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Abstract The development of new technologies and methods of data collection pro-
duces the necessity to summarise the large quantity of information that is available.
Usually, we face a data matrix X of size (n× J), corresponding to n statistical units
and J quantitative variables, where n and J are very large. Clustering is the analysis
which identifies homogeneous clusters of units, thus it might be meant as a way to
reduce their dimension. Dimensionality reduction techniques are methods to obtain
latent dimensions (less than manifest variables), so they reduce the dimensionality
of the variables space. In this paper, we apply Double Hierarchical Parsimonious
Means Clustering [2] in order to get a simultaneous hierarchical parsimonious clus-
tering of units - aggregated around centroids - and dimensionality reduction of vari-
ables - aggregated around components - on Asia-Europe Meeting (ASEM) data set.
The model is estimated by using the LS method and an efficient coordinate descent
algorithm is given. The goodness of fit of the double hierarchical parsimonious trees
can be computed to assess the quality of the two hierarchical partitions.
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1 Introduction

In recent years, with the data revolution and the use of new technologies, phenom-
ena are frequently described by a huge quantity of information useful for making
strategical decisions. A priority for policymakers is having simple statistical meth-
ods useful to synthesise all the available information. Different levels of synthesis
are required by stakeholders in order to describe properly different phenomena.

Cluster analysis is a field of study which tries to identify homogeneous clusters
of units. Hierarchical clustering methods are well-known and widely used for pro-
ducing a hierarchy of statistical units, clustered in (n− 1) nested partitions. Most
of these methods take into account an objects-by-objects dissimilarity matrix, by
setting a priori the kind of metrics and linkage in order to measure and update the
distance between items, respectively. These clustering methods are heuristic and
they do not underpin a model for the dissimilarity data or an objective function
that can be optimised. [7] proposed a method that extends K-means to the case of
hierarchical clustering estimating the objective function via least squares.

Dimensionality reduction methods (e.g. Principal Component Analysis (PCA)
and Factor Analysis (FA)) are usually implemented to obtain a straightforward in-
terpretation of the data. These methodologies are sometimes not able to get the real
structure of the data and their relationships, i.e. a hierarchical correlation structure.

[3] proposed a hierarchical extension of Disjoint Principal Component [4] in
order to build composite indicators.

In this paper, we apply the Double Hierarchical Parsimonious Means Cluster-
ing [2] in order to get a simultaneous hierarchical partitions of units - represented
by centroids - and of variables - represented by components - on the Asia-Europe
Meeting (ASEM) dataset. The aim of this research is to build a composite indicator
for ASEM taking into account a hierarchical set of nested partitions of countries.

The paper is organised as follows. In Section 2 the model is presented and in
Section 3 it is applied on the ASEM dataset. Finally, in Section 4 some conclusions
end the paper.

2 Methodology

In the era of big data, the need to synthesise information is even more crucial. Clus-
tering and dimensionality reduction are considered in order to synthesise large quan-
tity of data. Both for units and for variables, it is worthy to identify clusters or classes
of objects that represent homogeneous features. On one hand, the huge amount of
data holds much more information than previously and millions of statistical units
are available; on the other hand, it becomes necessary to understand if this informa-
tion might be transformed into statistical knowledge.

The syntheses of objects and variables are usually achieved according to sequen-
tial or simultaneous approaches, as the tandem analysis or the Clustering and Dis-
joint Principal Component Analysis (CDPCA) proposed by [8], respectively. Many
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authors have criticised the former method since it brings about a masking of the tax-
onomic information of the data. However, the simultaneous approach does not allow
to inspect the hierarchical relationships between dimensions of a multidimensional
phenomenon, whenever they exist.

In the specialised literature, many methodologies have been developed to sim-
plify the complete hierarchies ([5]) and to build parsimonious trees ([6]), both for
units and variables. In case of big data, the parsimony property is fundamental to
interpret the results.

[2] studied a new hierarchical simultaneous model-based approach to cluster ob-
jects and to identify new latent concepts, each one associated to a group of variables.
The methodology is based upon the CDPCA, starting from a fixed number of clus-
ters K and components Q and reducing these values by one at each hierarchical
level. Formally,

X = UkMkqV′qBq +Ek ∀k = K, ...,1,q = Q, ...,M, (1)

where X is a (n×J) data matrix - with n statistical units and J quantitative variables-
, Uk and Vq are the membership matrices for units and variables, respectively, Bq is
the matrix of weights and Mkq is the centroids matrix in the reduced space.

The model (1) is subject to the classical constraints on membership matrices for
partitioning and, according to [8], on the reparametrization of the loading matrix Aq
into the product of two matrices, i.e. Bq and Vq. Furthermore, a constrain on nested
partitions has been added to the model (1).

Eq.(1) represents the reflective part of the model with Q−M + 1 hierarchical
levels. M identifies the number of the bottom-up level of the hierarchy at which the
model becomes formative, i.e. the M components are merged into a unique measure
of synthesis, and it is selected according to a statistical test.

The model is estimated in a least-squares semi-parametric framework in which a
quadratic loss function is minimised and it is implemented with a coordinate descent
algorithm. The latter is efficient in real applications.

3 Application: ASEM Index - International Sustainable
Connectivity

Asia-Europe Meeting (ASEM) Sustainable Connectivity Index is aimed at measur-
ing connectivity among countries, people and societies in an economic sense (e.g.
transport links, energy, trade,...) and in a social sense (e.g. migration, linkage, cul-
tural connection,...). The data comprises 51 countries1 - 30 European and 21 Asian
- and 49 indicators.

1 Source: [1].
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The indicators are grouped in two indexes, Connectivity and Sustainability, with
5 and 3 dimensions respectively, as shown in Figure 1.

Fig. 1 ASEM Sustainable Connectivity Conceptual Framework1.

The methodology described in Section 2 has been implemented on this data set
for clustering countries and build a composite indicator, i.e. a measure of synthesis,
from the 49 indicators. With respect to the construction of the variables hierarchy,
two research approaches are defined: confirmatory and exploratory. In the former,
the 8 dimensions are fixed (Figure 1), i.e. the partition of the manifest variables at the
eighth hierarchical level is constrained. In the latter, all the constraints are relaxed
and the initial parsimonious number of variable groups is pinpointed according to
the unidimensionality of the components. In both cases, the optimal solution of the
model corresponds to 6 clusters of statistical units. Before analysed the results and in
order to measure the internal reliability of the two proposed indices, the Cronbach’s
α has been computed: the Connectivity index has α = 0.94 and the Sustainability
one has α = 0.37. Thus, the former seems to be very consistent, whereas the latter
turns out to be not reliable.

In the confirmatory approach, the model (1) underpins the theoretical double
composite indicators approach with M = 2, whose corresponding components are
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Fig. 2 Conrmatory Approach on ASEM Data Set. Variables Hierarchy.

merged together in a formative way. The partition obtained at this hierarchical level
is equal to the one proposed, except for the dimension Institutional - which belongs
to the Sustainability index group according to the model (1) - as shown in Figure 2.
The Cronbach’s α shows improvements for this group, passing from 0.37 to 0.67.
Moreover, only one dimension is not unidimensional (Political) - the unidimension-
ality is assessed according to the magnitude of the “restricted”2 covariance matrix
second eigenvalue.

In the exploratory approach, the model (1) pinpoints Q = 3 unidimensional com-
ponents and it underpins again the theoretical model identifying M = 2. The three
groups are composed by the following variables of the theoretical domains:

• 4/8 Physical, 5/5 Economic/Financial (Connectivity), 1/3 Political, 7/8 People-
to-people.

• 4/8 Physical, 2/3 Political, 6/6 Institutional, 1/8 People-to-people, 1/5 Envi-
ronmental, 9/9 Social.

• 4/5 Environmental, 5/5 Economic/Financial (Sustainability).

2 It refers to the manifest variables of the data matrix associated to a component.
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Fig. 3 Exploratory Approach on ASEM Data Set. Variables Hierarchy.

The components related to the aforementioned groups seem to be coherent with
the confirmatory results. Indeed, the first group is mainly composed by three do-
mains of the Connectivity index, the third by two dimensions of the Sustainability
index, and the second one puts together the Institutional domain with many vari-
ables pertaining to the Connectivity index. The Cronbach’s α are 0.96, 0.78 and
0.94, respectively.

The clustering of the statistical units returns the same results both for the con-
firmatory and the exploratory approach. The optimal number of clusters turns out
to be equal to 6, according to the best solution of the model (1) as represented in
Figure 4 by the red line.

The six clusters are pinpointed by the following countries:

1. Austria, Belgium, Denmark, Finland, Ireland, Luxembourg, Netherlands, Nor-
way, Sweden, Switzerland, Australia, New Zealand, Singapore.

2. Brunei Darussalam, Kazakhstan, Mongolia, Russian Federation.
3. Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, Greece Hungary, Latvia,

Lithuania, Malta, Poland, Portugal, Romania, Slovakia, Slovenia.
4. Italy, Spain, Japan, Korea.
5. France, Germany, United Kingdom, China.
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Fig. 4 Unit Clustering of the ASEM Data Set. Partition in 6 clusters of units (red line).

6. Bangladesh, Cambodia, India, Indonesia, Lao PDR, Malaysia, Myanmar, Pak-
istan, Philippines, Thailand, Vietnam.

The hierarchical levels from the sixth, i.e. that one with 6 clusters of countries,
upwards are firstly defined by the aggregations of some of the European countries
- 1 and 5 - and the Asian countries - 2 and 6. Then, the former and the remaining
clusters of the European countries groups are lumped together, coherently with their
geo-political distribution.

4 Conclusions

Clustering and dimensionality reduction are widely used analyses and their applica-
tions might be in several areas. Both for statistical units and for variables, the process
of reduction often has a hierarchically nested shape which can be represented with
a graphical configuration of a tree.

The hierarchy-shape is perfect to represent multidimensional concepts, starting
from more specific ones up to the most general one, and to understand the under-
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lining interconnections. A hierarchical approach permits to stop the analysis at the
level the researcher considers optimal and it allows the researcher to investigate all
the interconnections among items (i.e., variables and/or statistical units). In this pa-
per, we applied the model proposed by [2] in order to get the optimal number of
clusters and the optimal dimensions of the Asia-Europe Meeting (ASEM) data. The
presence of an objective function permitted us to test a given theory and then to
propose a new framework given by the study of the relations behind the data. The
result is a deep study of the structure of the data and a reduced data matrix in both
the dimensions (i.e, variables and/or statistical units).
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