𝑥(𝑘) ∣ 𝑛𝜏′(𝑘)) − 𝐏(𝑥(𝑘) ∣ 𝑛𝜏(𝑘))
]

∑

𝑥(𝑘̄)∈Z+

𝐏(𝑥(𝑘̄) ∣ 𝑛𝜏(𝑘̄))𝑞(𝑥(𝑘) + 1, 𝑥(𝑘̄)) < 0.

The probability distribution over Z+ induced by 𝑛𝜏′(𝑘) first order
stochastically dominates the one induced by 𝑛𝜏(𝑘), that is,

𝑥̄
∑

𝑥(𝑘)=0
𝐏(𝑥(𝑘) ∣ 𝑛𝜏′(𝑘)) <

𝑥̄
∑

𝑥(𝑘)=0
𝐏(𝑥(𝑘) ∣ 𝑛𝜏(𝑘))

for every 𝑥̄ ∈ Z+.31 Since 𝑞(𝑥(𝑘) + 1, 𝑥(𝑘̄)) is non-increasing in 𝑥(𝑘),
inequality (C.1) follows. Likewise, 𝑄(𝜏(𝑘), 𝜏(𝑘̄)) is strictly increasing in
𝜏(𝑘̄) because, for every 𝜏′(𝑘̄) > 𝜏(𝑘̄),

𝑄(𝜏(𝑘), 𝜏′(𝑘̄)) −𝑄(𝜏(𝑘), 𝜏(𝑘̄)) =

=
∑

𝑥(𝑘̄)∈Z+

[

𝐏(𝑥(𝑘̄) ∣ 𝑛𝜏′(𝑘̄)) − 𝐏(𝑥(𝑘̄) ∣ 𝑛𝜏(𝑘̄))
]

×
∑

𝑥(𝑘)∈Z+

𝐏(𝑥(𝑘) ∣ 𝑛𝜏(𝑘))𝑞(𝑥(𝑘) + 1, 𝑥(𝑘̄)) > 0,

given that the probability distribution over Z+ induced by 𝑛𝜏′(𝑘̄) first
order stochastically dominates the one induced by 𝑛𝜏(𝑘̄), and 𝑞(𝑥(𝑘) +
1, 𝑥(𝑘̄)) is non-decreasing in 𝑥(𝑘̄).

In an analogous way it can be shown that 𝑆(𝜏(𝑘), 𝜏(𝑘̄)) is strictly
increasing in 𝜏(𝑘) and strictly decreasing in 𝜏(𝑘̄), given that 𝑠 is non-
decreasing in 𝑥(𝑘) and non-increasing in 𝑥(𝑘̄). □

Appendix D. Proof of Proposition 2

Proposition 2. For each couple of markets, if 𝑐 is sufficiently small then
there exists an equilibrium such that those markets are the only active ones.

31 In fact, the decomposition property of Poisson games implies that the
number of agents choosing 𝑘 is a Poisson random variable, and ∑𝑘̄

𝑘=0 𝐏(𝑘 ∣
′ ∑𝑘̄ 𝐏(𝑘 ∣ 𝑛) for every 𝑛′ > 𝑛 and 𝑘̄ ∈ Z .
) < 𝑘=0 +
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Proof. Let 𝑐 = 0 and consider an equilibrium with two active markets,
namely 𝑘 and 𝑘′. All the agents enter some market in equilibrium. Let 𝑠
and 𝑥 be the probabilities that a random agent is, respectively, a worker
and an employer entering market 𝑘. We can derive the equilibrium
behavior of workers as a function of 𝑥, which is implicitly given by

𝑆(𝑥, 𝑠)(𝑤𝑘 − 𝑧𝑗∗ ) = 𝑆(𝑟𝑒 − 𝑥, 𝑟𝑤 − 𝑠)(𝑤𝑘′ − 𝑧𝑗∗ )

and

𝑆(𝑥, 𝑠)(𝑤𝑘 − 𝑧𝑗 ) > 𝑆(𝑟𝑒 − 𝑥, 𝑟𝑤 − 𝑠)(𝑤𝑘′ − 𝑧𝑗 ) for 𝑗 < 𝑗∗

𝑆(𝑥, 𝑠)(𝑤𝑘 − 𝑧𝑗 ) < 𝑆(𝑟𝑒 − 𝑥, 𝑟𝑤 − 𝑠)(𝑤𝑘′ − 𝑧𝑗 ) for 𝑗 ≥ 𝑗∗,

where 𝑗∗ is the type that separates workers entering 𝑘 and workers
entering 𝑘′, and 𝑠 =

∑𝑗∗
𝑗=𝐼+1 𝑟𝑗 − 𝛼𝑟𝑗∗ for some 𝛼 ∈ [0, 1]. Analogously,

we can derive the equilibrium behavior of employers as a function of
𝑠, which is implicitly given by

𝑄(𝑥, 𝑠)(𝑦𝑖∗ −𝑤𝑘) = 𝑄(𝑟𝑒 − 𝑥, 𝑟𝑤 − 𝑠)(𝑦𝑖∗ −𝑤𝑘′ ) (D.2a)

and

𝑄(𝑥, 𝑠)(𝑦𝑖 −𝑤𝑘) > 𝑄(𝑟𝑒 − 𝑥, 𝑟𝑤 − 𝑠)(𝑦𝑖 −𝑤𝑘′ ) for 𝑖 < 𝑖∗

𝑄(𝑥, 𝑠)(𝑦𝑖 −𝑤𝑘) < 𝑄(𝑟𝑒 − 𝑥, 𝑟𝑤 − 𝑠)(𝑦𝑖 −𝑤𝑘′ ) for 𝑖 ≥ 𝑖∗, (D.2b)

where 𝑖∗ is the type that separates employers entering 𝑘 and employers
entering 𝑘′, and 𝑥 =

∑𝑖∗
𝑖=1 𝑟𝑖 − 𝛽𝑟𝑖∗ for some 𝛽 ∈ [0, 1].

We can show that the resulting functions 𝑠(𝑥) and 𝑥(𝑠) are both
continuous and weakly increasing. Consider 𝑥(𝑠). If 𝑠 = 0 we have

𝑄(𝑥, 0)(𝑦𝑖 −𝑤𝑘) < 𝑄(𝑟𝑒 − 𝑥, 𝑟𝑤)(𝑦𝑖 −𝑤𝑘′ )

for every 𝑖, since 𝑄(𝑥, 0) = 0 for every 𝑥. That is, no employer chooses to
enter market 𝑘 if all the workers choose 𝑘′. Given the strict inequalities,
this holds true for strictly positive values of 𝑠 sufficiently close to 0. In
particular, since we have

𝑄(0, 0)(𝑦1 −𝑤𝑘) < 𝑄(𝑟𝑒, 𝑟𝑤)(𝑦1 −𝑤𝑘′ )

and

𝑄(0, 𝑟𝑤)(𝑦1 −𝑤𝑘) > 𝑄(𝑟𝑒, 0)(𝑦1 −𝑤𝑘′ ),

by Lemma 5 there exists a value 𝑠1 > 0 such that

𝑄(0, 𝑠1)(𝑦1 −𝑤𝑘) = 𝑄(𝑟𝑒, 𝑟𝑤 − 𝑠1)(𝑦1 −𝑤𝑘′ ).

As 𝑠 increases above 𝑠1, 𝑥 increases above 0 in order to keep condi-
tion (D.2a) satisfied for 𝑖∗ = 1. That is, employers of type 1 begin
to enter market 𝑘 with strictly positive probability and both markets
become active. Such probability increases continuously up to 1, in
correspondence to the value 𝑠2 > 𝑠1 such that

𝑄(𝑟1, 𝑠2)(𝑦1 −𝑤𝑘) = 𝑄(𝑟𝑒 − 𝑟1, 𝑟𝑤 − 𝑠2)(𝑦1 −𝑤𝑘′ ),

and we have 𝑥(𝑠2) = 𝑟1. By Lemma 5, 𝑠2 < 𝑟𝑤 because

𝑄(𝑟1, 𝑟𝑤)(𝑦1 −𝑤𝑘) > 𝑄(𝑟𝑒 − 𝑟1, 0)(𝑦1 −𝑤𝑘′ ).

Obviously, if 𝐼 = 1 then 𝑥(𝑠2) = 𝑟𝑒. If 𝐼 > 1, as 𝑠 increases above 𝑠2 the
relevant condition becomes (D.2b) with 𝑖∗ = 2, and we have 𝑥(𝑠) = 𝑟1
for all the values of 𝑠 up to the value 𝑠3 < 𝑟𝑤 such that

𝑄(𝑟1, 𝑠3)(𝑦2 −𝑤𝑘) = 𝑄(𝑟𝑒 − 𝑟1, 𝑟𝑤 − 𝑠3)(𝑦2 −𝑤𝑘′ ).

As 𝑠 increases above 𝑠3, also employers of type 2 begin to enter market
𝑘 with strictly positive probability, and so on, up to the value 𝑠2𝐼 such
that

𝑄(𝑟𝑒, 𝑠2𝐼 )(𝑦𝐼 −𝑤𝑘) = 𝑄(0, 𝑟𝑤 − 𝑠2𝐼 )(𝑦𝐼 −𝑤𝑘′ ),

for which no employer enters market 𝑘′. By Lemma 5, 𝑠2𝐼 < 𝑟𝑤 because
12

𝑄(𝑟𝑒, 𝑟𝑤)(𝑦𝐼 −𝑤𝑘) > 𝑄(0, 0)(𝑦𝐼 −𝑤𝑘′ ).
Fig. 2. Existence of equilibria with two active markets.

An analogous argument applies to 𝑠(𝑥). It implies that the functions
(𝑠) and 𝑠(𝑥) intersect at least once (as shown in Fig. 2 for the case
= 3, 𝐽 = 2), so at least one equilibrium exists when 𝑐 = 0. Since

he probability for the employers to be matched in each market is
trictly positive, they strictly prefer to enter some market rather than
ot. It follows that an equilibrium exists for strictly positive values of
sufficiently close to 0.

□
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