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Abstract

Distributed Acoustic Sensing (DAS) technology repurposes fiber optic cables (FOCs) into seismic

arrays, offering unprecedented dense strain/strain-rate measurements. The meter-scale virtual sensor

spacing is typically unattainable with standard seismological equipment. Consequently, DAS provides

an extraordinary amount of data suitable for seismic monitoring applications. However, peculiar

features of this technology, such as signal axial polarization, coupling inhomogeneities or sensitivity

to site conditions, can affect seismic phase amplitudes and their coherence, potentially reducing the

number of useful measurement points. To gain a deeper understanding on the relative importance of

these phenomena, this study analyzes real data from various seismic events recorded by

shallow-horizontal DAS deployments. Thus, we take advantage of the pool of different array

dimensions and geometries to avoid biased observations. We focus on the spatial variability of P-wave

amplitudes, Signal-to-Noise Ratios (SNRs) and waveform correlation, ideally mimicking the usage of

0



absolute and differential arrival times for monitoring purposes. We observed significant amplitude

variations which cannot be fully explained by signal polarization along the FOC. Additionally,

waveform correlation often exhibits a complex and faster decay with interchannel distance. These

findings suggest the importance of avoiding "blind" usage of shallow-horizontal DAS arrays and

emphasize the need for case-dependent data selection/weighting procedures.

1 Introduction

DAS is a novel geophysical technology that allows for the re-purposing of FOCs into a dense array of

seismic sensors (Zhan, 2020). DAS utilizes laser pulses from an interrogator at one of the FOC tips

and detects phase changes in the back-scattered wavefield, following localized deformations of the

FOC. This process maps very dense (meter scale) strain and strain rate measurements to each local

position along the FOC (DAS channels), providing a detailed picture of e.g., a seismic wavefield

(Cannon et al., 2013; Güemes et al., 2010; Mateeva et al., 2012; Mestayer et al., 2011; Parker et al.,

2014). Therefore, DAS measures a physical quantity that is inherently different from that delivered by

standard seismological instruments, such as ground acceleration, velocity, or displacement (Lindsey et

al., 2020; Trabattoni et al., 2022). This characteristic makes the interrogated cable more sensitive to

the elastic properties of the medium (Piana Agostinetti et al., 2022; Trabattoni et al., 2022,2023; Van

den Ende and Ampuero, 2021). Additionally, the system only detects the strain component oriented

along the FOC direction. This implies a selective sensitivity which, for a given wavetype, depends on

the angle between the FOC orientation and the propagation azimuth and dip angles (Kennett et al.,

2022; Martin et al., 2021; Trabattoni et al., 2022). Furthermore, the FOCs can be buried at different

depths and characterized by peculiar noise sources, thereby exhibiting different sensing capabilities to

elastic disturbances (Celli et al., 2023; Miller et al., 2018).

DAS can record a wide range of sources and it offers the advantage of being potentially deployable in

challenging environments (Biagioli et al., 2024; Cheng et al., 2021; Fichtner et al., 2022; Jousset et

al., 2022; Lior et al., 2022; Klaasen et al., 2021; Walter et al., 2020). Additionally, DAS can leverage

FOCs already installed but not currently employed for telecommunications (referred to as dark fibers),

removing the requirement for costly new excavations (Biondi et al., 2021). The dense spatial sampling

provided by DAS, simply unattainable with standard seismological sensors, additionally offers the

advantage of signal redundancy. Consequently, seismological techniques that exploit signal coherence

and delay time information may be particularly well-suited for the DAS method (Biagioli et al., 2024;

Klaasen et al., 2021; Porras et al., 2024; Van der Ende and Ampuero, 2021).

Numerous DAS experiments have been conducted in recent years, covering diverse contexts and for

various purposes. Following pioneering industry tests in the early 2010s (Mestayer et al; 2011;
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Molenaar et al., 2011) successive studies have demonstrated the capabilities of DAS for: mapping

subsurface heterogeneity (Ajo-Franklin et al., 2019; Jousset et al., 2018; Lindsey et al., 2019; Lior et

al., 2022; Yang et al., 2022; Yuan et al., 2020), upper crust structural studies (Biondi et al., 2023),

monitoring natural (Lindsey et al., 2017; Ugalde et al., 2022) or induced seismicity (Karrenbach et al.,

2019), particularly in geothermal fields (Lellouch et al., 2020; Obermann et al., 2022), enabling rapid

response to study aftershock sequences (Li et al., 2021), characterizing natural seismicity resulting

from glacier movements (Walter et al., 2020), and sensing urban noise (Biondi et al., 2021; Shen and

Zhu, 2021). Nowadays, DAS is becoming increasingly used for standard seismological applications

(Fernández-Ruiz et al., 2022; Li et al., 2023; Trabattoni et al., 2022; Wuestefeld et al., 2023).

In the traditional approach to earthquake detection and location, the amplitude of the signal’s onset is

crucial, particularly for arrival time picking methods that only rely on signal amplitudes such as the

Short-Time / Long-Time-Average ratio (STA/LTA; Allen, 1982). Lower SNRs imply more uncertain

measurements of arrival times, which in turn provoke larger errors in the estimate of the hypocentral

parameters. Typically, the limited number of conventional seismic sensors, compared to DAS, allows

for a manual inspection of the seismic waveforms to identify and exclude outliers originating from

recordings with lower SNR. However, this procedure is operationally not feasible for DAS data, due

to the presence of, typically, > 1000 channels in a single experiment.

In array seismology, different measures of signal coherence are used to extract information regarding

Direction-Of-Arrival (DOA) and apparent propagation velocity of waves crossing the array (e.g., Rost

and Thomas, 2002). Several authors have thus investigated the application of array techniques to

DAS data (Van der Ende and Ampuero, 2021; Klaasen et al., 2021). However, local velocity

heterogeneities and different cable orientations with respect to the DOA induce lateral variations of

signal coherence, which restrict the applicability of multichannel techniques to the estimation of

wavefield parameters (e.g., Van der Ende and Ampuero, 2021).

The above-mentioned considerations indicate that the performance of DAS systems in characterizing

seismic sources at the local/regional scale is influenced by various factors, both intrinsic to the method

(e.g., signal polarization) and installation-dependent (e.g., site effects, FOC coupling). While we have

partial control over DAS geometrical features, such as cable orientation to the incident wavefield

(Martin et al., 2021), our modelling capability is limited regarding site effects and coupling. This

implies that we need an a-priori knowledge of the very local medium hosting the FOCs (Celli et al.,

2023), and detailed knowledge about the cable setting.

This study aims to provide a deeper understanding of the influence of geometrical and site-dependent

factors on the spatial variability of onset amplitudes and waveform correlation. Our “real-world”

dataset is represented by recordings of 15 seismic events from as many DAS deployments, covering

various installation environments and geometries (Fig. 1). Data acquired from wells are intentionally

2



excluded since we focus the analysis on the effects related to cable geometry (i.e., axial sensitivity

related to azimuth variation) and the complex pool of surface-related issues. The dataset, covering

DAS deployment installed between 2017 and 2021, includes a variety of recorded signals such as

earthquakes, volcano-tectonic earthquakes, and ice quakes. For each DAS deployment, we select a

seismic event with a known localization, in order to perform a first-order modeling of the geometrical

factors. The first part of the study, following waveform pre-processing and onset picking, focuses on

the spatial variations of onset amplitude. We analyze these variations against the expected axial

sensitivity, also accounting for geometrical spreading and anelastic attenuation. Thus, our objective is

to better understand the relative importance of 'predictable' factors (e.g., axial polarization of the

signal and source-to-receiver distance) versus 'non-predictable' effects (i.e., coupling, unmodeled

velocity heterogeneities) on the observed onset amplitudes. In the second part of the study, we

examine signal correlation for selected cable portions and assess its decay with interchannel distance

along with an expected trend. Indeed, while the first section primarily addresses potential issues

related to the utilization of absolute arrival times, the second section is dedicated to applications

which make use of differential arrival times.

2. Data and Methods

2.1. 15 “real-world” case studies

We analyze case studies derived from 15 DAS experiments conducted between 2017 and 2021 in

diverse environments by different research groups. These datasets have been obtained either from

open-access repositories (Feigl, 1969; Lindsey et al., 2020; Lior et al., 2021; Klaasen et al., 2021;

Nishimura et al., 2021; Spica et al., 2023; Villasenor et al., 2020; Zhu et al., 2020) or restricted

databases. The cable layouts and their geometrical relationships with the recorded events provide a

substantial dataset for a comprehensive investigation of amplitude and coherency variations in DAS

data. Three distinct installation environments have been defined to gather common case studies: 1)

"submarine" telecommunication cables, 2) "terrestrial" telecommunication cables, and 3)

"fit-for-purpose" installations. For each DAS array, recordings from well-located seismic events have

been chosen, and hypocentral parameters have been obtained either from available seismic catalogues

or through traveltime inversion of manually checked and picked DAS channels. In the latter

procedure, a Markov chain Monte Carlo approach (McMC) was employed to estimate hypocentral

parameters (Riva et al., 2024). All selected events are located within a distance of less than 100 km

from the closest DAS channel, with magnitudes lower than 3.5. Table 1 and Figure 1 provide an
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overview of the metadata for the selected events and the geometrical relations of the DAS

deployments/events.

2.2 Data pre-processing and onset picking

A straightforward pre-processing procedure is applied to the raw event recordings. Specifically, it

employs detrending, cosine tapering, and bandpass filtering. The frequency bands of the filter are

chosen by using the ratio of the frequency spectra of the pre-event signal and the signal during the

event. An automatic picking procedure (STA/LTA) is utilized to identify the first onsets and retrieve

the arrival times at the triggered DAS channels, thus simulating an operational workflow for real-time

monitoring (Fig. 2). The channels triggered in the automatic picking procedure are then used to

compute the P-wave amplitudes and SNRs. Signal amplitude is estimated using a 2-s-long time

window around the automatic pick to include the onset and mitigate picking uncertainties. SNRs are

computed employing the same 2-s time windows before (noise) and after (signal) the automatic onset

picking.

2.3 Signal amplitude and SNRs

The estimated amplitudes are subsequently corrected for geometrical spreading and anelastic

attenuation and compared with the angle spanned by the FOC-source and local FOC azimuths and the

theoretical cable sensitivity. The following relation is used to correct for amplitude decay with

distance from the event:

(1)𝐴(𝑟) =  𝐴0 · 𝑟 −1 𝑒 (−𝑘·𝑟)

with

(1.1)𝑘  =  (𝑝𝑖 · 𝑓)/(𝑄 · 𝑣) 

Where is original amplitude, the distance, the frequency [Hz], the quality factor and = Vp𝐴0 𝑟 𝑓 𝑄 𝑣

the P-wave velocity. In this study, we set as the average filtering frequency range, as constant =𝑓 𝑄

150, and Vp to 6000 m/s. Although the quality factor and P-wave velocity may not represent the
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perfect fit for each case study, we prefer to remove a possible source of variability by setting constant

values for all the different experiments. Moreover, prior information on the geological contexts, and

thus on the above-mentioned parameters, is known only for a few cable deployments.

To account for potential variations in onset amplitudes resulting from signal polarization along the

array, we compute the theoretical local axial sensitivity of the cable. Initially, FOC-event and FOC

azimuths are computed by determining, for each channel, the direction to the next neighbouring

channel along the cable. This information is used to compute theoretical sensitivities for each

event-DAS geometry pair, following the formulation described in Martin et al., (2021), under the

plane wave assumption and for P-waves:

(2)𝑇𝐻𝑠𝑒𝑛𝑠 =  𝑎 · 𝑏 · 𝑐 · 𝑑

with:

(2.1)𝑎 =  (2·𝑣·𝑘)
𝑔

(2.2)𝑏 =  𝑐𝑜𝑠(α)

(2.3)𝑐 =  𝑐𝑜𝑠(β)

(2.4)𝑑 =  𝑠𝑖𝑛(0. 5 · (𝑔 · 𝑘 · 𝑐𝑜𝑠(α) · 𝑐𝑜𝑠(β))

Where = Vp is the P-wave velocity, the wavenumber, the gauge length, the ray path azimuth𝑣 𝑘 𝑔 α

and the ray path dip angle. In this study, we set Vp = 6000 m/s. Although the plane waveβ

assumption may not universally apply in all case studies, theoretical sensitivities are expected to

exhibit a first-level correlation with signal amplitudes, particularly when correcting for distance decay.

We normalize the theoretical sensitivities to the maximum expected value. Thus, when the azimuth is

90° and/or the dip angle is 90°, the value is set to 0, while in the opposite case, it is set to 1. This

preliminary analysis aims to explore whether azimuthal sensitivity significantly influences signal

amplitudes or if other more complex, and difficult-to-model, factors (e.g., site conditions and cable

coupling) exert a more substantial impact. Source radiation patterns may also contribute to defining

amplitude variations along the array. However, this feature was not modelled in the work due to a lack

of information on source parameters for specific cases. Nonetheless, we consider possible sine-like

amplitude variations along the array in the interpretation phase.

We analyze the spatial variations of onset amplitudes by plotting these values against the incidence

angle, and we supplement the information with theoretical sensitivity data (Fig. 3-4-5).
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2.3 Waveform correlation

The second part of the study focuses on the spatial coherence of recorded waveforms. The same

filtering procedures (i.e., detrending and bandpass filtering) outlined above were adopted as a

pre-processing step. We computed cross-correlation functions for all possible DAS channel pairs,

using the same time window considered for SNR computation. For selected case studies, we plotted

the matrix of the Maxima of the Cross-Correlation functions (MCCs). This matrix is useful for

highlighting the spatial distribution of correlation. Additionally, the MCCs were evaluated in their

dependence on the interchannel distance and the SNRs.

Finally, the decay of correlation with interchannel distance is compared to what is predicted by the

theory (after Menke et al., 1990), limiting the analysis to 100 m for clarity:

(3)𝑀𝐶𝐶𝑖𝑗 =  𝑒
(− 𝑘*𝑅𝑖𝑗

λ )

Where = 2-3, is the interchannel distance between channel and and is the wavelength. In this𝑘 𝑅𝑖𝑗 𝑖 𝑗 λ

study, we set =2.5 and we compute from a fixed P-wave velocity of 6000 m/s and the average𝑘 λ

filtering frequency range.

To examine the spatial distribution of waveform correlation, we intentionally eliminate possible

angular dependencies, i.e., azimuth and radiation pattern. Indeed, for six specific case studies

(MONTEREY, CANARY, STANFORD-2, FORESEE, GRÍMSVÖTN, POROTOMO) we identify a

rectilinear portion of the cable comprising 100 channels, favourably oriented with respect to the

incidence angle (avoiding perpendicular incidence which in theory should be poorly sensed). This

approach, unlike the analysis presented in Section 3.1, proves to be feasible for waveform correlation

due to the abundance of potential DAS channel pairs, even within a limited selection of the cable.

Indeed, e.g., for 100 channels, we end up potentially with 4950 estimates of MCCs.

We analyze the spatial variations of waveform correlation by plotting MCCs against the interchannel

distance, and we supplement the information with the values expected from theory (Menke et al.,

1990). For each case study, we dedicate a figure (Fig. 6, 7, 8, 9, 10, 11).

3 Results

3.1 Spatial distribution of onset amplitudes
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Figures 3, 4 and 5 show the observed onset amplitudes, corrected for geometrical spreading and

attenuation, in relation to the azimuth and the theoretical sensitivity. A subset of case studies (HCMR,

MONTEREY, HENGILL-GFZ, GRÍMSVÖTN), yet cristal clear only in MONTEREY, exhibits a

first-order influence of the incidence angle and, consequently, of the theoretical sensitivity, on onset

amplitudes (Fig. 3a, 3b, 4f, 5d). However, NESTOR, MEUST, and RHONEGLETSCHER case

studies show an opposite, yet weak, behaviour (Fig. 3c, 3d, 5b). No clear dependences on the

incidence angle are observed for all other case studies (Fig. 3e, 4b, 4c, 4d, 4e, 5a, 5c). Notably,

amplitude variations related to the incidence angle are 1-2 orders of magnitude lower than the

observed scattering for fixed azimuth. Indeed, after correcting the amplitudes for the decay with

epicentral distance (eq. 1), the residuals should in principle reflect the influence of both signal

polarization along the array and/or radiation pattern from the source, which is not coherently visible

from our results. While we cannot completely rule out the source effects, due to a lack of prior

information, we observe a lack of generalized and simple correlation with the incidence angle, in

favour of more complex dependencies.

3.2 Spatial distribution of waveform correlation

Figures 6, 7, 8, 9, 10 and 11 present an overview of the spatial distribution of waveform correlation

for six selected case studies, MONTEREY, CANARY, STANFORD-2, FORESEE, GRÍMSVÖTN,

POROTOMO, two for each installation environment. The orange sections on the cables (Fig. 6a, 7a,

8a, 9a, 10a, 11a) indicate the chosen 100 channels for the analysis. Additionally, we display the

automatic picks and record sections, providing the timing of the event onsets (Fig. 6b, 7b, 8b, 9b, 10b,

11b). We draw attention to the fact that not all channels are triggered, which is expected, given the

automatic picking procedure (STA-LTA) employed for the study. As a consequence, the resulting

amount of onset time estimates are slightly different among the different case studies. The reader can

refer to Figure 2 for the complete recording of the events.

As expected, the MCC matrices (Fig. 6c, 7c, 8c, 9c, 10c, 11c) display a concentration of high values

along the diagonal (corresponding to small interchannel distances). MCCs then decrease, yet

irregularly, with increasing interchannel distance (Fig. 6d, 7d, 8d, 9d, 10d, 11d). Similar to the

analysis of spatial amplitude variations, complex variations of MMC dependencies emerge (Fig. 6d,

9d, 10d), such as sudden increases at higher interchannel distances. Furthermore, the scattering of

MCCs is more pronounced than the aforementioned first and second-order variations, with the notable

exception of POROTOMO. When comparing the MCCs with the expected trend (Menke et al., 1990),

in most cases we observe that the observed MCCs decay with inter-channel distance is much faster

than what predicted by the theory. A noteworthy exception is represented by the GRÍMSVÖTN case

study, for which our measurements are consistent with the predictions in the sense of eq. (2). This is
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likely attributed to the unique installation environment, consisting of a glacier with a thickness of

hundreds of meters (Klaasen et al., 2023). This confirms that medium homogeneity plays a crucial

role in controlling the quality and consistency of DAS recordings.

As expected, MCCs generally exhibit a positive correlation with onset SNRs. Thus, in the cable

sections where the event emerges more clearly from the background noise, the recordings are also

more coherent each other.

4 Discussion

The analysis of spatial variations in onset amplitudes across different experimental setups suggests

that signal polarization along the cable alone cannot fully explain the observed scattering (Fig. 3-4-5).

For DAS segments with a similar azimuth in relation to the event, the span of amplitude variations is

up to two orders of magnitude larger than what predicted by theory for the incidence angle

dependency throughout the whole cable. The expected influence of the source radiation pattern should

yield a sine-like amplitude modulation with the incidence angle, but those effects are not clearly

visible in our results. Our findings thus indicate that the observed amplitude modulation are mostly

controlled by other, non-predictable factors, such as local velocity heterogeneities (Piana Agostinetti

et al., 2022; Jousset et al., 2018; Lior et al., 2021) and variations in cable coupling (Celli et al., 2023;

Miller et al., 2018). These effects affect particularly shallow-horizontal arrays, while may be less

important for data acquired in wells. Nevertheless, monitoring seismicity with DAS in wells might

provide insufficient azimuthal direction coverage for constraining event location (while being more

efficient for signal detection). Hence, when exploiting superficial DAS arrays for similar purposes,

we should take into account the likely occurrence of significant amplitude modulations with complex

spatial patterns.

Obtaining prior information on local velocity heterogeneities and cable coupling or modeling their

influence is challenging, especially for commercial telecommunication cables (submarine

environments or urban contexts). Therefore, in evaluating a DAS experiment, significant attention

should be paid to understanding and possibly isolating the cable portions showing these undesired

signal amplitude decays.

In several seismological analyses, such as location or source mechanism inversion, it is common

practice to select or weight stations based on their inferred distance from the source and, additionally,
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SNRs. While we know that DAS recording amplitudes do not exclusively correlate with the distance

from the source (due to azimuthal sensitivity), our results highlight other, more complex and stronger

effects. Therefore, relying solely on distance-based processing techniques for DAS arrays is

insufficient. Instead, greater emphasis should be placed on developing tailored workflows that

consider the specific noise distribution of the FOC.

The analysis of spatial variability in waveform correlation highlights complex dependencies with

interchannel distance (Fig. 6, 7, 8, 9, 10 and 11), confirming the strong dependence of DAS

performance on local velocity anomalies and/or cable coupling inhomogeneities (Van den Ende and

Ampuero, 2021). Consequently, when utilizing local waveform coherence for array techniques based

on differential travel times, careful data selection is essential to avoid mixing phase information

and/or obtaining meaningless estimates from poorly correlated channel pairs. A prior assessment of

SNRs, associated with a strong limitation of the exploited interchannel distance and proper weighting

of the measured delay times, can provide useful constraints for this task. However, this may limit the

actual aperture of the resulting sub-array (i.e., the virtual deployment composed of only

well-correlated channels), potentially compromising the performance of the sub-array in terms of

Direction of Arrival (DOA) and apparent velocity estimations. On a positive note, the unprecedented

sampling density provided by DAS technology usually allows for a sufficient amount of measurement

points, even when a strong selection of arrival times is employed.

Conclusions

This study examined 15 local events (purely tectonic, volcano-tectonic, and ice-quakes) recorded with

DAS technology in various installation environments to evaluate the spatial distributions of onset

amplitudes and waveform correlation. Having in mind a seismological monitoring framework, we

estimated the onset timing of these events using STA-LTA after a standard waveform processing.

Subsequently, we conducted a detailed analysis of P-wave amplitudes, correcting for geometrical

spreading and anelastic attenuation. We examined the relative importance of intrinsic and modelable

features, that is theoretical cable sensitivity, and more complex, difficult-to-predict site-dependent

properties, on amplitudes spatial variation. Following this, in line with another data type commonly

used in seismic monitoring, that is phase differential arrival times, we performed a study on waveform

coherency (from multichannel cross-correlation) for selected rectilinear and well-oriented cable

portions, thus mitigating the angular dependencies. The Maxima of the Cross-Correlation functions
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(MCCs) were evaluated against the interchannel distance, following routine procedures used with

seismological arrays, and were compared with expected values.

Our findings underscore how DAS recordings exhibit complex spatial patterns, which deviate from

the predictions, in both onset amplitudes and waveform correlation, possibly impacting estimates of

absolute and differential arrival times. Our findings indicate that these variations are difficult to

model, as they predominantly depend on factors that are difficult or impossible to evaluate a priori,

e.g. coupling and local velocity structure. As a matter of fact, we observed that axial sensitivity or

interchannel distance, which can be evaluated a priori, are not acting alone in influencing real data

amplitude and shape variations.

We thus conclude that utilization of recordings from shallow-horizontal DAS deployments for

hypocentral location should be preceded by rigorous channel selection and weighting procedures, to

be tailored to the waveform characteristics of the specific experiment. On a positive note, there is

significant potential in harnessing the abundance of data points to develop smart procedures for

extracting meaningful information. This evaluation should complement, rather than substitute,

traditional geometrical studies on the network's potential for monitoring seismicity.
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Table 1. Metadata of the DAS deployments and selected events.

17



Figure 1. Datasets analyzed in the study: list of DAS array geometries and event locations.
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Figure 2. Recorded events and STA-LTA onset picks.
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Figure 3. Telecommunication oceanic FOCs. Onset amplitudes (normalized for geometrical spreading

effects) against incidence angle. Theoretical sensitivity values are overplotted over data points using a

scale of colors.
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Figure 4. Telecommunication terrestrial FOCs. Onset amplitudes (normalized for geometrical

speading effects) against incidence angle. Theoretical sensitivity values are overplotted over data

points using a scale of colors. 
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Figure 5. "Fit-for-purpose" FOCs. Onset amplitudes (normalized for geometrical speading effects)

against incidence angle. Theoretical sensitivity values are overplotted over data points using a scale of

colors. 
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Figure 6. Waveform Correlation Analysis: MONTEREY case study. a) Selected rectilinear portion; b)

Onset record section and triggered channels associated with SNRs (STA-LTA picks as colored stars);

c) MCCi matrix for the picked channels; d) MCCi against interchannel distance, limited to 100 m. The

average SNRs for the cross-correlated channels are shown with a scale of colors. A theoretical decay,

following Menke et al., 1990, is provided as red dots.
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Figure 7. Waveform Correlation Analysis: CANARY case study. a) Selected rectilinear portion; b)

Onset record section and triggered channels associated with SNRs (STA-LTA picks as colored stars);

c) MCCi matrix for the picked channels; d) MCCi against interchannel distance, limited to 100 m. The

average SNRs for the cross-correlated channels are shown with a scale of colors. A theoretical decay,

following Menke et al., 1990, is provided as red dots.
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Figure 8. Waveform Correlation Analysis: STANFORD-2 case study. a) Selected rectilinear portion;

b) Onset record section and triggered channels associated with SNRs

(STA-LTA picks as colored stars); c) MCCi matrix for the picked channels; d) MCCi against

interchannel distance, limited to 100 m. The average SNRs for the cross-correlated channels are

shown with a scale of colors. A theoretical decay, following Menke et al., 1990, is provided as red

dots.
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Figure 9. Waveform Correlation Analysis: FORESEE case study. a) Selected rectilinear portion; b)

Onset record section and triggered channels associated with SNRs (STA-LTA picks as colored stars);

c) MCCi matrix for the picked channels; d) MCCi against interchannel distance, limited to 100 m. The

average SNRs for the cross-correlated channels are shown with a scale of colors. A theoretical decay,

following Menke et al., 1990, is provided as red dots.
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Figure 10. Waveform Correlation Analysis: POROTOMO case study. a) Selected rectilinear portion;

b) Onset record section and triggered channels associated with SNRs

(STA-LTA picks as colored stars); c) MCCi matrix for the picked channels; d) MCCi against

interchannel distance, limited to 100 m. The average SNRs for the cross-correlated channels are

shown with a scale of colors. A theoretical decay, following Menke et al., 1990, is provided as red

dots.
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Figure 11. Waveform Correlation Analysis: GRÍMSVÖTN case study. a) Selected rectilinear portion;

b) Onset record section and triggered channels associated with SNRs

(STA-LTA picks as colored stars); c) MCCi matrix for the picked channels; d) MCCi against

interchannel distance, limited to 100 m. The average SNRs for the cross-correlated channels are

shown with a scale of colors. A theoretical decay, following Menke et al., 1990, is provided as red

dots.
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