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We compute holographic complexity for the nonsupersymmetric Janus deformation of AdS5 according
to the volume conjecture. The result is characterized by a power-law ultraviolet divergence. When a ball-
shaped region located around the interface is considered, a subleading logarithmic divergent term and a
finite part appear in the corresponding subregion volume complexity. Using two different prescriptions to
regularize the divergences, we find that the coefficient of the logarithmic term is universal.
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I. INTRODUCTION

Amajor role in the development of theoretical physics in
the last decade was played by the AdS=CFT correspon-
dence; the most studied example being the duality between
N ¼ 4 super Yang-Mills (SYM) theory with gauge group
SUðNÞ and type IIB string theory on AdS5 × S5 [1]. While
holography is a powerful tool in dealing with some
particular physical systems, it is difficult to apply and test
it in the strongly-coupled phase of gravity. An enormous
improvement in the quantitative understanding of the
correspondence has been possible thanks to the relationship
between geometric objects in the bulk and information
properties of quantum systems, starting from the duality
between the entanglement entropy of a state on the
boundary and the area of a codimension-two extremal
surface [2]. It was recently argued that the evolution of the
Einstein-Rosen Bridge (ERB) cannot be captured by
entropy, since it grows for a much longer timescale
compared to the thermalization time. For this reason,
a new boundary quantity that supposedly encodes the
information on the ERB has been introduced, that is,
complexity. Two different gravity duals for computational
complexity have been conjectured; the complexity ¼
volume (CV) [3,4] and the complexity ¼ action (CA)
[5,6]. In the CV conjecture, complexity is proportional
to the volume of a maximal codimension-one submanifold
hanging from the boundary

CV ¼ V
GL

; ð1:1Þ

where V is the above-mentioned volume, G is the Newton
constant, and L is the anti–de Sitter (AdS) radius. In
contrast, CA-duality relates the complexity on the boun-
dary to the gravitational action I evaluated on the Wheeler-
De Witt (WDW) patch, i.e., the bulk domain of dependence
of a Cauchy surface anchored at the boundary

CA ¼ IWDW

πℏ
: ð1:2Þ

One of the original motivations to formulate the action
proposal was the universality of the definition, since it does
not require the introduction of an ad hoc length scale. Early
studies of the two conjectures for asymptotically AdS black
holes have shown that the growth rate is the same at late
times [6]. However, it was later found that the proposals
have different behaviors at intermediate times [7,8]. Many
attempts to distinguish volume from action have been made
by studying the following scenarios; the complexity of
formation of a black hole from empty AdS space [9], time-
dependent spacetimes [10–12], cosmological models [13],
backgrounds with nonrelativistic traits [14–16], higher-
derivative gravity [17,18], and more.
Parallel developments from the boundary theory per-

spective have also taken place. Computational complexity
is defined in quantum mechanics (QM) as the minimal
number of simple1 unitary operators that must be used to
transform a reference state into a target state. This defi-
nition is well posed for discrete operators in quantum
circuits, however, in view of the application to holography,
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1The term simple usually refers to operators which are k–local,
i.e., operators that act on at most k ∈ N qubits at the same time.
The typical choice is to consider two local operators, since it is
the simplest action that creates a nonvanishing entanglement.
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it is necessary to generalize the definition to the continuum
case. A possible route was proposed by Nielsen et al. in
[19]. Adopting Nielsen’s approach, many advances have
been made both from the QM and QFT point of view, such
as the investigation of curvature properties of the unitary
group [20], the relation between the spaces of unitaries and
states in terms of Riemannian submersions [21], the
application to the SYK model [22], the properties of
geodesics for integrable and chaotic systems [23], the
implementation in free theories [24–26], the proposal of
a first law of complexity [27] and the application to
conformal field theories (CFTs) [28,29]. A different avenue
is that of path integral optimization [30,31].
An intriguing problem is the investigation of the UV

divergences that arise in the computation of complexity for
both sides of the duality. In the case of entanglement
entropy, divergences occur as a consequence of the arbi-
trarily short correlations entangling the degrees of freedom
in a subregion to the degrees of freedom in its complement.
A general classification reveals that the leading divergence
scales with an area law. Depending on the number of
boundary dimensions, there is a universal term correspond-
ing to the coefficient of the logarithmic divergence (even
dimensions) or to the finite part (odd dimensions). Such
terms are universal because they do not depend on rescal-
ings of the UV regulator. This kind of general classification
can also be done for the CVand CA conjectures, leading to
the identification of the divergences in terms of curvature
invariants integrated over a spatial slice [32,33]. There are
two typical prescriptions to regularize the UV divergences
in the action computation; they correspond to send the null
geodesics defining the boundary of the WDW patch from
the value z ¼ δ along the radial direction of AdS space, or
from the true boundary at z ¼ 0, and cut them afterwards
with a cutoff surface. It is meaningful to notice that the
introduction of appropriate counterterms allows to find
regularization-independent results, which is a step towards
a universal classification of UV divergences in complex-
ity [34,35].
In this paper, we analyze the structure of divergences and

their universality properties in the case of CV-duality
applied to a defect geometry. A defect is generally defined
as a modification of a system localized on a submanifold.
Conformal defects provide a useful tool to probe the
dynamics of some theories [36–38]. Generally speaking,
the insertion of a conformal defect in the vacuum of a
theory results in the breaking of the full conformal group
into a less constraining subgroup. Boundaries, defects, and
interfaces have many applications both from a theoretical
and phenomenological point of view. They constitute a
simple path to bridge the gap between highly symmetric
models studied in the context of the AdS=CFT duality and
more physically realistic systems. For instance, condensed
matter systems have impurities and, being finite in size, are
also restricted by boundaries. Typical examples of defects

are Wilson and ’t Hooft operators in gauge theories [39,40]
and D-branes in string theory. In high-energy physics,
defects can be engineered holographically [41,42]. For
example, the study of the CFT data associated to the
D3 −D5-brane system described in [43] was started in
[44,45] and a plethora of subsequent studies have been
carried out [46–53].
Furthermore, it is enticing to think of using defects as

possible means to distinguish between the volume and the
action proposals mentioned above. This route was taken in
[54], where the CA and CV conjectures were inspected in
the case of a bottom-up Randall-Sundrum type model [55]
of a thin AdS2 brane embedded in AdS3 spacetime. The
remarkable output of this analysis is that, for the CV
proposal, a new logarithmic divergence appears in the
holographic complexity due to the presence of the defect,
whereas the action computation is unaffected. In [56,57],
the holographic complexity was computed for a boundary
CFT (BCFT). In particular, the analysis of [57] focuses on
the gravitational dual of a boundary conformal field theory
in two dimensions (BCFT2). The authors found that the
boundary distinguishes between CA and CV proposals in
this case, too. In particular, a logarithmic divergence,
whose coefficient depends on the boundary data, occurs
in the CV computation. Instead, for CA this divergence
drops out and the dependence on the boundary data occurs
in the finite term. In [58], volume complexity was com-
puted for a defect theory consisting of a Janus deformation
of AdS3 spacetime. It turns out that this setting admits
precisely a logarithmic divergence whose coefficient is
universal (i.e., independent of the regularization scheme
and temperature of the configuration).
Nevertheless, in [56] it was pointed out that the result for

AdS3=BCFT2 cannot be extended to higher dimensions,
which is not surprising given that gravity is known to have
special features in three dimensions. In fact, in higher
dimensional cases, the boundary complexity is nonvanish-
ing both in CV and CA conjectures, and only contains a
power-law divergence which depends on the dimension-
ality of the spacetime.
In this paper, we focus on a nonsupersymmetric (non-

SUSY) Janus deformation of AdS5 spacetime to inspect the
structure and the universality of UV divergences, in
particular in comparison to the lower-dimensional case
[58]. Volume complexity in the context of theories with
defects was also recently studied in [59,60].
The paper is organized as follows. In Sec. II we describe

the foliation of AdSdþ1 space into AdSd slices, which is
useful to describe the defect geometry, and the properties of
five-dimensional non-SUSY Janus spacetime. In Sec. III
we compute the complexity of formation for the Janus
deformation using two different regularization schemes. In
Sec. IV we study the subregion complexity for a ball-
shaped region centered on the defect using the same
regularization procedures as for the total spacetime
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computation. We comment on the universal structure of the
UV divergences in the CVapproach in Sec. V. An appendix
about the Weierstrass ℘–function completes the paper.

II. FIVE-DIMENSIONAL JANUS ADS GEOMETRY

The non-SUSY Janus deformation of AdS5 × S5 is a
solution of type IIB supergravity with a nontrivial dilaton
profile, which is regular and classically stable against
all small and a certain class of large perturbations
[61,62]. It can be thought of as a thick AdS4-sliced domain
wall in AdS5. The CFT dual is given by the N ¼ 4 Super
Yang-Mills (SYM) theory on both sides of a planar
codimension-one interface, whose coupling constant varies
discontinuously across the interface [63] where the half-
spaces are glued together. The two different values of the
gauge coupling correspond to the two asymptotic values of
the dilaton in the Janus deformation. The SO(2,3) sym-
metry of the Janus geometry maps to the conformal group
preserved by the three-dimensional interface on the CFT
side. This symmetry is manifest at the classical level, but
was also shown to persist at the first nontrivial quantum
level [64]. The SO(6) symmetry of the Janus solution maps
to an (accidental) internal symmetry2 on the CFT side. The
interface carries no degrees of freedom in addition to the
ones inherited from N ¼ 4 SYM. In this section we will
introduce the basic information about the bulk geometries
associated to theories with defects, referring in particular to
the Janus interface solution.

A. Geometries with defects

An interface CFT with a codimension-one planar defect
is invariant under the subgroup SOðd − 1; 2Þ of the original
conformal group SOðd; 2Þ. Its holographic dual is
described by AdSdþ1 space foliated into AdSd slices with
metric [65–68]

ds2 ¼ L2ðA2ðyÞds2AdSd þ ρ2ðyÞdy2Þ; ð2:1Þ

where y is a noncompact coordinate. When y → �∞, we
reach the asymptotic regions with the following behavior
for the metric coefficients

AðyÞ → L�
2

e�y�c� ; ρðyÞ → 1: ð2:2Þ

In this context, L� and c� are constants which can in
principle assume two different values at y ¼ �∞. We
parametrize the AdSd slices using Poincaré coordinates

ds2AdSd ¼
1

z2
ðdz2 − dt2 þ dx⃗2d−2Þ; ð2:3Þ

where ðt; zÞ are the time and radial coordinates on each
slice and x⃗ identifies the other orthogonal spatial directions.
Geometries of the kind described by Eq. (2.1) admit a

Fefferman-Graham (FG) expansion close to the asymptoti-
cally AdSdþ1 region of spacetime which brings the metric
into the form

ds2¼L2

ξ2
½dξ2þf1ðξ=ηÞð−dt2þdx⃗2Þþf2ðξ=ηÞdη2�: ð2:4Þ

Here, ξ is a radial coordinate for the asymptotic AdSdþ1

metric in Poincaré coordinates, η is boundary direction
orthogonal to the interface and f1, f2 are two functions
encoding the change of coordinates.
Empty AdSdþ1 space itself can be described in terms of

an AdSd slicing once we identify AðyÞ ¼ cosh y and
ρðyÞ ¼ 1 in Eq. (2.1). In this case, the FG expansion
brings the metric into the exact Poincaré form

ds2 ¼ L2

ξ2
ðdξ2 þ dη2 þ dx⃗2 − dt2Þ; ð2:5Þ

and the coordinate transformation reads

η ¼ z tanh y; ξ ¼ z
cosh y

: ð2:6Þ

In the general case of a defect geometry, it may not be
possible to find a closed form for the FG coordinate
transformation, but an asymptotic expansion around the
Poincaré solution can always be performed [67,69]. The
FG expansion of the metric gives a natural prescription to
regularize divergent quantities in the bulk geometry, as we
will describe in Sec. III A.

B. Nonsupersymmetric Janus AdS5 geometry

The non-SUSY five-dimensional Janus solution [63,67]
is a one-parameter deformation of AdS5 described in terms
of the metric

ds2 ¼ L2½ðγÞ−1h2ðwÞdw2 þ hðwÞds2AdS4 �; ð2:7Þ
where γ is the deformation parameter, with range
3=4 ≤ γ ≤ 1, and the four-dimensional AdS slice is written
in Poincaré coordinates according to Eq. (2.3). The warp
factor hðwÞ is defined as [63,67]

hðwÞ ¼ γ

�
1þ 4γ − 3

℘ðwÞ þ 1− 2γ

�
¼ γ

�
1þ 4γ − 3

℘ðwÞ−℘ðw0Þ
�
;

ð2:8Þ
where ℘ðwÞ is the Weierstrass elliptic ℘-function.3 The
elliptic invariants ðg2; g3Þ of the Weierstrass ℘-function are

2Since the Janus solution breaks all the supersymmetries, the
global SO(6) symmetry is no longer an R-symmetry.

3We refer the reader to Appendix for more details on the
Weierstrass elliptic function.

VOLUME COMPLEXITY FOR THE NONSUPERSYMMETRIC JANUS … PHYS. REV. D 104, 086030 (2021)

086030-3



g2 ¼ 16γð1 − γÞ; g3 ¼ 4ðγ − 1Þ; ð2:9Þ

and w0 is defined as the positive solution of

℘ðw0Þ ¼ 2γ − 1: ð2:10Þ

The spatially varying dilaton of the non-SUSY Janus
solution is

ϕðwÞ ¼ ϕ0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1 − γÞ

p �
wþ 4γ − 3

℘0ðwÞ

×
�
ln
σðwþ w1Þ
σðw − w1Þ

− 2ζðw1Þw
��

; ð2:11Þ

where σ and ζ denote the Weierstrass functions defined in
Eq. (A3) of Appendix, ϕ0 is a real constant and w1 is
defined by the equation

℘ðw1Þ ¼ 2ð1 − γÞ: ð2:12Þ

When γ ¼ 1, the solution reduces to AdS5 with constant
dilaton ϕ ¼ ϕ0, while γ ¼ 3=4 leads to a linear dilaton.
The Janus solution is defined in the interval −w0 <

w < w0 since the function hðwÞ, introduced in Eq. (2.8),
has simple poles at w ¼ �w0. As w → �w0, the Janus
deformation asymptotes to AdS5 with constant dilaton
ϕ� ¼ ϕð�w0Þ, where ϕþ ≠ ϕ− unless γ ¼ 1. In other
words, for generic γ the Janus solution has two asymp-
totically AdS5 regions in which the dilaton takes two
different values.
The conformal structure of the Janus AdS5 geometry is

easily determined by means of the change of variables

dμ ¼
ffiffiffiffiffiffiffiffiffiffi
hðwÞ
γ

s
dw; ð2:13Þ

which brings the metric into the form

ds2 ¼ L2hðμÞðdμ2 þ ds2AdS4Þ: ð2:14Þ

Up to a conformal factor, the boundary metric is four-
dimensional Minkowski spacetime. The conformal dia-
gram corresponding to this geometry is shown in Fig. 1.

III. VOLUME FOR THE JANUS AdS5 GEOMETRY

In this section we study the holographic complexity
according to the CV conjecture in the non-SUSY Janus
deformed AdS5 space. In the three-dimensional case, the
extremal volume of the entire space for both the Janus AdS3
[58] and the Randall-Sundrum [54] defect models exhibit a
logarithmic divergence. In [56] it is pointed out that, for a
boundary CFT (BCFT), the behavior of the divergent terms
for the CV conjecture depends on the dimensionality of the
space. Since a BCFT can be related to a CFT with a

codimension-one defect via the unfolding trick [70], we
expect an analogous behavior also for the Janus interface.

A. UV regularizations of the extremal volume

A common feature of geometrical objects defined via the
AdS=CFT correspondence is the existence of UV diver-
gences that need to be regularized to describe physically
meaningful quantities. This happens, e.g., for the compu-
tation of the entanglement entropy, the extremal volume
identified by the CV conjecture, or the on-shell gravita-
tional action which plays a role in the computation of free
energy or the CA conjecture. There exist essentially three
regularization techniques that allow to extract the same
physical information [68]. Here, we review the main
aspects of these methods.
The extremal volumes that we will compute in this

section are of the form

V ¼
Z

dz
Z

dy
Z

dx⃗
ffiffiffi
g

p
; ð3:1Þ

where g is the determinant of the induced metric on the
codimension-one Cauchy spatial slice. The integrations
along the x⃗ directions are always trivial, while the relevant
information on the interface are encoded by the ðy; zÞ
directions.

1. Fefferman-Graham regularization

A natural way to regularize UV divergences is provided
by the FG metric (2.4). It consists of cutting the geometrical
object of interest with the hypersurface located at ξ ¼ δ,
and all the results are expressed in terms of a series
expansion around δ ¼ 0. The problem of this procedure
is that in the region where ξ=η ≪ 1, the FG expansion
breaks down and the coordinates ðξ; ηÞ are ill defined [69].

FIG. 1. Conformal diagram of the Janus AdS5 geometry with
Poincaré coordinates on the AdS4 slices. The angular coordinate
is ranged in the interval ½−μ0; μ0�, where μ0 > π=2. The dashed
line represents the hypersurface μ ¼ 0 intersecting the boundary
at the joint J, which is the origin of the angular coordinate. This
can be seen as an interface on the boundary. In the diagram we
suppress a factor of R2 at each point.
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Indeed, the defect geometry contains two FG patches
located away from the interface on its left and right sides. In
the middle region, there is not a well-defined change of
variables that selects a natural UV cutoff. This problem
can be solved by interpolating the cutoff surface located at
ξ ¼ δ in the left and right FG patches with an arbitrary
curve in the middle region, with the constraint that it has to
be smooth at y ¼ y0, which corresponds to the breaking
down of the FG expansion [54,67]. This setting is depicted
in Fig. 2.

2. Single cutoff regularization

This method makes use of the FG expansion of
the metric to identify a UV cutoff in the asymptotic
region. Instead of performing an arbitrary interpolation in
the middle region, it induces a minimal value for the
z-coordinate.
We explain the details of the procedure starting from the

empty AdS case, whose FG expansion is achieved by
means of the coordinate transformation (2.6). If we locate
the UV cutoff at the surface ξ ¼ δ, we get the condition

δ ¼ z
cosh y

; ð3:2Þ

which selects a maximal value of y ¼ y�ðzÞ in Eq. (3.1). On
the other hand, reversing this identity gives a constraint on
the minimal value of the z, determined by

zmin ¼ δmin
y∈R

ðcosh yÞ ¼ δ: ð3:3Þ

In the presence of an interface, the procedure is formally the
same, but the conditions to impose become

δ ¼ z
AðyÞ ; zmin ¼ δmin

y∈R
½AðyÞ�; ð3:4Þ

where AðyÞ was introduced in Eq. (2.1). This choice
degenerates to the empty AdS case once the deformation
parameter of the Janus geometry is turned off. At the end of

the procedure, we will perform a Laurent expansion of the
result in powers of δ.
We point out that the two regularizations presented (FG

expansion and single cutoff) are a priori different the FG
procedure requires an arbitrary interpolation in the middle
region, while the single cutoff uses the FG expansion of the
metric as a tool to induce a minimal value for the
integration along the z coordinate. However, a careful
analysis of the details of the procedure shows that a proper
choice of the interpolating curve allows to find the same
results up to finite terms, as it was discussed for the three-
dimensional case in [58].

3. Double cutoff regularization

Another way to regularize an integration along the two
directions ðy; zÞ is to introduce two separate UV cutoffs.
A natural choice is to impose z ¼ δ on the AdSd slicing
instead of making use of the FG expansion. Since the
metric factor AðyÞ is singular at infinity even after this
regularization, a maximum value of y is determined by
requiring

AðyÞ ¼ 1

ε
; ð3:5Þ

which is a natural counterpart of Eq. (3.4). Notice that
while the δ cutoff has physical relevance as it regularizes
the intrinsic contribution from the defect to the volume, the
ε cutoff is a mathematical artifact introduced at intermedi-
ate steps. This parameter is sent to zero at the end of the
computation, and the physical quantities will not depend
on it.

B. Extremal volume: single cutoff procedure

We evaluate the extremal volume using the metric in
Eq. (2.7). Since the integral that defines the volume diverges
near the asymptotic boundary, i.e., when w → �w0 and
z → 0, we have to regularize it introducing suitable cutoffs.
We adopt the single cutoff regularization procedure

FIG. 2. Interpolation between two FG patches with a continuous curve Γ. The black line, separating the gray region from the orange
one (where the FG coordinates are ill defined), corresponds to the value y0 for the y-coordinate.
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described in Sec. III A, which relies on the intertwining
between the UV cutoff along the w and z directions.

1. Determination of the geometric data

First of all, we need to rewrite the metric of Janus AdS5
space into the general form given in Eq. (2.1), where the
coordinate y is noncompact and the prefactor of the dy2

terms is the unity. This can be easily achieved by perform-
ing the following change of coordinates

dy ¼ γ−1=2hðwÞdw ⇒ y ¼ γ−1=2
Z

w

0

dw0hðw0Þ; ð3:6Þ

which brings the metric (2.7) into the form

ds2 ¼ L2ðdy2 þ hðyÞds2AdS4Þ; ð3:7Þ

where we identify

AðyÞ ¼
ffiffiffiffiffiffiffiffiffi
hðyÞ

p
; ρðyÞ ¼ 1: ð3:8Þ

According to Eq. (3.4), the cutoff surface at ξ ¼ δ gives the
constraint

δ ¼ zffiffiffiffiffiffiffiffiffi
hðyÞp ; ð3:9Þ

which consequently induces the value of zmin as

zmin ¼ δmin
y∈R

ð
ffiffiffiffiffiffiffiffiffi
hðyÞ

p
Þ ¼ δ

ffiffiffi
γ

p
; ð3:10Þ

where we used that h takes minimum value at y ¼ 0, and
hð0Þ ¼ γ. The previous prescription can be equivalently
employed using the compact coordinate w and it defines a
cutoff w� such that

hðw�Þ ¼
z2

δ2
⇒ w� ¼ h−1

�
z2

δ2

�
: ð3:11Þ

It regularizes the divergencies stemming from the poles
of the function hðwÞ located at w ¼ �w0. The cutoff w�
can be expanded in a power series of δ=z, as shown
in [67]

w�

�
δ

z

�
¼ �w0 ∓

X∞
k¼1

bk
δ2k

z2k
: ð3:12Þ

All the coefficients of the series can be recursively
determined order by order by imposing the condition
(3.11). The previous expression only contains even powers
of δ=z because hðwÞ is an even function, and the first
coefficients of the series are given by

b1 ¼
ffiffiffi
γ

p
2
; b2 ¼

ffiffiffi
γ

p
8

; b3 ¼
ffiffiffi
γ

p
16

; b4 ¼
5

ffiffiffi
γ

p
128

; …

ð3:13Þ

Whereas the location of the cutoff is fixed via a Taylor
expansion, the identity (3.11) is exact and formally resums
all the coefficients of the above series.

2. Computation of the volume

It is not restrictive to study the CV conjecture in the
deformed AdS5 background using a time slice at zero
boundary time.4 The extremal volume is computed by the
integral

V ¼ 2L4V2ffiffiffi
γ

p
Z

zIR

δ
ffiffi
γ

p
dz
z3

Z
wþðδzÞ

0

hðwÞ52dw; ð3:14Þ

where we introduced a factor of two because ℘ðwÞ is even,
and we denoted with V2 the two-dimensional infinite
volume along the orthogonal spatial directions. Since the
integral along the z direction is in principle divergent at
infinity, we regularize it introducing a cutoff zIR.
To evaluate the extremal volume, we begin with the

change of variables τ ¼ hðwÞ
γ . The extremes of integration

are fixed by the conditions hð0Þ ¼ γ and hðw�Þ ¼ z2=δ2.
Using the properties of the Weierstrass ℘-function sum-
marized in Appendix, we get

Z
wþðεÞ

0

dwh5=2ðwÞ ¼ γ5=2

2

Z z2

γδ2

1

dτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ5

γðτ4 − 1Þ − ðτ3 − 1Þ

s
:

ð3:15Þ

At this point, we perform a further change of variables
ζ ¼ z2=ðγδ2Þ, which brings the volume (3.14) into the form

V ¼ γL4V2

2δ2

Z
ζIR

1

dζ
ζ2

Z
ζ

1

dτ τ5=2fðτÞ; ð3:16Þ

where we define

fðτÞ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðτ4 − 1Þ − ðτ3 − 1Þ

p ; ζIR ≡ z2IR
γδ2

: ð3:17Þ

We can swap the order of integration as shown in Fig. 3 in
the following wayZ

ζIR

1

dζ
Z

ζ

1

dτFðτ; ζÞ →
Z

ζIR

1

dτ
Z

ζIR

τ
dζFðτ; ζÞ; ð3:18Þ

4It can be shown that the extremal slice at constant time is
always a solution of the equations of motion at all times. By
translational invariance along the time direction, we choose for
convenience to study the case with vanishing boundary time.
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for any given integrand function Fðτ; ζÞ. The evaluation of
the ζ integration is trivial and gives

V ¼ γL4V2

2δ2

Z
ζIR

1

dτ τ5=2fðτÞ
�
1

τ
−

1

ζIR

�
: ð3:19Þ

The remaining integral is divergent in the limit δ → 0,
i.e., ζIR → ∞. However, the function fðτÞ can be
series-expanded around infinity, where it is analytic.
We can add and subtract the lowest orders of the fðτÞ
expansion

τ5=2fðτÞ
�
1

τ
−

1

ζIR

�
¼ τ3=2

��
fðτÞ − 1ffiffiffi

γ
p

τ2
−

1

2γ3=2τ3

�
þ 1ffiffiffi

γ
p

τ2
þ 1

2γ3=2τ3

�

−
τ5=2

ζIR

��
fðτÞ − 1ffiffiffi

γ
p

τ2
−

1

2γ3=2τ3

�
þ 1ffiffiffi

γ
p

τ2
þ 1

2γ3=2τ3

�
; ð3:20Þ

in such a way that the terms in the round parenthesis define
a renormalized finite integral where the limit δ → 0 can be
performed directly. Hence, we define

AðγÞ≡
Z

∞

1

dτ τ3=2
�
fðτÞ − 1ffiffiffi

γ
p

τ2
−

1

2γ3=2τ3

�
; ð3:21Þ

BðγÞ≡
Z

∞

1

dτ τ5=2
�
fðτÞ − 1ffiffiffi

γ
p

τ2
−

1

2γ3=2τ3

�
: ð3:22Þ

These functions can be numerically evaluated and are well
defined everywhere except near γ ¼ 3=4, which is a
singular limit since w0 → ∞.
In the following, we will keep implicit the functions

AðγÞ and BðγÞ. The divergences in the extremal volume are
encoded by the following remaining terms

Z
ζIR

1

dτ

�
1ffiffiffiffiffi
γτ

p þ 1

2γ3=2τ3=2

�

¼ 1

γ3=2

�
2γ

ffiffiffiffiffiffi
ζIR

p
−

1ffiffiffiffiffiffi
ζIR

p þ 1 − 2γ

�
; ð3:23Þ

Z
ζIR

1

dτ

� ffiffiffi
τ

γ

r
þ 1

2γ3=2
ffiffiffi
τ

p
�
¼ 1

γ3=2

�
2γ

3
ζ3=2IR þ

ffiffiffiffiffiffi
ζIR

p
−
2

3
γ−1

�
:

ð3:24Þ

Summing all the contributions with the appropriate
prefactors, we obtain the expression for the extremal
volume,

V ¼ L4V2

�
2

3

zIR
δ3

þ
�
γAðγÞ
2

−
ffiffiffi
γ

p þ 1

2
ffiffiffi
γ

p
�

1

δ2

−
1

zIRδ
−

1

2z2IR

�
γ2BðγÞ − ffiffiffi

γ
p

−
2

3
γ3=2

��
þOðδÞ:

ð3:25Þ

3. Subtraction of vacuum AdS5

To identify the contribution of the defect to the extremal
volume, we need to subtract the result that stems from
vacuum AdS5. First of all, we write the AdS5 metric in
AdS4 sliced form by setting γ → 1 in Eq. (2.7), recognizing
that in this limit

hðwÞ ¼ 1

1 − w2
; w0 ¼ 1: ð3:26Þ

Thus, the AdS5 metric can be rewritten as

ds2AdS5 ¼
L2dw2

ð1 − w2Þ2 þ
L2

1 − w2
ds2AdS4 : ð3:27Þ

Notice that the same result can be achieved by performing
the change of coordinates

w ¼ tanh y ð3:28Þ

in the standard unit-radius AdS5 metric written in Poincaré
slicing

FIG. 3. The domain of integration is depicted in red. We can
swap the order of the integrals by adjusting the extremes of
integration.
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ds2AdS5 ¼ dy2 þ cosh2yds2AdS4 : ð3:29Þ

The FG change of coordinates (2.6) for the metric (3.27)
becomes

ξ ¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
; η ¼ zw; ð3:30Þ

and, by setting ξ ¼ δ, they induce a cutoff w� given by

w� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

δ2

z2

s
: ð3:31Þ

The value of zmin is defined as

zmin ¼ min

�
δffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p

�
¼ δ: ð3:32Þ

The extremal volume at t ¼ 0 for the AdS5 vacuum
solution reads

VAdS5 ¼ 2L4V2

Z
zIR

δ

dz
z3

Z ffiffiffiffiffiffiffi
1−δ2

z2

q
0

dw

ð1 − w2Þ5=2

¼ 2L4V2

�
1

3

zIR
δ3

−
1

2

1

zIRδ

�
þOðδÞ: ð3:33Þ

4. Total result

Once we subtract the volume for the empty AdS5 space
to Eq. (3.25), we obtain the complexity of formation of the
Janus AdS5 solution as

ΔCAdS5ðγÞ ¼
V2L3

Gδ2

�
γAðγÞ
2

−
ffiffiffi
γ

p þ 1

2
ffiffiffi
γ

p
�

−
V2L3

2Gz2IR

�
γ2BðγÞ − ffiffiffi

γ
p

−
2

3
γ3=2

�
þOðδÞ:

ð3:34Þ

This result shows that the contribution to the complexity
intrinsic to the interface amounts to a power-law divergence
δ−2 and to a finite part, which vanishes in the limit
zIR → ∞. We will comment on this structure with further
details after having studied the complexity of formation
with the double cutoff regularization scheme.

C. Extremal volume: Double cutoff procedure

We employ the double cutoff prescription to regularize
the UV divergences of the extremal volume. Since we
introduce two different regulators for the z andw directions,
the integrations are not nested. We select the UV cutoff
along the z direction to be z ¼ δ, whereas to determine a
cutoff in the w variable we use

hðw�Þ ¼
1

ε2
; ð3:35Þ

according to Eq. (3.5).

1. Computation of the volume

The extremal volume at vanishing boundary time is
determined by

V ¼ 2L4V2ffiffiffi
γ

p
Z

zIR

δ

dz
z3

Z
wþðεÞ

0

hðwÞ52dw: ð3:36Þ

Changing variables into τ ¼ hðwÞ=γ and performing the
integration over z, we obtain

V ¼ γ2L4V2

2δ2

�
1

2δ2
−

1

2z2IR

�Z
1

γε2

1

dττ5=2fðτÞ: ð3:37Þ

The last integration in τ is carried out using the same
method described in Sec. III B. Thus, the extremal volume
in the double cutoff regularization scheme reads

V ¼ L4V2

2

�
1

δ2
−

1

z2IR

��
2

3ε3
þ 1

ε
þ γ2BðγÞ

−
ffiffiffi
γ

p
−
2

3
γ3=2

�
þOðεÞ: ð3:38Þ

2. Subtraction of vacuum AdS5

With this other regularization, the cutoff along the w
coordinate is determined as

hðw�Þ ¼ 1

1 − ðw�Þ2 ¼
1

ε2
⇒ w� ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ε2

p
: ð3:39Þ

Thus, the extremal volume for the undeformed case is

VAdS5 ¼ 2L4V2

Z
∞

δ

dz
z3

Z ffiffiffiffiffiffiffi
1−ε2

p

0

dw

ð1 − w2Þ5=2

¼ L4V2

δ2

�
1

3ε3
þ 1

2ε

�
þOðεÞ: ð3:40Þ

3. Total result

After subtracting the vacuum solution from the extremal
volume (3.38) in the presence of the defect, we get the
complexity of formation

ΔCAdS5 ¼
V2L3

2G

�
γ2BðγÞ − ffiffiffi

γ
p

−
2

3
γ3=2

��
1

δ2
−

1

z2IR

�
:

ð3:41Þ

Comparing this result with Eq. (3.34), we notice that the
coefficient of the divergent part is different, while the finite
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terms match. This suggests that the universal information
encoded by the complexity of formation is associated to the
finite part, since a change of the energy scale does not affect
it. We should also emphasize that the finite part is inversely
proportional to the IR regulator, and then in the smooth
limit zIR → ∞ the corresponding expression vanishes.
Therefore, no universal information is encoded in the
complexity of formation for the entire Janus AdS5 geom-
etry, except that divergences scale as δ−2.

IV. VOLUME SUBREGION FOR THE
JANUS AdS5 GEOMETRY

In this section we move to the case of subregion
complexity to analyze if additional divergences (e.g.,
logarithms in the UV cutoff) arise in the computation of
the extremal volume. If further types of divergences occur,
we can get additional insights into the structure of universal
terms in the complexity of formation.
In the CV case, subregion complexity is computed as the

volume of a maximal codimension-one bulk surface
enclosed by the boundary subregion and the corresponding
Hubeny-Rangamani-Takayanagi surface [71]. In the CA
case, it is computed as the gravitational action in the
intersection region between the WDW patch and the
entanglement wedge built from the boundary subregion
[32]. Subregion complexity has been investigated for
asymptotically AdS3 spacetime, where it was found that
the volume depends only on topological quantities but not
on the temperature of the black hole [72]. Contrarily, the
action for a generic segment on the boundary of the
Banados-Teitelboim-Zanelli (BTZ) black hole is not topo-
logical, but is directly related to the corresponding entan-
glement entropy. This structure is spoiled when a larger
number of intervals on the boundary is considered [73].
From the field theory point of view, subregion complexity

is believed to be dual either to fidelity, complexity of
purification, or basis complexity [71,74,75].

A. Ball-shaped subregion on the boundary

Following ideas similar to the ones used to investigate
entanglement entropy in [67,68], a particularly convenient
scenario in which to study the subregion complexity,
corresponds to a ball-shaped region of radius R centered
on the interface, see Fig. 4. It is possible to show that the RT
surface corresponding to such subsystem reads

z2 þ r2 ¼ R2; ð4:1Þ

where this equation is written in terms of the metric (2.7)
with the two-dimensional subspace parametrized with polar
coordinates

dx⃗2 ¼ dr2 þ r2dθ2: ð4:2Þ

Remarkably, the spacelike RT surface in Eq. (4.1) is the
same found in empty AdS5 space. In fact, it can be shown
that it also corresponds to a global minimum of the area
functional in the Janus AdS5 geometry.
The RT surface delimits the region where the extremal

codimension-one Cauchy slice, that computes the extremal
volume, extends. Thus, the integration domain of the
volume will be modified and will not reach z ¼ zIR, as
it happens instead in the full Janus AdS5 case. Now, we
need to evaluate

VsubðR; γÞ ¼
2L4ffiffiffi
γ

p
Z

2π

0

dθ
Z

zmax

zmin

dz
z3

Z ffiffiffiffiffiffiffiffiffi
R2−z2

p

0

dr r

×
Z

wþ

0

dwh
5
2ðwÞ; ð4:3Þ

FIG. 4. Time slice of the Janus AdS5 spacetime with a ball-shaped subregion centered on the interface. The Ryu-Takayanagi surface is
represented by the spherical dome while the blue line represents the interface located at x⊥ ¼ 0.
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where we put a factor of two for symmetry reasons in the w
integration. The integral along the angular direction is
trivial, while the one along the radial direction of the polar
coordinates gives an additional factor that will modify the
last integration along z. It is straightforward to find

VsubðR; γÞ ¼
2πL4ffiffiffi

γ
p

Z
R

zmin

dz
R2 − z2

z3

Z
wþ

0

dwh
5
2ðwÞ: ð4:4Þ

Notice that the maximum value that can be reached by z
is R. Otherwise, the square root defining the maximum of
the radial coordinate r would be imaginary. The minimum
of z is determined in the same way as for the total volume,
according to Eq. (3.10) for the single cutoff prescription,
whereas for the double cutoff regularization corresponds
to zmin ¼ δ.

B. Extremal volume: Single cutoff procedure

We start by computing the extremal volume for the ball-
shaped region in the Janus AdS5 geometry using the single
cutoff method. Once more it is useful to change variables in

τ ¼ hðwÞ
γ

; ζ ¼ z2

γδ2
; ð4:5Þ

so that the integral in Eq. (4.4) becomes

VsubðR; γÞ ¼ πL4γ2
Z R2

γδ2

1

dζ
R2 − γδ2ζ

2γδ2ζ2

Z
ζ

1

dτ τ5=2fðτÞ:

ð4:6Þ
As explained in Eq. (3.18) for the total Janus AdS5 space,
we can swap the integrals in ζ and τ being mindful to
perform the suitable changes in the extremes of integration,
getting

VsubðR; γÞ ¼ πL4γ2
Z R2

γδ2

1

dτ τ5=2fðτÞ
Z R2

γδ2

τ
dζ

R2 − γδ2ζ

2γδ2ζ2
:

ð4:7Þ
Now, it is possible to evaluate first the integral in the ζ
variable as

Z R2

γδ2

τ
dζ

R2 − γδ2ζ

2γδ2ζ2
¼ 1

2

�
2 log

� ffiffiffi
γ

p
δ

R

�
− 1þ R2

γδ2τ
þ log τ

�
:

ð4:8Þ

Concerning the integration over τ, we have to compute
three different kinds of integrals. The first one can be
evaluated following the same steps as in Sec. III BZ R2

γδ2

1

dτ τ5=2fðτÞ ¼ BðγÞ þ
Z R2

γδ2

1

� ffiffiffi
τ

γ

r
þ 1

2γ3=2
ffiffiffi
τ

p
�

¼ BðγÞ þ 2R3

3γ2δ3
þ R
2γδ2

−
1

γ3=2
−

2

3
ffiffiffi
γ

p ;

ð4:9Þ
where BðγÞ is defined in Eq. (3.22) and we have taken the
δ → 0 limit.
The second integral in τ is given by

Z R2

γδ2

1

dτ τ3=2fðτÞ ¼ AðγÞ þ
Z R2

γδ2

1

�
1ffiffiffiffiffi
γτ

p þ 1

2γ3=2τ3=2

�

¼ AðγÞ þ 2R
γδ

þ 1

γ3=2
−

2ffiffiffi
γ

p −
δ

γR
: ð4:10Þ

Here, AðγÞ is defined as in Eq. (3.21). Since the result of
the integral has to be multiplied by a factor of R2=ðγδ2Þ
coming from the ζ integration, it is crucial to expand the
above expression up to order δ to keep track of all the
possible divergences.
The last type of integral in τ isZ R2

γδ2

1

dτ τ5=2 log τ fðτÞ

¼ CðγÞ þ
Z R2

γδ2

1

�
log τ

ffiffiffi
τ

pffiffiffi
γ

p þ log τ

2γ3=2
ffiffiffi
τ

p
�

¼ CðγÞ − log

� ffiffiffi
γ

p
δ

R

��
4R3

3γ2δ3
þ 2R
γ2δ

�

−
4R3

9γ2δ3
−
2R
γ2δ

þ 2

γ3=2
þ 4

9
ffiffiffi
γ

p ; ð4:11Þ

where we define

CðγÞ ¼
Z

∞

1

dτ τ5=2 log τ

�
fðτÞ − 1ffiffiffi

γ
p

τ2
−

1

2γ3=2τ3

�
: ð4:12Þ

This function can be evaluated numerically and it is
analytic in all the range 3=4 ≤ γ ≤ 1. Nevertheless, we
will keep it implicit in the following manipulations.
Combining together all the terms, we get the extremal

subregion volume

VsubðR; γÞ ¼
4πL4

9

R3

δ3
þ πL4

R2

δ2

�
γAðγÞ
2

−
ffiffiffi
γ

p þ 1

2
ffiffiffi
γ

p
�
− 2πL4

R
δ

þ πL4 log

� ffiffiffi
γ

p
δ

R

��
γ2BðγÞ − ffiffiffi

γ
p

−
2

3
γ3=2

�
þ πL4

2

�
γ2CðγÞ − γ2BðγÞ þ 3

ffiffiffi
γ

p þ 10

9
γ3=2

�
: ð4:13Þ
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1. Subtraction of the vacuum AdS solution

Now, we can perform the subtraction of the AdS vacuum
solution, which corresponds to set γ ¼ w0 ¼ 1. The volume
reads

VsubðR; γ ¼ 1Þ ¼ 2π L4

Z
R

δ
dz

R2 − z2

z3

Z ffiffiffiffiffiffiffi
1−δ2

z2

q
0

dw

ð1 − w2Þ52

¼ 4πL4

9

R3

δ3
− 2πL4

R
δ
þ 2π2L4

3
þOðδÞ:

ð4:14Þ

2. Total result

Subtracting the undeformed AdS5 solution to the
extremal volume obtained in Eq. (4.13), we find that the
subregion complexity of formation is given by

ΔCsubðR;γÞ¼
πL3

G
R2

δ2

�
γAðγÞ
2

−
ffiffiffi
γ

p þ 1

2
ffiffiffi
γ

p
�

þπL3

G
log

� ffiffiffi
γ

p
δ

R

��
γ2BðγÞ− ffiffiffi

γ
p

−
2

3
γ3=2

�

þπL3

2G

�
γ2CðγÞ−γ2BðγÞþ3

ffiffiffi
γ

p þ10

9
γ3=2−

4π

3

�
:

ð4:15Þ

A comment on the limit R → ∞ is in order. This limit
corresponds to the case where the subregion covers the
entire boundary, and should therefore map to the result for
the total volume computed in Eq. (3.34). In order to verify
that this is the case, we notice that in polar coordinates
the two-dimensional volume along the spatial directions
x⃗ ¼ ðr; θÞ is

V2 ¼ πR2; ð4:16Þ

which becomes infinite in the limit R → ∞. For this reason,
when comparing the two quantities we should check that

ΔV
V2

¼ lim
R→∞

ΔVsub

πR2
: ð4:17Þ

The limit in the rhs of Eq. (4.17) suppresses logarithmic
and finite terms, and allows us only to compare the
divergent parts which are proportional to the volume of
the subregion. Employing Eq. (4.17), we immediately
recognize that the terms proportional to δ−2 in Eqs. (3.34)
and (4.15) exactly match. In conclusion, the difference
between the total and the subregion case for the
complexity ¼ volume conjecture involving the Janus
deformation of AdS5 spacetime, amounts to the presence
of an additional finite term and a logarithmic divergence.

C. Extremal volume: Double cutoff procedure

We evaluate the volume in Eq. (4.4) using the double
cutoff regularization scheme, which consists in setting
zmin ¼ δ. The integral along the z variable reads

Z
R

δ
dz

R2 − z2

z3
¼ R2

2δ2
þ log

�
δ

R

�
−
1

2
: ð4:18Þ

After the change of variables τ ¼ γ−1hðwÞ, the volume
becomes

VsubðR; γÞ ¼ πL4γ2
�
R2

2δ2
þ log

�
δ

R

�
−
1

2

�Z
1

γε2

1

dτ τ5=2fðτÞ

¼ πL4

�
R2

2δ2
þ log

�
δ

R

�
−
1

2

�

×

�
γ2BðγÞ þ 2

3ε3
þ 1

ε
−

ffiffiffi
γ

p
−
2

3
γ3=2

�
þOðεÞ:

ð4:19Þ

1. Subtraction of the vacuum AdS solution

The corresponding volume in the empty AdS geometry
is easily obtained by considering

VsubðR;0Þ¼2πL4

Z
R

δ
dz

R2−z2

z3

Z ffiffiffiffiffiffiffi
1−ε2

p

0

dw

ð1−w2Þ5=2

¼2πL4

�
R2

2δ2
þ log

�
δ

R

�
−
1

2

��
1

3ε3
þ 1

2ε

�
þOðεÞ:

ð4:20Þ
2. Total result

After subtracting the vacuum solution from Eq. (4.19),
we get the complexity of formation in the double cutoff
regularization scheme

ΔCsubðR; γÞ ¼
πL3

G

�
R2

2δ2
þ log

�
δ

R

�
−
1

2

�

×

�
γ2BðγÞ − ffiffiffi

γ
p

−
2

3
γ3=2

�
þOðεÞ: ð4:21Þ

It can be easily checked that in the R → ∞ limit, one finds

lim
R→∞

V2L4

πR2
ΔCsubðR; γÞ ¼

V2

2Gδ2

�
γ2BðγÞ − ffiffiffi

γ
p

−
2

3
γ3=2

�
;

ð4:22Þ

which matches the δ−2 divergent part in Eq. (3.41).
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V. CONCLUSIONS

We computed the holographic complexity of formation
for the Janus deformation of AdS5 spacetime with respect
to vacuum space both for the entire boundary and for the
case of a symmetric ball-shaped subregion located sym-
metrically around the interface. We employed two different
prescriptions to regularize the extremal volume, i.e., the
single and double cutoff methods. The coefficients of the
UV divergences are collected in Table I, expressed in terms
of the following functions

F ðγÞ≡γAðγÞ
2

−
ffiffiffi
γ

p þ 1

2
ffiffiffi
γ

p ; GðγÞ≡γ2BðγÞ
2

−
ffiffiffi
γ

p
2
−
1

3
γ3=2:

ð5:1Þ

These functions are depicted in Fig. 5, while the functions
AðγÞ, BðγÞ were defined in Eqs. (3.21) and (3.22).
First of all, we notice that the structure of divergences

differs between the entire boundary case and the subregion
setting. The former is characterized by a power-law
divergence δ−2, which is consistent with the result com-
puted in [56] for a BCFT. The subregion complexity, on the
other hand, has a richer structure, where an additional
logarithmic divergence and a nonvanishing finite terms
appears. A similar difference is also present in the
complexity ¼ action computation involving the (2þ 1)-
dimensional vacuumAdS or BTZ black hole solutions [73].
Comparing the entries in Table I, the only result

independent of the regularization scheme is the coefficient
of the logarithmic divergences in the subregion case.5 In
addition, the finite term in the total volume case also
matches between single and double cutoff prescriptions,
see Eqs. (3.34) and (3.41), but it vanishes once we take the
limit zIR → ∞ for the IR regulator. This behavior suggests
that similarly to the entanglement entropy computation,
universal properties about complexity are encoded by
logarithmic or finite terms since they are invariant under
rescalings of the UV cutoff. When both terms are present,
only the coefficient of the logarithm is universal. In fact, a
transformation of the UV cutoff in the logarithm amounts to
an additional finite part, which then becomes ambiguous.

Such remark is also consistent with the three-dimensional
case considered in [58], where the complexity of formation
was composed by a logarithmic divergence and a finite
term in the Janus AdS3 and in the static Janus BTZ
backgrounds. In both cases, distinct regularizations differ
by the finite part, but lead to the same coefficient of the
logarithmic divergence.
In relation to the three-dimensional case, it is also

interesting to compare the dependence of the universal
coefficients of the complexity of formation from the
deformation parameter. For convenience, we report the
logarithmically divergent part of the complexity of for-
mation [58]

ΔC3dsubðl; γ0Þ ¼ −
L
G
ηðγ0Þ log

�
2δ

l

�
þ finite; ð5:2Þ

where the function ηðγ0Þ is depicted in Fig. 6. The
computation refers to the subregion volume for a segment
of length l located symmetrically at the boundary.

TABLE I. Coefficients of the divergences entering the com-
plexity of formation for the non-SUSY Janus AdS5 geometry.
They can be read from Eqs. (3.34), (3.41), (4.15), and (4.21).

Complexity of formation Single cutoff Double cutoff

Entire boundary L3

G
V2

δ2
F ðγÞ L3

G
V2

δ2
GðγÞ

Subregion: δ−2 term L3

G
πR2

δ2
F ðγÞ L3

G
πR2

δ2
GðγÞ

Subregion: log δ term 2πL3

G logðδRÞGðγÞ 2πL3

G logðδRÞGðγÞ

FIG. 5. Numerical plot of the functions F ðγÞ and GðγÞ defined
in Eq. (5.1). Both functions vanish in the limit γ → 1.

FIG. 6. Plot of ηðγÞ as defined in Eq. (5.2), which is the
coefficient of the logarithmic divergence due to the defect in the
complexity of formation of the Janus AdS3 geometry.

5Notice that the results for the logarithmic terms in Eqs. (4.15)
and (4.21) only differ by πL3

G log γ, which however is a finite part.

BAIGUERA, BONANSEA, and TOCCACELO PHYS. REV. D 104, 086030 (2021)

086030-12



We compare the function ηðγ0Þ describing the universal
part of the three-dimensional complexity of formation with
the functions F ðγÞ, GðγÞ obtained in the five-dimensional
case. First of all, it is important to notice that the
three-dimensional deformation parameter ranges over
γ0 ∈ ½0; 1ffiffi

2
p �, where γ0 ¼ 0 corresponds to empty AdS space

(analog to γ ¼ 1 in five dimensions), and γ0 ¼ 1ffiffi
2

p is the

maximal deformation (analog to γ ¼ 3
4
in five dimensions).

Given this dictionary, we notice that both in three and five
dimensions the universal coefficients vanish in the empty
AdS case, and diverge when the dilatonic deformation is
increased. While the sign of the functions in three and five
dimensions is different, we observe that both of them
have a monotonic behavior. This could suggest a relation
with irreversibility properties of the RG flows similar to the
g-theorem for the entanglement entropy, which measures
the number of degrees of freedom localized on the defect
[76]. We leave the investigation of such properties for
future works.
There are some other natural developments of this work

that we aim to investigate. A classification of the UV
divergences for the complexity ¼ action conjecture in the
Janus AdS5 background would shed more light on the
persistency of universality encoded by the logarithmic or
finite terms in the volume case. Moreover, this will allow us
to compare the UV divergences between the volume and
the action cases in a higher-dimensional defect geometry, as
was accomplished in [56] for a BCFT. Similarly to their
approach, a computation on the field theory side would
guide us towards a deeper understanding of the properties
of complexity in the presence of an interface. One can
perform this investigation using the path integral approach
[30], or by studying the geometry that arise in a dual CFT
where some of its symmetries are broken, generalizing the
method used in [29] to the case of interfaces. The
computation for the extremal volume can also be pursued
for the higher dimensional generalizations of the time-
dependent Janus BTZ black hole proposed in [77].
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APPENDIX: WEIERSTRASS ℘ FUNCTION

The Weierstrass ℘ is an elliptic function of order two
defined by the series

℘ðz;ω1;ω2Þ ¼
1

z2
þ

X
ðm;nÞ≠ð0;0Þ

�
1

ðz − 2mω1 − 2nω2Þ2

−
1

ð2mω1 þ 2nω2Þ2
�
; ðA1Þ

which is doubly periodic in the complex plane with half-
periods ω1, ω2. It is a meromorphic and even function of z
with double poles at the lattice point defined by its periods.
One can alternatively define the elliptic ℘-function in terms
of its invariants g2, g3, which can be computed as Eisenstein
series involving the half-periods ω1, ω2. However, in this
case it is simpler to define the ℘-function as the solution to
the differential equation

ð∂z℘Þ2 ¼ 4℘3 − g2℘ − g3: ðA2Þ

We also define the Weierstrass ζ and σ-functions as

℘ðzÞ ¼ −ζ0ðzÞ; ζðzÞ ¼ σ0ðzÞ
σðzÞ : ðA3Þ
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