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Abstract We consider threshold resummation of rapid-
ity distributions, for which various approaches exist in the
literature. Recently, a work by Lustermans, Michel, Tack-
mann suggested that older approaches by Becher, Neubert,
Xu (BNX) and Bonvini, Forte, Ridolfi (BFR) were wrong
because they miss some leading power contributions at
threshold. In this work, we prove and demonstrate that the
BNX and BFR approaches are correct and able to resum
threshold logarithms to leading power accuracy. We then
show that the BNX and BFR approaches can provide rather
good alternatives to more modern approaches to threshold
resummation of rapidity distributions, provided the threshold
logarithms are resummed according to the ψ-soft definition
introduced in the context of Higgs production.
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1 Introduction

The study of hadron–hadron collisions plays a fundamental
role in the understanding of the Standard Model of particle
physics and in the searches for new physics signals beyond
it. Precision is the keyword to fully exploit the potential of
hadron–hadron collider machines such as the Large Hadron
Collider (LHC). Precision must be achieved both at the exper-
imental level and in theoretical predictions. The latter are the
subject of this paper.

Quantum Chromodynamics (QCD) is the main player
in the theoretical description of hadron–hadron collisions.
Physical observables at high energy are computed through
perturbation theory. However, in some cases, fixed-order per-
turbative predictions are not accurate enough. Indeed, per-
turbative computations may depend on some logarithms of
kinematic origin, and in some kinematic regions these loga-
rithms can be large and enhanced at every order, thus spoiling
the perturbative result. In such cases, the all-order resumma-
tion of these logarithmic contributions is needed to stabilise
the perturbative result. It is worth noting that, in some inter-
mediate regions, the same logarithms may be small enough
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to behave perturbatively but still large enough to be the dom-
inant contribution to the cross section. In such cases, the
resummation of these contributions is not strictly necessary,
but it helps improving the accuracy of the theoretical predic-
tion.

In this work we consider the threshold region, usually
defined by the limit in which the invariant mass of the tagged
final state is close to the centre-of-mass energy of the initial
state. In this limit, most of the available energy flows into
the considered final state, so that any extra radiation has to
be soft. It is this soft radiation that produces the threshold
logarithms whose resummation is the subject of this paper.

The resummation in the threshold limit is widely discussed
in the literature, for a large variety of processes. The case of
the Drell–Yan (DY) pair production is particularly interesting
since it is one of the cleanest processes that can be studied not
only to test the Standard Model to a high accuracy, but also to
probe physics beyond the Standard Model. It has been studied
very carefully in perturbative QCD both for inclusive and
differential distributions, such as the rapidity distributions
which are considered in this work. At present, fixed-order
perturbative predictions in QCD for the cross section and
rapidity distribution of this process are available up to next-
to-next-to-next-leading order (N3LO) [1–4].

Currently, threshold resummation is well established for
inclusive cross sections [5–10], while for rapidity distribu-
tions there are various approaches considered in the liter-
ature [11–14] that differ substantially in the way they are
constructed. In particular, the most recent one [14], which
extends the resummation to a wider kinematic region, crit-
icises the validity of the first two approaches [11,12], stat-
ing that they miss leading contributions. It is our purpose to
analyse this criticism, and show that while the approaches
of Refs. [11,12] are certainly less powerful than the one of
Ref. [14], they are perfectly consistent within their region
of validity and they do not miss any leading contribution at
threshold.

It is worth noting that the approach of Ref. [13] has been
recently extended to resum also next-to-leading power con-
tributions at threshold [15], thereby improving the quality of
the result and extending the region of validity of the resumma-
tion. These next-to-leading power contributions are already
contained in the approach of Ref. [14], which however has
not been used to produce all-order results yet.

The structure of this paper is the following. We give an
overview of the state of the art in Sect. 2, also establishing our
notation. We then focus on the approaches of Refs. [11,12]
and prove that they are correct within their declared accuracy
in Sect. 3, discussing all the criticisms raised in Ref. [14]. We
assess the quality of these two approaches in Sect. 4, and com-
pare them numerically with the approaches of Refs. [13–15]
in Sect. 5. We then present representative resummed results
in Sect. 6. We conclude in Sect. 7.

2 Threshold resummation of Drell–Yan rapidity
distributions

We focus on the Drell–Yan process, namely the production
of a lepton–antilepton pair in hadron–hadron collisions. We
denote by Q2 the invariant mass squared of the pair, and
by s the collider centre-of-mass energy. We introduce the
variables

τ = Q2

s
, z = Q2

ŝ
, (2.1)

where ŝ = x1x2s is the partonic centre-of-mass energy,
namely the energy of the subsystem identified by the two
partons coming from each hadron, and x1,2 are the partons
momentum fractions. According to the QCD factorization
theorem, the Drell–Yan cross section differential in invariant
mass squared Q2 and rapidity Y of the pair can be expressed
as

d2σ

dQ2 dY
= τσ0

∑

i, j

∫ 1

τ

dz

z

∫ 1

0
du Li j (z, u) Ci j (z, u, αs)

(2.2)

where σ0 is the Born term (given e.g. in Ref. [16]),
Ci j (z, u, αs) are the partonic coefficient functions com-
putable in perturbation theory and Li j (z, u) are non-
perturbative parton luminosities. We use the variable u in
place of the more common parton-level rapidity y (namely
the rapidity of the pair defined in the partonic centre-of-mass
system) for later convenience. The two are related by the
equations

u = e−2y − z

(1 − z)(1 + e−2y)
, e2y = 1 − (1 − z)u

z + (1 − z)u
, (2.3)

which show that the variable u ranges from 0 to 1, as a con-
sequence of the physical constraint ze2|y| ≤ 1. The parton
luminosities are defined as the product of two parton distri-
bution functions

Li j (z, u) = ci j fi
(
x1, μ

2
F

)
f j

(
x2, μ

2
F

)
(2.4)

where the coefficients ci j depend on the vector boson medi-
ating the production of the pair (see e.g. Ref. [16] for a gen-
eral definition) and the momentum fractions x1,2 are given
in terms of z, u, τ and Y by

x1 =
√

τ

z
eY−y =

√
τ

z
eY

√
z + (1 − z)u

1 − (1 − z)u
, (2.5a)

x2 =
√

τ

z
ey−Y =

√
τ

z
e−Y

√
1 − (1 − z)u

z + (1 − z)u
. (2.5b)
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The physical constraint x1,2 ≤ 1 restricts the actual integra-
tion range of u, giving effectively

max

[
0,

τe−2Y − z2

(1 − z)(τe−2Y + z)

]
≤ u

≤ min

[
1,

z(1 − τe2Y )

(1 − z)(τe2Y + z)

]
. (2.6)

For a lighter notation, we are omitting the explicit depen-
dence on Y , τ and on the factorization scale μF of the lumi-
nosity, which is always implicitly understood. Similarly, we
are not showing the dependence on the factorization and
renormalization scales of the partonic coefficient function,
as their dependence is not central in our discussion.

2.1 The threshold limit(s)

We now consider the threshold limit. As already mentioned in
the introduction, this is the limit in which the available energy
is just enough to produce the tagged final state. Namely,
Drell–Yan is at threshold when the collider energy

√
s is

close to the invariant mass Q of the lepton pair, or in terms
of the variables defined in Eq. (2.1) when τ → 1 (from below,
as τ has to be smaller than 1 by definition). This limit, called
henceforth the hadronic threshold limit, is not very interest-
ing phenomenologically because the cross section is small
(at τ = 1 it becomes identically zero).

A more interesting limit is the so-called partonic thresh-
old limit, where it is the parton level centre-of-mass energy√
ŝ which is close to Q, namely z → 1. In the cross sec-

tion formula Eq. (2.2), the variable z is integrated over in the
range τ ≤ z ≤ 1. Consequently, if τ is close to 1 then also z
is forced to be close to 1, namely hadronic threshold implies
partonic threshold. However, the converse is not true: even
far from hadronic threshold (which is the phenomenolog-
ically interesting region for Drell–Yan) contributions from
the partonic threshold region z → 1 are always present, as
the integral always extends to z = 1. Most importantly, the
partonic threshold region often dominates the integral, due
to the shape of the PDFs that act as a weight favouring large
values of z even when τ is small. This phenomenon is some-
times called dynamical threshold enhancement [11], and it
has been quantified through a saddle point argument in Mellin
space [12,17] both in the context of Drell–Yan and of Higgs
production.

The partonic threshold region is relevant also because the
threshold logarithms mentioned in the introduction appear in
the perturbative computations as logarithms in the variable
z. More specifically, the partonic coefficient function in the
qq̄ channel develops contributions of the form (the + suffix
denotes the usual plus distribution)

αn
s

(
logk(1 − z)

1 − z

)

+
, 0 ≤ k < 2n, (2.7)

at order n in the strong coupling αs . Because the highest
power of the logarithm grows with the order, with two extra
power for each extra order, the coefficient function is said to
be affected by a double logarithmic enhancement. Clearly, in
the partonic threshold limit, these enhanced logarithms spoil
the reliability of a fixed-order computation and need to be
resummed to all orders.

On top of these singular contributions in the z variables
there are other plus distributions and Dirac delta terms in
the variable u, that are singular in u = 0 or u = 1. These
contributions are not directly related to the threshold region,
but they play a role in the accurate description of the parton-
level coefficient function at the partonic rapidity endpoints.
We will come back to this point later in this section.

Because threshold logarithms appear only in the qq̄ chan-
nel,1 from now on we consider only its contribution to the
cross section. We write the qq̄ contribution to Eq. (2.2) as

d2σqq̄

dQ2 dY
= τσ0

∫ 1

τ

dz

z

∫ 1

0
du Lqq̄(z, u) C(z, u, αs)

(2.8)

in terms of the “total” qq̄ luminosity defined by

Lqq̄(z, u) =
∑

q

cqq̄ fq
(
x1, μ

2
F

)
fq̄

(
x2, μ

2
F

)
(2.9)

and where we have removed the subscript qq̄ from the coef-
ficient function C(z, u, αs) to keep the notation light.

As long as rapidity-integrated distributions are concerned
(e.g. the invariant mass distribution or the total cross section)
the definition of the threshold logarithm Eq. (2.7) is unique.
However, when considering rapidity distributions, it is pos-
sible to distinguish between the logarithms originating from
each incoming quark. To do so, it is more convenient to use
a different set of variables: in place of z, u (or z, y) one can
use za, zb related to the former by

za = √
zey = √

z

√
1 − (1 − z)u

z + (1 − z)u
, (2.10a)

zb = √
ze−y = √

z

√
z + (1 − z)u

1 − (1 − z)u
, (2.10b)

which in turn gives z = zazb. Each of these variables is
related to each incoming parton. In particular, the momentum
fractions x1,2 defined in Eq. (2.5) are given by

x1 = xa
za

, xa = √
τeY , (2.11a)

x2 = xb
zb

, xb = √
τe−Y , (2.11b)

1 Contributions from other channels are suppressed by at least one
power of 1 − z with respect to the threshold logarithms Eq. (2.7).
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with xaxb = τ . In terms of these variables Eq. (2.8) takes the
form of a double Mellin convolution,

d2σqq̄

dQ2 dY
= τσ0

∫ 1

xa

dza
za

∫ 1

xb

dzb
zb

C̃ (za, zb, αs)

×
∑

q

cqq̄ fq

(
xa
za

, μ2
F

)
fq̄

(
xb
zb

, μ2
F

)
, (2.12)

where

C̃ (za, zb, αs) = dz du

dza dzb
C (z(za, zb), u(za, zb), αs) .

(2.13)

The coefficient function in terms of these variables contains
double logarithms of the form Eq. (2.7) but in the variables
za and zb separately:

αn
s

(
logk(1 − za)

1 − za

)

+
and αn

s

(
logk(1 − zb)

1 − zb

)

+
,

0 ≤ k < 2n. (2.14)

These are related to the threshold logarithms in the variable
z, but the conversion is not straightforward, as it involves also
the u dependence (see Ref. [14] for more detail). For com-
pleteness, we report in Appendix A.1 the NLO contribution
to the coefficient function, written with the two choices of
sets of variables.

When using these parton-specific variables, there are two
regions that generate large logarithms: za → 1 and zb → 1.
The threshold region discussed before, z → 1, coincides
with the overlap of the two regions za → 1 and zb → 1,
because of the relation z = zazb. However, if just one of
these two variables is large, say za → 1, and the other is
not large, zb � 1, then the variable z is also not large and
so the threshold logarithms Eq. (2.7) are harmless, but there
are large logarithms in the coefficient functions (those from
za) which may spoil perturbativity. This mechanism can be
understood in terms of the z, u variables noting that there are
other large contributions in the coefficient function coming
from the u dependence, and in particular at the edge of the
range of definition of u. Indeed, it is immediate to see from
Eq. (2.10) that za → 1 corresponds to u → 0, and zb → 1
corresponds to u → 1. These singular contributions from the
u dependence are enhanced at the partonic rapidity endpoints,
as one can see from Eq. (2.3), and are therefore relevant to
describe the tails of the rapidity distribution.

These considerations show that there is a region, larger
than the partonic threshold region previously defined, where
logarithms of the form Eq. (2.14) may become large, possibly
spoiling the reliability of the perturbative result. Adopting a
notation introduced in Ref. [14], we may call it generalized
partonic threshold region. We can see this as the partonic ver-
sion of the generalized hadronic threshold region of Ref. [14],

identified by the condition τe2|Y | → 1 (or equivalently either
xa or xb close to 1, depending on the sign of Y ), which corre-
sponds to the tails of the rapidity distribution irrespectively
of the value of τ . In other words, it corresponds to the region
in which the production of the Drell–Yan pair is at threshold
at a given value of the rapidity Y . In this region, either za or
zb is forced to be large, but the other variable can take any
accessible value. Therefore, the generalized hadronic thresh-
old limit implies the generalized partonic threshold limit. It
is worth noting that in the stronger hadronic threshold limit
τ → 1, both za and zb are forced to be large, and therefore
this generalized partonic threshold region coincides with the
partonic threshold region z → 1.

2.2 Threshold resummation

Large logarithms in the coefficient function need to be
resummed in order to obtain reliable predictions. In the liter-
ature there exist at least two families of approaches: one aim-
ing at resumming the logarithms in the variable z, Eq. (2.7),
and one aiming at resumming the logarithms in the variables
za and zb, Eq. (2.14). As we stressed already, the second
family is more powerful as it resums more terms than what
is resummed in the first family, making the resummed result
useful in a wider kinematic range.

To our knowledge, there exist four approaches to resum
threshold logarithms in rapidity distribution for the Drell–
Yan process. We present them in chronological order of
appearance.

• The approach of Becher, Neubert, Xu (BNX henceforth)
[11], belonging to the first family. It is based on the
observation that the u dependence in the PDF luminosity
Eq. (2.9) is next-to-leading power at large z, Eq. (2.5),
which allows to write the leading power contribution
in terms of the rapidity-integrated coefficient function,
whose resummation is well known.2

• The approach of Bonvini, Forte, Ridolfi (BFR hence-
forth) [12], belonging to the first family. It is similar to
the BNX approach, but the derivation is based on a differ-
ent argument in Mellin–Fourier space [18], and extends
the older result of Ref. [19]. The resulting resummation
formula differs from BNX, but it has been shown to be
equivalent up to next-to-next-to-leading power in 1 − z.

• The approach of Banerjee, Das, Dhani, Ravindran (BDDR
henceforth) [13] (see also [20]), belonging to the sec-
ond family. This is a two-scale extension of the origi-
nal approaches to rapidity-integrated resummation [5,6],
already introduced for xF distributions in Ref. [5] and

2 In particular, BNX use SCET to compute the resummed coefficient
function, but different choices are possible without affecting the struc-
ture of the resummed formula for the rapidity distributions.
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later converted to rapidity distributions in Refs. [21–25],
where a double Mellin transform is taken with respect to
the two variables za and zb and logarithms of the product
of the two Mellin conjugate variables are resummed to
all orders.

• The approach of Lustermans, Michel, Tackmann (LMT
henceforth) [14], belonging to the second family. It uses
the framework of soft-collinear effective theory to fac-
torise the cross section in terms of beam functions and
a soft function, enabling the resummation of threshold
logarithms after solving renormalization group equations
that they obey. It is designed to be valid in the general-
ized threshold region, thus enlarging its kinematic range
of applicability.

We stress that the BDDR approach has been recently
extended [15,26–28] to resum next-to-leading power con-
tributions to the dominant qq̄ channel, namely those sup-
pressed by one power of 1 − za or 1 − zb with respect to the
leading power logarithms Eq. (2.14). This extension allows
to enlarge the region where threshold contributions domi-
nate, and is therefore very useful to obtain reliable predic-
tions close to threshold and more precise predictions even far
from threshold, even though for achieving higher accuracy
the next-to-leading power contributions from other channels,
i.e. the qg channel, should be included as well.

We also stress that the LMT approach already captures the
subleading power contributions predicted in Refs. [15,26–
28]. Indeed, it is constructed to resum the leading power
terms in one of the two variables, say za , with full depen-
dence on the other variable, zb, and vice versa. Therefore, it
contains contributions suppressed with any power of 1 − zb
which multiples the leading-power terms in za , and vice
versa.3 Moreover, the LMT approach is able to predict also
the off-diagonalqg channel at this accuracy. We recall that the
current LMT work [14] presents only the analytic structure
of this resummation but it contains no all-order numerical
results yet.

The LMT paper, on top of proposing the virtually best
approach to resum threshold logarithms in rapidity distribu-
tions, criticises the BNX and BFR approaches, stating explic-
itly that they are wrong as they miss leading power contribu-
tions in 1 − z. We disagree with this criticism, and we will
show in the next section that the BNX and BFR approaches,
which have been used in the literature [29–32], are perfectly
consistent within their region of validity.

3 These towers of contributions are referred to as leading power in the
generalized threshold limit (LPgen) in Ref. [14].

3 On the validity of BNX and BFR

In this section we focus on the approaches of BNX and
BFR, whose validity has been criticised in Ref. [14]. We will
present a detailed proof valid for both approaches, that also
reveals the expected quality of the threshold approximation
at the core of these approaches. We discuss possible caveats,
and finally comment on the arguments of Ref. [14] against
the validity of BNX and BFR.

Before moving to this, we recall the explicit expressions of
BNX and BFR resummation, also to establish our notation.
When using the variables z and u, in the partonic threshold
region z → 1 the coefficient function can be expanded as
(we omit the argument αs from now on to emphasise the
dependence on the other variables)

C(z, u) = Cthr(z, u) [1 + O(1 − z)] , (3.1)

where Cthr(z, u) is defined to contain all leading power
threshold contributions, namely the plus distributions Eq. (2.7)
and delta functions of 1 − z.4 In the BNX approach the u
dependence of the coefficient function at threshold is further
approximated as

CBNX
thr (z, u) ≡ δ(1 − u) + δ(u)

2
Cthr(z), (3.2)

while BFR find

CBFR
thr (z, u) ≡ δ

(
u − 1

2

)
Cthr(z), (3.3)

whereCthr(z) is the rapidity-integrated coefficient function at
threshold, reported at fixed order in Appendix A.2. Indeed, it
is immediate to see that the integral overu of both expressions
gives exactly Cthr(z). This coefficient function is then the
threshold limit of the well known inclusive coefficient func-
tion, whose resummation has been studied for decades [5–
10]. We stress that in the original BNX and BFR approaches
two different methods for resumming Cthr(z) were consid-
ered, but this is immaterial as any other choice is possible.
Therefore, for our purposes, we refer to BNX and BFR as
the two formulas Eqs. (3.2) and (3.3), irrespectively of how
Cthr(z) is resummed to all orders.

3.1 Proof of BNX and BFR

The approximations Eqs. (3.2) and (3.3) are not particularly
significant written in that way. Indeed, the u dependence of

4 Note that there may be terms that are apparently singular in z = 1 but
multiply some u-dependent contribution that makes them integrable. In
this case, the plus distribution is not needed, see e.g. the first term in
the last line of Eq. (A.2). We do not consider these terms as leading
power, while they are considered such in Ref. [14]. This is part of the
LMT criticism to the BNX and BFR approaches, and we will discuss it
in detail in Sect. 3.3.
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the coefficient function is distributional, and it is clear for
instance that each equation cannot be seen as an approx-
imation of the other, namely there is no sense in which
δ(u) + δ(1 − u) � 2δ(u − 1

2 ). The meaning of Eqs. (3.2)
and (3.3) resides in the way they appear in the cross sec-
tion formula, Eq. (2.8), where also the parton luminosity is
present and plays a crucial role in constructing the BNX/BFR
approximations. We now show this in detail.

The key observation is the fact that the PDFs become inde-
pendent of u in the partonic threshold limit z → 1. This can
be seen by expanding the arguments of the PDFs, Eq. (2.5),
in powers of 1 − z:

x1 = √
τeY

[
1 + u(1 − z) + O((1 − z)2)

]
, (3.4a)

x2 = √
τe−Y

[
1 + (1 − u)(1 − z) + O((1 − z)2)

]
.

(3.4b)

Consequently, the luminosity Eq. (2.9) can be expanded as

Lqq̄(z, u)=Lqq̄(1, u)−L ′
qq̄(1, u)(1 − z) + O[(1 − z)2],

(3.5)

with L ′
qq̄ the derivative with respect the z variable, where

the first term which is the luminosity computed in z = 1 is
independent of u,

Lqq̄(1, u) =
∑

q

cqq̄ fq
(√

τeY , μ2
F

)
fq̄

(√
τe−Y , μ2

F

)
.

(3.6)

When we will want to emphasise this independence, we will
write it as Lqq̄(1, ·). Note that the second term of Eq. (3.5)
can be considered as truly suppressed by a power of 1 − z
if L ′

qq̄(1, u) is of the same size of Lqq̄(1, ·). This is not
always the case. We will investigate numerically the size of
L ′

qq̄(1, u), which may potentially be a limiting factor of our
proof of BNX and BFR, in Sect. 3.2.

The fact that the u dependence of the luminosity is power
suppressed in the partonic threshold limit z → 1 shows that
the u dependence of the coefficient function can be integrated
over at leading power. To formally prove this, we consider the
cross section formula Eq. (2.8) and we expand the luminosity
at threshold, along the lines of Ref. [11]:

1

τσ0

d2σqq̄

dQ2 dY
=

∫ 1

τ

dz

z

∫ 1

0
du

[
Lqq̄ (1, ·)+O(1−z)

]
C(z, u)

= Lqq̄ (1, ·)
∫ 1

τ

dz

z

∫ 1

0
du C(z, u) [1+O(1−z)]

= Lqq̄ (1, ·)
∫ 1

τ

dz

z
C(z) [1 + O(1 − z)]

=
∫ 1

τ

dz

z
Lqq̄ (z, ū)C(z) [1 + O(1 − z)]

=
∫ 1

τ

dz

z
Lqq̄ (z, ū)Cthr(z) [1 + O(1 − z)] .

(3.7)

Here we have first used Eq. (3.5) to expand the luminosity at
large z, then we used the u-independence of the luminosity
in z = 1 to pull it out of the integral, we then computed the u
integral to obtain the rapidity-integrated coefficient function
C(z).5 In the penultimate line we restored the z dependence
of the luminosity, which is again legitimate up to O(1 − z)
thanks to Eq. (3.5), but in doing so we also need to restore the
u dependence in the second argument. As u has been inte-
grated over, any value ū between 0 and 1 is formally accept-
able. Finally, in the last step we have further approximated
C(z) with its threshold limit.

We stress that in Eq. (3.7) we have expanded in powers of
1−z selected terms of the entire integrand. This is in contrast
with the standard approach of threshold resummation [5,6],
where only the coefficient function is expanded. Keeping the
parton luminosity unexpanded is certainly more natural and
ensures for instance that kinematic constraints coming from
the limits of PDF arguments are preserved by the resummed
expression. However, from a formal point of view, it is clearly
allowed to also include the parton luminosity in the threshold
expansion.

The selection of terms that are expanded in Eq. (3.7) is
obviously arbitrary but legitimate according to the power
counting in 1 − z, and it is made in a way to reproduce BNX
and BFR as we shall see.

In the derivation of Eq. (3.7) we have made an assumption
that is not entirely trivial. In particular, in the second step we
have assumed the identity

Lqq̄(1, ·) + O(1 − z) = Lqq̄(1, ·) [1 + O(1 − z)] .

(3.8)

As mentioned above, this assumption is correct if L ′
qq̄(1, u)

is of the same size of Lqq̄(1, ·), which is not always the case.
By comparing numerically the size of the two functions, we
will see in Sect. 3.2 that this assumption is satisfied in a wide
kinematic range. In particular, at small τ and not too close
to the rapidity endpoints, which is the phenomenologically
relevant region, the assumption Eq. (3.8) is valid and Eq. (3.7)
is correct.

Note that the contributions of O(1− z) in the integrand of
Eq. (3.7) may be large, as the integral extends down to z = τ

and if τ is small there is a part of the integration region in

5 Note that in this step we also used the fact that in the z → 1 limit the
whole region 0 ≤ u ≤ 1 is kinematically allowed, as a consequence of
the fact that the restriction imposed by the condition x1,2 < 1, expressed
by the limits Eq. (2.6), are immaterial in the z → 1 limit. This is also
obvious from the fact that the restriction on u would be imposed by θ

functions hidden in the luminosity, which in z = 1 no longer depends
on u.
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which these corrections are not suppressed. This fact does
not invalidate the derivation of Eq. (3.7), but poses questions
about the quality of an approximation obtained neglecting
those subleading power terms. We will see in Sect. 3.2 that the
approximation for the dependence on the luminosity is rather
good even for small values of τ . The impact of approximating
C(z) with Cthr(z) in the last step of Eq. (3.7) depends on the
form of threshold logarithms used to construct it, and it will
be discussed in Sect. 4.

Having established Eq. (3.7), we can obtain the BNX and
BFR formulation by neglecting the subleading power contri-
butions of O(1 − z) and for suitable choices of the variable
ū. In particular, we obtain the BFR formulation by choosing
ū = 1

2 , while the BNX one corresponds to the average of the
result with ū = 0 and ū = 1:

1

τσ0

d2σBNX
qq̄

dQ2 dY
=

∫ 1

τ

dz

z

Lqq̄(z, 0) + Lqq̄(z, 1)

2
Cthr(z),

(3.9)

1

τσ0

d2σBFR
qq̄

dQ2 dY
=

∫ 1

τ

dz

z
Lqq̄

(
z,

1

2

)
Cthr(z). (3.10)

It is immediate to verify that these are indeed the results
obtained by using Eqs. (3.2) and (3.3) into Eq. (2.8). In order
to use these equations for resummation, the function Cthr(z)
needs to be resummed to all orders in the threshold limit.
The resummed result should then be matched to fixed-order
computations, which shall not be approximated. The quality
of the resummed and matched result will also depend on
whether the resummed threshold logarithms are the dominant
part of the higher orders or not: we will address this question
in Sect. 4.

Note that BNX and BFR are just two of infinitely many
possible alternative and equivalent formulations of resum-
mation, which can be obtained by using different values of
ū and averages thereof. We notice however that not all com-
binations make physical sense. Indeed, the rapidity distribu-
tion for the Drell–Yan process in proton-proton collisions is
forward-backward symmetric, but the luminosity Lqq̄(z, u)

is not symmetric for Y → 1 − Y unless u = 1/2. More
precisely, the luminosity Eq. (2.9) is symmetric under the
exchange of x1 and x2, which can in turn be realised by chang-
ing Y → −Y and u → 1 − u simultaneously, see Eq. (2.5).
Therefore, only symmetric sums Lqq̄(z, u) + Lqq̄(z, 1 − u)

are symmetric in Y . Since the dependence on the rapidity
Y of Eq. (3.7) only comes from the luminosity, the general
physically acceptable resummed expression is given by

1

τσ0

d2σ res
qq̄

dQ2 dY
=

∫ 1

τ

dz

z

Lqq̄(z, ū) + Lqq̄(z, 1 − ū)

2
×Cthr(z), (3.11)

where any value of ū in the allowed range 0 ≤ ū ≤ 1 is
acceptable. Also any weighted average of results with dif-

ferent ū provides a valid formulation of resummation. Obvi-
ously, BNX and BFR are two (maximally different) special
cases of Eq. (3.11).

We recall that the integrands of the BFR and BNX expres-
sions differ effectively byO[(1−z)2] terms, as it was noticed
in Ref. [12]. This fact does not mean that the accuracy of
these two formulations is higher, it just tells us that the two
approaches are more similar than expected from the accuracy
of the derivation. We will see this explicitly in the numerical
results of the next sections. In fact, it is easy to prove that any
symmetric average of the form Eq. (3.11) with any value of
ū is equivalent to BFR and BNX up to O[(1 − z)2].

3.2 On the validity of the threshold expansion in the
integrand

The derivation of the BNX and BFR results in Eq. (3.7)
involves a number of assumptions and expansions whose
validity we now address.

We have already commented that the derivation of
Eq. (3.7) assumes the equality Eq. (3.8), which in turn is
valid if L ′

qq̄(1, u) is of the same size of Lqq̄(1, ·). This is
usually the case, but when the PDFs are computed close to
their endpoint x = 1, which happens when τe2|Y | is close to
1, this assumption is no longer valid. We now investigate this
effect in detail.

Let us focus on the case in which τ is close to 1 (the case
in which τ is not large but the rapidity is large is similar but
slightly more complicated to describe analytically). In this
case, the identity Eq. (3.8) is no longer valid. We can see this
analytically, by approximating the PDFs as

f (x, μ2
F) � (1 − x)α (3.12)

for some positive value of α, which is a good approximation
at large x . Considering a single flavour for simplicity (or
equivalently assuming that the same value of α holds for all
quark PDFs), the derivative of the luminosity can be written
as

L ′
qq̄ (1, u) � −α

√
τ

(
eY u

1 − √
τeY

+ e−Y (1 − u)

1 − √
τe−Y

)
Lqq̄ (1, ·).

(3.13)

It is clear that at large τe2|Y | → 1 one of the two denomi-
nators becomes parametrically small, and thus for some val-
ues of u the derivative becomes parametrically larger than
the luminosity. This becomes even clearer at central rapidity
Y = 0,

L ′
qq̄(1, u)

Y=0� −α

√
τ + τ

1 − τ
Lqq̄(1, ·), (3.14)

where the denominator clearly enhances the derivative with
respect to the luminosity for any value of u in the τ → 1 limit.
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Fig. 1 Ratio of the derivative of the general luminosity over the luminosity in z = 1 as a function of τ for Y = 0 (left), Y = Ymax/2 (central) and
Y = 2Ymax/3 (right) for different values of u, using PDF4LHC21 NNLO PDF set and considering photon-mediated Drell–Yan production at LHC√
s = 13 TeV

In the derivation of Eq. (3.7), therefore, when we assume that
τ is close to 1 which in turn implies that 1 − z is of the same
order as 1− τ , the term −L ′

qq̄(1, u)(1− z) is not subleading
power with respect toLqq̄(1, ·) in Eq. (3.5) and the expansion
in Eq. (3.7) is not accurate.

To appreciate the size of this effect we plot in Fig. 1
the ratio of the derivative of the true luminosity over the
luminosity in z = 1 as a function of τ for different val-
ues of Y = 0,Ymax/2, 2Ymax/3 and u = 0, 1/2, 1, with
Ymax = 1

2 log 1
τ

, using the PDF4LHC21 NNLO PDF set
[33] and assuming photon-mediated Drell–Yan production
at LHC

√
s = 13 TeV. At central rapidity Y = 0 even

with real PDFs we see that the luminosity is almost indepen-
dent of u, and we observe that for a wide range of τ values
10−4 < τ < 0.1 this ratio is ofO(1), making the proof of the
previous section valid for these kinematics. We see however
a clear growth of this ratio going towards large τ , confirm-
ing that the assumption Eq. (3.8) breaks down at some point
when τ is too large. Increasing the rapidity, the situation gets
worse and the ratio becomes larger at smaller values of τ for
some values of u (in this case, having used positive rapidity,
the largest effect is at u = 1). Despite this deterioration, we
notice that in the phenomenologically interesting region of
mid-low τ this ratio remains of O(1) even at large rapidities.

We can thus conclude that the BNX and BFR approaches
are formally valid in a restricted kinematical region. They
are not supposed to be accurate at large τ and towards the
rapidity endpoints. This is somewhat surprising and coun-
terintuitive as these are precisely the regions identified by
the hadronic threshold limit, where threshold resummation
is certainly relevant. The point is that the BNX and BFR for-
mulation, as already discussed, are based on an approxima-
tion of the dependence of z and u of the coefficient function,
and it is this approximation that is not valid in the hadronic

threshold region. Far from it, the approximation is legitimate,
and it allows to resum the partonic threshold logarithms in
the cross section.

We can try to estimate in a more quantitative way in which
kinematic region the missing contributions from the deriva-
tive of the luminosity make the BNX and BFR formulation
break down. To do so, we consider the BNX and BFR expres-
sions, Eqs. (3.9) and (3.10), in which we replace Cthr(z) with
the full C(z):

1

τσ0

d2σBNX
qq̄

dQ2 dY
→

∫ 1

τ

dz

z

Lqq̄(z, 0) + Lqq̄(z, 1)

2
C(z),

(3.15)

1

τσ0

d2σBFR
qq̄

dQ2 dY
→

∫ 1

τ

dz

z
Lqq̄

(
z,

1

2

)
C(z). (3.16)

These expressions represent alternative formulations for the
rapidity distribution where only the luminosity is approxi-
mated, and correspond to neglecting the O(1 − z) contribu-
tions in the penultimate line of Eq. (3.7).6 As such, comparing
them with the exact distribution (at fixed order), we are able
to judge the quality of the approximation of the luminosity,
and thus the impact of the neglected derivative terms.

We do this in Figs. 2 and 3, where we plot the exact contri-
butions to the rapidity distribution at NLO and NNLO (in the
qq̄ channel only) along with the approximations of the lumi-
nosity dependence à la BNX and BFR, Eqs. (3.15) and (3.16).
In the first figure the distribution is shown as a function of τ

and for different values ofY = 0,Ymax/2, 2Ymax/3, while the
second figure shows the same distribution but as a function
of Y for three values of τ = 10−4, 10−2, 10−1. The plots

6 Of course, these expressions are not suitable for resummation, as the
exact C(z) is not known to all orders.
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Fig. 2 Rapidity distributions at NLO (up) and NNLO (down) as a func-
tion of τ for Y = 0, Ymax/2, 2Ymax/3, using PDF4LHC21 NNLO PDF
set and considering photon-mediated Drell–Yan production at LHC√
s = 13 TeV. The approximations are obtained expanding the lumi-

nosity à la BNX (darker color) and à la BFR (lighter color), given by
Eqs. (3.15) and (3.16) respectively, where we use the full C(z) instead
of its threshold approximation Cthr(z)

are obtained considering photon-mediated Drell–Yan pro-
duction at LHC

√
s = 13 TeV, using again the PDF4LHC21

NNLO PDF set [33] and taking from it the value of the strong
coupling. The exact NNLO result is taken from the Vrap
code [16,34], selecting from it only the terms contributing to
the qq̄ channel.

We immediately observe that at small τ and central rapid-
ity, the quality of the approximation is excellent at NLO and
NNLO, as in both cases the BNX/BFR curves are almost
identical to the exact result. Note that while we expect a fail-
ure of the validity of the expansion in powers of 1 − z at
large τ and/or large rapidity, it is perhaps surprising to see
such a good agreement at such small values of τ . Indeed, the
neglected O(1− z) contributions, though genuinely sublead-
ing, are not necessarily small as the integration over z extends
to values as small as τ . An explanation of this effect is the fact
that the shape of the luminosity strongly favours large values
of z in the integrand and suppresses the region of z close to
τ , as a consequence of the small-x growth and the large-x

suppression of the PDFs fi (x, μ2
F), respectively. Therefore,

the integral over z is dominated by the large-z region, well
described by a threshold approximation, while the contri-
bution from medium-small z down to τ is a small correc-
tion. This phenomenon is the so-called dynamical threshold
enhancement of Ref. [11], and it is responsible for the thresh-
old dominance also at the rapidity-integrated level, see e.g.
Ref. [35].

Moving towards larger values ofY and τ we see some dete-
rioration of the agreement, more marked at NNLO. However,
in the range of values of τ,Y considered here, the accuracy
of the approximation remains very high, with discrepancies
of the order of some percent. We can appreciate in particular
a slight distorsion of the Y dependence of the distribution,
clearly visible at NNLO in Fig. 3. We stress that, by con-
struction, the integral in rapidity of all the curves in each plot
is the same and coincides with the exact rapidity-integrated
cross section, as we also verified numerically. This constraint
also contributes to the high accuracy of the approximation.
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Fig. 3 Rapidity distributions at NLO (up) and NNLO (down) as a func-
tion of Y for τ = 10−4, 10−2, 10−1, using PDF4LHC21 NNLO PDF
set and considering photon-mediated Drell–Yan production at LHC√
s = 13 TeV. The approximations are obtained expanding the lumi-

nosity à la BNX (darker color) and à la BFR (lighter color), given by
Eqs. (3.15) and (3.16) respectively, where we use the full C(z) instead
of its threshold approximation Cthr(z)

We finally notice that the BNX and BFR approaches give
basically identical results. This is a consequence of the fact
that the two formulations differ by next-to-next-to-leading
power contributions.

The excellent quality of the approximation of the luminos-
ity at the core of the BNX/BFR formulation can be under-
stood analytically. By repeating the derivation of Eq. (3.7)
keeping also the linear term in 1 − z of the expansion of the
luminosity Eq. (3.5), it is easy to find

1

τσ0

d2σqq̄

dQ2 dY
=

∫ 1

τ

dz

z

[
Lqq̄(z, ū)C(z) + (1 − z)

×
∫ 1

0
du

(
Lqq̄(1, ū) − Lqq̄(1, u)

)
C(z, u)

+O
(
(1 − z)2

) ]
(3.17)

where the term proportional to Lqq̄(1, ū) appears when we
replaceLqq̄(1, ·)withLqq̄(z, ū) in the fourth line of Eq. (3.7).

We thus observe that the linear term in 1 − z is not propor-
tional to the entire derivative Lqq̄(1, u), but to the difference
Lqq̄(1, ū)−Lqq̄(1, u), which is obviously smaller. The same
holds for higher derivative terms. In other words, restoring
the z dependence in the luminosity, even if this introduces a
dependence on the new, arbitrary variable ū, is beneficial as
it allows to reduce the impact of the missing contributions at
higher order in 1 − z.

We thus conclude that the limitations coming from the
growth of the derivative of the luminosity at large τe2|Y |
is more formal than practical, and for all phenomenologi-
cally relevant values of these parameters the approximation
of the luminosity leading to the BNX/BFR expressions is
fully valid. In passing, we have also shown that the large-
z approximation on the luminosity in Eq. (3.7) is of very
high quality even when τ is small, despite the integral con-
tains many values of z which are far from 1 and for which
the threshold expansion is not formally accurate. The actual
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quality of threshold resummation based on Eq. (3.7), per-
formed either à la BNX Eq. (3.9) or à la BFR Eq. (3.10), also
depends on how well Cthr(z) approximates the exact C(z),
and we will discuss this in Sect. 4.

3.3 Objections to BNX and BFR raised in the LMT paper

We now analyse the objections raised in Ref. [14], which
claims that BNX and BFR are not accurate at leading power
in 1 − z.

One of the arguments used in Ref. [14] is the fact that a
class of terms apparently enhanced in the z → 1 limit are
missed in these approaches. Specifically, any term in C(z, u)

that vanishes after integration over u cannot be captured by
the BNX and BFR approaches. One such term is for instance
the first term appearing in the last line of Eq. (A.2) at NLO,
of the form

F(z, u) = 1

1 − z

[(
1

u

)

+
+

(
1

1 − u

)

+

]
. (3.18)

This term is singular in z = 1, but since it multiplies plus
distributions in u it vanishes after integration over u. Accord-
ing to Ref. [14], this is a leading power contribution that is
missing in BNX and BFR.

We agree with the authors of Ref. [14] that, if we were to
count powers of 1 − z at the level of the coefficient function
only, the term Eq. (3.18) is formally leading power, like the
terms that are retained in BNX/BFR. However, our derivation
of BNX/BFR in Sect. 3.1 adopts a power counting in 1− z at
the level of the full integrand of Eq. (2.8), thus including also
the parton luminosity. What we are now going to show is that
the term Eq. (3.18), because of its peculiar u dependence,
contributes at next-to-leading power to the integral, and is
thus consistently missing in the BNX/BFR leading power
result.

The proof that the term Eq. (3.18) does not contribute at
leading power relies again on the fact that the luminosity in
z = 1 is independent of u. To see this, we consider the u
integral of that term multiplied by the luminosity,

F̄(z) ≡
∫ 1

0
du F(z, u)Lqq̄(z, u)

= 1

1 − z

(∫ 1

0

du

u

[
Lqq̄(z, u) − Lqq̄(z, 0)

]

+
∫ 1

0

du

1 − u

[
Lqq̄(z, u) − Lqq̄(z, 1)

])
. (3.19)

Each difference of luminosities in the integrands can be
expanded in powers of 1 − z,

Lqq̄(z, u) − Lqq̄(z, 0) =
����������
Lqq̄(1, u) − Lqq̄(1, 0)

−
(
L ′

qq̄(1, u) − L ′
qq̄(1, 0)

)
(1 − z) + O[(1 − z)2]

(3.20a)

Lqq̄(z, u) − Lqq̄(z, 1) =
����������
Lqq̄(1, u) − Lqq̄(1, 1)

−
(
L ′

qq̄(1, u) − L ′
qq̄(1, 1)

)
(1 − z) + O[(1 − z)2],

(3.20b)

and the zeroth-order contribution in each difference vanishes
because the luminosity in z = 1 does not depend on u. There-
fore, each integral in the big rounded brackets in Eq. (3.19)
is of order 1 − z, and thus cancels the singularity of the 1

1−z
term in front. We conclude that this contribution behaves as
a constant in the z → 1 limit, and therefore counts as a next-
to-leading power contribution. This is also the reason why
there is no need to surround this term with a plus distribu-
tion, which would instead be needed if it counted as leading
power.

We can verify this numerically, by plotting the function
F̄(z) Eq. (3.19) to see that it does not diverge at z = 1. We do
this in Fig. 4, for different values of τ = 10−4, 10−2, 10−1

and of the rapidity Y = 0,Ymax/2, 2Ymax/3, using the usual
physical setup. Since there are some numerical oscillations
at large z, probably due to the fact that the curve is the ratio
of two small numbers, we also plot the PDF uncertainty band
to make sure that the interpretation of the result is solid. It
is clear that F̄(z) does not diverge in z = 1, rather it is
perfectly finite, showing explicitly that this term is next-to-
leading power. We also show (without uncertainty) each of
the two contributions to Eq. (3.19) coming from each integral
in the rounded brackets, as they are separately regular. We
see indeed that both of them do not diverge in z = 1.

In fact, it is possible to note from the plots that the full
function F̄(z) seems to go to zero at z = 1. This is indeed
the case, as we can verify analytically by noticing that the
O(1−z) terms in the expansions Eq. (3.20) satisfy the relation

L ′
qq̄(1, u) − L ′

qq̄(1, 0)

u
+ L ′

qq̄(1, u) − L ′
qq̄(1, 1)

1 − u
= 0,

(3.21)

which is easy to prove using the general form of the derivative
of the luminosity given by

L ′
qq̄(1, u) = −

∑

q

cqq̄
[
u
√

τeY f ′
q(

√
τeY ) fq̄(

√
τe−Y )

+(1 − u)
√

τe−Y fq(
√

τeY ) f ′̄
q(

√
τe−Y )

]
.

(3.22)

Therefore, the whole term contributes to the rapidity distribu-
tion at next-to-next-to-leading power, and it is thus more sup-
pressed at threshold than naively expected. The same is true
also for the individual integrals of Eq. (3.19) when Y = 0,
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Fig. 4 F̄(z) contribution in Eq. (3.19) as a function of z for τ = 10−4, 10−2, 10−1 and Y = 0, Ymax/2, 2Ymax/3, using PDF4LHC21 NNLO PDF
set and considering photon-mediated Drell–Yan production at LHC

√
s = 13 TeV

as a consequence of the fact that the luminosity is symmetric
for the exchange x1 ↔ x2, that at Y = 0 corresponds to a
symmetry for the exchange u ↔ 1 − u.

More in general, the BNX and BFR approaches miss any
term in C(z, u) that vanishes after integration in u from 0 to
1. Consider a generic function G(z, u) that may seem to be
leading power

G(z, u) = logk(1 − z)

1 − z
g(u), (3.23)

for some integer value of k, and with g(u) any function or
distribution satisfying the constraint

∫ 1

0
du g(u) = 0. (3.24)

Expanding the luminosity in powers of 1 − z we find

∫ 1

0
du G(z, u)Lqq̄(z, u)

= logk(1 − z)

1 − z

∫ 1

0
du g(u)
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×
[
Lqq̄(1, ·) − L ′

qq̄(1, u)(1 − z) + O[(1 − z)2]
]

= logk(1 − z)
∫ 1

0
du g(u)

[
−L ′

qq̄(1, u) + O(1 − z)
]
,

(3.25)

where, thanks to the fact that the luminosity in z = 1 is u
independent, we could use Eq. (3.24) in the last step to show
that the first term of the expansion vanishes. We thus conclude
that any apparently leading power term of the general form
Eq. (3.23) that vanishes after integration over u contributes
effectively at next-to-leading power. Therefore, the fact that
BNX and BFR miss these contributions does not represent a
power-counting issue.

We observe that contributions of this kind are instead
present in the approaches to threshold resummation that keep
the separate dependence on za and zb, e.g. Refs. [5,13,21–
25]. These approaches are also supposed to be valid in the
threshold z → 1 limit, but since the limit is performed at
the level of the coefficient function these contributions count
as leading power and are thus preserved. For what we have
shown, in the strict z → 1 limit their inclusion does not
increase the accuracy as they are suppressed with respect
to the other leading power terms.7 However, if a threshold
approximation/resummation is extended outside the thresh-
old region, namely for values of z that are not large enough,
these contributions may be relevant. Indeed, a term like
Eq. (3.18) contains enhanced contributions in u → 0, 1,
which are irrelevant at z → 1 but not at generic z. To under-
stand this, recall that u → 0, 1 corresponds to za → 1 and
zb → 1 respectively. Since z = zazb, when z → 1 both
za, zb → 1 irrespectively of the value of u. But when z is not
large, one among za and zb can be large if u tends to 0 or 1.
These non-threshold but enhanced contributions are captured
by the aformentioned approaches, and improve the descrip-
tion of the tails of the rapidity distribution. Therefore, the fact
that these contributions are missing in BNX and BFR makes
them less accurate than other approaches when the process
is far from threshold.

In Ref. [14] there are other arguments used to criticise the
validity of the BNX and BFR approaches. One of them is
an explicit calculation using the same toy PDF Eq. (3.12)
showing that after integration in z and u the two functions

A(z, u) =
(

1

1 − z

)

+
δ

(
u − 1

2

)
,

B(z, u) =
(

1

1 − z

)

+
δ(u) + δ(1 − u)

2
, (3.26)

give rise to different leading power contributions. As these
correspond to a BFR and a BNX implementation of the same

7 Note that this suppression has nothing to do with BNX/BFR: it’s a
general property of the contributions under consideration.

term, if they are both correct at leading power, they should
give the same leading power contributions. The problem here
is that the computation of Ref. [14] assumes 1 − xa ∼ 1 −
xb � 1, namely τ → 1. We have already commented in
Sect. 3.2 that in this limit the derivation of BNX and BFR
of Sect. 3.1 does not hold anymore, so this conclusion is
not surprising. Moreover, the power counting is performed
at hadron level, namely the terms identified in Ref. [14] are
leading power in 1 − xa and 1 − xb, which makes sense
because they assume τ → 1 but it cannot be directly related
to the leading power terms in 1 − z when τ is not large.

Another objection of Ref. [14] regarding the BNX and
BFR approaches is related to the expansion of the luminos-
ity Eq. (3.5). In particular, LMT say that the expansion of the
arguments x1,2 of the PDFs, Eq. (3.4), to the zeroth order is
too trivial because it does not depend on z. More precisely,
they say that “the u dependence is not power suppressed but
multiplies the leading dependence of the PDF arguments on
z itself, and so it cannot be dropped”. We believe that this is
not a real issue: the expansion in powers of 1 − z is legit-
imate at large z, and if the zeroth order of this expansion
is independent of z it cannot represent a reason for expand-
ing to one order higher. However, for completeness, we can
consider an alternative expansion that overcomes the LMT
objection, without affecting the proof Eq. (3.7). Specifically,
we can expand in powers of 1− z not the full x1,2 expression
Eq. (2.5), but only the square root that depends on u:

x1 =
√

τ

z
eY

[
1 +

(
u − 1

2

)
(1 − z) + O((1 − z)2)

]
,

(3.27a)

x2 =
√

τ

z
e−Y

[
1 +

(
1

2
− u

)
(1 − z) + O((1 − z)2)

]
.

(3.27b)

Now the leading z dependence appears in the zeroth order
term of the expansion, which is still u independent. Of course,
this (arbitrary) expansion is equivalent to that of Eq. (3.4)
up to the order at which it is truncated. We can write the
luminosity as

Lqq̄(z, u) = L (0)
qq̄ (z) + O(1 − z) (3.28)

with

L (0)
qq̄ (z) =

∑

q

cqq̄ fq

(√
τ

z
eY

)
fq̄

(√
τ

z
e−Y

)

= Lqq̄

(
z,

1

2

)
, (3.29)

which is again u independent, thus making the rest of the
proof identical to what discussed in Sect. 3.1 (except for the
fact that L (0)

qq̄ (z) can be moved outside the u integral but not
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the z integral, but this is immaterial for the derivation of the
final result).

A final objection raised in Ref. [14] is the fact that the
original proof of the BFR approach [12] has a conceptual
problem in one of the steps. In particular, the proof is based on
the expansion of the Fourier transform kernel eiMy , where M
is the Fourier conjugate variable to the parton rapidity y. The
expansion in powers of y was truncated at order 0 because
y is a variable ranging in |y| < 1

2 log 1
z ∼ 1

2 (1 − z), and
so higher orders in y are effectively suppressed by powers of
1−z. The objection of Ref. [14] is that the conjugate variable
M has to be counted as of order 1

1−z according to the Fourier
inversion theorem. Therefore, the expansion in powers of y
is not legitimate, in the sense that the neglected terms are not
really power suppressed. We agree with this criticism, and
confirm that the proof of BFR in Ref. [12] is not satisfactory.
Indeed, we also notice that this proof does not make use
of the peculiar z, u dependence of the luminosity, which is
instead at the core of the derivation of the BNX and BFR
resummation formulas, as we have shown in Sect. 3.1.

4 How good can BNX/BFR be?

Having established the validity of the BNX and BFR for-
mulation of threshold resummation of rapidity distributions,
we now want to understand how well they approximate the
full cross section at fixed order. This gives us information on
how accurate threshold resummation based on BNX or BFR
formulations can be. Despite the fact that there exist resum-
mation formalisms [13–15] that are formally superior to
BNX and BFR, they remain interesting alternatives for their
simplicity, being based on the resummation of the rapidity-
integrated coefficient function which is typically known for
more processes and with higher logarithmic accuracy.

The accuracy of any threshold approximation (and hence
resummation) depends on the definition of the threshold log-
arithms that are retained. Indeed, any definition of threshold
logarithms that differs from Eq. (2.7) by subleading power
contributions is formally equivalent and thus acceptable, but
the results may differ significantly. Such a difference may
be seen as a limitation of the threshold approximation, as
it comes from sizeable contributions from next-to-leading
power contributions that are beyond the control of lead-
ing power threshold resummation.8 However, some sublead-
ing power contributions have a universal structure that can
be incorporated in the definition of threshold logarithms,
improving the quality of a threshold approximation [42–49].
In the following we will discuss different choices of threshold

8 Recently threshold resummation has been extended to next-to-leading
power [15,36–41], opening up the possibility of pushing the accuracy
beyond that of traditional methods.

logarithms and compare them numerically against the exact
NLO and NNLO results.

4.1 Definitions of threshold logarithms

Let us focus in this section on the rapidity-integrated coeffi-
cient function

C(z, αs) = δ(1 − z) + αs

π
C1(z) +

(αs

π

)2
C2(z)

+O(α3
s ), (4.1)

which is the ingredient of the BNX and BFR formulations.
The most natural choice for constructing a threshold approx-
imation is to retain all contributions of the form of Eq. (2.7)
and delta functions. At order αn

s , the coefficient function is
thus approximated at threshold as

C thr
n (z) =

2n−1∑

k=0

cn,k

(
logk(1 − z)

1 − z

)

+
+ dnδ(1 − z), (4.2)

where cn,k and dn are numerical coefficients (not functions of
z). Extending the notation of Refs. [45,46], we shall call the
threshold approximation based on Eq. (4.2) z-soft approxi-
mation,9 meaning the natural threshold approximation in z
space.

The z-soft approximation is not particularly convenient
for two reasons. One is that it is not very accurate, as we
shall see in Sect. 4.2. The other reason is that it is not easy to
construct an all-order resummed result that contains all and
only those contributions.10

The most widespread definition of threshold logarithms
that is used in resummed computation is done in Mellin con-
jugate space, where the phase space of the gluon emissions
(responsible of threshold logarithms) factorises making pos-
sible the construction of an all-order expression in closed
form. Such a definition is based on the expansion at large N
(corresponding to the threshold region in Mellin space) of
the Mellin transform of z-space logarithmic terms [46,50]
∫ 1

0
dz zN−1

(
logk(1 − z)

1 − z

)

+

= 1

k + 1

k+1∑

j=0

(
k + 1

j

)
	( j)(1) logk+1− j 1

N
+ O

(
1

N

)
,

(4.3)

where 	( j)(x) is the j-th derivative of the Euler gamma
function 	(x). Neglecting the O(1/N ) contributions (which
are subleading power at threshold), this expansion provides

9 In Ref. [45] it was called soft-0.
10 Possible approaches to reproduce the logarithms Eq. (4.2) are the
one used in Ref. [11] based on soft-collinear effective theory and a
variant of the one used in Ref. [46] based on the Borel prescription for
resummation.
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an alternative approximation at threshold, that we call N -
soft according to the notation of Refs. [45,46]. The N -soft
approximation can be used directly in N space, which is con-
venient for instance at resummed level. It can also be used
in the z-space formula Eq. (4.2), by replacing the logarith-
mic terms with the inverse Mellin transform of the powers of
log 1

N terms of Eq. (4.3). Details are given in Appendix A.2.
We also consider an alternative definition of threshold log-

arithms proposed in Ref. [46], whereby log N is replaced
by ψ0(N + 1), where ψ0 is the digamma function. Indeed,
the exact Mellin transform of the threshold logarithms is
expressed in terms of polygamma functions ψk(N ), all of
which go to zero at large N as N−k with the exception of
ψ0(N ), which grows as log N . The argument of ψ0(N ) is
further shifted to N + 1, which is equivalent up to O(1/N ).
This choice, denoted ψ-soft1 in Ref. [46], corresponds to the
approximation obtained by neglecting the O(1/N ) contribu-
tions in the expansion

∫ 1

0
dz zN−1

(
logk(1 − z)

1 − z

)

+

= 1

k + 1

k+1∑

j=0

(
k + 1

j

)
	( j)(1) [−ψ0(N + 1)]k+1− j

+O
(

1

N

)
. (4.4)

This approximation can be converted to z space order by
order; details are given in Appendix A.2. The formal accu-
racy of this expression is equivalent to that of N -soft and z-
soft, as they all differ among each other by subleading power
contributions at threshold. However, the ψ-soft1 approxima-
tion has some advantages that make its quality superior to
other choices.

The key observation is that the use of ψ0(N + 1) allows
to include at the rapidity-integrated level subleading power
contributions that have a kinematical origin and are thus uni-
versal [42–49]. In particular, the leading logarithmic terms
at next-to-leading power in 1 − z are predicted correctly
to all orders in ψ-soft1 in the dominant flavour-diagonal
channel for color-singlet production processes such as Higgs
and Drell–Yan, and subleading logarithmic contributions are
also partially included. As a consequence, at the rapidity-
integrated level, the ψ-soft1 choice of logarithmic terms pro-
vides better numerical agreement with the exact result than
z-soft or N -soft, and also leads to a better stabilisation of
the scale dependence at resummed level. These results were
obtained for Higgs production [45,46], and they hold also
for the Drell–Yan process. Of course, this simple modifica-
tion of the resummed logarithms is not able to predict sub-
leading power contributions coming from the other channels,
most importantly the qg channel, which would be needed for
achieving a higher accuracy of the resummation.

Using ψ-soft1 for BNX and BFR is expected to improve
the resummation of rapidity distributions as well. Indeed,
even though a direct analytical comparison at parton level
cannot be done because u dependence in BNX and BFR is
always approximate, we know that integrating over rapidity
Eqs. (3.9) and (3.10) we obtain the correct rapidity-integrated
distribution, for which ψ-soft1 is known to perform well.
We will now see by a numerical comparison that the ψ-
soft1 approximation is more accurate than the others also for
rapidity distributions, thereby providing the most convenient
choice of threshold logarithms for an accurate resummation
within the BNX/BFR formulation.

4.2 Numerical validation of BNX/BFR at NLO and NNLO

In this section we compare the exact NLO and NNLO contri-
butions to the Drell–Yan rapidity distribution against thresh-
old approximations based on the BNX and BFR formulations
and for the three choices of threshold logarithms discussed
in Sect. 4.1.

The numerical setup is the same of Sect. 3. We consider
neutral current Drell–Yan production at LHC with

√
s =

13 TeV, including only the contribution from the photon for
simplicity. We use the PDF4LHC21 NNLO PDF set [33],
and take from it the value of the strong coupling. We always
sit at μF = μR = Q, with Q = √

τ s the invariant mass of the
lepton pair. We only plot the qq̄ contribution to the rapidity
distribution. The exact NNLO result is taken from the Vrap
code [16,34].

We start by showing plots of the rapidity distribution at
fixed rapidity and as a function of τ , i.e. as a function of Q
since we keep the collider energy fixed. These are shown in
Fig. 5 for BNX (darker curves) and BFR (lighter curves). In
each figure the upper plots show the comparison at pure NLO
and the lower plots at pure NNLO. Each plot corresponds to
different values of rapidity, Y = 0,Ymax/2, 2Ymax/3. The
solid red curve represents the exact result, while the other
curves are the various approximations with different defi-
nition of threshold logarithms: dotted blue corresponds to
z-soft, dashed green is N -soft and dot-dashed purple is ψ-
soft1.

We observe that ψ-soft1 is by far the best approximation,
in most cases overshooting the exact result by a small amount.
In fact, comparing with Fig. 2, we can observe that the ψ-
soft1 curve is very similar to the curves obtained with the
exact C(z), as a consequence of the aformentioned fact that
ψ-soft1 provides an excellent description of the coefficient
function at the rapidity-integrated level.

The N -soft approximation is reasonably good but def-
initely worse than ψ-soft1, and it always undershoots the
exact by an amount that can reach 35%. Only at large rapid-
ity the large-τ behaviour seems to be better for N -soft than
for ψ-soft1, but this is due to an accidental compensation of
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Fig. 5 Rapidity distributions at NLO (up) and NNLO (down) as a func-
tion of τ for Y = 0, Ymax/2, 2Ymax/3, using PDF4LHC21 NNLO PDF
set and considering photon-mediated Drell–Yan production at LHC

√
s = 13 TeV. The approximations z-soft, N -soft and ψ-soft1 are shown

in darker color for BNX and in lighter color for BFR

the deterioration of the approximation of the luminosity vis-
ible in Fig. 2 and the undershooting of N -soft. Finally, z-soft
is the worst, especially at NNLO where it seems completely
unrelated to the exact result, except at very large τ . This fail-
ure of the z-soft approximation is well known and expected
at the rapidity-integrated level, and it has been studied in
various works, mostly in the context of Higgs production
[7,45,51–53].

We now move to visualise the same differential distribu-
tion as a function of the rapidity Y for fixed values of τ . This
is shown in Fig. 6.11 The structure of the plots is the same
of the previous figures, and the three columns correspond to
the values τ = 10−4, 10−2, 10−1.

We clearly see that at large rapidity the agreement of all the
approximations is good, but moving towards smaller rapidity

11 At NNLO for τ = 0.1 the BNX and BFR results display some
oscillations. Their presence is not due to numerical instabilities, as it
depends on the PDF set used, and we verified that with other sets they
are reduced or go completely away.

z-soft deviates soon and significantly, N -soft also deviates
undershooting the exact result by a large amount, while ψ-
soft1 is closer to the exact result, typically overshooting it by
a small amount. Again, the shape of ψ-soft1 is very similar
to the result obtained with the full C(z), Fig. 3. There is
a slight deterioration of the accuracy of ψ-soft1 at NNLO
with respect to the NLO, with the shape at this order being
somewhat distorted. However, reassuringly, the quality of all
the approximations is generally similar at NLO and NNLO,
showing that the procedure is stable and hopefully preserves
its reliability at higher orders.

These consideration hold the same for both BNX and
BFR. While the two approaches give very similar results,
in these plots we can see a small difference between them,
which is more marked at medium-small τ and in the less
accurate approximations based on z-soft and N -soft. In par-
ticular, it seems that BNX is able to better reproduce the
little bump present in the rapidity distribution at the transi-
tion between the central rapidity plateau and the large rapid-
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Fig. 6 Rapidity distributions at NLO (up) and NNLO (down) as a func-
tion of Y for τ = 10−4, 10−2, 10−1, using PDF4LHC21 NNLO PDF
set and considering photon-mediated Drell–Yan production at LHC

√
s = 13 TeV. The approximations z-soft, N -soft and ψ-soft1 are shown

in darker color for BNX and in lighter color for BFR

ity drop. However, the difference between BNX and BFR is
so mild and in particular much smaller than the difference
between exact and approximate (and between the different
choices of threshold logarithms) that it cannot be used to
strongly favour one of the two approaches over the other.

In conclusion, we have seen the BNX and BFR approaches,
which can be considered equivalent for all practical purposes,
can describe rather well the exact result, even far from thresh-
old, provided a good choice of threshold logarithms is used.
The ψ-soft1 choice is very convenient as it allows to reach
the best description and at the same time it is very easy to
implement at resummed level. We stress that any “traditional”
Mellin-space resummation code that uses N -soft by default
can be straightforwardly upgraded to ψ-soft1 simply replac-
ing log N with ψ0(N + 1).

5 Comparison of BNX/BFR with other approaches

Having seen that BNX/BFR are able to approximate suffi-
ciently well the fixed-order result if a proper choice of the

threshold logarithms is made, we now want to compare12

these results with the other approaches to threshold resum-
mation of the literature, namely BDDR [13] and LMT [14].
We also consider the AMRST [15] approach, which is the
next-to-leading power extension of BDDR.

For them, we stick to the original definition of threshold
logarithms. For BDDR and AMRST, being them formulated
in Mellin space, the logarithms are defined according to N -
soft, with two separate logarithms in the variables za, zb,
corresponding to logarithms in Mellin space of two distinct
variables Na and Nb. Expressions for BDDR at NLO and
NNLO are given in Na, Nb space in Ref. [13] and can be
converted to za, zb space using the results of Appendix A.2.
For AMRST, we have expanded ourselves the resummed for-
mulas of Ref. [15] to order αs and α2

s . Explicit expressions
for both BDDR and AMRST at NLO and NNLO are given

12 A numerical comparison of BDDR and BFR was already performed
in Ref. [13], however the choice of logarithms used for BFR was the
one of the original paper [12] which differs from the ψ-soft1 that we
use here.
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Fig. 7 Rapidity distributions at NLO (up) and NNLO (down) as a function of τ for Y = 0, Ymax/2, 2Ymax/3, comparing the LMT, BDDR,
BFR with ψ-soft1 and AMRST results and using PDF4LHC21 NNLO PDF set and considering photon-mediated Drell–Yan production at LHC√
s = 13 TeV

in Appendix A.3, both in Mellin space and in momentum
space.

For LMT, the logarithms used correspond to the z-soft def-
inition. Despite it being a choice that gives inaccurate approx-
imations at leading power, the fact that LMT includes sub-
leading power contributions partially cures this deficiency.
We stress that the LMT approximation corresponds to the
full distributional part of the coefficient function when writ-
ten in terms of the za, zb variables. Explicit expressions at
NLO and NNLO are given in Appendix A.4.

We now compare these results, BDDR, LMT and AMRST,
with the BFR approximation based on ψ-soft1. We do not
show BNX, that would give results very close to BFR, already
presented in Sect. 4. In Fig. 7 we plot the Drell–Yan rapidity
distribution as a function of τ and in Fig. 8 as a function of
Y . The physical setup is the same of the previous plots. BFR
is shown in dot-dashed purple, BDDR in dashed green, LMT
in dotted blue and AMRST in dot-dot-dashed orange.

We note that BFR with ψ-soft1 is not worse than BDDR,
rather it performs much better both at NLO and NNLO,

being much closer to the exact result. The reason for this
is probably due to the fact that the N -soft choice of thresh-
old logarithms of BDDR is not optimal. Importantly, this
comparison confirms once more that the BNX/BFR formu-
lation of threshold resummation of rapidity distributions is
legitimate and competitive with canonical, more complex
approaches. Clearly, the shape in rapidity of the BFR curve
is only approximate, and indeed it does not reproduce fea-
tures of the exact result (e.g., the NNLO bump), due to the
approximate nature of the BFR/BNX approaches. However,
the BFR curve is overall close to the exact result thanks to the
fact that the BFR/BNX approaches are designed to reproduce
at the rapidity-integrated level the inclusive threshold result
which is very well approximated by ψ-soft1.

Moving on, we observe that, not surprisingly, the LMT
result is generally more accurate than BDDR, in particular
at large rapidity where it is very close to the exact result.
We note however that while at NLO the agreement is very
good especially at large τ , the accuracy of LMT deteriorates
significantly at NNLO, becoming even worse than BDDR at
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Fig. 8 Rapidity distributions at NLO (up) and NNLO (down) as a function of Y for τ = 10−4, 10−2, 10−1, comparing the LMT, BDDR, BFR with
ψ-soft1 and AMRST results and using PDF4LHC21 NNLO PDF set and considering photon-mediated Drell–Yan production at LHC

√
s = 13 TeV

central rapidity for τ small. This is certainly a consequence of
the use of z-soft for the form of the logarithms.13 Indeed, the
structure of the LMT result is such that the helpful subleading
power corrections in one variable (say za) are retained when
they multiply only the leading power terms in the other vari-
able (zb), which are not accurate enough when using z-soft,
unless the kinematics forces that variable to be large, i.e. at
large rapidity.

We finally move to the AMRST result. Formally, this result
contains less information than the LMT one, as for each vari-
able it only adds the next-to-leading power correction (multi-
plied by the leading power term in the other variable), and not
all subleading power corrections as it is done in LMT. How-
ever, the advantage of the AMRST result is that it uses the N -
soft definition of the threshold logarithms, which is superior
to the z-soft one adopted in the LMT approach. Therefore, as
we can see from the figures, the AMRST result is the one that

13 This can be also verified numerically by noting that when using a
better choice of logarithms the agreement improves, as demonstrated
by the AMRST result discussed later.

best approximates the exact results. It is in particular much
better than the LMT one at NNLO, where AMRST stays very
close to the exact result, as it also does at NLO.

Notably, BFR with ψ-soft1 is closer to the exact result
than BDDR and LMT, with the exception of the high rapid-
ity region. In fact it is rather close to the AMRST result as
well, making BFR (and BNX) comparable even with the best
approach on the market today. Of course AMRST is superior,
as for instance it is able to reproduce the shape in rapidity
which is only vaguely approximated by BFR, as we have
already commented. However, we believe that BNX/BFR
resummation can still prove useful when studying resum-
mation for rapidity distributions. Indeed, the BFR/BNX
approaches are based on the leading-power resummation of
the rapidity integrated cross section, which is available for
a large variety of processes and to a high logarithmic accu-
racy, while the recent AMRST approach requires more ingre-
dients and it is only available for a limited number of pro-
cesses so far. We will demonstrate the value of the BNX/BFR
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Fig. 9 Rapidity distributions at fixed order (solid lines) and with resummation à la BFR (dashed/dotted lines) as a function of τ for Y =
0, Ymax/2, 2Ymax/3, using PDF4LHC21 NNLO PDF set and considering photon-mediated Drell–Yan production at LHC

√
s = 13 TeV

approaches by showing representative resummed results in
Sect. 6.

Moreover, motivated by these numerical results, we have
investigated the analytical difference between the various
approaches. The details are technical and are collected in
Appendix A.5.

We conclude by stressing that the comparisons presented
here are for the qq̄ channel only, but at next-to-leading power
also the other channels contribute. At the moment only the
LMT approach can control the resummation in these sub-
leading channels, which is a clear advantage for the goal
of achieving the highest precision. It would thus be very
interesting to understand if it is possible to modify the LMT
approach by changing the form of the threshold logarithms
to take advantage of other better definitions like N -soft or ψ-
soft1, in order to improve its quality, reaching and possibly
surpassing AMRST. In this way one could achieve the best
description of the dominant qq̄ channel, supplemented by the
important contributions from the other subleading channels.
We plan to investigate this possibility in future work.

6 All-order resummed results for BNX/BFR

Having established the accuracy of the BNX/BFR approaches
to resummation, in this section we present some representa-

tive all-order results. We restrict our attention to BFR resum-
mation (BNX would lead to very similar results), with the
ψ-soft1 choice for threshold logarithms.

We perform the resummation using the public TROLL
code [30,46,54], which implements the resummation
up to next-to-next-to-next-to-leading logarithmic accuracy
(N3LL′),14 both for rapidity distributions and for rapidity-
integrated cross sections. The ingredients for N3LL′ resum-
mation are all available in the literature [58–60], including
the δ(1 − z) term at N3LO which is taken from Ref. [61] and
the recent four-loop cusp anomalous dimension computed in
Ref. [62]. We do not exponentiate the constant terms in N
space [46,54], thus sticking to a more standard attitude, as
the effect for this process is rather mild.

In Fig. 9 we show the rapidity distribution as a function of
τ forY = 0,Ymax/2, 2Ymax/3 at fixed LO (solid black), NLO
(solid blue) and NNLO (solid red) along with the resummed
results at NLO+NLL′ (dashed blue), NNLO+NNLL′ (dashed
red), and NNLO+N3LL′ (dotted green). Similarly, in Fig. 10
we plot the same curves as a function of Y for τ =
10−4, 10−2, 10−1. In all plots we also show a lower panel

14 The prime notation [55–57] indicates that on top of the purely NkLL
contributions the constant term (in N space) at NkLO is also included,
despite it contributing formally at Nk+1LL in the resummed exponent.
It is well known that this addition enables the prediction of one extra
subleading power of the logarithms in the cross section and usually
captures most of the next logarithmic order.
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Fig. 10 Rapidity distributions at fixed order (solid lines) and with resummation à la BFR (dashed/dotted lines) as a function of Y for τ =
10−4, 10−2, 10−1, using PDF4LHC21 NNLO PDF set and considering photon-mediated Drell–Yan production at LHC

√
s = 13 TeV

with the ratio to the LO result, to better appreciate the rel-
ative size of the various perturbative corrections. As in the
previous sections, we only plot the dominant qq̄ channel.

We observe a good convergence of the resummed result,
improved with respect to that of the fixed-order result espe-
cially at large τ and Y , where threshold logarithms are more
dominant. Overall, we notice that the effect of adding resum-
mation over the fixed order is small at NLO and very small at
NNLO, which is a consequence of the fact that the Drell–Yan
process exhibits a good perturbative convergence (as opposed
for instance to the Higgs production process in gluon fusion,
see e.g. [63,64]). From the ratio plots,15 it is apparent that
going towards large rapidity or large τ all the resummed
curves tend to overlap, while the fixed-order contributions
get larger thus showing a perturbative instability. This is a
consequence of the fact that in these regions the threshold
logarithms are dominant and large, and resumming them the
perturbative expansion stabilizes significantly and leads to
reliable perturbatively-stable results.

We were not able to include in the plots the N3LO curve [3]
as to our knowledge there is no public code available out of
which we can extract the qq̄ contribution. Consequently, we

15 The spike in the third ratio plot of Fig. 10 is due to the LO result
becoming negative at large rapidity. This is clearly unphysical, and it is
an annoying artefact of the PDFs used that are not very well behaved at
large x .

could not show the N3LO+N3LL′ resummed result, but we
consider the NNLO+N3LL′ result, which should be equiv-
alent to the former in the region of large τ and Y where
the threshold logarithms dominate the distribution. Far from
this region, the addition of the N3LO result would instead
improve the accuracy.

In conclusion, we have demonstrated that the BNX/BFR
formulations are available for producing reliable resummed
results for rapidity distributions at high logarithmic accu-
racy. The public TROLL code implements these results up to
N3LL′ accuracy, with the ψ-soft1 choice of threshold log-
arithms (N -soft is also available). The results for ψ-soft1
resummation for Drell–Yan rapidity distributions are pre-
sented here for the first time.

7 Conclusions

In this work we have studied threshold resummation of rapid-
ity distributions, applied to the Drell–Yan process. Our work
was motivated by the recent criticism of Ref. [14] that states
that older approaches to threshold resummation by BNX [11]
and BFR [12] are wrong.

We have proposed a detailed proof of the BNX and BFR
approaches, emphasising their limitation but showing clearly
that they are correct within their declared accuracy. We have
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rebutted several objections of Ref. [14], mostly focussed on
the fact that BNX and BFR miss some leading power contri-
butions at threshold, showing analytically and numerically
that this is not the case.

To support our findings we have validated the approaches
numerically against the exact NLO and NNLO results. The
quality of these results depends on the choice of the form
of threshold logarithms that one eventually wants to resum
to all orders. We have shown that the ψ-soft1 definition of
threshold logarithms, proposed in Ref. [46] in the context of
Higgs production, provides the best results. We have con-
cluded that despite the approximate nature of the BNX and
BFR approaches they perform rather well as they are able
to reproduce to a good accuracy the exact NLO and NNLO
results even far from threshold.

Motivated by this, we have performed a comparison at
NLO and NNLO with other approaches in the literature, from
Ref. [13] (BDDR), Ref. [15] (AMRST) and Ref. [14] itself
(LMT). We noted that the best approximation is given by the
AMRST result, despite the fact that it is formally less accurate
than LMT. The reason for this is the different form of thresh-
old logarithms used in the two approaches: the ones used in
the LMT paper, namely the standard choice in z space, have
a particularly poor quality in approximating the exact result.
This suggests that the LMT approach could be improved by
upgrading the form of threshold logarithms, and we plan to
investigate this in future.

Notably, we have observed that the BNX/BFR approaches
with the ψ-soft1 definition of threshold logarithms lead to
approximations that are comparable with (if not better than)
the others, despite the latter are all formally more accurate.
This confirms that the BNX/BFR are rather good alternatives
to more modern approaches, and they can still provide a good
framework for fast implementations of threshold resumma-
tion in rapidity distributions at high logarithmic accuracy. We
concluded by showing representative results of BFR resum-
mation up to N3LL′ accuracy, obtained through the public
TROLL code, available at http://l.infn.it/mb/troll/.
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Appendix A: Analytical expressions

A.1 Coefficient function at NLO

We report here the qq̄ coefficient function for rapidity dis-
tribution at NLO. Writing the perturbative expansion of the
coefficient function as

C(z, u, αs) = δ(1 − z) + αs

π
C1(z, u)

+
(αs

π

)2
C2(z, u) + O(α3

s ), (A.1)

we can write the NLO coefficient C1 as

C1(z, u)

CF
=δ(1 − u)+δ(u)

2

[
(2ζ2−4) δ(1 − z) + 2(1 + z2)

×
(

log(1 − z)

1 − z

)

+
+ log

Q2

μ2

(
1 + z2

1 − z

)

+

− 1 + z2

1 − z
log(z) + 1 − z

]

+ 1

2

1 + z2

1 − z

[(
1

u

)

+
+

(
1

1 − u

)

+

]
− (1 − z).

(A.2)

When written in terms of the variables za, zb it becomes

C̃1(za , zb)

CF
=

(
3ζ2 − 4 + 3

2
log

Q2

μ2

)
δ(1 − za)δ(1 − zb)

+
(

log(1 − za)

1 − za

)

+
δ(1 − zb)

+δ(1 − za)

(
log(1 − zb)

1 − zb

)

+
+

(
1

1 − za

)

+

(
1

1 − zb

)

+

+
(

1

1 − za

)

+

[
log

Q2

μ2 δ(1 − zb) − 1 + zb
2

]

+
[

log
Q2

μ2 δ(1 − za) − 1 + za
2

] (
1

1 − zb

)

+

+δ(1 − za)

[
1 − zb

2
− 1 + zb

2
log(1 − zb)

+ 1

2

1 + z2
b

1 − zb
log

2

1 + zb
− 1 + zb

2
log

Q2

μ2

]

+δ(1 − zb)

[
1 − za

2
− 1 + za

2
log(1 − za)
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+ 1

2

1 + z2
a

1 − za
log

2

1 + za
− 1 + za

2
log

Q2

μ2

]

+ (z2
a+z2

b)[(1+za)2+(1+zb)
2+2za zb(3+za+zb+za zb)]

2(1+za)(1+zb)(za+zb)2 .

(A.3)

A.2 Approximations for BNX/BFR

In this appendix we provide explicit expressions for the
approximations based on the BNX and BFR approaches at
NLO and NNLO used in the text, for all the three choices of
threshold logarithms discussed.

In the BNX and BFR approaches the threshold approxima-
tion of rapidity distributions is obtained from the threshold
approximation of the rapidity-integrated coefficient function.
At NLO in the qq̄ channel (the only one relevant at threshold)
the Drell–Yan coefficient function at threshold Eq. (4.2) is
given by

C thr
1 (z) = CF

[
4D1(z) + 2�D0(z)

+
(

2ζ2 − 4 + 3

2
�

)
δ(1 − z)

]
, (A.4)

and at NNLO by

C thr
2 (z) = 8C2

FD3(z) +
[

12C2
F� − 11CA − 2n f

3
CF

]
D2(z)

+
[(

4�2 + 6� − 16 − 8ζ2
)
C2
F − 11CA − 2n f

3
CF�

+67CA − 10n f

9
CF − 2ζ2CACF

]
D1(z)

+
[ (

3�2 − (8 + 4ζ2)� + 16ζ3
)
C2
F

+
(

−11

12
�2 +

(
67

18
− ζ2

)
� + 7

2
ζ3 + 11

3
ζ2 − 101

27

)
CACF

+
(

1

6
�2 − 5

9
� + 14

27
− 2

3
ζ2

)
n f CF

]
D0(z)

+
[ ((

9

8
− 2ζ2

)
�2 +

(
3

2
ζ2 + 11ζ3 − 93

16

)
�

+ 1

10
ζ 2

2 − 35

8
ζ2 − 15

4
ζ3 + 511

64

)
C2
F

+
(

−11

16
�2 +

(
193

48
− 3

2
ζ3

)
� − 3

20
ζ 2

2

+37

9
ζ2 + 7

4
ζ3 − 1535

192

)
CACF

+
(

1

8
�2 − 17

24
� + 1

2
ζ3 − 7

9
ζ2 + 127

96

)
n f CF

]
δ(1 − z)

(A.5)

where

� = log
Q2

μ2 (A.6)

with μ the factorization scale, assumed to be equal to the
renormalization scale. In the expressions above we have con-
veniently written the distributional terms in the compact form
defined by

Dk(z) ≡
(

logk(1 − z)

1 − z

)

+
. (A.7)

Using these distributions, Eqs. (A.4), (A.5) correspond to the
z-soft choice of threshold logarithms.

To obtain the N -soft expression, we use the results of
Appendix B.4 of Ref. [50] to write

∫ 1

0
dz zN−1

[
Dlog

k (z) + 	(k+1)(1)

k + 1
δ(1 − z)

]

= 1

k + 1

k+1∑

j=0

(
k + 1

j

)
	( j)(1) logk+1− j 1

N
(A.8)

where [46]

Dlog
k (z) ≡

(
logk log 1

z

log 1
z

)

+
. (A.9)

We recognise in the right-hand side of this equation exactly
the dominant large-N limit of the Mellin transform of the
Dk(z) distribution, Eq. (4.3), which is the part retained to
build up the N -soft approximation. We immediately con-
clude that the N -soft choice of logarithmic terms corresponds
in z space to the replacement

Dk(z) → Dlog
k (z) + 	(k+1)(1)

k + 1
δ(1 − z). (A.10)

Explicitly, up to k = 3 as needed for NNLO, we have

D0(z) → Dlog
0 (z) − γ δ(1 − z),

D1(z) → Dlog
1 (z) + 1

2

(
γ 2 + ζ2

)
δ(1 − z),

D2(z) → Dlog
2 (z) − 1

3

(
γ 3 + 3γ ζ2 + 2ζ3

)
δ(1 − z),

D3(z) → Dlog
3 (z) + 1

4

(
γ 4 + 6γ 2ζ2 + 8γ ζ3 + 3ζ 2

2 + 6ζ4

)

× δ(1 − z), (A.11)

where γ is the Euler–Mascheroni constant. We also notice
that we can write

Dlog
k (z) + 	(k+1)(1)

k + 1
δ(1 − z) = Dk(z) + logk log 1

z

log 1
z

− logk(1 − z)

1 − z
(A.12)

that provides an alternative, possibly simpler, implementa-
tion of N -soft.
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To obtain an analogous translation rule for ψ-soft, let us
first consider the distributions D̂k(z) defined by [46]

D̂k(z) = Dk(z) +
logk 1−z√

z

1 − z
− logk(1 − z)

1 − z
. (A.13)

Morally, this expression is equivalent to including a 1√
z fac-

tor in the argument of the threshold logarithm, which has
a kinematical origin and is thus universal [9,11,45]. Practi-
cally, this is done in such a way that the Mellin transform of
the D̂k(z) differ by that of Dk(z) by 1/N terms, thus pro-
viding an equivalent (at leading power) but possibly better
definition of threshold logarithms.

Using again the results of Appendix B.4 of Ref. [50], we
can write the Mellin transform of the D̂k(z) distributions as

∫ 1

0
dz zN−1 D̂k(z)= 1

k + 1

k+1∑

j=0

(
k + 1

j

)
	( j)(1)ϒk+1− j (N , 0)

(A.14)

where

ϒ0(N , ξ) = 	(N − ξ/2)

	(N + ξ/2)
(A.15)

and ϒn(N , ξ) is the n-th derivative of ϒ0(N , ξ) with respect
to ξ . By direct computation, we find for the first few terms
(as needed for NNLO)

ϒ1(N , 0) = −ψ0(N ),

ϒ2(N , 0) = ψ2
0 (N ),

ϒ3(N , 0) = −ψ3
0 (N ) − 1

4
ψ2(N ),

ϒ4(N , 0) = ψ4
0 (N ) + ψ2(N )ψ0(N ), (A.16)

where ψn(N ) = dn+1

dNn+1 log 	(N ) is the polygamma function.
We observe [46] that

ϒk(N , 0) = [−ψ0(N )]k
[

1 + O
(

1

N 2

)]
, (A.17)

namely up to next-to-next-to-leading power corrections the
use of D̂k(z)Eq. (A.13) can be obtained from a N -soft expres-
sion Eq. (A.8) with the replacement log N → ψ0(N ). The
ψ-soft formulation consists in using the distributions D̂k(z)
for the threshold logarithms but ignoring these subleading
O(1/N 2) contributions and retaining only the powers of
ψ0(N ), which is easy to implement to all orders in N space.
A z-space analog would be implemented by a modified dis-
tribution D̂ψ

k (z) defined by

∫ 1

0
dz zN−1 D̂ψ

k (z) = 1

k + 1

k+1∑

j=0

(
k + 1

j

)

× 	( j)(1) [−ψ0(N )]k+1− j , (A.18)

for which however we cannot find an easy closed form for
any k. Up to the order we are interested in, we have that
D̂ψ

0 (z) = D̂0(z) and D̂ψ
1 (z) = D̂1(z), while

∫ 1

0
dz zN−1

[
D̂ψ

2 (z) − D̂2(z)
]

= ψ2(N )

12
,

∫ 1

0
dz zN−1

[
D̂ψ

3 (z) − D̂3(z)
]

= −ψ2(N )

4
(ψ0(N ) + γ ).

(A.19)

The inverse Mellin transforms of these differences can be
computed analytically, using e.g. the results of Refs. [50,65].
We find

D̂ψ
2 (z) = D̂2(z) − 1

12

log2(z)

1 − z
,

D̂ψ
3 (z) = D̂3(z) − ζ2

2

log z

1 − z
+ 1

12

log3 z

1 − z
− 1

2

Li2(z) log z

1 − z

+Li3(z)

1 − z
− ζ3

1 − z
− 1

4

log(1 − z) log2 z

1 − z
.

(A.20)

The ψ-soft1 prescription mentioned in the main text uses
N+1 rather than just N as the argument of the digamma func-
tion: ψ0(N + 1). This is the simplest form of the “collinear
improvement” introduced in Ref. [46] that includes sublead-
ing power contributions from universal splitting functions.
In z space a shift N → N + 1 corresponds to multiplication
by z, so the recipe for the conversion of Eqs. (A.4) and (A.5)
to ψ-soft1 is simply given by the replacement

Dk(z) → z D̂ψ
k (z). (A.21)

A.3 Approximation based on the BDDR/AMRST approach
to resummation

The expansion of the resummed result of BDDR [13] (at
leading power) and AMRST [15] (at next-to-leading power)
in N space is given at NLO by (for μF = μR = Q)

C̃1(Na, Nb) = CF

[
L̄2

2
+ 4ζ2 − 4 + L̄

2N̄
+ O

(
1

N̄ 2

) ]

(A.22)

and at NNLO by16

C̃2(Na, Nb) = C2
F

8
L̄4 + CF

11CA − 2n f

72
L̄3

+
[
C2
F (2ζ2 − 2) + CFCA

(
67

72
− ζ2

4

)

−CFn f
5

36

]
L̄2

16 We stress that the published version of Ref. [15] contains some typos
that we pointed out to the authors, who have fixed them in the latest arXiv
version.
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+
[
CFCA

(
101

54
− 7

4
ζ3

)
− CFn f

7

27

]
L̄

+C2
F

(
511

64
− 99

8
ζ2 + 69

10
ζ 2

2 − 15

4
ζ3

)

+CFCA

(
−1535

192
+ 47

6
ζ2 − 23

20
ζ 2

2 + 151

36
ζ3

)

+CFn f

(
127

96
− 4

3
ζ2 + ζ3

18

)

+C2
F

4

L̄3

N̄
+

[
C2
F

8

1

N̄
+ CF

11CA − 2n f

48

]
L̄2

N̄

+C2
F

(
L̄a

Na
+ L̄b

Nb

)
L̄ − C2

F

4

(
L̄2
a

Na
+ L̄2

b

Nb

)

+
[
C2
F

(
2ζ2−11

4

)
+CFCA

(
133

72
− ζ2

4

)

−CFn f
11

36

]
L̄

N̄

+
[
C2
F

5

8
− CFCA

5

8

] (
L̄a

Na
+ L̄b

Nb

)

+
[

− C2
F

ζ2

4
− CFn f

19

54

+CFCA

(
97

216
− 7

8
ζ3

) ]
1

N̄

+O
(

1

N̄ 2

)
(A.23)

with

1

N̄
≡ 1

Na
+ 1

Nb

L̄a,b ≡ log Na,b + γ

L̄ ≡ log(NaNb) + 2γ = L̄a + L̄b. (A.24)

To convert these results to z space, we can invert Eq. (A.8)
for the leading power terms, while for the next-to leading
power contributions we further need the relation

∫ 1

0
dz zN−1 logp 1

z
logk log

1

z

= 1

N 1+p

k∑

j=0

(
k

j

)
	( j)(1 + p) logk− j 1

N
, k, p ≥ 0,

(A.25)

which can be derived from the generating function logξ 1
z

deriving k times with respect to ξ in ξ = p. Using these
results we get at NLO

C̃1(za, zb) = CF

[ (
Dlog

1 (za) − γDlog
0 (za)

)
δ(1 − zb)

+ δ(1 − za)
(
Dlog

1 (zb) − γDlog
0 (zb)

)

+ Dlog
0 (za)Dlog

0 (zb) +
(

4ζ2 − 4 + 2γ 2
)

× δ(1 − za)δ(1 − zb)

]

+ CF

2

[(
γ − log log

1

zb

)
δ(1 − za)

+
(

γ − log log
1

za

)
δ(1 − zb)

−Dlog
0 (za) − Dlog

0 (zb)

]
(A.26)

and at NNLO

C̃2(za, zb)

=
[
C2
F

(
511

64
− 99

8
ζ2 + 69

10
ζ 2

2 − 15

4
ζ3 + 8ζ2γ

2 − 8γ 2 + 2γ 4
)

+ CFCA

(
−1535

192
+ 47

6
ζ2 − 23

20
ζ 2

2 + 151

36
ζ3 − ζ2γ

2

−7

2
ζ3γ + 101

27
γ + 67

18
γ 2 + 11

9
γ 3

)

+ CFn f

(
127

96
− 4

3
ζ2 + ζ3

18
− 14

27
γ − 5

9
γ 2 − 2

9
γ 3

)]

× δ(1 − za)δ(1 − zb)

+ C2
F

2

[
Dlog

3 (za)δ(1 − zb) + δ(1 − za)Dlog
3 (zb)

]

+ 3

2
C2
F

[
Dlog

2 (za)Dlog
0 (zb) + Dlog

0 (za)Dlog
2 (zb)

]

+ 3C2
FDlog

1 (za)Dlog
1 (zb)

+
[
−3

2
C2
Fγ − CF

11CA − 2n f

24

]

×
[
Dlog

2 (za)δ(1 − zb) + δ(1 − za)Dlog
2 (zb)

]

− CF
11CA − 2n f

12

[
Dlog

1 (za)Dlog
0 (zb) + Dlog

0 (za)Dlog
1 (zb)

]

+
[
C2
F

(
5

2
ζ2 − 4 + 3

2
γ 2

)
+ CFCA

(
67

36
− ζ2

2
+ 11

12
γ

)

+CFn f

(
− 5

18
− γ

6

)]

×
[
Dlog

1 (za)δ(1 − zb) + δ(1 − za)Dlog
1 (zb)

]

+
[
C2
F (ζ2 − 4) + CFCA

(
67

36
− ζ2

2

)
− 5

18
CFn f

]

× Dlog
0 (za)Dlog

0 (zb)

+
[
C2
F

(
ζ3 − 5

2
ζ2γ + 4γ − γ 3

2

)

+ CFCA

(
11

24
ζ2 + 7

4
ζ3 − 101

54
+ γ

2
ζ2 − 11

24
γ 2 − 67

36
γ

)

+ CFn f

(
7

27
− ζ2

12
+ γ 2

12
+ 5

18
γ

) ]

×
[
Dlog

0 (za)δ(1 − zb) + δ(1 − za)Dlog
0 (zb)

]

+
{
Dlog

2 (za)

[
− 3

4
C2
F

]

+ Dlog
1 (za)

[
− 3

2
C2
F log log

1
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+ CF
11CA − 2n f

24
+ C2

F

4
log

1

zb

]

+ Dlog
0 (za)

[
− 3

4
C2
F log2 log

1
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+
(
C2
F + CF
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log log

1
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F

(
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4
− ζ2

2

)
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4
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1
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+
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(
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(
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(
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+ C2
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(
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2
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4
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+ CFCA

(
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216
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48
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8
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4
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48
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)

+ CFn f

(
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24
− 11

36
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)
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F
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1
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(
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1
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− 2 log log

1
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}

+ C2
F

4

[(
log log

1
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+ log log

1

zb

)2

− 2ζ2

]
, (A.27)

having used the Dlog
k (z) distributions defined in Eq. (A.9).

A.4 Approximation based on the LMT approach to
resummation

In the generalized threshold expansion of LMT, the expan-
sion of the resummed result can be obtained from the expres-
sion

C̃LMT
i j (za, zb, αs) = Hkr (αs)

[
δki Îr j (za, zb, αs)

+Îki (zb, za, αs)δr j − Ŝ(za, zb, αs)
]
,

(A.28)

in terms of the functions defined in the LMT paper [14].
Focussing on the qq̄ channel and expanding in powers of αs ,
we obtain at NLO at central scales

C̃LMT
1 (za, zb)

CF

= [
3ζ2 − 4

]
δ(1 − za)δ(1 − zb) + D1(za)δ(1 − zb)

+ δ(1 − za)D1(zb) + D0(za)D0(zb)

+
{
δ(1 − za)

[
1 − zb

2
− 1 + zb

2
log(1 − zb)

+ 1

2

1 + z2
b

1 − zb
log

2

1 + zb

]
− D0(za)

1 + zb
2

+ (za ↔ zb)

}
, (A.29)

corresponding to the distributional part of Eq. (A.3), and at
NNLO we get

C̃LMT
2 (za, zb) =

[
C2
F

(
511
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− 67

8
ζ2 + 19

5
ζ 2
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4
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)
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−1535
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]

+ 3C2
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− CF
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−CF
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+
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(
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×
[
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]

+
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(
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[
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(
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12
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+CFn f

(
7
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6
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×
[
D0(za)δ(1 − zb) + δ(1 − za)D0(zb)

]

+
{
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+ δ(1 − za)Fδ(zb) + (za ↔ zb)

}
(A.30)

where the functions Fi (z) are given by

F2(z) = −3

4
C2
F (1 + z), (A.31a)
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F1(z) = C2
F

(
1

2
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, (A.31b)

F0(z) = C2
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(
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36z
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(
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24
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(
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log z
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, (A.31c)

Fδ(z) = C2
F

(
7

4
ζ2 − 2

)

×
(

1 − z − (1 + z) log(1 − z) + 1 + z2

1 − z
log

2

1 + z

)

+ 1

16
reg

[
Ĩ (2)
qqV (z) + Ĩ (2)

qqS(z)
]
. (A.31d)

In the last function we have kept the dependence on the
functions I (2)

qqV (z) and I (2)
qqS(z) given in equation (S53) of

Ref. [14]. Specifically, these functions contain distributional
terms in Dk(z) and δ(1 − z), which are already taken into
account explicitly in Eq. (A.30) as they contribute to the
double-distributional part of the result, so here only the
remaining regular part, denoted by reg [. . .] in the formula,
has to be considered. The factor 1/16 finally fixes the differ-
ent normalization due to the different expansion parameters
(we use αs/π while LMT use αs/(4π)). It is useful to write
explicitly the large z expansion of the Fi (z) functions,

F2(z) = −3

2
C2
F , (A.32a)

F1(z) = −3C2
F log(1 − z)

+ 3

2
C2
F + CF

11CA − 2n f

12
, (A.32b)

F0(z) = −3

2
C2
F log2(1 − z)

+
(

5

2
C2
F + CF

11CA − 2n f

12

)
log(1 − z)

+ C2
F

(
19

4
− ζ2

)
+ CFCA

(
−233

72
+ ζ2

2

)

+ CFn f
19

36
, (A.32c)

Fδ(z) = −1

2
C2
F log3(1 − z)

+
(

3

2
C2
F + CF

11CA − 2n f

24

)
log2(1 − z)

+
(
C2
F

(
33

8
− ζ2

)
+ CFCA

(
−47

18
+ ζ2

2

)

+CFn f
19

36

)
log(1 − z)

+ C2
F

(
−2 − ζ2

2
− 2ζ3

)

+ CFCA

(
125

54
− 7

6
ζ2 − 7

4
ζ3

)

+ CFn f

(
− 67

108
+ ζ2

6

)
. (A.32d)

From this expansion it is easy to verify that the double-Mellin
transform of the LMT result coincides at next-to-leading
power with the AMRST result Eq. (A.23).

A.5 Analytical comparison

We consider here an analytical comparison of the approaches
studied in this work. We find it convenient to perform this
comparison in double Mellin space, which allows us to obtain
more compact expressions. The expressions for BDDR and
AMRST are already given in this space, Eqs. (A.22) and
(A.23), and LMT can be easily computed by a direct double
Mellin transform of Eqs. (A.29) and (A.30). As far as BNX
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and BFR are concerned, the computation of the double Mellin
transform is less obvious as they are expressed in terms of
the z, u variables. Using the definitions of Sect. 2, it is easy
to prove that

C̃(Na, Nb) ≡
∫ 1

0
dza z

Na−1
a

∫ 1

0
dzb z

Nb−1
b C̃(za, zb)

=
∫ 1

0
dz zN−1

∫ 1

0
du

(
1 − (1 − z)u

z + (1 − z)u

)�N

× z(1 + z)2C(z, u)

(1 − (1 − z)u) (z + (1 − z)u) (za + zb)2

(A.33)

with N = Na+Nb
2 and �N = Na−Nb

2 , and za,b(z, u) given in
Eq. (2.10). Plugging in the expressions of C(z, u) Eqs. (3.2)
and (3.3) for BNX and BFR respectively, we find

C̃BNX(Na, Nb) = 1

2

[
Cthr(Na) + Cthr(Nb)

]
, (A.34)

C̃BFR(Na, Nb) = Cthr

(
Na + Nb

2

)
. (A.35)

We also recall that C̃(Na, Nb) computed in Na = Nb cor-
responds to the Mellin transform of the rapidity-integrated
coefficient function C(z). Indeed, inserting 1 = ∫ 1

0 dz δ(z −
zazb) in the definition of the double Mellin transform, we get

C̃(N , N )=
∫ 1

0
dz zN−1

∫ 1

0
dza

∫ 1

0
dzb δ(z−zazb)C̃(za, zb)

=
∫ 1

0
dz zN−1C(z)

= C(N ). (A.36)

Equations (A.34) and (A.35) clearly satisfy this condition,
modulo the fact that the rapidity-integrated coefficient is
approximated at threshold.

In the following, we will ignore BFR (which is equiva-
lent to BNX up to next-to-next-to-leading power in 1 − z as
we have already commented in Sect. 3.1) and consider the
BNX expression only, Eq. (A.34), computed with the ψ-soft1
choice of threshold logarithms, as described in Sect. 1. We
first perform the comparison at the rapidity-integrated level,
where we find at NLO and NNLO

C1(N ) = C̃BNX, ψ-soft1
1 (N , N ) + O

(
1

N2

)
(A.37)

C2(N ) = C̃BNX, ψ-soft1
2 (N , N )

+ 1

N

[
7

2
C2
F L

2 +
(

−7

4
C2
F + 29

12
CFCA − 2

3
CFn f

)
L

− ζ2

2
C2
F − 35

36
CFCA − 4

9
CFn f

]
+ O

(
1

N2

)
,

(A.38)

with L = log N + γ . We thus see what we expected from
ψ-soft1, namely that on top of the leading power contribu-
tions also the LL term at next-to-leading power is predicted
correctly. At NLO, the next-to-leading power NLL term, of
the form 1/N , is also correctly predicted by ψ-soft1, as well
as part of next-to-leading power NLL terms at NNLO, of the
form L2/N (in particular, the term proportional to β0 in the
eighth line of Eq. (A.23) is completely reproduced).

Moving to the rapidity-differential coefficient, i.e. keeping
Na �= Nb, we find

C̃1(Na, Nb) = C̃BNX, ψ-soft1
1 (Na, Nb)

− CF

2
δL2 − CF

2

δL

δN
+ O

(
1

N̄ 2

)
(A.39)
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)
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48
CFCA − CFn f

6

)
L̄

− ζ2

4
C2
F − 35

72
CFCA − 2

9
CFn f

]
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24
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+ CF
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48

)
δL2

N̄

+
(
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F

(
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16
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+ CFCA

(
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+ CFnF

5

36
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× δL

δN
+ O

(
1
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, (A.40)

with

1

δN
≡ 1

Na
− 1

Nb
, δL ≡ L̄a − L̄b = log

Na

Nb
, (A.41)

and having used the definitions Eq. (A.24). We immediately
notice that, in addition to the contributions already present at
the integrated level, i.e. the fourth and fifth lines of Eq. (A.40),
the BNX result differs from the exact (and equivalently from
AMRST) by many other terms, appearing also at leading
power, namely without a 1/Na,b suppression. These terms
are all proportional to at least one power of δL , and therefore
vanish in the Na = Nb limit that reproduces the rapidity-
integrated result.

The presence of these contributions already at leading
power may seem worrisome. However, we have already
encountered contributions that are apparently leading power
at parton level but that contribute at next-to-leading power to
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the cross section: we have discussed them in Sect. 3.3. There,
we had shown that contributions of the form Eq. (3.23) van-
ishing after integration over u contribute at next-to-leading
power to the cross section. Even more, if the contributions
are symmetric under the exchange u → 1 − u (namely
are symmetric in partonic rapidity), then their contribution
is even more suppressed, at next-to-next-to-leading power
level. Since integrating over u corresponds to integrating
over partonic rapidity, all leading-power contributions in
C̃(Na, Nb) that vanish when Na = Nb belong to the cat-
egory discussed in Sect. 3.3. Moreover, in Eqs. (A.39) and
(A.40), all terms proportional to δL are symmetric under
the exchange Na ↔ Nb, corresponding to a sign flip of δL
and δN , which means that they are the Mellin transform of
terms symmetric under the exchange u → 1 − u. There-
fore, the difference between BNX and AMRST at the cross
section level is given at next-to-leading power just by the
terms appearing also in the rapidity-integrated coefficient
Eq. (A.38), while the additional terms proportional to δL
showing up in Eqs. (A.39) and (A.40) only contribute at next-
to-next-to-leading power to the cross section. This explains
the good agreement between the two formulations.

As far as LMT is concerned, we have already commented
at the end of Appendix A.4 that up to next-to-leading power
it coincides with AMRST, the difference starting at next-to-
next-to-leading power. We thus do not need to give explicit
N -space expressions here.
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