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Abstract

We study the semilinear equation −∆gu + V (σ)u = f(u) on a Cartan-
Hadamard manifold M of dimension N ≥ 3, and we prove the existence of a
nontrivial solution under suitable assumptions on the potential function V ∈
C(M). In particular, the decay of V at infinity is allowed, with some restrictions
related to the geometry of M. We generalize some results proved in RN by Alves
et al., see [1].

1 Introduction
The study of Nonlinear Schrödinger Equations of the form

−∆u + V (x)u = f(u) in RN (1)

is a classical research topic in the theory of Partial Differential Equations, and the
lack of compactness introduced by the non-compact space RN is an obstruction to the
application of basic tools of Nonlinear Analysis. For example, Variational Methods
typically require the validity of some compactness condition for the so-called Palais-
Smale sequences associated to the previous equation. At this point, suitable conditions
on the nonlinearity f and on the potential function V : RN → R must be imposed in
order to find solutions.
The basic case in which V coincides with a positive constant was studied in [11], while
P.H. Rabinowitz considered in [23] the case of coercive potentials. i.e.

0 < inf
x∈RN

V (x) < lim inf
|x|→+∞

V (x).

While standard embedding theorems for weighted Sobolev spaces ensure the existence
of solutions under the strong assumption

lim
|x|→+∞

V (x) = +∞,

1



a milder condition was introduced in [9]: for every M > 0, the Lebesgue measure of
the set {

x ∈ RN | V (x) ≤ M
}

must be finite. In all these cases, the potential V may be unbounded from above, but
it has to be bounded away from zero on the whole RN . Mathematically, this implies
that equation (1) can be successfully set in the Sobolev space H1(RN ).
On the other hand, the presence of a vanishing potential V , in the sense that
infx∈RN V (x) = 0, introduces additional difficulties, starting from the fact that solu-
tions need not lie in L2(RN ). We refer to [3, 4, 10] for some recent existence results,
which have been extended in several directions later. The interested readers can consult
also [2], [8], [13], [22] and the reference therein for a complete summary on the already
existing results. We point out that in all the cited papers the NLS equation (1) is set
in the standard Euclidean space RN .

Although the Schrödinger equation in RN has been extensively studied, there is a
surprising lack of understanding when it comes to looking for solutions for the equation
on non-Euclidean spaces such as Riemannian Manifolds. One of the first contributions
in this direction is given in the papers [15] and [16] where the authors proved the
existence of solutions for the Schrödinger equation or for the Schrödinger-Maxwell
system requiring suitable bounds on the Ricci or sectional curvature. More recently,
Appolloni, Molica Bisci and Secchi proved respectively in [6] and [7] the existence
of three solutions for the Schrödinger equation on a manifold with asymptotically
non-negative Ricci curvature with a coercive potential and the existence of infinitely
many solutions on a Cartan-Hadamard manifold with a constant potential and an
oscillatory nonlinearity. We also refer to [20, Part III, Chapter 8] for recent results
about nonlinear equations on Cartan-Hadamard manifolds.
In this note we deal with a semilinear elliptic problem of the form{

−∆gu + V (σ)u = f(u) on M
u > 0 on M,

(2)

where M is a non-compact manifold of dimension N ≥ 3, V is a real-valued continuous
potential function on M, and f : R → R is a continuous function. Inspired by the
paper [1], we prove the existence of a positive solution under suitable assumptions, for
which we refer to Section 2. To the best of our knowledge, our result is new in the
framework of Cartan-Hadamard manifolds.

It should be noted that the Riemannian setting may differ considerably from the
Euclidean one for several reasons. First of all, the behavior of the potential V at
infinity requires a good replacement for the basic condition ∥x∥ → +∞ in RN . The
Riemannian distance from a fixed point is the first attempt, but of course the condition
at infinity must be independent of the choice of local charts. On the other hand, the
topological approach which consists in saying that a sequence diverges to infinity if and
only if it escapes every compact subset, may be too weak for a quantitative analysis.
A good compromise is the use of manifolds with a pole, see [19] and the references
therein. By definition, a Riemannian manifold has a pole o if and only if the exponential

2



map at o induces a global diffeomorphism. This allows us to replace the Euclidean
norm of RN with the distance from the pole o, dg(·, o).
But even under very specific assumptions on the Riemaniann metric, the geometry of
the manifold puts in jeopardy some standard tricks of Nonlinear Analysis, like the use
of cut-off functions. See Remark 6 below.

2 Quick survey of model manifolds and main
result

We will work on a Cartan-Hadamard manifold M of dimension N ≥ 3, i.e. a simply-
connected complete non-compact manifold with non-positive sectional curvature. As is
well know, the cut locus of any point of M is empty, hence M is a manifold with a
pole. We collect some basic information about Riemannian geometry in our setting.
We follow [21], and we refer to [17] for more details.

• We fix a pole o ∈ M, which we will consider as the origin. For every σ ∈ M,
σ ̸= o, we may define polar coordinates as follows: we let r = dg(σ, o) > 0 and θ
be an angle such that the shortest geodesic from o to σ starts with direction θ
in the tangent space TσM. Since TσM can be identified with RN , the angle θ
may be seen as an element of the sphere SN−1.

• The Riemannian metric of M is expressed in polar coordinates as

g = dr2 + Aij(r, θ)dθi dθj

for some positive-definite matrix [Aij ]. Here (θ1, . . . , θN−1) are local coordinates
on SN−1.

• The Laplace-Beltrami operator is then written in the form

∆g = ∂2

∂r2 + F(r, θ) ∂

∂r
+ ∆Sr ,

where
F(r, θ) = ∂

∂r
log
√

det Aij(r, θ),
and ∆Sr is the Laplace-Beltrami operator on the sphere Sr = ∂Br(o).

• A model manifold is a manifold with a pole such that the Riemannian metric
has the form

g = dr2 + h(r)2 dθ2,

where dθ2 = βij dθi dθj is the standard metric on SN−1 and h is a smooth
function such that h(0) = 0, h′(0) = 1 and h(r) > 0 for r > 0.

• On a model manifold the Laplace-Beltrami operator is expressed as

∆g = ∂2

∂r2 + (N − 1)h′(r)
h(r)

∂

∂r
+ 1

h(r)2 ∆SN−1 . (3)
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• It follows from (3) that harmonic functions on a model manifold M endowed
with the metric g = dr2 + h(r)dθ2 must satisfy the equation

∂2w

∂r2 + (N − 1)h′(r)
h(r)

∂w

∂r
+ 1

h(r)2 ∆SN−1w = 0.

If we look for radially symmetric harmonic functions w = w(r), i.e. harmonic
functions depending only on the variable r = dg(σ, o), the previous equation
reduces to

∂2w

∂r2 + (N − 1)h′(r)
h(r)

∂w

∂r
= 0.

Under mild assumptions on the function h, this equation can be solved to find
the two-parameter family of harmonic functions

w(r) = c1 + c2

∫ r

1

dt

h(t)N−1 ,

for any c1 ∈ R, c2 ∈ R. We will assume that

(h) h is a positive smooth function such that the improper integral∫ +∞

1

dt

h(t)N−1

is finite.

• If (h) holds, we may introduce the function

H(r) =
∫ +∞

r

dt

h(t)N−1 ,

and it is easy to check that H is a positive harmonic function on M (possibly
singular at r = dg(σ, o) = 0, i.e. at the pole o) which satisfies

lim
dg(σ,o)→+∞

H(σ) = 0.

We can now state our main existence result for problem (2).

Theorem 1. Let M be an N -dimensional model manifold endowed with the metric

g = dr2 + h(r) dθ2,

where h is a smooth positive function on [0, +∞) satisfying (h). Suppose that

(V0) V (σ) ≥ 0 for every σ ∈ M;

(V2) there exists a constant V∞ > 0 such that V (σ) ≤ V∞ for every σ ∈ B;
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(f1) lim supt→0+
f(t)

t2∗−1 < +∞, where 2∗ = 2N/(N − 2);

(f2) there exists 2 < p < 2∗ such that

lim sup
t→+∞

f(t)
tp−1 = 0;

(f3) there exists µ > 2 such that µF (t) ≤ tf(t) for all t > 0, where F (t) :=
∫ t

0
f(s) ds.

Suppose moreover that either

(V1) infM V > 0

or

(V ol) The function

r 7→

(∫ 2r

r

h(t)N−1 dt

)1/N

r
is bounded from above on [0, +∞).

Under these assumptions, there exist Λ > 0 and R > 1 such that, if

H(r) =
∫ +∞

r

dt

h(t)N−1 ,

and
H(R) 4

N−2 inf
dg(σ,o)≥R

V (σ)
H(dg(σ, o)) 4

N−2
≥ Λ,

then (2) possesses at least a nontrivial positive solution.

Before proceeding to the proof of Theorem 1, we observe that V may be unbounded
at infinity (though locally bounded by condition (V2)).
Remark 2. Since p < 2∗, assumptions (f1) and (f2) imply the existence of a constant
c0 > 0 such that

|sf(s)| ≤ c0|s|2
∗
, |sf(s)| ≤ c0|s|p (4)

for every s ∈ R.

3 The auxiliary problem
Since we are looking for positive solutions to (2), we will suppose that f(t) = 0 for
every t < 0. The main idea behind our approach is based on a suitable modification of
the nonlinearity f , in such a way that the Palais-Smale condition can be recovered.
To complete the proof, we need to check that the solution of the modified equation is
actually a solution of equation (2). This technique goes back to the paper [14].
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We introduce the Sobolev space1 X defined as

X =
{

u ∈ D1,2(M) :
∫

M
V |u|2 dvg < +∞

}
.

Remark 3. Assumption (V1) guarantees that X is continuously embedded into L2(M).
In this case, X may be considered as a subspace of H1

0 (M).
We introduce the functional I : X → R as

I(u) := 1
2∥u∥2 −

∫
M

F (u(σ)) dvg.

The functional I is of class C1 on M as a standard consequence of assumptions (f1)–
(f3). Moreover, critical points of I on M correspond to weak solutions of problem (2).
Let us set

k := 2µ

µ − 2 > 2,

and consider a number R > 1. We define f̃ : M × R → R by

f̃(σ, t) :=
{

f(t) if kf(t) ≤ V (σ)t
V (σ)

k t if kf(t) > V (σ)t,

and g : M × R → R by

g(σ, t) :=
{

f(t) if dg(σ, o) ≤ R

f̃(σ, t) if dg(σ, o) > R.

We collect the main estimates for the auxiliary functions f̃ and g. The proof is standard
and therefore omitted.

Lemma 4. The following relations hold:

(i1) f̃(σ, t) ≤ f(t) for every σ ∈ M and t ∈ R;

(i2) g(σ, t) ≤ V (σ)
k t for every σ ∈ M and t ∈ R such that dg(σ, o) ≥ R;

(i3) G(σ, t) = F (t) for every σ ∈ M and t ∈ R such that dg(σ, o) ≤ R;

(i4) G(σ, t) ≤ V (σ)
2k t2 for every σ ∈ M and t ∈ R such that dg(σ, o) > R.

Here G(σ, t) :=
∫ t

0
g(σ, s) ds.

1We refer the reader to [18] for a discussion of Sobolev spaces on Riemannian manifolds.
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We can now introduce a functional J : X → R such that

J(u) := 1
2∥u∥2 −

∫
M

G(σ, u(σ)) dvg.

It is immediate to check that J ∈ C1(M) and that the Gâteaux derivative of J is
given by

J ′(u)[v] =
∫

M
(∇gu · ∇gv + V (σ)uv) dvg −

∫
M

g(σ, u)v dvg.

Therefore, critical points of J correspond to weak solutions of the equation

−∆gu + V (σ)u = g(σ, u) in M. (5)

Let I0 : H1
0 (B) → R be the functional defined by

I0(u) := 1
2

∫
B

(
|∇gu|2 + V∞|u|2

)
dvg −

∫
B

F (u(σ)) dvg.

We define the mountain pass level of I0 as

d := inf
γ∈Γ

max
0≤t≤1

I0(γ(t)),

where
Γ :=

{
γ ∈ C([0, 1], H1

0 (B)) | γ(0) = 0, γ(1) = e
}

,

and e ∈ H1
0 (B) is such that I0(e) < 0. By (3) of Lemma 4 and (V2) we deduce that

J(u) ≤ I0(u) for every u ∈ H1
0 (B).

It follows immediately that

c = inf
γ∈Γ

max
0≤t≤1

J(γ(t)) ≤ d

The functional J gains some topological strength from the modified nonlinearity g.

Proposition 5. Suppose that either assumption (V1) or assumption (V ol) holds. Then
the functional J satisfies the Palais-Smale condition on X.

Proof. Let {un}n be a Palais-Smale sequence for J in X, i.e. the sequence {J(un)}n

is bounded and J ′(un) → 0 strongly in X∗. We compute first

J(un) − 1
µ

J ′(un)[un] ≥ µ − 2
4µ

∥un∥2 = 1
2k

∥un∥2. (6)

7



The left-hand side of (6) is eventually bounded by M + ∥un∥ for some constant M ,
and we conclude that

∥un∥2 ≤ 2k (M + ∥un∥)
for n ≫ 1. Thus the sequence {un}n is bounded in X. We may assume that (up to a
subsequence) un converges weakly to some u in X. Fix ε > 0, and choose a number
r > R such that (∫

A(r,2r)
|u|2

∗
dvg

)1/2∗

< ε, (7)

where we have set for s ≥ 0, t ≥ 0,

A(s, t) := {σ ∈ M | s ≤ dg(σ, o) ≤ t}

Recalling the discussion at the and of the proof of [24, Proposition 4.1], there exists a
smooth cut-off function η = ηr such that supp η ⊂ M \ Br(o), η = 1 on M \ B2r(o),
0 ≤ η ≤ 1 and |∇gη| ≤ 2/r on M. The boundedness of the sequence {ηun}n yields∫

M

(
∇gun · ∇g(ηun) + ηV (σ)|un|2

)
dvg =

∫
M

ηg(σ, un)un dvg + o(1).

Combining with (2) of Lemma 4 we see that

∫
dg(σ,o)≥r

η
(
|∇gun|2 + V (σ)|un|2

)
dvg

≤ 1
k

∫
dg(σ,o)≥r

ηV (σ)|un|2 dvg −
∫

dg(σ,o)≥r

un∇gun · ∇gη dvg + o(1).

As a consequence,

(
1 − 1

k

)∫
dg(σ,o)≥r

η
(
|∇gun|2 + V (σ)|un|2

)
dvg

≤ 2
r

∫
A(r,2r)

|un| |∇gun| dvg + o(1).

On the bounded set A(r, 2r) = B2r(o) \ Br(o) the Sobolev embedding theorem ensures
that un → u in the sense of L2; the Hölder inequality and the boundedness of {un}n

yield

lim sup
n→+∞

∫
A(r,2r)

|un| |∇gun| dvg ≤ C

(∫
A(r,2r)

|u|2 dvg

)1/2

, (8)

where C > 0 is a suitable constant. If assumption (V1) holds, then u ∈ L2(M) and
therefore

lim
r→+∞

∫
A(r,2r)

|u|2 dvg = 0.
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On the other hand, if (Vol) holds, then(∫
A(r,2r)

|u|2 dvg

)1/2

≤
(∫

A(r,2r)
|u|2

∗
dvg

)1/2∗

Vol(A(r, 2r))1/N .

In order to estimate the last volume, we recall that

Vol(Bϱ(o)) = ωN

∫ ϱ

0
|h(s)|N−1 ds,

where ωN is the (N − 1)-volume of the sphere SN−1. We may finally write

lim sup
n→+∞

∫
dg(σ,o)≥r

|un| |∇gun| dvg

≤ 2Cω
1/N
N ∥u∥

(∫
A(r,2r)

|u|2
∗

dvg

)1/2∗
(∫ 2r

r
|h(s)|N−1 ds

)1/N

r

≤ 2Cω
1/N
N ∥u∥

(∫
A(r,2r)

|u|2
∗

dvg

)1/2∗

In any case we get from (7) that

lim sup
n→+∞

∫
M\Br(o)

(
|∇gun|2 + V (σ)|un|2

)
dvg < Cε,

which in turn yields the convergence of {un}n to u.

Remark 6. Before proceeding further, we would like to discuss the role of the assump-
tions (V1) and (Vol). The analysis of Palais-Smale sequences {un}n for the modified
function J shows that the compactness condition

lim sup
r→+∞

∫
dg(x,o)≥r

(
|∇gun|2 + V (σ)|un|2

)
dvg = 0

depends on two competing ingredients: the decay of the gradient of the cut-off function
η with respect to r, and the growth of the function r 7→ Vol A(r, 2r).
In the familiar setting M = RN , Vol A(r, 2r) ≲ rN , which exactly balances the decay
|∇η| ≲ 1/r in integration. In our setting, however, the volume of the annulus A(r, 2r)
is determined by the growth of the function h, while the decay of η remains the same
as in the Euclidean setting. From a technical viewpoint, assumption (V1) states that
every element of X lies in L2(M), so that we can directly bound the integral∫

dg(x,o)≥r

|un| |∇gun| dvg
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by the Cauchy-Schwarz inequality and the size of Vol A(r, 2r) becomes irrelevant. Of
course the potential V is no longer allowed to decay to zero at infinity.
On the other hand, assumption (Vol) allows V to decay at infinity, but clearly puts a
rather strong restriction on the geometry of the manifold. The survey [12] contains
several sufficient conditions for the Riemannian volume of the ball to grow like in the
Euclidean case. In our setting we draw the reader’s attention to the following result, see
[12, Theorem G]; ρ(σ) is defined to be the lowest eigenvalue of the Ricci tensor at σ.
Theorem 7. Consider RN endowed with the metric

dr2 + h(r)2 dθ2,

where h is smooth and satisfies h(0) = 0, h′(0) = 1. If for some λ ≥ (N − 1)/4 the
Schrödinger operator −∆ + λρ is non-negative, then

Vol B(0, R) ≤ c(N, λ)RN .

Once the Palais-Smale condition holds for the functional J , the Mountain Pass Theorem
[5] guarantees the existence of a critical point u ∈ X of the functional J such that
J(u) = c > 0.
Remark 8. If u is a nontrivial critical point of J , it follows from the relation c ≤ d and
the estimate

∥u∥2 ≤ 2k (J(u) + J ′(u)[u])
coming from (6) that ∥u∥ ≤

√
2kd, and this upper bound does not depend on the

parameter R > 1.
The next regularity result is based on an argument reminiscent of the De Giorgi-Nash-
Moser iteration technique.
Proposition 9. Suppose a ∈ Lq(M) for some q > N/2 and that v ∈ X is a weak
solution of the equation

−∆gv + b(σ)v = A(σ, v) in M,

where A : M × R → R is continuous and satisfies

|A(σ, t)| ≤ a(x)t for all t > 0

and b ≥ 0 is a (measurable) function on M. Then there exists a constant M > 0,
depending on q and on ∥a∥Lq only, such that

∥v∥L∞ ≤ M ∥v∥L2∗ .

Proof. Since the proof is standard, we only give an outline and we refer to [1] for
further details. Fix β > 1 and m ∈ N. Set

wm :=
{

v|v|β−1 on Am

mv elsewhere
where Am :=

{
σ ∈ M | |v|β−1 ≤ m

}
.
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Utilizing the definition of weak solution, the Sobolev inequality and the assumption
on the potential it is possible to derive the estimate

[∫
Am

|wm|2
∗

dvg

]N−2
N

≤ Sβ2
∫

M
a(σ)w2

m dvg

where S > 0 denotes the optimal Sobolev constant. From this, applying the Hölder
inequality with 1/q1 + 1/q = 1 and letting m → ∞, we get

∥v∥2∗β ≤ β
1
β (S∥a∥q)

1
2β ∥v∥2βq1 . (9)

At this point, since N/(N −2) > q1, we set γ := N/q1(N −2) > 1. If β = γ, (9) becomes

∥v∥2∗γ ≤ β
1
γ (S∥a∥q)

1
2γ ∥v∥2∗ , (10)

while if β = γ2, taking into account 2βq1 = 2∗γ, we obtain

∥v∥2∗γ2 ≤ γ
2
γ (S∥a∥q)

1
2γ2 ∥v∥2∗γ . (11)

Coupling (10) and (11), we get

∥v∥2∗γ2 ≤ γ
1
γ + 2

γ2 (S∥a∥q)
1
2

(
1
γ + 1

γ2

)
∥v∥2∗ .

Iterating this procedure j times with β = γj , we have

∥v∥2∗γj ≤ γ
1
γ +...+ j

γj (S∥a∥q)
1
2

(
1
γ +...+ 1

γj

)
∥v∥2∗ .

Now, recalling that

∞∑
j=1

j

γj
= γ

(γ − 1)2 and
∞∑

j=1

1
γj

= 1
γ − 1

and that
lim

j→∞
∥v∥2∗γj = ∥v∥∞,

the proposition is proved selecting

M = γ
γ

(γ−1)2 (S∥a∥q)
1
2

1
γ−1 .

The proof is now complete.

Corollary 10. Any positive ground state of (5) satisfies the estimate

∥u∥L∞ ≤ M
√

2Skd, (12)

where S is the best constant for the Sobolev embedding D1,2(M) ⊂ L2∗(M).
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Proof. Indeed, we consider the functions

A(σ, t) :=
{

f(t) if dg(σ, o) < R or f(t) ≤ V (σ)
k t,

0 if dg(σ, o) ≥ R or f(t) > V (σ)
k t

and

b(σ) :=
{

V (σ) if dg(σ, o) < R or f(t) ≤ V (σ)
k t,(

1 − 1
k

)
V (σ) if dg(σ, o) ≥ R or f(t) > V (σ)

k t.

Any positive solution u to (5) satisfies the equation

−∆gu + b(σ)u = A(σ, u) in M.

Our assumptions on f yield that |A(σ, t)| ≤ f(t) ≤ c0|t|p−1, hence

|A(σ, t)| ≤ a(σ)|t| with a(σ) = c0|u(σ)|p−2.

For q = 2∗/(p − 2) it is immediate to check that a ∈ Lq(M) and

∥a∥Lq ≤ c0 (2Skd)
p−2

2 .

The conclusion follows from Proposition 9.

4 Proof of Theorem 1
Proposition 11. If u is a positive ground state solution to (5), then

u(σ) ≤ H(dg(σ, o))
H(R) ∥u∥L∞ ≤ H(dg(σ, o))

H(R) M
√

2Skd (13)

whenever dg(σ, o) ≥ R.

Proof. Indeed, we know that the function H is harmonic on M, and so is the function

v : σ 7→ M
√

2Skd
H(dg(σ, o))

H(R) .

Since u ≤ v whenever dg(σ, o) ≥ R by Corollary 10, we are allowed to define ω ∈
D1,2(M) as

ω(σ) :=
{

(u − v)+ if dg(σ, o) ≥ R

0 otherwise.
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We then see that∫
M

|∇gω|2 dvg

=
∫

M
∇g(u − v) · ∇gω dvg =

∫
dg(σ,o)≥R

(g(σ, u)ω − V (σ)uω) dvg

≤
(

1
k

− 1
)∫

M
V (σ)uω dvg ≤ 0.

It follows that ω = 0 on M, and u ≤ v whenever dg(σ, o) ≥ R.

Proof of Theorem 1. Let u ∈ X be a positive ground state solution of (5). For every
σ ∈ M such that dg(σ, o) ≥ R, we have for any

Λ > kc0M
4

N−2 (2Skd)
2

N−2 ,

the estimate

f(u)
u

≤ c0 |u|
4

N−2 ≤ c0M
4

N−2 (2Skd)
2

N−2

(
H(dg(σ, o))

H(R)

) 4
N−2

≤ V (σ)
k

.

It now follows that u solves (2), and the proof is complete.
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