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Depletion of CpG dinucleotides in bacterial genomes may 

r epr esent an adaptation to high temperatures 
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Abstract 

Dinucleotide biases ha v e been widely in v estigated in the genomes of eukary otes and viruses, but not in bacteria. We assembled a dataset of 
bacterial genomes ( > 15 0 0 0), which are represent ativ e of the genetic div ersity in the kingdom Eubacteria, and w e analyz ed dinucleotide biases 
in relation to diff erent traits. W e found that TpA dinucleotides are the most depleted and that CpG dinucleotides show the widest dispersion. 
The abundances of both dinucleotides vary with genomic G + C content and show a very strong phylogenetic signal. After accounting for 
G + C content and phylogenetic inertia, we analyzed different bacterial lifestyle traits. We found that temperature preferences associate with the 
abundance of CpG dinucleotides, with thermophiles / hyperthemophiles being particularly depleted. Con v ersely, the TpA dinucleotide displa y s a 
bias that only depends on genomic G + C composition. Using predictions of intrinsic cy clizability w e also sho w that CpG depletion may associate 
with higher DNA bendability in both thermophiles / hyperthermophiles and mesophiles, and that the former are predicted to have significantly 
more flexible genomes than the latter. We suggest that higher bendability is advantageous at high temperatures because it facilitates DNA 

positive supercoiling and that, through modulation of DNA mechanical properties, local or global CpG depletion controls genome organization, 
most likely not only in bacteria. 
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ntroduction 

he genomes of living organisms, as well as those of viruses,
ave long been known to display important dinucleotide com-
osition biases. Vertebrate genomes are characterized by a de-
letion of CpG dinucleotides, which is not present in inverte-
rates and is variably observed in plants and unicellular eu-
aryotes ( 1–9 ). Several viruses also show some degree of CpG
epletion, that only partially depends on host associations
 8–10 ). Conversely, TpA dinucleotides are under-represented
cross the tree of life and in most viruses, particularly in se-
uences expressed as RNA in the cytoplasm ( 2 , 5 , 7 , 11 , 12 ). 
Different hypotheses have been proposed to explain such

iases. The depletion of CpG dinucleotides in vertebrates is
hought to be at least partially due to methylation and mu-
ational loss of cytosines at CpG sites ( 1 , 2 , 7 , 13 ). In viral
enomes, another possible pressure driving depletion of CpG
inucleotides is the elusion of cellular sensors that recognize
on-self nucleic acids ( 14–16 ). In the case of TpA, one of the
ost supported explanations is the preferential cleavage of
pA dinucleotides by cytosolic RNAses ( 11 ). 
Recently, we have shown that bacteriophages have a

enome dinucleotide composition that tends to resemble their
ost’s genomic CpG content ( 8 ). Whereas this seems unlikely
o result from specific bacterial defense systems, the under-
ying reasons are unknown. Indeed, analysis of dinucleotide
iases in bacterial genomes have attracted limited attention.
 strong CpG under-representation was observed in My-
oplasma penetrans, which expresses a CpG-specific DNA
ethyltransferase ( 17 ). However, analyses of diverse bacte-
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rial genomes revealed no specific prevalence of CpG methyla-
tion by restriction-modification (R-M) systems ( 18 ,19 ). More-
over, such systems are often only transiently associated with
their hosts, suggesting that they are unlikely to shape dinu-
cleotide composition in bacterial genomes ( 20 ,21 ). Likewise,
other bacterial defense mechanisms based on DNA methyla-
tion (e.g. BREX and DISARM) are not known to preferentially
target CpG dinucleotides ( 22 ,23 ). Conversely, an early work
based on a small number of genomes concluded that CpG din-
ucleotides in some bacteria are counter-selected because they
cause constraint on structural properties of the DNA molecule
( 24 ). 

Bacteria have circular genomes, which are organized into
the nucleoid, a membrane-less compartment where DNA,
RNA, and proteins interact to shape chromosome conforma-
tion ( 25 ). Supercoiling, which results from the torsional strain
imposed by DNA-processing enzymes, is a key feature of the
spatial architecture of bacterial chromosomes and plays an
important role in the regulation of gene expression ( 26 ). Su-
percoiling can be either negative or positive, depending on the
direction of the twists with respect to that of the DNA double
helix, with both types forming coils and plectonemes (DNA
loops in which the double-stranded DNA is wrapped around
itself) ( 25 ). Different enzymes control DNA topology and su-
percoiling. Whereas topoisomerases, which dissipate excessive
supercoils, exists in all domains of life, bacteria and archaea
also encode enzymes that introduce negative (gyrase) and pos-
itive (reverse gyrase, RG) supercoiling ( 27 ). In particular, RG
is restricted to bacteria living at high temperatures (higher
024. Accepted: July 18, 2024 
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◦C) and is thought to represent an adaptation to avoid
DNA damage. By introducing positive supercoling, RG was
suggested to limit DNA breathing and to protect DNA from
denaturation ( 28 ). Recently, the DNA sequence was shown to
determine the position of supercoils and DNA intrinsic cur-
vature ( 29 ). Also, different dinucleotides were shown to exert
different effects on DNA bendability ( 30 ). 

Herein, we used the full set of reference bacterial genomes
to provide a comprehensive view of dinucleotide biases and
to test whether bacterial lifestyle traits or DNA mechanical
properties influence genome dinucleotide composition. 

Materials and methods 

Bacterial genomes 

The list of bacterial genomes was derived from the BV-BRC
site ( https:// www.bv-brc.org/ ) by selecting entries with ‘good’
genome quality and corresponding to representative or refer-
ence strains. Only one genome for each species was retained
(randomly selected). Genome sequences were downloaded
using the ncbi-genome-download python tool ( 31 ), query-
ing both refSeq and GenBank databases ( Supplementary 
Table S1 ). 

The presence of reverse gyrase in the genome of
thermophilic / hyperthermophilic bacteria was checked by
running HMMER v3.1b2 ( 32 ). In particular, we retrieved
the Hidden markov model of the reverse gyrase fam-
ily from the NCBI database (TIGR01054), which was
used as a query profile against all proteins from the
thermophilic / hyperthermophilic bacteria in our dataset us-
ing the hmmsearch tool. We considered only hits with an E -
value < 10 

−100 ; we then aligned these hits and we kept protein
sequences that encode both the helicase and the topoisomerase
domain. This generated a list of 63 reverse gyrase proteins
( Supplementary Table S1 ). All these proteins were already an-
notated as reverse gyrase in their corresponding genomes. 

Dinucleotide observed / expected ratio 

To investigate dinucleotide biases, we calculated the
observed / expected ratio (O / E ratio) for all dinucleotides.
Specifically, the frequency of each dinucleotide in each
genome (i.e. the observed frequency) was divided by the
product of the frequencies of the contributing nucleotides
(i.e. the expected frequency). For instance, for CpG, we
calculated the number of CpG along the genome divided by
the number of all possible dinucleotides; this frequency was
then divided by the product of C and G frequencies. Dinu-
cleotide composition was calculated using the compseq tool
( https:// www.bioinformatics.nl/ cgi-bin/ emboss/ compseq ), by
setting the size of word equal to 2 and using the ‘calcfreq’
parameter, so that the dinucleotide expected frequencies
are calculated from the observed frequency of single bases.
Dinucleotides were also counted in the reverse complement
of the sequence using the ‘reverse’ parameter. 

Bacterial traits 

Information on genome length and number of coding se-
quences (CDS) was derived from BV-BRC annotations. Most
other traits were derived from the Bacterial Diversity Meta-
database (BacDive, https:// bacdive.dsmz.de/ , ( 33 )), which re-
trieves information from culture collections and primary liter-
ature. Specifically, for oxygen tolerance we used BacDive in- 
formation to create three classes: aerobes ( n = 5276, which 

include ‘aerobes’, ‘obligate aerobes’, ‘facultative anaerobes’),
anaerobes ( n = 1468, which include ‘anaerobes’ and ‘obligate 
anaerobes’), and microaerophiles (n = 762, which include ‘mi- 
croaerophiles’). For pH preference, bacteria were divided in 

acidophile ( n = 171) and alkaliphile ( n = 2529), as per Bac- 
Dive classification. Data about motility (yes, n = 2652; no,
n = 3958) and ability of spore formation (yes, n = 1048; no,
n = 2276) were also obtained from BacDive. Data on growing 
temperatures were instead derived from the GSHC (Genome 
Sequences: Hot, Cold, and everything in between) database 
( 34 ) ( http:// melnikovlab.com/ gshc/ ). The GSHC database pe- 
riodically retrieves information from public repositories of mi- 
croorganisms, without manual curation. As a consequence it 
provides very extensive data with possible minor inaccuracies.
As in BacDive, we classified bacteria as psychrophilic ( < 25 

◦C,
n = 532), mesophilic (25–39 

◦C, n = 9104), thermophilic (40–
79 

◦C, n = 472) and hyperthermophilic ( > 80 

◦C, n = 5). Be- 
cause of their small number, hyperthermophilic bacteria were 
grouped with thermophilic ones. Finally, data on cell shape,
cell length and width were derived from BacDive. For rod- 
shaped bacteria ( n = 3137), cell volume was calculated us- 
ing the formula suggested in ( 35 ): V = π( W / 2) 2 ( L – W ) +
4 / 3 π( W / 2) 3 ; where W is the average cell width and L is cell
length. 

For cell volume, genome length, and number of coding se- 
quences, we divided bacteria in classes based on value distri- 
butions and quartiles. Thus, for each trait, we generated four 
classes: values lower than the first quartile, values between 

the first and the second quartiles, values between the second 

and the third quartiles and finally, values higher than the third 

quartile. 
Details regarding all traits are reported in Supplementary 

Table S1 . 

Model fitting and ancestral state reconstruction 

We modeled the relationship between CpG or TpA O / E ra- 
tios and G + C content with cubic smoothing splines using 
the smooth.spline function in the stats R package ( 36 ). The 
residuals were obtained from the models. 

Ancestral state reconstruction was performed by maximum 

likelihood using the FastAnc function in the phytools R pack- 
age ( 37 ,38 ), and pyhlogenetic trees were plotted using the con- 
tMap and setMap functions. 

Phylogenetic tree and ANOVA 

The phylogenetic tree was downloaded from the Genome 
Taxonomy database (GTDB, https:// gtdb.ecogenomic.org/ , re- 
lease 2023-04-28, ( 39 )). The tree was built using the se- 
quences of 120 conserved genes. It was pruned to only keep 

tips corresponding to genomes in our dataset (n = 12049,
Supplementary Table S1 ) using the ape R package ( 40 ). Pagel’s 
λ ( 41 )was calculated using the function in the phytools R 

package. 
The pylogenetic ANOVA and post-hoc tests were per- 

formed using the phylANOVA function in phytools 
( 37 , 38 , 42 , 43 ), p-value were calculated with 1000 simu- 
lations, and P -values for the post-hoc tests were corrected 

using Holm’s method, as suggested. 

https://www.bv-brc.org/
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ntrinsic cyclizability 

NA intrinsic cyclizablity score was predicted by using the
NAcycP python package ( 44 ). This package is based on a
eep-learning approach from loop-seq data; it takes as input
NA sequences and, using a 50 bp windows approach, it es-

imates normalized C scores per window; for each genome we
eported the average value of all windows, as suggested. 

alidation dataset 

 second bacterial genome dataset was built by retriev-
ng growing temperature information from three different
atabases. In particular, we used data from the GSHC
nd BacDive databases, and we also exploited information
rom the TEMPURA (Database of growth TEMPeratures of
sual and RAre prokaryotes, http:// togodb.org/ db/ tempura )
atabase. We selected all available bacterial strains, we then
emoved genomes already present in the initial dataset, se-
ected only one genome per species, and kept mesophilic,
hermophilic, and hyperthermophilic bacteria. This gener-
ted a list of 1732 bacterial genomes ( Supplementary Table 
2 ). Genome sequences were downloaded using the ncbi-
enome-download tool. To have a sufficiently large and well
epresented dataset, an equal number of mesophilic and
hermophilic / hyperthermophilic bacterial genomes were ran-
omly selected from the starting dataset. 
This set of 3464 bacterial genomes was used as the in-

ut for the Genome Taxonomy Database Toolkit (GTDB-
k) ( 45 ). GTDB-Tk identified a set of 120 core marker pro-

eins in each genome, which were concatenated and aligned
sing the MAFFT software ( 46 ). The resulting alignment
as used as input for the FastTree tool ( 47 ) to generate

n approximately-maximum-likelihood phylogenetic tree that
as used in the pylogenetic ANOVA analyses. Dinucleotide
bserved / expected ratio, residuals, intrinsic cyclizability, and
he presence / absence of the reverse gyrase were obtained as
escribed above. 

esults 

inucleotide biases in bacterial genomes 

e assembled a dataset of 15 304 bacterial genomes from
he Bacterial and Viral Bioinformatics Resource Center (BV-
RC) ( Supplementary Table S1 , see Materials and meth-
ds). To investigate composition biases, we calculated the
bserved / expected (O / E) ratio for all dinucleotides, where
he expected dinucleotide frequency in a genome is the prod-
ct of the frequencies of the contributing nucleotides. Ratios
ower than 0.78 and higher than 1.23 are generally consid-
red to indicate significant depletion and enrichment ( 13 ,48 ).
cross our bacterial genome dataset, TpA dinucleotides were

he most depleted, with a median well below 0.78 and the
verwhelming majority of genomes having ratios lower than
. Conversely, CpG dinucleotides were not generally under-
epresented, but showed the widest dispersion (Figure 1 A). 

Previous analyses of genomes from cellular organisms and
iruses detected a positive correlation between the O / E ratio
f CpG (O / E CpG) and G + C content. A negative correlation
ith G + C content was instead detected for O / E TpA ( 7–
 , 12 , 49 , 50 ). In the bacterial genome dataset, we also detected
 strong and positive correlation between O / E CpG and G + C
ontent and a negative one for O / E TpA (Figure 1 B). This
implies that CpG and TpA dinucleotide abundance cannot be
interpreted without taking G + C content into account. 

To further investigate how these dinucleotide biases relate
to other genomic or lifestyle features, we aimed to devise a
measure of dinucleotide representation which accounts for ge-
nomic G + C content, as we have previously developed to
study viral genomes ( 8 ). To this purpose, because the relation-
ships between O / E CpG or O / E TpA and G + C content are
not linear, we resolved to cubic smoothing splines to fit the
data and to calculate the residuals of the models (Figure \ 1 B).
Such residuals, hereafter referred to as resCpG and resTpA,
indicate how much a given genome deviates in terms of dinu-
cleotide composition from the expected based on G + C con-
tent. Residuals can have positive or negative sign, depending
whether the dinucleotide is more or less abundant than ex-
pected. Because O / E CpG values are more dispersed around
the spline than O / E TpA, the distribution of resCpG is wider
than that of resTpA (Figure 1 C). 

Temperature preferences drive CpG dinucleotide 

biases 

To investigate how dinucleotide biases distribute across
the bacterial phylogeny, we downloaded a consensus tree
of 12271 bacterial genomes from the Genome Taxonomy
database. The tree was then pruned to retain only genomes
present in our dataset (n = 12049). Using this tree, we recon-
structed the maximum likelihood ancestral state of resCpG
and resTpA. As expected, clear associations between resCpG
and phylogenetic relationships were evident (Figure 2 A). This
was also the case for resTpA, although the effect was much less
evident due to the narrower distribution of resTpA compared
to resCpG (Figure 2 A). We thus determined whether a phy-
logenetic signal was detectable in the distribution of resCpG
and resTpA by calculating Pagel’s λ ( 41 ). Estimates of λ re-
sulted equal to 1 for both residuals, indicating a very strong
phylogenetic signal. 

It follows from these results that exploration of factors
driving CpG and TpA abundance requires taking phylogeny
into account. We thus applied phylogenetic ANOVA analyses
( 42 ) to test whether resCpG and resTpA differ among bac-
teria having different genomic or lifestyle features. Concern-
ing the latter, we exploited Bac Dive ( 33 ) to retrieve informa-
tion about oxygen tolerance, pH preference, motility, ability to
form spores, cell shape, cell width, and cell length. These fea-
tures were selected because they were available for a substan-
tial number of entries corresponding to bacterial genomes in
our dataset. In the case of cell shape, because the overwhelm-
ing majority of bacteria were rod-shaped ( n = 2672), we used
average cell width and length to calculate cell volume (as de-
scribed in ( 35 )). Data on temperature preferences were instead
obtained from the GSHC database ( 34 ). Concerning genomic
features, we considered genome length and number of coding
sequences, as derived from BV-BRC. 

For resTpA, the phylogenetic ANOVA analyses did not de-
tect significance differences among groups for any feature (Ta-
ble 1 ). For resCpG, instead, a highly significant association
with temperature preferences was detected (Table 1 ). After
post-hoc tests, it was evident that significant pairwise com-
parisons involved thermophilic / hyperthermophilic bacteria,
which had significantly lower resCpG (median well below 0)
than mesophiles and psychrophiles (Figure 2 B). Indeed, map-

http://togodb.org/db/tempura
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
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A

B C

Figure 1. Dinucleotide representation in bacterial genomes. ( A ) Violin plots with boxplots of the observed / expected ratio (O / E) for all dinucleotides. The 
gra y horiz ontal hatc hed lines correspond to ratios of 0.78 and 1.23, whic h are generally considered as significant thresholds for dinucleotide depletion 
and enrichment, respectively ( 13 , 48 ). ( B ) Observ ed / e xpected ratio for CpG (upper panel) and TpA (lower panel) as a function of G + C content. Cubic 
smoothing splines are shown as solid red lines and the P earson ’s correlation coefficient ρ is also reported along with their corresponding P -values. ( C ) 
Distribution of residuals for the O / E CpG and TpA models. 
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ping of the genomes of thermophilic / hyperthermophilic bac-
teria on the phylogenetic tree indicated that they populate sev-
eral clades characterized by very low resCpG. Clearly, though,
this is not an all-or-nothing association as thermophiles with
non CpG depleted genomes exist and very low resCpG was
also observed from a number of bacteria that do not live (or
are not known to live) at high temperatures (Figure 2 A). 

As a comparison, the phylogenetic ANOVA analysis was
repeated using O / E CpG instead of resCpG. A significant
result was obtained ( F = 109.46, P = 0.012), but pair-
wise comparisons indicated that thermophiles have signifi-
cantly lower O / E CpG than mesophiles but not than psy-
crophiles ( Supplementary Figure S1 ). Inspection of genomic
G + C content distributions indicated that psychrophilic bac-
teria have the lowest average content, suggesting that nu-
cleotide composition influences O / E CpG values in this group
( Supplementary Figure S1 ). 

Overall, these results indicate that, after accounting for
genomic G + C content, temperature preferences influence
the abundance of CpG dinucleotides in a subset of bacterial
genomes. Conversely, the TpA dinucleotide seems to display 
a bias that only depends on genomic G + C composition and 

phylogenetic relationships. 

CpG representation affects DNA mechanical 
properties of bacterial genomes 

Several studies have indicated that DNA sequence is a ma- 
jor determinant of DNA flexibility along its central axis 
( 30 ,51–56 ). A recent study that measured intrinsic cyclizabil- 
ity (a parameter related to cyclization propensity or bend- 
ability) indicated that the CpG dinucleotide has the most 
negative bendability quotient ( 30 ). Interestingly, the genome- 
wide average cyclizability varies among species and analy- 
sis of thermophilic archaea showed that their genomes may 
be more flexible than expected based on base composition 

( 44 ,57 ). We thus hypothesized that CpG depletion in ther- 
mophilic and hyperthermophilic bacteria may serve the pur- 
pose of increasing the flexibility of their genomic DNA. To 

test this hypothesis, we used the DNAcycP method ( 44 ),

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
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A

B

Figure 2. Dinucleotide ancestral state in bacteria. ( A ) Bacterial phylogenetic tree retrieved from the Genome Taxonomy database (see Materials and 
methods for details) with branches colored by ancestral state reconstruction of resCpG (left) and resTpA (right) values. Red points at tips indicate 
thermophilic / hyperthermophilic bacteria. ( B ) Boxplot of resCpG values grouped by growing temperature. PhylANO V A pairwise post-hoc tests after 
Holm’s correction are reported abo v e each comparison. Given that a only subset of bacteria from our dataset is present in the Genome Tax onom y 
database tree, phylogenetic ANO V A analysis was performed on 7228 mesophilic, 451 psychrophilic, and 406 thermophilic / hyperthermophilic genomes. 
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hich is based on a deep learning model trained on DNA
exibility measurements, to calculate the average intrinsic
yclizability of 812 bacterial genomes in our dataset (406
hermophilic / hyperthermophilic and the same number of ran-
omly selected mesophilic genome), which were also in-
luded in the genome tree. In line with previous findings,
esults indicated that thermophilic / hyperthermophilic bacte-
ia have genomes characterized by significantly higher in-
trinsic cyclizability compared to mesophiles (phylogenetic
ANOVA, F = 55.85, P = 0.005) (Figure 3 A). Notably,
when we analyzed intrinsic cyclizability and resCpG, neg-
ative and significant correlations were detected for both
thermophiles / hyperthermophiles and mesophiles (Figure 3 B).
Overall, these data suggest that CpG dinucleotide biases af-
fect DNA flexibility and that depletion of CpG represents an
adaptation to high temperatures. 
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Table 1. Phylogenetic ANO V A results 

Temperature class Oxygen tolerance pH range Spore formation Motility Cell volume a Genome size a Number of CDS a 

Sample size Psycrophilic: 451 Aereobe: 4167 Acidophile: 142 Yes: 855 Yes: 2022 < Q1: 665 < Q1: 3012 < Q1: 3011 
Mesophilic: 7228 Anaerobe: 1096 > Q1 < Q2: 660 > Q1 < Q2: 3012 > Q1 < Q2: 3010 
Thermo / hyper- 
thermophylic: 
477 

Microaerophile: 
477 

Alkaliphile: 2196 No: 1860 No: 2981 > Q2 < Q3: 678 > Q2 < Q3: 3012 > Q2 < Q3: 3013 

> Q3: 669 > Q3: 3013 > Q3: 3015 
Phylogenetic 
ANOVA 

F value = 106.59 F value = 224.38 F value = 10.23 F value = 0.98 F value = 13.54 F value = 3.90 F value = 2.83 F value = 4.43 

resCpG Pr( > F ) = 0.009 Pr( > F) = 0.06 Pr( > F) = 0.20 Pr( > F) = 0.94 Pr( > F) = 0.75 Pr( > F) = 0.59 Pr( > F) = 0.99 Pr( > F) = 0.98 
Phylogenetic 
ANOVA 

F value = 13.16 F value = 31.96 F value = 0.10 F value = 81.36 F value = 5.37 F value = 6.54 F value = 90.82 F value = 52.68 

resTpA Pr( > F ) = 0.63 Pr( > F ) = 0.65 Pr( > F ) = 0.91 Pr( > F ) = 0.48 Pr( > F ) = 0.83 Pr( > F ) = 0.47 Pr( > F ) = 0.43 Pr( > F ) = 0.64 
a In the case of cell volume, genome size, and number of coding sequences (CDS), we categorized data based on quartile distributions: < Q1, lower than the first quartile; > Q1 < Q2, between the 
first and second quartiles; > Q2 < Q3, between the second and third quartiles; > Q3, higher than the third quartile. 
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The presence of reverse gyrase may drive the CpG 

dinucleotide bias in thermophiles 

In the analyses above, we classified thermophilic bacteria as
in BacDive (i.e. bacteria with growth temperature higher than
39 

◦C). Thus, the range of temperatures is very wide for species
classified as thermophiles in our dataset (40–80 

◦C). It is well
known that virtually all hyperthermophilic bacteria, as well
as several thermophiles, encode RG ( 58–61 ). The positive su-
percoiling activity of RG requires a temperature of 70 

◦C or
higher ( 62 ). Because DNA intrinsic curvature is a key struc-
turing factor for positive supercoiling and plectoneme stabil-
ity ( 29 ), we reasoned that CpG under-representation and high
intrinsic cyclizability might relate to the presence of RG. 

We thus searched (see Materials and methods) for
the presence of an RG gene in the genomes of all
thermophilic / hyperthermophilic bacteria in our dataset that
were also included in the phylogenetic tree. We found that,
out of 51 bacteria with temperature preferences equal to or
higher than 70 

◦C, 38 encode the RG. Conversely, only 16
genomes out of 415 were predicted to encode RG when bac-
teria with temperature preferences lower than 70 

◦C were an-
alyzed. Among these, 11 had growing temperatures higher
than 65, whereas the others were moderate thermophiles
( Supplementary Table S1 ). This was noted before and the pres-
ence of RG in these species is thought to represent an adapta-
tion to short-term exposure to elevated temperatures ( 63 ). 

We next used phylogenetic ANOVA analyses to investi-
gate resCpG and intrinsic cyclizability in bacteria that encode
or do not encode the RG. In line with our hypothesis, we
found that the presence of RG associates with significantly
lower resCpG and significantly higher intrinsic cyclizability
(resCpG phylogenetic ANOVA, F = 47.46, P = 0.014; cycliz-
ability phylogenetic ANOVA, F = 36.33, P = 0.027) (Figure
3 C and D). It should however be noted that RG-encoding
bacteria live at much higher temperatures than RG-lacking
ones ( Supplementary Figure S2 ). Thus, these results are not
unexpected and we cannot exclude that the effects on resCpG
and intrinsic cyclizability are driven by the temperature rather
than by the presence of RG. 

The associations between CpG content, 
temperature and intrinsic cyclizability are not 
dependent on genome choice 

To validate the associations detected above using a par-
tially independent bacterial genome dataset, we exploited
three databases storing information on growth tempera-
tures to obtain a list of 1732 genomes of mesophilic and
thermophilic / hyperthermophilic bacteria that were not in-
cluded in the previous analyses (see Materials and meth- 
ods). To increase the statistical power, an equal number 
of mesophilic and thermophilic / hyperthermophilic bacte- 
rial genomes in the initial dataset were randomly selected 

to generate a partially independent set of 3464 genomes.
From these genomes, 120 core genes were extracted and 

aligned to generate a phylogenetic tree. In line with the re- 
sults reported above, phylogenetic ANOVA analysis indi- 
cated that thermophiles / hyperthermophiles have significantly 
lower resCpG than mesophiles / psychrophiles ( F = 49.34,
P = 0.041) ( Supplementary Figure S3 A). 

We next selected all genomes of 
thermophiles / hyperthermophiles ( n = 144) and of an 

equal number of mesophiles to calculate intrinsic cy- 
clizability. As observed in the larger dataset, results 
indicated that thermophilic / hyperthermophilic bacte- 
rial genomes have significantly higher intrinsic cycliz- 
ability compared to mesophiles (phylogenetic ANOVA,
F = 29.73, P = 0.05) ( Supplementary Figure S3 B). For both 

thermophiles / hyperthermophiles and mesophiles, negative 
significant correlations between intrinsic cyclizability and 

resCpG were observed ( Supplementary Figure S3 C). Finally,
evidence of an RG gene was detected in 23 genomes, most of 
them from bacteria living at temperatures equal or higher than 

70 

◦C ( Supplementary Table S2 , Supplementary Figure S3 D).
RG-encoding bacteria were found to have more CpG depleted 

genomes than thermophilic / hyperthermophilic bacteria that 
do not encode RG (phylogenetic ANOVA, F = 20.04,
P = 0.039). However, as above, the effect of RG pres- 
ence is impossible to disentangle from that of temperature 
( Supplementary Figure S3 E). 

Discussion 

The presence of dinucleotide biases, especially the depletion of 
CpG and TpA dinucleotides, in the genomes of cellular organ- 
isms and viruses has been known for years and has spawned 

interest in understanding its underlying causes (and conse- 
quences). Cytosine methylation at CpG sites certainly has a 
role in determining CpG loss in vertebrate genomes and, most 
likely, in some vertebrate-infecting dsDNA viruses ( 1 , 2 , 7 , 13 ).
However, mechanisms other than methylation were shown to 

contribute to CpG depletion in mammalian genomes and in 

viruses that infect vertebrates ( 7–9 ). Also, some RNA viruses 
are extremely CpG depleted irrespective of their host range 
(i.e. whether they infect hosts that encode or do not encode 
DNA methyltransferases) ( 9 ). This latter observation indi- 
cates that avoidance of host immune sensing is not a universal 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae088#supplementary-data
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A

C D

B

Figure 3. CpG representation and DNA bendability of thermophilic / hyperthermophilic genomes. ( A ) Box plot representation of normalized C-score 
grouped by growing temperature. Both temperature classes are composed of 406 genomes. Statistical difference among the two groups has been 
assessed using phylogenetic ANO V A analysis. ( B ) Linear models of normalized C-score as a function of O / E CpG residuals. Dots are colored based on 
the temperature classes and P earson ’s correlation coefficient ρ is also reported. Regression lines are shown with confidence intervals. ( C ) Box plot 
representation of O / E CpG residuals grouped by thermophilic / hyperthermophilic bacteria that encode or do not encode the reverse gyrase (RG) 
enzyme. Statistical difference between the two groups was assessed using phylogenetic ANO V A analysis. ( D ) Box plot representation of normalized 
C -score grouped by thermophilic / hyperthermophilic bacteria that encode or do not encode the RG enzyme. Statistical difference between the two 
groups was assessed using phylogenetic ANO V A analysis. 
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explanation for dinucleotide biases in viral genomes, either. In
fact, the zinc-finger antiviral protein (ZAP) and toll-like re-
ceptor 9 (TLR9), which sense CpG-containing non-self nu-
cleic acids, are only encoded by vertebrates (which also posses
CpG methylation systems) ( 14–16 ). Overall, these observa-
tions suggest that some unknown factors contribute to CpG
abundance in the genomes of cellular organisms and viruses.
Even more mysterious is TpA depletion, which seems to be al-
most universal and probably related to RNA or DNA stability
( 11 ). 

Compared to viruses, the analysis of CpG and TpA dinu-
cleotides in bacterial genomes has attracted limited attention
and only a few genomes have been investigated in this respect
( 17 , 18 , 24 , 64 , 65 ). We thus assembled a large dataset of bacte-
rial genomes, which are representative of the genetic diversity
in the kingdom Eubacteria, with the aim of analyzing dinu-
cleotide biases and their underlying drivers. We found that the
representation of both CpG and TpA dinucleotides is strongly
dependent on genomic G + C content. This seems to be a uni-
versal feature of biological sequences, as it is observed across
all domains of life and in viruses (with either RNA or DNA
genomes) ( 7–9 , 49 , 66 ). The reasons for the existence of such
relationships are presently unclear and cytosine methylation
cannot be the only factor involved because invertebrates have
poorly methylated genomes and methylation does not occur
in RNA viruses. In bacteria, DNA methylation is extremely
common and is primarily associated with R-M systems, but
CpG and TpA dinucleotides do not represent preferential tar-
gets ( 19 ). Moreover, it is estimated that, because of the high
rate of horizontal transfer of defense genes, only 4% of R-M
systems are found in the core genomes of prokaryotic species
( 20 ,21 ). As a consequence R-M systems are unlikely to shape
the genomic representation of dinucleotides or to explain their
relationship with overall G + C content. 

Irrespective of the underlying causes, the relationships be-
tween G + C content and TpA or CpG representation im-
plies that dinucleotide biases must be parsed together with
genomic base composition. We thus used the residuals of the
fitted models to obtain a measure that can be analyzed against
different traits. Such residuals are not absolute measures of
dinucleotide abundance (e.g. resTpA equal to 0 does not indi-
cate that the representation of TpA dinucleotides corresponds
to the expected based on nucleotide frequency). Conversely,
resCpG and resTpA depend on the G + C content and on
the distributions of values that are fitted by the models. As
expected, we obtained a strong phylogenetic signal for both
the residuals, meaning that closely related bacterial species
have similar dinucleotide representation. We thus used phy-
logenetic ANOVA analyses to investigate whether genomic or
lifestyle features are related to dinucleotide biases. 

In addition to having a wide distribution of genomic G + C
content, bacteria are extremely diverse in terms of genome size
and coding capacity, but also with respect to lifestyle and en-
vironmental distribution. Indeed, several species of bacteria
(and archaea) are well known for their ability to thrive in ex-
treme environmental conditions, including very high and very
low temperatures, hypersaline ecosystems, and acidic habitats
( 67 ). We reasoned that investigation of the relationship be-
tween dinucleotide biases and different genomic or lifestyle
features might provide insight into the role of such biases for
bacterial adaptation and explain the underlying drivers. The
choice of traits to analyze was conditioned on their availabil-
ity for a substantial number of strains. This clearly represents
a limitation of this study, as a number of traits were avail- 
able for a limited number of species (e.g. nutrition type, opti- 
mum salt concentration), or were too multidimensional (e.g.
metabolite utilization) or both (e.g. fatty acid profile). More- 
over, different traits were recorded for different numbers of 
species and we cannot exclude that we failed to detect associ- 
ations with some traits because of a lack of statistical power.
Finally , and most importantly , the biological complexity of 
these traits is unrecognized in our categorization. For instance,
many bacterial species can live at different temperatures and 

there is no single designation of ‘preferred temperature’ (it 
may be the temperature at which the bacterium grows the 
fastest or the one at which it is most often sampled). Simi- 
lar considerations apply to pH preferences, as several bacte- 
ria can live within a relatively wide pH range ( 68 ). Likewise,
cell volume and shape can vary widely depending on growth 

conditions and media, and display ample variability for dif- 
ferent strains in the same species ( 69–72 ). Moreover, our clas- 
sification is necessarily limited to present knowledge, whereas 
new bacterial lifestyle traits are constantly described. Whereas 
future studies will be required to extend analysis to a wider 
range of traits and species, we were able to identify a corre- 
lation between temperature preferences and CpG depletion.
Conversely, we did not detect any association between TpA 

dinucleotide abundance and bacterial traits. One possible rea- 
son is that the relatively narrow distribution of resTpA affects 
statistical power. Alternatively, the narrow distribution itself 
might indicated that G + C content is the major driver of TpA 

aboundance in bacterial genomes, irrespective of other fea- 
tures. Clearly, it is also possible that bacterial traits other than 

the ones analyzed here associate with the TpA dinucleotide 
bias. 

Early investigations based on a handful of prokaryotic 
genomes found CpG under-representation in thermophilic 
bacteria and archaea, and proposed that this effect was re- 
lated to some advantage in terms of DNA structure, such as 
supercoiling or chromatin packaging ( 64 ,65 ). Here, we used 

a recently developed tool, DNAcycP, to demonstrate that in- 
deed CpG depletion is correlated with increased DNA bend- 
ability, which in turn may associate with positive supercoil- 
ing ( 57 ). DNAcycP was trained on data obtained with the 
loop-seq method, which uses a sequencing-based approach 

to allow a high-throughput measurement of DNA mechani- 
cal properties ( 57 ,73 ). This underscores another limitation of 
our approach, as loop-seq data refer to relatively short, linear 
sequences of relaxed DNA with cyclizability properties mea- 
sured at room temperature. Conversely, DNA in living bacte- 
ria is not relaxed, as negative and positive supercoilings are 
pervasive ( 74 ,75 ). It is thus unsure whether the predictions 
are fully applicable to bacterial genomes in the living con- 
text. However, loop-seq data and DNAcycP predictions were 
shown to describe relevant features of DNA organization in 

eukaryotic cells, such as transcription factor binding sites and 

nucleosome positioning, suggesting that they at least partially 
reflect cyclizability as it occurs in vivo ( 44 ,73 ). With respect to 

temperature, its effects on the mechanical properties of DNA 

were only partially explored ( 76–78 ). At present, it is difficult 
to determine to which degree loop-seq data and DNAcycP pre- 
dictions can be influenced by temperature. Most likely, exper- 
imental data will be required to address this point. 

These caveats notwithstanding, our data are consistent with 

the observation that dinucleotide frequencies and their re- 
spective pairwise distances play a major role in determin- 
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ng DNA mechanical properties. Indeed, using loop-seq data,
asu and coworkers showed that, while the overall G + C con-

ent has little effect on cyclizability, the CpG dinucleotide has
he most negative bendability quotient ( 30 ). Our data show
hat thermophiles, with generally CpG depleted genomes, may
ave more flexible genomes than mesophiles, at least as as-
essed through DNAcycP. Notably, though, we found that
esCpG and cyclizability are negatively correlated in both
hermophiles and mesophiles, suggesting that the results are
ot secondary to an unknown effect exerted by temperature
references. Interestingly, both DNAcycP and another DNA
yclizability prediction tool (CycPred) indicated that two ther-
ophilic archaea have very flexible genomes ( 44 ,57 ), suggest-

ng that DNA flexibility is an adaption of prokaryotes living
t elevated temperatures. 

The reason why higher DNA flexibility might be favor-
ble for life at high temperatures is not fully clear. Virtu-
lly all hyperthermophilic bacteria and archaea encode RG,
hich is able to induce positive DNA supercoiling ( 58–61 ,79 ).
he enzyme is necessary for growth at elevated tempera-

ures ( 80 ,81 ) and positively supercoiled DNA molecules show
igh stability at temperatures as high as 90 

◦C ( 82 ). Recently,
im and coworkers showed that, in a positive supercoiling

egime, DNA curvature determines the formation of plec-
onemes ( 29 ). It is thus possible that increased bendability fa-
ilitates the formation of positively supercoiled structures by
G. We should also add that RGs and gyrases have differ-

nt properties and mechanisms of action ( 61 ). Based on struc-
ural considerations, it was proposed that the introduction of
ositive supercoiling by RG requires overall bending of the
NA ( 62 ), suggesting that enzymatic activity is facilitated by
exible genomes. These observations are in line with our data
howing that thermophiles that encode RG have more CpG-
epleted and may have more flexible genomes than those that
o not. However, because RG has enzymatic activity at 70 

◦C
r higher, it is typical of hyperthermophiles or thermophiles
iving at very high temperatures. As a consequence, our anal-
ses cannot disentangle the effect of RG presence from that of
emperature. It remains however true that, whatever the un-
erlying factor, bacterial adaptation to very high temperatures
ntails CpG depleted genomes, possibly characterized by high
endability. 
It should be noted that our data show that some non-

hermophilic bacteria also have CpG-depleted genomes. Like-
ise, positive DNA supercoiling is not a prerogative of bac-

eria living at high temperatures. Indeed, a recent analysis of
scherichia coli, a mesophile, indicated that positive and neg-
tive supercoiling contributes to the organization of the bac-
erial genome ( 74 ). The authors suggested that positive super-
oiling has a role in genome packaging and in buffering the
ffects of negative supercoiling. It is thus possible that local
r global CpG depletion affects the supercoiling and organi-
ation of bacterial genomes through modulation of DNA me-
hanical properties, even in bacteria that do not live at high
emperatures. This hypothesis may also be translatable to eu-
aryotic organisms and viruses, and it may help explain CpG
eficiency in genomes that are not subject to cytosine methy-
ation. In this respect, it is also worth mentioning that ex-
erimental data showed that CpG methylation stiffens DNA
n all sequence contexts ( 30 ). Thus, CpG dinucleotides might
e particularly counter-selected in organisms that methylate
hem, as observed in vertebrates. This might explain the ex-
stence of a selective pressure in mammalian genomes against
CpG, but not directly resulting from cytosine mutation ( 7 ).
Experimental approaches will be necessary to test these hy-
potheses. 
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