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Abstract: Lactoferrin (Lf), a multifunctional protein found abundantly in secretions, including tears,
plays a crucial role in ocular health through its antimicrobial, immunoregulatory, anti-inflammatory,
and antioxidant activities. Advanced delivery systems are desirable to fully leverage its therapeu-
tic potential in treating ocular diseases. The process of Lf quantification for diagnostic purposes
underscores the importance of developing reliable, cost-effective detection methods, ranging from
conventional techniques to advanced nano-based sensors. Despite the ease and non-invasiveness
of topical administration for ocular surface diseases, challenges such as rapid drug elimination
necessitate innovations, such as Lf-loaded contact lenses and biodegradable polymeric nanocap-
sules, to enhance drug stability and bioavailability. Furthermore, overcoming ocular barriers for the
treatment of posterior segment disease calls for nano-formulations. The scope of this review is to
underline the advancements in nanotechnology-based Lf delivery methods, emphasizing the pivotal
role of multidisciplinary approaches and cross-field strategies in improving ocular drug delivery and
achieving better therapeutic outcomes for a wide spectrum of eye conditions.

Keywords: lactoferrin detection method; lactoferrin delivery strategies; ocular surface system;
ocular posterior segment disease; topical ophthalmic administration; protein drugs; topical ocular
administration

1. Lactoferrin Biological Functions

Lactoferrin, also known as lactotransferrin (Lf), is a mammalian, first-line defense,
multifunctional protein belonging to the transferrin family, which displays the specific
ability to bind ferric iron. It is constitutively expressed in mucosal surfaces and secretory
fluids, primarily milk, but also in the digestive tract, bile, saliva, bronchial and nasal
secretion, cervicovaginal mucus, seminal fluids, and tears [1,2]. In addition, Lf is promptly
delivered by circulating neutrophils to sites of microbial invasion [3].

Lf is a globular cationic glycoprotein with a molecular mass of about 80 kDa consisting
of two homologous domains known as the N-terminal and C-terminal lobes, with each
lobe binding a single Fe3+ ion [4] (Figure 1).
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Figure 1. Structure of diferric human lactoferrin [5]. Fe3+ ions are highlighted as 3D spheres. 

Lf is known as an important antibacterial protein. Thanks to its iron-chelating ability 
(Figure 2), it sequesters ferric ions required for bacterial growth and prevents the 
formation of iron-dependent hydroxyl radicals by microbial infections [3], with different 
efficacy depending on the type of microorganisms [4,6]. 

 
Figure 2. Schematic representation of the main protective functions of Lf. Abbreviations: Lf: 
lactoferrin; IFN: interferon. 

Immunoregulatory functions of Lf are associated with its cationic charge, favoring 
interactions with negatively charged immune cells, hence modulating several cellular 
processes including differentiation, migration, and proliferation. 

In addition, Lf displays anti-inflammatory, anti-cancer, and antioxidant activities, 
among several other physiological functions [7] (Figure 2). Applications of Lf in various 
anatomical districts have been comprehensively detailed in recent reviews [1,4,8–13]. 

A specific focus is devoted here to the role played by Lf in the ocular surface system 
(OSS) and within the eye. In particular, the aim of this manuscript is to review methods 
for detecting and delivering Lf for ocular treatments. 

Figure 1. Structure of diferric human lactoferrin [5]. Fe3+ ions are highlighted as 3D spheres.

Lf is known as an important antibacterial protein. Thanks to its iron-chelating ability
(Figure 2), it sequesters ferric ions required for bacterial growth and prevents the formation
of iron-dependent hydroxyl radicals by microbial infections [3], with different efficacy
depending on the type of microorganisms [4,6].
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Immunoregulatory functions of Lf are associated with its cationic charge, favoring
interactions with negatively charged immune cells, hence modulating several cellular
processes including differentiation, migration, and proliferation.
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In addition, Lf displays anti-inflammatory, anti-cancer, and antioxidant activities,
among several other physiological functions [7] (Figure 2). Applications of Lf in various
anatomical districts have been comprehensively detailed in recent reviews [1,4,8–13].

A specific focus is devoted here to the role played by Lf in the ocular surface system
(OSS) and within the eye. In particular, the aim of this manuscript is to review methods for
detecting and delivering Lf for ocular treatments.

The eyeball can be divided into two distinct sections, an anterior and a posterior
segment (Figure 3). The anterior segment encompasses the cornea, iris, ciliary body, lens,
and the spaces known as the anterior and posterior chambers, which are filled with aqueous
humor. The posterior segment is made up of the retina, choroid, optic nerve head, vitreous
compartment, retinal pigment epithelium (RPE), and blood–retina barrier (BRB). The OSS is
a morpho-functional unit, which is part of the anterior segment, and includes components
functionally linked by the continuity of the epithelia, innervation and endocrine, and
vascular and immune systems [14]. These components are the epithelia of the cornea and
conjunctiva, tear film, eyelids, and lacrimal and meibomian glands.
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Innate defenses of OSS comprise integrated anatomical, mechanical, and immuno-
logical mechanisms [15], with tear fluid playing a key defensive role as it contains several
protective molecules [16–18]. Indeed, proteins, glycoproteins, and lipids contained in tears
are key factors in maintaining a well-lubricated and smooth optical surface [17,19,20]. While
the role of tear Lf against bacterial growth and biofilm formation is well established [6,21],
evidence of efficacy in the setting of viral infections has emerged recently [22]. It is well
known, for example, that oral delivery of Lf has proved useful in the prevention and treat-
ment of COVID-19, with significant reductions in D-dimer, interleukin-6 (IL-6), and ferritin
levels [23,24]. The antiviral activity of Lf involves binding to SARS-CoV-2 viral particles,
hindering spike S attachment to the angiotensin-converting enzyme 2 receptor (ACE-2).

In addition to the significant functions of Lf within the OSS, its roles concerning the
posterior segment of the eye warrant special attention. Lf potential impact on retinal health
and protection is an emerging area of interest, as evidenced by preliminary preclinical
data [25,26]. Results have also been recently reported concerning the suppression of myopia
using Lf. In this case, preclinical studies have demonstrated that when administered
orally, Lf can exert a profound effect on the progression of lens-induced myopia in mouse
models [27,28]. This is achieved through the modulation of extracellular matrix remodeling,
implicating the IL-6 and matrix metalloproteinase 2 (MMP-2) axis. Such findings are not
just groundbreaking because they showcase Lf systemic impact on ocular structures but
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also because they offer a non-invasive route to managing myopia, a condition that affects a
significant portion of the global population. Nonetheless, oral administration of Lf has to
face the issue of degradation by proteolytic enzymes, such as pepsin.

A wide part of this review is focused on Lf in tears since Lf distribution and potential
therapeutic implications have been more often linked to tear fluid, rather than to other
components (e.g., vitreous humor and retina), which are far less explored. Lf represents
one of the most abundant proteins in human tears, locally synthesized by the main lacrimal
gland and the corneal and conjunctival epithelial cells [29]. Its level accounts for about
25% of the total tear protein content [30,31], estimated to be between 6 and 8 mg/mL
in normal subjects [32]. Tear Lf levels of healthy individuals vary widely according to
the literature, although the published data are based on different analytical techniques
and poorly characterized subjects. Markedly higher levels than plasma Lf concentrations
(1 µg/mL) have been reported, ranging from 1.42 mg/mL by radial immunodiffusion [33]
to 2.4 mg/mL by microfluidic technology microchips [34]. It can be concluded that a
well-standardized range of tear Lf levels, stratified in population characteristics, is still an
unmet need.

There is a general consensus, however, that a significant down-regulation of tear Lf
occurs with aging and several pathologies compared to matched control groups. This trend
has been shown in patients affected by dry eye disease (DED) [35,36], DED associated with
meibomian gland dysfunction [37], keratoconus [38], ocular allergy [39], and contact lens
intolerance [40]. Tear Lf lower than 1.1 mg/mL exhibited high diagnostic performance
(with a positive likelihood ratio of 4.52) in Sjogren’s syndrome (SS) diagnosis [41], and Lf
levels lower than 20% vs. total tear proteins showed a significant association in predicting
SS- vs. non-SS-related dry eye (odds ratio 5.5), a much higher value than any other ocular
clinical parameter [42].

In this view, tear Lf level determination might be a useful tool for the early diagnosis
of several diseases directly “at the eye-side” and offer guidance for clinical decisions and
tailored strategies. For this reason, the available methods of quantification of Lf in tear fluid
are discussed in detail in Section 2. Considering the protective role that tear Lf exerts on the
ocular surface, and its down-regulation by physiological, age-dependent mechanisms or
disease onset, the strategy to replenish Lf in tears has been attempted by means of topical
treatments with exogenous Lf [43] or dietary assumption [44,45]. The strategies for the
ocular delivery of Lf are discussed in Section 3, including both an extensive discussion
of the methods concerning the OSS and an overview of possible delivery methods for
conditions and diseases of the posterior segment.

2. Methods of Quantification of Lf in Tear Fluid

Tear fluid analysis is now considered a source of valuable information about the
condition of the eyes and systemic diseases, with the eye being interpretable, like a window
to these diseases [20,32,46]. Collection is the first and perhaps the main challenging phase
in any analytical procedure on tears, which represent a physiologically low-volume liquid
biopsy under normal conditions and are even reduced in several disease states. This
pre-analytical step is in fact widely recognized to impact analysis, and standard operating
procedures (SOPs) have been proposed [47]. The most used methods to collect samples for
Lf detection in tears are uptake by a capillary tube and adsorption by Schirmer strips or
polyester wicks [32,35,48].

Various detection methods have been employed and have proven their ability in
the quantification of tear Lf, with variable sensitivity and accuracy [49]. These analytical
methods are briefly described below and summarized in Table 1.
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Table 1. Detection methods commonly employed for Lf detection and quantitation. ELISA: enzyme-
linked immunosorbent assay; HPLC: high-performance liquid chromatography; MS: mass spectrom-
etry; RP: reverse-phase; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis.

Detection Method Principle Highlights

Radial immunodiffusion

Antigen (Lf) diffuses radially from a well into a gel
containing specific antibodies, forming a precipitin

ring whose diameter is proportional to
Lf concentration

• Simple
• High specificity
• Requires long incubation time (24–48 h)

ELISA

Antigen (Lf) binds to an antibody coated on a
plate. A secondary enzyme-linked antibody binds
the antigen, and a substrate is added to produce a

measurable change

• High sensitivity and specificity
• Relatively quick
• Suitable for high-throughput screening

RP-HPLC
Separation of proteins based on their

hydrophobicity using an RP column and detection
by UV or MS

• High resolution and sensitivity
• Suitable for complex mixtures
• Requires method development

and optimization

MS
Ionization, separation of ions based on their
mass-to-charge ratio (m/z), and detection to
generate a mass spectrum for quantification

• High specificity and sensitivity
• Can provide absolute quantitation
• Allows detection of

post-translational modifications

Capillary electrophoresis

Separation of Lf based on its charge-to-size ratio in
an electric field within a capillary tube, with

detection usually by UV or
laser-induced fluorescence

• High resolution and efficiency
• Requires small sample volumes
• Rapid analysis time

SDS-PAGE
Denaturation and separation of proteins by size in

a polyacrylamide gel, followed by staining and
densitometry for quantification

• Simple
• Good for determining protein purity
• Limited quantitative accuracy compared

to other methods

2.1. Radial Immunodiffusion

This is a relatively simple, quantitative method that does not use expensive or hyphen-
ated instruments. It applies the diffusion of an antigen in antibody-conjugated agar gels.
The antigen is allowed to diffuse radially through a thin layer of antibody-containing agar
and forms a circle of precipitation. Lf from the center conjugates with its antibody and
diffuses through the agar; the area of the ring reflects its concentration [33]. This technology
was commercialized as the Lactoplate immunoassay test [50], for some time utilized in
research and clinical settings, and no longer available.

2.2. Enzyme-Linked Immunosorbent Assay (ELISA)

This is a rapid and accurate immunological technique based on the specific reactions of
antigens and antibodies and is extensively used for the quantification of proteins, including
Lf, with high accuracy [51]. A high number of articles reported the application of ELISA to
Lf detection in tears and the method can still be considered as an ideal approach for this
purpose. However, the relatively high cost of the reagent kits and the laborious and time-
consuming procedure have prevented this technique from being utilized in daily clinical
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practice [49]. Sandwich immunoassays for Lf detection in milk powder have displayed a
limit of detection (LOD) of 3.23 ng/mL [52].

2.3. Reversed Phase High–Performance Liquid Chromatography (RP-HPLC)

This is a key instrumental analysis for the separation and characterization of proteins
and peptides. Improved RP-HPLC methods for the determination of bovine Lf reached an
LOD of 1 µg/mL [53]. The result can be acquired within a few minutes, which makes it
a versatile tool in biomedical application [54]. Nonetheless, the method is limited by low
specificity. This limitation is overcome by its hyphenation with mass spectrometry (MS).

2.4. Mass Spectrometry (MS)

MS-based proteomics has been used, in either targeted or untargeted approaches, for
the detection and quantification of Lf in small volumes of human tears without prior purifi-
cation or fractionation of protein components and bypassing the need for antibodies [55,56].
In a typical bottom-up approach, protein samples are digested by a specific protease, e.g.,
trypsin, and peptides are separated on a C18 reverse-phase column, hyphenated with an
electrospray ionization (ESI) sample source, detected by MS and identified by MS/MS
procedures and database search. Relative protein quantitation has been performed by either
isotope-based or isotope-free approaches [32]. Quantitative shotgun proteomics, using
iTRAQ technology coupled with 2D-nano-LC-nano-ESI-tandem MS (MS/MS), has been
used for the identification and relative quantitation of tear proteins, including Lf, leading
to a tear protein-based algorithm for DED diagnosis [57].

Targeted, quantitative proteomics is typically performed by multiple reaction moni-
toring (MRM). Such an approach has not been applied to tear samples yet, but has been
successfully applied to Lf quantitation from dairy products [58,59]. By this method, unique
peptides are used as a protein fingerprint. These ions are identified by specific precursor–
product transitions in the MRM procedure and quantified by the integration of the cor-
responding chromatographic peak area. Absolute quantitation can be achieved by com-
parison to an isotopically labeled, synthetic, internal standard. The high specificity of the
MRM transitions and the high resolution and accuracy of modern instrumentation make
this method a promising approach also for relative and absolute quantitation of Lf from
complex biological matrices. These features come along with the highest sensitivity (LOD
~2 × 10−11 M) [59].

It is reasonable to expect that quantitative, MS-based techniques will see the fastest
development among methods for Lf quantitation in the lacrimal fluid. Indeed, pilot experi-
ments have been successfully performed, as mentioned above. Although expensive, the
machinery is already present in almost any analytical facility for other purposes. The sensi-
tivity is compatible with low sample consumption and the pipeline can be optimized to
minimize sample manipulation and maximize automation. The versatility of the technique
could be exploited for investigating, at the same time, protein post-translational modifica-
tions, profiling proteoforms and isoforms, and monitoring exogenous (delivered) Lf.

2.5. Electrophoresis–Capillary and SDS-PAGE

Both capillary electrophoresis (CE) and conventional SDS-PAGE have been used to
analyze tear Lf [60]. The determination of bovine Lf in infant formula by CE reached an LOD
of 5 µg/mL [61]. The CE-based systematic evolution of ligands by exponential enrichment
(CE-SELEX) could lower the LOD to 78 ng/mL [62]. More recently, microfluidics-based
platforms have been introduced for the quantification of proteins by miniaturized capillary
gel electrophoresis, in conjunction with an appropriate LabChip kit. The method is accurate
and affordable in terms of cost and time and is used in clinical settings on a routine basis to
provide tear electropherogram “fingerprints” [34,63–65].
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2.6. Miscellaneous Methods

A novel and innovative, microfluidic, paper-based analytical device (µPAD) for assess-
ing the tear Lf of DED patients has been reported [66]. The data reflect the severity of the
disease, thus helping clinicians in patient management. The device is based on the specific
fluorescence emission of terbium upon Lf binding [67] and has an LOD of 110 µg/mL [68].
Competition experiments by “native MS” [69,70] have shown that terbium binds to the
iron-binding sites of the Lf paralog transferrin [71].

Nano-based electrochemical or colorimetric sensor-based platforms represent revolu-
tionary analytical methods that could detect Lf in real time and be applied in the clinical
routine [72]. The performance of the biosensing system in measuring tear Lf appears to
be accurate and has been implemented in fluorescein-based devices [73], electrochemical
biosensors [74], and surface plasmon resonance (SPR) spectroscopy [75].

Despite the achievements reported in this and the previous paragraphs, there is still
a need for quick, robust, reliable, and cost-effective detection systems for tear Lf (and, in
general, for tear analytes). The diagnostic testing of small-volume samples is a relatively
young field and offers a wide space for further progress.

In this view, recent advances in Lf detection systems tested on commercial or biologi-
cal samples have a potential for future, wider applications and are briefly described here,
although they have not yet been applied to tear fluid. DNA aptamers are a promising class
of molecules for the development of biosensors and can be optimized for binding affinity
toward a single or multiple target molecule by selecting from large random libraries, by
in vitro systems such as SELEX [76,77]. Aptasensors can be combined with a wide array
of readout approaches and offer advantages in production and stability, relative to im-
munoglobulin counterparts. The bottleneck is the aptamer performance in binding affinity
and specificity. Relevant to this regard is the identification of a 72 bp DNA aptamer binding
Lf with a KD in the range of 10−8 M and selectivity above 97% [78,79]. Complex formation
was demonstrated on commercial preparations of human Lf by SPR and electrochemical
impedance spectroscopy (EIS) as complementary, label-free, detection systems [78]. The
LOD by SPR was ~4 × 10−9 M.

Another interesting approach combines dynamic light scattering (DLS) with immuno-
and boronate-affinity recognition [80]. This method is still based on immunosensing but
overcomes the need for a second antibody for detection, as in conventional sandwich
ELISA, as well as labeling by fluorophores. An anti-Lf monoclonal antibody is conjugated
to magnetic nanoparticles (NPs) and used to capture Lf from commercial preparations of
bovine milk powder. After immunomagnetic separation, bovine serum albumin modified
with polyvalent phenylboronic acid (BSA@PBA) is added as a cross-linking agent. The
reaction of PBA with the cis-diol groups of glycosylated Lf promotes aggregation of the
functionalized NPs detectable by DLS. The average hydrodynamic diameter of the aggre-
gates is directly proportional to Lf concentration. The reported LOD of this method is
~1 × 10−5 M.

3. Strategies for Ocular Delivery of Lf

Topical administration is a widespread approach to treat the OSS as it does not cause
pain to the subject and is easy to manage. Nevertheless, ocular therapies exhibit a rapid
elimination process via the conjunctiva and nasolacrimal duct, leading to a short pre-corneal
half-life of drugs, typically lasting only a few minutes. Consequently, frequent adminis-
tration becomes necessary [81]. In this view, the use of controlled release strategies, such
as nanotechnological carriers, contact lenses, and others, for delivering active principles
has garnered significant attention in recent years (Figure 4 and Table 2). These innovative
approaches enable the enhanced stability, permeability, and bioavailability of molecules,
presenting notable advantages over conventional pharmaceutical forms [82].
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Table 2. Examples of Lf formulations to treat ocular surface conditions. NLC: nanostructured lipid
carrier; NP: nanoparticle; PLGA: poly(lactic-co-glycolic) acid; PEG: poly(ethylene glycol); DED: dry
eye disease.

Target Condition Formulation Reference

Chronic conjunctivitis Lf-containing eye drops [83]

Different ocular syndromes PLGA-NPs [84]

Keratoconus

Lf-loaded contact lenses [85]
Chitosan/tripolyphosphate and

chitosan/sulfobutylether-β-cyclodextrin NPs [86]

NLCs [87]

Ocular inflammation; DED
PLGA-NPs [88]

PEGylated PLGA nanospheres [81]
Hyaluronic acid-coated liposomes [89]

Oxidative stress conditions Lf-loaded contact lenses [90]

Postoperative endophthalmitis Liposomal Lf-based eye drops [91]

3.1. Clinical Studies
3.1.1. Topical Administration

Despite the strong interest in clinical applications of Lf, there are just a few compre-
hensive clinical studies on topical, ophthalmic Lf formulations [92] (Table 2).

One study focused on chronic conjunctivitis [83] and employed Lacto eye drops,
which contain Lf as the main active ingredient. After a one-month administration of this
formulation, there was a sanitizing effect with no conjunctival microbiota growth and
subjective improvement in complaints in all patients. This formulation was effective in
increasing tear Lf concentration and normalizing the conjunctival microbiota. The Lacto eye
drops demonstrated immune-modulating effects and antimicrobial properties, contributing
to the maintenance of ocular health.
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A study on post-operative endophthalmitis employed eye drops containing liposomal
Lf [91]. The inclusion of Lf into liposomes enhanced protein stability and mitigated the
high nasolacrimal duct drainage that may reduce the treatment efficacy.

3.1.2. Oral Administration

Reported clinical studies also involve Lf delivery in contexts other than topical oph-
thalmic applications, such as oral administration in patients with DED post-cataract
surgery [45] or SS [93]. Furthermore, while numerous clinical trials explored the use
of Lf in other medical fields like cancer, intestinal diseases, and COVID-19, only one
randomized–controlled trial has been reported on the effects of a dietary supplement
containing Lf, among other components, on DED [44].

The oral delivery of Lf through advanced nanosystems holds significant promise
in biomedical research, addressing challenges related to enzymatic degradation in the
gastrointestinal tract [94]. Nanocarriers composed of materials like starch and proteins
may undergo hydrolysis by amylases and proteases. In contrast, materials such as pectin
and alginate resist enzymatic action and pH changes, being susceptible only to colonic
microbiota [95].

Innovative delivery systems, such as NP-based approaches, encapsulate Lf in nanocar-
riers (liposomes, polymeric NPs, and lipid NPs), providing protection in the stomach and
enabling controlled release in the digestive system [94]. Lipid NPs, including solid lipid
NPs and nanostructured lipid carriers, show the potential to enhance the oral bioavailability
of Lf [95]. Various experimental methodologies, including microparticles, NPs, and lipo-
somes, have been explored to evaluate the impact of different carrier systems on Lf stability.
Recent comprehensive reviews have focused on these oral delivery systems, which facilitate
sustained release, safeguarding Lf during gastric transit and ensuring efficient absorption
in the intestines [94,96–101]. Consequently, the oral administration of Lf through advanced
delivery systems emerges as a promising avenue of treatment, offering a convenient and
patient-friendly therapeutic approach.

3.2. Preclinical Studies

While the clinical applications of Lf formulations remain limited, this review under-
scores the promising potential based on preclinical developments and highlights the need
for more focused clinical research in this area. Several preclinical studies apply biocom-
patible Lf delivery systems for topical ophthalmic administration as a pharmacological
alternative for various ocular diseases or discomforts and are briefly discussed in the
following paragraphs (Table 2).

The delivery of Lf has been proposed for the first treatment of keratoconus as a
pharmacological alternative to invasive surgical interventions [86]. In this view, Lf-loaded
contact lenses were suggested as a new and promising therapeutic strategy for the treatment
of ocular surface diseases [85,90]. In particular, Lf released in vitro from contact lenses was
able to protect human epithelial cells from the effects of oxidative stress. The amount of
Lf loaded onto one contact lens was on the order of dozens of micrograms and the release
was between 49% and 100% of the adsorbed protein amount, depending on the material.
The Lf released from the contact lenses maintained its antioxidant potential for at least
24 h by protecting human epithelial cells from the damaging effects of induced oxidative
stress [90]. The antioxidant activity of Lf-loaded contact lenses was also investigated in the
case of epithelial cells incubated in tears from patients affected by keratoconus [85]. Both
studies demonstrate the in vitro efficacy of Lf-loaded contact lenses in protecting against
oxidative stress.

Nanostructured lipid carriers (NLCs) showed a nanocapsular structure with an aque-
ous core ideal for Lf immobilization [87]. In addition, their mucoadhesive properties led
to prolonged residence time and ensured a deeper penetration of therapeutic agents into
the corneal layers [87]. An alternative to NLCs is represented by chitosan-based NPs [86].
In vitro release profiles indicated that Lf delivery from the polymeric matrix was enhanced,
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prolonged, and controlled. These formulations exhibited stability, lacked cytotoxicity is-
sues, and possessed suitable mucoadhesive properties [86]. Both studies underscored the
significance of particle size, morphology, and surface charge in influencing the formulation
properties for effective ocular drug delivery.

Ocular diseases such as fungal and viral infections, as well as comorbid conditions like
DED, are challenging to treat due to natural ocular barriers such as the corneal epithelium
and tear fluid that restrict the passage of drugs. In this view, it is necessary to develop
new systems for the release of biocompatible Lf for topical ophthalmic administration with
the aim of improving the permanence of Lf, i.e., its bioavailability. In addition, traditional
treatments, including corticosteroids, antihistamines, and nonsteroidal anti-inflammatory
drugs, often cause significant side effects upon long-term use.

In a recent study, bovine Lf was loaded onto PLGA NPs [88] by using an advanced
modified double emulsion technique [102,103]. The NPs were found to be non-toxic and
effectively inhibited the inflammatory response triggered by lipopolysaccharides (LPSs).
To evaluate how well NP-encapsulated Lf permeated through the eye, isolated corneas
from New Zealand rabbits were used. It was observed that Lf from NPs permeated
slightly faster than free Lf, suggesting differences in permeability and flux rates. This
difference could be ascribed to the higher lipophilic properties of NPs compared to free
Lf, given that the epithelial layer of the cornea consists primarily of lipids, which limits
the penetration of hydrophilic substances and acts as a barrier to drug delivery within
the eye [104]. Additionally, the study compared the molecular permeability of both Lf-
loaded nanocapsules and free Lf after 24 h. The healing and protective capabilities of
Lf-loaded PLGA NPs were further investigated using an inflammation model induced by
arachidonic acid. The treatments were effective, although there was no notable difference in
the amount of Lf retained in the corneal region. In vivo studies on rabbits also underscored
the potential of these NPs to protect against and heal ocular inflammation. Interestingly, the
pharmacokinetic profiles of both free Lf and liposome-encapsulated Lf showed improved
parameters over those reported in the previous study by the same team [89].

Other studies focused on the development of slow-release nanocarrier systems. These
represent an important target of study and such technologies can increase the Lf bioavail-
ability on the ocular surface, as well as ensure high patient compliance [105].

Another emerging and promising technology is represented by 3D printing, which
can support the creation of structures and materials with precise control over their physical
properties [106]. Some research has been conducted on the 3D printing of Lf frameworks
for potential biomedical applications. For example, Lf-loaded alginate hydrogel scaffolds
were successfully 3D printed [107] and exhibited good biocompatibility and supported the
growth of human mesenchymal stem cells. Additionally, a 3D-printed Lf-based hydrogel
used as a wound medication demonstrated favorable mechanical properties and the ability
to release Lf [108].

The previous paragraphs of this section addressed the preclinical studies on kera-
toconus, fungal and viral infections, and ocular inflammation. Miscellaneous strategies
to increase ocular bioavailability are discussed below. Several review articles have been
recently published on various drugs and molecules for ocular use besides Lf [109–112].
These strategies could be borrowed to improve the ocular bioavailability of Lf, as well. In
particular, polymers are used to increase the solubility of some drugs or their residence
time on the eye by increasing the viscosity of the product. They are also used to increase
the penetration depth in the ocular tissues by increasing the drug permeability, improv-
ing the patient experience. For example, to increase the solubility of some hydrophobic
drugs, water-soluble synthetic polymers, such as PEG and polyvinyl alcohol (PVA), have
been used [113,114]. Among polysaccharides, cellulose, its derivative carboxymethylcel-
lulose (CMC), and hyaluronic acid (HA) are also highly hydrophilic [110]. On the con-
trary, synthetic polymers such as poly(glycolic acid), poly(lactide), poly(lactic-co-glycolic
acid), and poly(caprolactone) (PGA, PLA, PLGA, and PCL, respectively) are hydropho-
bic polyesters and can be used as drug carriers for proteins across, for example, mucus
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membranes [81,84,115]. They can also be used to control drug release since their in vivo
biodegradability varies depending on monomer ratios and end groups [110]. Some works
focused on polyester NPs, for example, PCL, embedded in contact lenses [116,117]. In
other cases, the molecules of interest were directly incorporated into the contact lens, which
represented the delivery vehicle [118–120]. Hydroxypropyl methylcellulose (HPMC), guar
gum, pullulan, and HA are often used as viscosity enhancers and lubricating agents [110].
Interestingly, polymers like chitosan possess a positive charge [121], which confers mucoad-
hesive properties. The positive charge also facilitates penetration through the cornea [110]
so that these polymers can serve as a coating for anionic drugs with lower biocompatibility.

While the conditions discussed so far primarily concern the ocular surface, it is es-
sential to recognize that the posterior segment of the eye can also be affected by various
pathologies that can benefit from Lf administration. For example, the retina and the RPE
are critical sites of inflammation associated with debilitating retinal diseases, such as uveitis
and age-related macular degeneration (AMD), where Lf protective properties could offer
significant therapeutic benefits [122]. Nonetheless, the retina represents a challenging target
for drug delivery. Topical administration proves inefficient, as most of the medication is
washed away from the ocular surface or absorbed systemically. Additionally, the ocular
surface epithelium limits drug penetration. On the other hand, systemic administration is
hindered by the BRB [123]. Nano-formulations of Lf are being explored for their potential
to deliver therapeutic agents across BRB [105]. Such nano-formulations are particularly
promising for conditions like retinitis pigmentosa and AMD, where oxidative stress and
inflammation play key roles in disease progression. Given these challenges, there is a
crucial need for innovative delivery systems specifically engineered to effectively transport
therapeutic agents directly to the target site where they can deliver their beneficial effects.

4. Conclusions

The development, optimization, and clinical relevance of Lf-delivery systems specif-
ically tailored for ocular applications are marking significant strides in addressing the
unique challenges associated with ocular drug delivery. Lf, a naturally occurring multifunc-
tional protein, exhibits potent antimicrobial, anti-inflammatory, and immunomodulatory
properties, making it an attractive candidate for treatment, prevention, and diagnosis for a
wide range of ocular conditions.

Lf therapeutic potential spans a wide range of ocular conditions, demonstrating its
versatility and broad applicability in eye health. The literature reports benefits of Lf in
various diseases and conditions, which can be categorized based on the anatomical regions
of the eye they affect. Indeed, Lf has shown promise in treating both OSS conditions, such
as DED, keratoconus, and infections, and posterior segment diseases, including AMD and
uveitis. Notably, Lf has proven to be beneficial also in myopia management.

However, the delicate and complex nature of the ocular environment necessitates
innovative delivery strategies to overcome barriers to effective treatment. Nanotechnology-
based delivery systems, including NPs, liposomes, and hydrogels, have shown particular
efficacy in enhancing the bioavailability, stability, and sustained release of Lf. The choice
between these delivery systems should take into account the specific requirements of the
therapeutic application, including the nature of the drug, the required duration of therapy,
and the target site. However, for sensitive and biologically active molecules such as Lf, the
protective, biocompatible, and versatile nature of liposomes and lipid NPs often makes
them particularly suitable candidates for ocular drug delivery.

Beyond its extensively documented antibacterial activity, Lf ability to cross the BRB
and participate in cell cycle control offers unique advantages over other transferrin proteins,
highlighting its potential as a versatile carrier for drug delivery. Moreover, the emerging
role of Lf in treating and preventing ocular manifestations of systemic infections, such as
conjunctivitis associated with SARS-CoV-2 infection, underscores its capability not only to
chelate iron but also to interact directly with pathogens while exerting immunomodulatory
effects. Future randomized, controlled studies will be crucial to further elucidate and
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confirm the efficacy of Lf in a broader spectrum of ocular conditions, ensuring that this
natural protein can be effectively utilized in clinical settings to improve patient outcomes
in eye health.

In this framework, the need for multidisciplinary approaches is evident, combining
insights from biochemistry, pharmacology, material science, and nanotechnology. In em-
phasizing the significance of cross-disciplinary innovation, it is crucial to acknowledge the
potential for advancements in ocular delivery systems by drawing inspiration from tech-
nologies developed for other pathologies. The exchange of knowledge and methodologies
across different fields of medical research has historically accelerated the development of
novel therapeutic strategies, and this approach remains highly relevant in the context of
improving Lf delivery within the eye.

Technologies that have revolutionized drug delivery in oncology, neurology, and
endocrinology offer valuable lessons for ocular pharmacotherapy. For instance, the precise
targeting mechanisms employed in cancer therapy to deliver chemotherapeutic agents
directly to tumor cells, while minimizing systemic toxicity, can inspire similar strategies
for targeting specific cells or tissues within the eye. This could enhance the efficacy of Lf
delivery to areas most affected by the disease, such as the retina in the case of AMD or the
cornea and conjunctiva in the case of DED and infections.

Moreover, the progress made in developing responsive drug delivery systems that can
release the loaded compound in response to specific physiological stimuli (e.g., changes in
pH, temperature, or enzymatic activity) could be adapted to create smart ocular delivery
systems. These systems could potentially release Lf in response to the onset of inflammation
or infection, providing timely and localized therapy that minimizes the need for frequent
dosing and reduces the risk of side effects.
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