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Abstract

Several crystalline structures of present interest are metastable or kinetically-frozen

out-of-equilibrium states in the phase space. When the corresponding lifetime is suf-

ficently long, typical equilibrium features such as regular, extended faceting can be

observed. However, interpreting the extension of the facets and the overall shape in

terms of a simple Wulff analysis is not justified. Here we introduce a convenient general

formulation of the anisotropic surface energy density which, combined with a suitable

Phase-Field model of surface diffusion, allows for the investigation of the evolution to-

ward equilibrium of three-dimensional nanostructures characterized by arbitrary facets.
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Numerical solution by Finite Element Method allows for efficient simulations even for

strong anisotropy condition. After illustrating applications yielding equilibrium crystal

shapes (corresponding to the Wulff construction), we focus our attention on faceting of

structures in long-lived metastable states. The generality and numerical robustness of

the approach is proved by few applications to crystalline systems of utmost importance

(quantum dots, quantum wires, patterned substrates) in present materials science.

Introduction

The investigation of crystal morphologies is an interdisciplinary topic which plays an impor-

tant role in the understanding of growth and processing of advanced crystalline materials.

This applies, for instance, to metallic nanoparticles where shapes control can improve optical,

electrical, and catalytic properties,1–3 as well as to a large variety of semiconductor struc-

tures,4–6 where the control on morphology allows for the optimization of devices eventually

by largely improving the crystalline quality.7 Moreover, crystal faceting and morphology-

dependent properties are of utmost interest for organic compounds used e.g. in molecular

recognition and in medical applications.8,9

The observed crystal shapes are often interpreted in terms of the surface energy mini-

mization which implies the formation of facets corresponding to the minima in the surface

energy density function γ = γ(n̂), where n̂ is the direction of the surface normal. The widely

used Wulff construction,10,11 offers a simple method to determine the equilibrium crystal

shape (ECS) with the constraint of a constant volume. This construction is identified as

the convex hull of all the planes perpendicular to the n̂γ(n̂) vectors. Several numerical

implementations of this procedure are available in literature12–14 allowing to effectively de-

pict the ECS corresponding to a given γ(n̂). Such a description is the most appropriate

when considering homogeneous systems very close to the thermodynamic equilibrium while

it generally does not hold when considering far-from-equilibrium conditions.15 If the crystal

evolution is fully dominated by kinetics, facet velocities v(n̂) can be considered in place of
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γ(n̂) and a kinetic Wulff construction can still be used in order to predict the final crystal

morphology.16–18 Here we are interested in the intermediate regime where the system tends

to minimize free energy but kinetics poses constraints on the actual evolution, and/or the

initial morphology brings the system to a local free-energy minimum.

In the seminal work by Mullins in ref 19, a continuum model of surface diffusion, driven

by the minimization of the surface energy, was proposed. Methods developed on such basis,

including anisotropic γ(n̂), widen the range of application of the Wulff approach as they

permit to consider the full evolution toward equilibrium giving an explicit description of

the intermediate stages.20,21 The advantage is not simply to provide a time-scale for the

evolution but also to account for the influence of the initial geometry, eventually leading

to different final configurations despite the same γ(n̂) definition. The implementation of

versatile surface diffusion simulations with anisotropic surface energy is far from trivial. One

of the most relevant difficulty is due to the stiffness of the corresponding partial differential

equation (PDE) system. In particular, this becomes critical in the so-called strong anisotropy

regime, when deep minima are present in γ(n̂) such to produce missing orientations and sharp

corners in the ECS.22–24 Another important aspect limiting the model application lies in the

representation and tracking of the surfaces. With this respect, Level-Set or Phase-Field (PF)

approaches have a substantial advantage thanks to the implicit description of the geometry,

allowing to easily manage three dimensional (3D) domains and naturally consider complex

topologies eventually changing in time.21 Several applications of PF methods to the study

of anisotropic systems are available in literature (see ref 21 for a review). However, in most

cases, only simplified γ(n̂) are considered with no claim on describing the complexity of

realistic morphologies.

In the present work we introduce a convenient form for γ(n̂) and we exploit it within a

suitable PF surface diffusion model. The Finite Element Method (FEM) toolbox AMDiS,29,30

optimized for PF problems, was used. This way, we are able to provide description of the

evolution of 3D morphologies with an arbitrary faceting resulting from the choice of γ(n̂).
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As we shall show, this approach is fully consistent with the standard Wulff approach when

considering equilibrium conditions leading to the expected ECS, even in the cases of strong

anisotropy. Furthermore, time evolution including major changes in faceting and allowing

for a proper description of metastable or out-of-equilibrium states, can be readily tackled.

Model Description

In order to reproduce the surface morphology of 3D geometries and their time evolution, we

considered a diffuse-interface approach21 based on a PF model of surface diffusion including

surface energy anisotropy as proposed by Torabi et al in ref 25. Within such framework the

profile evolution is implicitly tracked by considering an auxiliary analytic function ϕ, i.e.

the Phase Field, smoothly varying from ϕ = 1 in the solid phase to ϕ = 0 in the vacuum.

Its expression is given by

ϕ =
1

2

[
1− tanh

(
3d(r)

ε

)]
, (1)

where ε is the interface width and d(r) is the signed distance from the (sharp) interface profile

(nominally corresponding to the ϕ = 0.5 iso-surface) which consists in the surface of the solid

phase. Figure 1 shows a spherical shape defined implicitly by means of ϕ, embedded in a

ϕ = 0 domain, i.e. the vacuum, which is chosen cubic in shape. Every geometrical properties

of the surface can be derived directly from ϕ. In particular the outer surface normal, which

defines the local surface orientation, is n̂ = −∇ϕ/ |∇ϕ|.

In order to consider an equation for the dynamics of ϕ, we introduce the surface energy

Fs as given by the Ginzburg-Landau energy functional,21,27

Fs[ϕ] =

∫
Ω

γ(n̂)

(
ε

2
|∇ϕ|2 +

1

ε
B(ϕ)

)
dr, (2)

with B(ϕ) = 18ϕ2 (1− ϕ)2, i.e. the double well potential which promotes the state ϕ = 0

and ϕ = 1. According to Onsager linear law, material flow is driven by the gradient of the
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Figure 1: Illustrative scheme of an implicit sphere definition by means of ϕ. The spherical
shape is embedded in the simulation domain consisting in a simple cubic box, whose outline
is shown in a perspective view. A slice of the simulation domain reveals its relative size with
respect to the sphere, and the refined mesh grid when ϕ ∼ 0.5.

local chemical potential µ, i.e. the variational derivative of eq (2):

µ = µs =
δFs

δϕ
≈− ε∇ · [γ(n̂)∇ϕ] +

1

ε
γ(n̂)B′(ϕ)+

− ε∇ ·
[
|∇ϕ|2∇∇ϕγ(n̂)

]
,

(3)

where in the last term we used the asymptotic limit 1
ε
B(ϕ) → ε

2
|∇ϕ|2 for ε → 0 and ∇∇ϕ is

the gradient which takes effect along the ∇ϕ direction. This definition of µ corresponds to

the well-known Gibbs-Thompson chemical potential.15 The profile evolution is then defined

by tracking the changes of ϕ according to the continuity law

∂ϕ

∂t
= ∇ · [M(ϕ)∇µ] , (4)

where the mobility function is set as M(ϕ) = D 36
ε
ϕ2 (1− ϕ)2 to restrict the diffusion at

the surface, and D set the timescale of the evolution. The evolution driven by eq (3) is
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well-posed only for weak anisotropy regime.

If γ(n) is such to give strong anisotropy, the so-called Willmore regularization25,28 must be

included in the free energy definition as an additional term Freg, approximating the integral

of the squared local curvature:

Freg =
β

2ε

∫
Ω

(
−ε∇2ϕ+

1

ε
B′(ϕ)

)2

dr. (5)

Such regularization is a penalizing term which increases the energy of high curvature regions,

healing the expected instabilities in the surface diffusion, and its effect on the morphology

consists in a rounding of the corners controlled by the β parameter. From a physical point

of view this term can also be interpreted as an edge/corner energy.22 In presence of the

regularization, µ must include also a δFreg/δϕ term leading to

µ = µs + β

(
−∇2κ+

1

ε2
B′′(ϕ)κ

)
, (6)

where µs is given by eq (3) and κ = −ε∇2ϕ + 1
ε
B′(ϕ). Notice that when including the

regularization, a 6-th order PDE has to be solved. This is quite demanding from a numerical

point of view and accurate space and time discretization are in general required. The FEM

toolbox AMDiS29,30 has been used as it allows to efficiently manage the numerical integration

of the reported equations. In fact, space adaptivity is built-in, allowing for a fine spatial

resolution at the interface where ϕ varies significantly and the surface diffusion is active (see

Figure 1). This ensures to describe the interface region with a good enough accuracy while

coarser resolution is used in the bulk region saving computational cost. Time adaptivity

has been also considered to optimize the evolution time steps on the basis of the maximum

variation of the profile. Zero-flux Neumann BCs are set at all the domain boundaries (faces

of the cubic box in Figure 1). For the sake of simplicity, the unit of length is dimensionless

while the timescale is given in 1/(γ0D) units by setting γ0 and D equal to 1. The details

about the integration scheme are reported in the Supporting Information.
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Surface-Energy Density: a convenient form

A fully customizable formulation for the γ(n̂) function is here introduced in order to arbi-

trarily tune the equilibrium morphology. The key point for such a function is to quantify

the difference between the local surface orientation n̂ and the vectors which give minima in

the surface energy density (m̂i).
31 This is achieved by considering the scalar product n̂ · m̂i.

Then the surface energy can be parametrized as

γ(n̂) = γ0

(
1−

N∑
i

αi (n̂ · m̂i)
di Θ (n ·mi)

)
, (7)

where N is the total number of energy minima. αi and di are positive coefficients setting the

depth and the width of the minima, respectively. di ≥2 for continuity. The Heaviside step

function Θ is used in order to exclude energy contributions when the component of n̂ along

the m̂i direction is negative. This allows us to control ±m̂i facets independently. The role of

each term in the summation of eq (7) can be easily inferred by considering how γ(n̂) looks in

presence of a single minimum m̂. It is equal to γ0(1− α) if n̂ ≡ m̂ and it increases up to γ0

moving away from m̂. It is worth to mention that our definition leads to some commonly used

functions of surface energy density such as γ(n̂) = γ0

[
1 + α̃

(
n4
x + n4

y + n4
z

)]
, reproducing

crystal structures with cubic symmetry,25,26 obtained by considering the six minima along

the orthogonal axes m̂1,2=[±100], m̂3,4=[0±10], m̂5,6=[00±1], di = 4 and constant αi for

each minimum.

In Figure 2(a)-(c) some illustrative 2D surface energy density functions γ(θ) (with θ =

− arctan(ny/nx) the angle between the normal vector and the [10] direction) are reported. In

particular, a case with minima at θ̄n = ±nπ/4 with 0≤ n ≤4 (i.e. 〈10〉 and 〈11〉 directions)

is considered. In Figure 2(a) we show the curves obtained with three different values of

di but the same αi. Notice that the width of the energy minima is inversely proportional

to di. Moreover, when di = 8, a significant superposition of different contributions in the

summation of eq (7) is recognized for all orientations, and γ(θ̄n) results lower than γ0(1−αi).
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Figure 2: Examples of surface energy density from eq (7). (a)-(c) Plot of 2D γ(θ) function
with minima at θ̄n = ±nπ/4 (〈10〉 and 〈11〉 directions) with αi = 0.5 and γ0 = 1. (a) di = 8
(dotted line), di = 20 (dashed line) and di = 100 (solid line). (b) as in panel (a) with d of
θ̄0) minimum increased by a factor 10. (c) as in panel (a) with α = 0.75 for the θ̄0 minimum.
(d) Three-dimensional γ(n̂)-plot with minima along 〈100〉 and 〈111〉 directions, αi = 0.5 and
γ0 = 1, for three di values. γ(n̂) values are also plotted as surface color map.

Increasing di (see di = 20 curve), no effective superposition is recognized at θ = θ̄n but it

still occurs for orientations in between. For large enough di (e.g. di = 100), a full decoupling

of the energy minima is achieved and orientations with γ(θ) = γ0 appear. Features of eq (7)

can be also controlled in order to localize a single minimum, as required in order to tune

independently the energy value corresponding to the minima orientations, i.e. the energy

of the facets. This is made clear in Figure 2(b), where the same curves shown in panel (a)

are considered with di increased by a factor 10 for the θ̄0 minimum. Furthermore, we can

enhance the stability of the θ = θ̄0 orientation, by setting a deeper minimum with higher αi,
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as shown in Figure 2(c). Similar arguments hold also when three-dimensional γ(n̂) functions

are considered. In this case the superposition of the minima contribution can be even more

complex, but still the qualitative behavior of the 2D case is recognized. In Figure 2(d),

some γ(n̂)-plots are shown for minima along 〈100〉 and 〈111〉 directions, αi = 0.5 and three

different di values. The color map reveals the superposition and decoupling effects observed

for increasing di value. From a general point of view, eq (7) can then be considered as a

convenient way to construct a continuum γ(n̂) from discrete values corresponding to energy

minima.

With an arbitrary choice of eq (7) parameters, γ(n̂) can become non-convex, thus re-

quiring the regularization introduced in eq (5). A remarkable analytic criterion has been

developed in ref 26 in order to determine if missing orientation occur in the ECS for a given

γ(n̂). This consists in evaluating when the product of the two gaussian curvatures K1K2

of the 1/γ-plot is negative. We used this criterion in order to determine a priori what is

the expected regime related to the choice of the γ(n̂) parameters. For a single minimum

direction we evaluated the critical α coefficient as function of the d value, by numerically

solving K1K2 = 0 condition (see Supporting Information for the explicit formulas). The

resulting curve is shown in Figure 3 and it is well reproduced by

αc(d) =
A

d
+
B

d2
(8)

where A = 2.26 ± 0.2% and B = −2.48 ± 0.4% deliver the best fit. If minima contribution in

eq (7) are decoupled, one can directly assess what is the anisotropy regime only by comparing

the αi values with the data in Figure 3 or with eq (8). Conversely, if minima contributions

are superimposed for some orientation, the explicit numerical evaluation of K1K2 is required

in order to determine the anisotropy regime and the critical parameters.
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Figure 3: Critical α values as function of d obtained by numerically solving K1K2 = 0 for a
γ(n̂) defined by eq (7) with a single minimum orientation.

Results and Discussion

Evolution from a sphere toward the Equilibrium Crystal Shape

As first case study, we focus on obtaining the ECS as stationary state delivered by sur-

face diffusion simulations via the aforementioned PF model. Furthermore we inspect the

customization of the final geometry by suitable choices of the γ(n̂) in eq (7), tuning its

parameters as well as the strength of the Willmore regularization β. We consider a sphere

of radius 0.3 as initial profile, implicitly defined into the integration domain, set as a cubic

box with lateral size equal to 1, as shown in Figure 1. The interface width ε has been chosen

equal to 0.04. The profile evolution is then performed by integrating the surface diffusion

equation for ϕ, letting the geometry free to rearrange into a faceted one according to the

∇µ.

Figure 4 provides some examples of simulation results obtained starting from a spherical

profile and evolving toward equilibrium according to eq (4), for different definitions of γ(n̂).

In Figure 4(a) we consider the simplest case of γ(n̂), where minima directions correspond to

the facet orientations of a tetrahedron. As made evident by the evolution sequence, facets

are gradually formed from the initial spherical profile leading to the expected polyhedron

as equilibrium condition. In Figure 4(b) a different γ(n̂) with two different families of

10



Figure 4: Surface diffusion evolution toward the ECS. (a) From a sphere to a tetrahedron
with minima of γ(n̂) along [1̄1̄1],[1̄11̄],[11̄1̄] and [111] directions with αi = 1.0, di = 6,
β = 0.002. (b) ECS simulated by considering minima along 〈100〉 and 〈111〉 directions with
αi = 0.3, di = 20 and β = 0.001. (c) Color map, scaled by the γ[111] value, showing the γ(n̂)
for the geometries shown in (a) and (b), respectively.

minima directions, along 〈100〉 and 〈111〉, is considered, and the resulting ECS is shown.

In Figure 4(c) the actual faceting of the final geometries reported in Figures 4(a) and 4(b)

is made more clear by showing γ(n̂) as a color map at the surface. The large regions in

uniform (blue) color correspond to almost flat facets oriented according to the minima in

γ(n̂), while edges and corners in between have higher energy as they smoothly connect facets

with intermediate orientations with respect to the minimum energy ones.

By tuning the parameters of eq (7) we can modify also the features of the equilibrium

shape for a given set of minimum directions. Figure 5(a) shows the ECS obtained with

the same γ(n̂) used in Figure 4(b) with different anisotropy degrees, i.e. with different

αi values. Both weak and strong anisotropy are considered. Notice that, even for weak

anisotropy, preferential orientations are present but with rather large angular dispersion

around minima so that an almost rounded geometry is still obtained. The selectivity on the

minima orientation increases for larger αi leading to more defined facets. As a result, the

stronger is the anisotropy the more contracted are the (red) areas with high γ(n̂) between

the facets. It must be noticed that, due to the requirements of continuous profile, such

rounded edges/corners cannot be avoided. Polyhedron-like structures can then be obtained

only by restricting such region as much as possible by increasing α. However, when entering
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Figure 5: Dependance of ECS on: (a) αi, both in weak (left) and strong (right) anisotropy
regime, (b) β values, (c) the radius of the initial sphere, here considered doubled with respect
to the one in panel (e) with β = 0.01. Minimum directions are set as in Figure 4(b). γ(n̂)
color map is shown as in Figure 4(c).

in the strong anisotropy regime, the Willmore regularization term introduces an additional

driving force toward rounding, depending on the parameter β. In Figure 5(b), the same

γ(n̂) used in Figure 4(b), has been considered with different β values. We notice that the

larger is its value the more extended is the rounded area between the different facets.22,25

Furthermore, the effect is more dramatic at the corners than at the edges, as the local

curvature is larger. In order to obtain sharper facets, for a given set of γ(n̂) parameters, one

should then lower β as much as possible. However, the lowest values which can be used for

such a parameter depends in general on the interface width and on the spatial discretization

of the FEM method. All these simulation features should be chosen as a trade-off between

the need to obtain sharp facets and the computational costs. It must be also pointed out

that, at variance from the γ(n̂) contribution which produces self-similar geometries when

rescaling the crystal volume, the Willmore regularization is set on an absolute length scale

since β directly defines the rounding radius, independently on the facets extension.25 This is

illustrated in Figure 5(c) where the radius of the crystal is doubled, while keeping the same

γ(n̂) used in Figure 5(b) (with β = 0.01). The relative extensions of the rounded regions

at the edges are more localized, thus the shape looks more similar to the case with lower β

values, i.e. sharper facets are obtained.

More complex geometries can also be reproduced since our definition of γ(n̂) does not rely
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Figure 6: ECSs obtained by arbitrary tuning of the γ(n̂). (a) As in Figure 4(b) with halved
value of αi along 〈111〉 directions. Perpective 3D view and γ(n̂) color map are shown. In
(b) and (c) we show asymmetric shape with perspective 3D views and with comparisons in a
central cross-section between the resulting shape and the initial spherical profile. Parameters
in (b): [001], [±1±11], [±101], [0±11] minima directions with αi = 0.2 and di = 60, [±1±11̄]
minima directions with αi = 0.4 and di = 30. β = 0.002. Parameters in (c): minima
along [±100] and [0±10] with αi = 0.4, di = 10, β = 0.002). (d) Shape of a Ge crystal
including {001}, {110}, {111} and {113} facets by considering energy minima as in ref 32
with β = 0.003, di = 100 for minima along {113} directions and di = 50 for the others,
α{001} = 0.3.

on any imposed symmetry in the surface energy, as shown with few examples in Figure 6. In

particular, Figure 6(a) illustrates the effect of setting different energy values for the minima

in γ(n̂). The same parameters of Figure 4(b) are considered but αi corresponding to the

minima along 〈111〉 directions are lowered by a factor 2. As expected, the resulting ECS

exhibits much larger [100] facets, thanks to their enhanced stability. Examples of more

complex, asymmetric ECS are shown in Figures 6(b) and 6(c). From the reported results we

conclude that within our PF approach we can control the ECS features, eventually matching

the standard Wulff construction in the limit β → 0.

This makes our method suitable to investigate realistic systems which exhibit ECS-like

structures, such as those shown in refs 1–3 (where some morphologies recall the ones ob-
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tained so far). An example where we reproduce a specific realistic morphology is illustrated

in Figure 6(d), where theoretical data for Ge surface energy32 are used to set γ(n̂) and pre-

dict the corresponding ECS. Furthermore, another important application could consists in

matching simulated ECS with experimental shapes in order to obtain estimates of γ(n̂).

Morphologies of long-lived, metastable structures

The ECS can be in general considered as the ideal state toward which a system should tend.

However, the outcome of experiments may not correspond to it because of the presence of suf-

ficiently long-lived metastable, or kinetically frozen out-of-equilibrium states. Importantly,

present nanoscience and nanotechnology widely exploits structures which do not correspond

to a global minimum in the phase-space (quantum dots or nanowires being only two possible

examples), as they can display a peculiar behavior, absent in the lowest free-energy state.

Faceting of morphologies not corresponding to global equilibrium can be described by suit-

able cutting of the ECS or by specific modifications in the Wulff construction procedure,13,33

but care is needed in extracting actual details of γ(n̂) by a simple comparison between model

and experiments, particularly when one is willing to account for the temporal evolution of a

faceted crystal.

A more appropriate description should be based on a unique definition of γ(n̂) from ex-

perimental data of systems at equilibrium (or from theoretical calculations as in Figure 6(d)).

Deviations from the ECS could then be explained by considering the initial out-of-equilibrium

geometry and taking into account the time evolution of the profile, driven by its tendency to

the equilibrium. Our approach allows to tackle this additional degree of complexity as it does

not consist in a simple minimization of the surface energy but provides the whole evolution

path toward it. In the following we present some examples of nanostructure morphologies,

reproduced by setting γ(n̂) from data in literature and considering suitable initial profiles.

Homoepitaxial islands34 or top-down designed patterns produced by lithography35 fall

in the description discussed above as their shape can be substantially different from the
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Figure 7: Faceting of structures on surfaces. (a) Evolution from the initial configuration
by including [001],[±1±11],[±1±13],[±101] and [0±11] facets,36,37 αi = 0.035, β = 0.002.
di are set as in Figure 6(d). (b) Detailed view of the t = 4.0 stage of the evolution in
panel (a) revealing an island faceting similar to the one obtained with GaAs in ref 34. (c)
Faceting reproducing the one occurring in Si pit-patterned substrates as in ref 35 obtained
by imposing minima at [001], [±1±11], [±1±13], [±30 0 46] and [0 ±30 46] directions,32

αi = 0.03, β = 0.003. di are set as in Figure 6(d) and d{30 0 46} = 100.

equilibrium configuration according to the specific fabrication processing. For the sake of

simplicity we set minimum energy directions in γ(n̂) and assume the same αi (large enough

to obtain sharp facets). Figure 7 shows simulations reproducing the morphology of an

island (in panels (a) and (b)) and of a pit-patterned substrate (in panel (c)). Here the

interface thickness is set equal to 0.1. More precisely, the island morphology was obtained

starting from an half ellipsoidal shape intersecting a plane below which ϕ = 1 (for half

of the cubic domain) as shown in Figure 7(a) for t = 0.0, with an height-to-base aspect-

ratio of 0.35 (in agreement with experimental ones34), and a lateral size equal to 2.4. The

surface energy minima orientations are set according to theoretical data for GaAs.36,37 The
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Figure 8: Morphology of far-from-equilibrium elongated shapes. (a) [110] Ge nanowire mor-
phology including {100}, {110} and {111} as in ref 5, obtained by selecting minima energy
ratio of the Ge crystal32 and α[001] = 0.15. (b) Ag nanowire with pentagonal symmetry39 ob-
tained by considering γ(n̂) in an effective way with minima along [sin(2nπ/5) cos(2nπ/5) 0]
and [sin(2nπ/5) cos(2nπ/5) 1] directions with 0≤ n ≤4, αi = 0.15, di = 30, β = 0.002.

evolution of such initial configuration, reported in Figure 7(a), shows different faceted island

structures resulting from different stages of the surface diffusion evolution. Notice that all

these structures correspond to metastable configuration, as the final state would be the

flat surface. The shape obtained at t = 4.0, characterized in Figure 7(b), closely matches

the morphology of GaAs nanometric islands observed in experiments, as in ref 34. The

simulation of a pit geometry illustrated in Figure 7(c) has been obtained by considering as

initial profile a pit with a flat (001) surface at the bottom and a smooth connection with

the surrounding flat substrate. The pit aspect-ratio is set to 0.3, to reproduce a typical pit

morphology resulting from etching,38 with a lateral size of 2. The γ(n̂) minima orientations

are set to reproduce the Si minimum energy surfaces.32 〈30 0 46〉 minima directions are

considered in order to mimic neighboring 〈15 3 23〉 facets (e.g. [15 ±3 23]) recognized in

experiments. Also in this case the resulting morphology closely resembles the experimental

morphology of pit-patterned Si(001) substrate reported in literature.35,38

Low-dimensional systems and elongated shapes can be considered as well as non-equilibrium

structures as their structures result from the growth mechanisms and are not due to extreme
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Figure 9: Surface diffusion evolution of a parallelepiped shape with of isotropic (left) and
anisotropic (right) γ(n̂), the latter as in Figure 5(a) with αi = 0.2.

differences in their γ(n̂) minima. Also in these cases, our modeling is effective to describe

the main morphological features and the temporal evolution of facets. Examples are shown

in Figure 8 where realistic nanowires are reproduced by means of surface diffusion evolution

starting from a simplified parallelepiped shape, placed with the base in contact with the do-

main boundary to mimic the continuation of the lateral facets. In Figure 8(a) the morphology

of a Ge nanowire grown along [110] direction is reproduced, closely resembling the experi-

mental structures as shown for instance in ref 5, including both top and sidewalls faceting.

γ(n̂) values were selected according to the data reported in ref 32 for the energy minima

along {100}, {110} and {111} directions. Another example is provided in Figure 8(b), where

the morphology of an Ag nanowire with pentagonal symmetry, reported in ref 39, is well

matched by simulations. Notice that this peculiar morphology results from twinning of five

single crystal subunits exposing only {111} facets, so that the selected five-fold γ(n̂) minima

are not meant to reproduce the anisotropy of a single Ag crystal, but include the rotation

around the nanowire axis of each subunit.

So far we considered systems where the evolution dynamics consisted only in a rear-

rangement of facets. Different initial conditions can however lead to more dramatic effects
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changing the topology of the system. This is shown by illustrative simulations in Figure 9

where the evolution of an initial high aspect-ratio paralleleliped, completely embedded in the

ϕ = 0 phase, is considered. Surface diffusion induces a strong recalling of material toward

the borders up to the separation of the initial profile in two distinct crystals, an outcome

which is clearly far from the ECS. This is found to occur for both isotropic and anisotropic

surface energy density (in the latter case γ(n̂) is set as in Figure 5(a) with αi = 0.2). Notice

that such a dynamics is naturally included in the PF description21 thus representing a neat

advantage over other methods, allowing to simulate topological changes also in the case of

highly anisotropic surface energy density. This enables the study of physical systems show-

ing similar behavior, as for instance solid-state dewetting phenomena,40–42 including a fine

description of surface morphology.

Conclusions

In this work we have introduced a convenient definition of orientation-dependent surface

energy which, when accompanied by a proper regularization term and implemented within

a suitable PF framework, allows one to obtain arbitrary faceted shapes by surface diffusion.

If no free-energy barriers are present, our approach leads, for long-enough evolution times,

to the ECS corresponding to the Wullf construction. However, the main advantage stems

in the possibility of describing faceting on out-of-equilibrium shapes, resulting in their time-

dependent morphological evolution, eventually leading to a local free-energy, metastable

minimum. Applications to relevant metastable nanostructures such as nanowires or dots

were illustrated, revealing several features observed in experiments and pointing out the

importance of the initial configuration in determining the observed facets extension in long-

lived metastable states.

Importantly, the here provided methodology can be extended to other PF models tackling

additional energy contributions affecting the profile evolution, such as elasticity,44 intermix-
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ing effects for alloys and multi-component systems,45 as well as peculiar boundary conditions,

e.g. contact angles at the interface of two materials.46 Inclusion of such further phenom-

ena would result in an unprecedented ability in modeling the time-evolution of complex

nanostructures.
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