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Abstract

Learning the structure of dependence relations between variables is a pervasive issue in

the statistical literature. A directed acyclic graph (DAG) can represent a set of conditional

independences, but different DAGs may encode the same set of relations and are indistin-

guishable using observational data. Equivalent DAGs can be collected into classes, each

represented by a partially directed graph known as essential graph (EG). Structure learning

directly conducted on the EG space, rather than on the allied space of DAGs, leads to the-

oretical and computational benefits. Still, the majority of efforts in the literature has been

dedicated to Gaussian data, with less attention to methods designed for multivariate cate-

gorical data. We then propose a Bayesian methodology for structure learning of categorical

EGs. Combining a constructive parameter prior elicitation with a graph-driven likelihood

decomposition, we derive a closed-form expression for the marginal likelihood of a categorical

EG model. Asymptotic properties are studied, and an MCMC sampler scheme developed for

approximate posterior inference. We evaluate our methodology on both simulated scenarios

and real data, with appreciable performance in comparison with state-of-the-art methods.

Keywords: Bayesian model selection, categorical data, graphical model, Markov equivalence

1 Introduction

The wide spread of complex data has increasingly raised the interest of statisticians in the devel-

opment of appropriate tools to investigate structured dependence relations between variables. In

this context, graphical models represent a powerful methodology (Lauritzen [26]), with directed

acyclic graphs (DAGs) particularly suitable for many scientific problems, expecially biological

(Friedman [14], Sachs et al. [35], Shojaie & Michailidis [39], Nagarajan et al. [29]). A DAG
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encodes a set of conditional independencies between variables which can be read off from the

graph using various criteria such as d-separation (Pearl [30]). While in some fields (e.g. ge-

nomics) such dependence relationships can be postulated a priori based on experts’ knowledge,

realistically the underlying DAG is unknown and accordingly needs to be inferred from the

data. In the Bayesian framework this corresponds to a model selection problem which requires

first the specification of a prior distribution on the space of DAG models and parameters. The

latter, combined with the data likelihood, leads to an integrated (marginal) likelihood and in

turn to a posterior distribution on the DAG space. In this direction, the methodology deployed

by Geiger & Heckerman [17] for parameter prior construction implies desirable properties of the

DAG marginal likelihood.

An additional complication arises because different DAGs may encode the same set of condi-

tional independencies (Markov equivalent DAGs). Markov equivalence therefore induces a par-

tition of the DAG space into Markov equivalence classes (Andersson et al. [1]). Under common

distributional assumptions all DAGs in the same Markov equivalence class are indistinguishable

using obervational data (Pearl [30]), and therefore should have the same marginal likelihood,

a requirement known as score equivalence. In addition, model selection algorithms that ignore

Markov equivalence can fall into incoherences and computational inefficiencies as pointed out

by Andersson et al. [1]. All DAGs in the same Markov equivalence class can be represented by

an essential graph (EG, Andersson et al. [1], Chickering [10]), a chain graph (CG) whose chain

components are decomposable undirected graphs (UG) linked by arrowheads.

Clearly, structural learning of EGs always guarantees score equivalence, since it operates

at level of equivalence classes. In this context, first efforts to the investigation of the EG

space have been confined to small graphs (Gillispie & Perlman [18]), whilst more recently larger

graphs were studied by Sonntag et al. [40] and He et al. [22] using Markov chain Monte Carlo

(MCMC) methods. The recent work of Castelletti et al. [7] relies on the method of Geiger &

Heckerman [17] to construct a parameter prior for Gaussian EGs, following the objective Bayes

perspective of Consonni & La Rocca [11] and Consonni et al. [12] for, respectively, Gaussian

and covariate-adjusted DAG models. On the frequentist side, Chickering [10] provides an EG

estimate using a greedy equivalence search (GES) algorithm based on additions and deletions of

single edges, later modified for better estimation by Hauser & Bühlmann [19]. Moreover, Spirtes

et al. [41] proposed the PC algorithm, a constraint-based method which implements a sequence

of conditional independence tests.

All the techniques above mentioned have been mainly designed for data whose nature justifies

the Gaussian assumption. Even if graphical models for categorical data (also called Bayesian

networks) are widely employed in many domains (Scutari & Denis [38]), to our knowledge the

Bayesian literature on categorical EG learning is narrow, limited to Madigan et al. [27] and

Castelo & Perlman [9]. The adoption of Bayesian scores by frequentist score-based methods
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can partially fill this gap, but clearly does not represent a fully satisfying solution. Still on the

frequentist side, the PC algorithm of Spirtes et al. [41] can be adapted for categorical data and

provides an EG estimate through a sequence of conditional independence tests, also adopted for

contingency tables in Scutari & Denis [38]. Korb & Nicholson [24, Chapter 9] and Murphy [28,

Chapter 16] extensively cover categorical structure learning, but none of them at the level of

equivalence classes. Also, the score-based algorithms outlined in Scutari [37] only learn discrete

DAGs. Furthermore, with categorical data different hyperprior specifications lead to different

common scores, with crucial impact on the performance, and may easily compromise score

equivalence.

In the present paper we propose a fully Bayesian structure learning method for categorical

EGs. Following the approach of Geiger & Heckerman [17], originally introduced for DAG models,

we derive a closed-form expression for the marginal likelihood of an EG, therefore avoiding

any issue related to lack of score equivalence or hyperprior misspecification. Exploiting the

Markov chain in He et al. [22] and developments in Castelletti [5], a relative MCMC scheme

on the EG space is constructed.Our method is fully Bayesian and therefore outputs a posterior

distribution over the space of essential graphs, rather than the single model estimate provided by

the frequentist PC algorithm (Spirtes et al. [41]) available in the literaure. Accordingly, graph

features of interest, such as the inclusion probabilities of specific edges, as well as measure of

uncertainty around them, can be computed in our case. We will recover a single EG estimate for

comparison purposes, and simulations will show that our method is competitive when adopted

to recover a single EG structure. Furthemore, differently from the other Bayesian methods in

the literature which implement the BDeu score of Heckerman et al. [23] on the space of DAGs,

we directly score EGs by deriving a closed-form expression for the EG marginal likelihood

and adopt an MCMC scheme targeting the posterior over the space of Markov equivalence

classes. The benefits of a Bayesian method for DAG model selection specifically targeted to

EGs rather than DAGs are addressed from a theoretical perspective by Andersson et al. [1], and

simulation comparisons will show that our approach is highly competitive under all scenarios,

with outperformances in settings characterized by moderate sample sizes, especially with a high

number of nodes.

The rest of the paper is organized as follows. We first introduce some background material

on DAGs and Bayesian analysis of categorical data in Section 2. The unstructured Bayesian

inference of contingency tables outlined in Section 2.2 is extended to model selection of EGs in

Section 3. Here we focus on the EG-driven likelihood decomposition, on the parameter prior

induced by Geiger & Heckerman [17], and on the derivation of the marginal likelihood with

related asymptotic properties. The posterior sampler developed in Section 4 is implemented

on simulated data (Section 5), on a medical belief network and on US Congress voting records

(Section 6). We finally discuss extensions to intervential categorical data and multiple datasets
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in Section 7.

2 Background

In this section we provide some background material on Directed Acyclic Graphs (DAGs) and

Essential Graphs (EGs) as well as on Bayesian analysis of contingency tables. Some futher

notions on graphical models are reported in the Appendx. In addition, the reader can refer

to Lauritzen [26] and the more recent book by Roverato [33] for a detailed exposition of these

topics.

2.1 Directed Acyclic Graphs and Essential Graphs

Let D = (V,E) be a DAG where V = {1, . . . , q} is a set of nodes and E ⊆ V ×V a set of directed

edges and let Y1, . . . , Yq be a collection of random variables that we associate to the nodes in D.

A DAG encodes a set of conditional independencies between variables which defines its Markov

property and can be read off from the DAG using d-separation (Pearl [30]). Different DAGs

may encode the same conditional independencies and accordingly we say that they are Markov

equivalent. In many distributional settings, and in particular in the Gaussian framework and

in the categorical case herein considered, Markov equivalent DAGs cannot be distinguished in

the presence of only observational data; see also Geiger & Heckerman [17] and Heckerman et al.

[23]. Under further assumptions on the sampling distribution, such as equal variances within

the Gaussian setting, Markov equivalence may not hold (Peters & Bühlmann [31]) and DAGs

can be in principle distinguished from observational data.

Verma & Pearl [42, Theorem 1] shows that two DAGs are Markov equivalent if and only if

they have the same skeleton and the same v-structures, therefore providing a graphical criterion

to establish Markov equivalence. For a given DAG D, let [D] be its Markov equivalence class,

the set of all DAGs that are Markov equivalent to D. By Andersson et al. [1] each equivalence

class can be uniquely represented by a special chain graph called essential graph (EG), obtained

as the union (over the edge sets) of Markov equivalent DAGs; an alternative name for an EG

is completed partially directed acyclic graph (CPDAG, Chickering [10]). Finally, we recall an

important result in Andersson et al. [1, Theorem 4.1], for which an EG is characterized as a

chain graph with decomposable chain components.

2.2 Bayesian categorical data analysis

Let Y1, . . . , Yq be specialized to a collection of categorical variables or classification criteria, each

Yj having set of levels Yj and lj = |Yj |. We consider n multivariate observations from Y1, . . . , Yq

where each yi, i = 1, . . . , n, corresponds to the levels of Y1, . . . , Yq assigned to individual i,

yi =
(
yi(j), j ∈ V

)
, and yi(j) denotes the j-th element in yi, V = {1, . . . , q}. These data can be
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collected into a q-dimensional contingency table of countsN . To this end, let Y = ×j∈V Yj be the

product space generated by Y1, . . . , Yq, y ∈ Y an element of Y, that is a generic configuration of

the q variables. Each count n(y) representing the number of individuals assigned to configuration

y is given by n(y) =
∑n

i=1 1(yi = y), being 1(·) the indicator function. The collection of counts

n(y), y ∈ Y, can be then arranged in a q-dimensional table. Clearly
∑

y∈Y n(y) = n and the

number of cells in N coincides with the dimension of the product space Y, that we denote by

lV = |Y| =
∏
j∈V lj . Let now S ⊆ V . A marginal table of counts for the variables in S is obtained

by classifying the n individuals only according to criteria in S. The so-obtained |S|-dimensional

marginal table is then NS with lS =
∏
j∈S lj = |YS | number of cells, where YS = ×j∈SYj . For

each cell yS ∈ YS the corresponding count n(yS) is obtained from the original contingency table

N as n(yS) =
∑

y∈Y n(y)1(y(S) = yS) where y(S) are the elements of y ∈ Y corresponding to

variables in S ∈ V . It follows that
∑

yS∈YS n(yS) = n.

For the generic cell y ∈ Y, let θy the probability that an individual is assigned to configuration

y, where
∑

y∈Y θy = 1. The sampling distribution relative to an observation yi can be written

as p(yi |θ) =
∏
y∈Y θ

1(yi=y)
y , and the likelihood function for n i.i.d. data points expressed as

counts in the contingency table N is then p(N |θ) =
∏
y∈Y θ

n(y)
y , where θ = {θy, y ∈ Y} is

the lV -dimensional vector collecting the cell-probabilities θy. For the methodology developed

in the next sections we need a formula for the marginal distribution of the dataset N , namely

m(N) =
∫
p(N |θ) p(θ) dθ, where p(θ) is a prior assigned to the model parameter θ. A standard

conjugate prior for θ is the Dirichlet distribution, θ ∼ Dir(θ |A) ∝
∏
y∈Y θ

a(y)−1
y , where a(y) ∈

R+ and A = (a(y), y ∈ Y) denotes a q-dimensional table of hyperparameters with same size and

structure of N . Because of conjugacy of the Dirichlet prior with model p(N |θ), the posterior

p(θ |N) is Dir(θ |A +N), where A +N denotes the table collecting the element-by-element

sums of A and N . Accordingly, the marginal data distribution of N can be obtained as the

ratio of prior and posterior normalizing constants, so that

m(N) =
Γ
(∑

y∈Y a(y)
)

Γ
(∑

y∈Y(a(y) + n(y))
) ∏

y∈Y

Γ(a(y) + n(y))

Γ(a(y))
. (1)

Different choices for the hyperparameters of the Dirichlet prior are possible. If for simplicity we

set a(y) = a, Equation (1) reduces to Γ
(
lV a
)
/Γ
(
lV a+ n

)∏
y∈Y{Γ(a+ n(y))/Γ(a)}.

Consider now a subset S ⊆ V , with implied marginal table NS . For later developments,

we also need a formula for the marginal data distribution of NS . Recall that n(yS) is the

count corresponding to the cell yS ∈ YS appearing in NS . The likelihood function restricted

to NS can be written as p(NS |θS) =
∏
yS∈YS θ

n(yS)
yS , where θyS =

∑
y∈Y θy1(y(S) = yS) are

the marginal probabilities for variables in S and θS is the vector of dimension lS collecting the

cell-probabilities θyS . Moreover, for the aggregation property of the Dirichlet distribution we

have θS ∼ Dir(θS |AS), where AS = (a(yS), yS ∈ YS) is a |S|-dimensional table of hyperparam-

eters with elements a(yS) given by a(yS) =
∑

y∈Y a(y)1(y(S) = yS). Accordingly, the posterior
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distribution of θS is Dir(θS |AS+NS) and the marginal data distribution restricted to the table

NS is

m(NS) =
Γ
(∑

yS∈YS a(yS)
)

Γ
(∑

yS∈YS (a(yS) + n(yS))
) ∏

yS∈YS

Γ(a(yS) + n(yS))

Γ(a(yS))
. (2)

Note that, if we let a(y) = a, we obtain, with S̄ = V \ S, a(yS) = a
∑

y∈Y 1(y(S) = yS) = lS̄ a.

3 Model comparison of essential graphs

In this section we instead focus on EGs and derive a closed-form expression for the marginal

likelihood of a categorical EG model. We first write the likelihood function which factorizes

according to the graphical structure imposed by the EG (Section 3.1). The latter involves a col-

lection of parameters for each chain component (decomposable UG) for which a suitable prior

distribution must be specified. To this end we follow the procedure of Geiger & Heckerman

[17] originally introduced for model comparison of DAG models. The EG marginal likelihood is

obtained in Section 3.3, with related asymptotic properties studied in Section 3.4, and consid-

erations on the hyperparameter choice in Section 3.5.

3.1 Likelihood decomposition

Let G = (V,E) be an EG. Recall from Andersson et al. [1, Theorem 4.1] that G is a chain graph

where each chain component τ ∈ T , τ ⊆ V , corresponds to a decomposable UG Gτ . Let also

y ∈ Y and yτ ∈ Yτ be the generic element of the product spaces Y and Yτ respectively as defined

in Section 2.2; similarly for ypaG(τ) ∈ YpaG(τ), where paG(τ) denotes the set of parents of τ in G.

For simplicity of notation we will omit the subscript G (e.g. by writing pa(τ) instead of paG(τ))

so that the dependence on the underlying EG will be tacitly assumed. All the results presented

below are therefore predicated on a given EG G.

Recall first from Andersson et al. [2] that under a given EG the probability distribution

related to an observation y ∈ Y factorizes as

p(y |θ) =
∏
τ∈T

p
(
y(τ) | y(pa(τ)),θτ | y(pa(τ))

)
, (3)

where θ is a global parameter indexing the EG model, while θτ | y(pa(τ)) = {θyτ |y(pa(τ)), yτ ∈ Yτ}
is a local parameter for chain component τ , corresponding to configurations of variables in

pa(τ) actually observed ; see also Castelo & Perlman [9, Equation 3]. Accordingly, the likelihood
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function for a complete dataset D comprising n observations yi, i = 1, . . . , n, can be written as

p(D |θ) =
n∏
i=1

∏
τ∈T

p
(
yi(τ)

∣∣ yi(pa(τ)),θτ | yi(pa(τ))

)
=

n∏
i=1

∏
τ∈T

∏
r∈Ypa(τ)

∏
s∈Yτ

θ
1{yi(τ)=s, yi(pa(τ))=r}
s | r ,

by expanding the product over the sets Ypa(τ) and Yτ . Therefore

p(N |θ) =
∏
τ∈T

∏
r∈Ypa(τ)

∏
s∈Yτ

θ
n(s | r)
s | r

=
∏
τ∈T

∏
r∈Ypa(τ)

p(Nτ |Npa(τ), r,θτ | r), (4)

where the conditional frequency n(s | r) corresponds to the number of observations assigned to

level s and r of variables in τ and pa(τ) respectively. Equation (4) corresponds to the likelihood

for n i.i.d. observations expressed as counts in the contingency table N respecting the graphical

structure imposed by the EG.

3.2 Parameter prior distributions

Heckerman et al. [23] and Geiger & Heckerman [17] (G&H) propose a method for the construction

of parameter priors on DAG models. An important implication of their approach concerns the

computation of the marginal likelihood of any DAG, which can be directly obtained from the

marginal data distribution computed under a complete model. In more details, Heckerman et al.

[23] introduce an elicitation procedure for prior parameter construction across DAG models and

decomposable UG models. Starting from few assumptions that are naturally satisfied in the

Gaussian setting by Normal-Wishart priors and in the categorical framework by Dirichlet priors

(Geiger & Heckerman [17]), they show how to assign a prior to the parameters of any given DAG

(or decomposable UG) starting from a unique prior assigned to the parameter of a complete DAG

(or decomposable UG) model. In our EG context, we implement this elicitation procedure at

the level of chain component, since each chain component corresponds to a decomposable UG

(Theorem 4.1 of Andersson et al. 1). This approach dramatically simplifies the prior elicitation

procedure across EGs and provides a default method to assign priors to EG model parameters:

we are then allowed to assume standard Dirichlet priors, in accordance to Section 2.2.

For the EG global parameter θ we first assume that the prior factorizes as

p(θ) =
∏
τ∈T

p(θτ ), (5)

a condition known as global independence, which extends the assumption of global parameter

independence, typical of DAG models, to CG models; see also Castelo & Perlman [9]. For any
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τ ∈ T consider now θτ | r = {θyτ | r, yτ ∈ Yτ}, r ∈ Ypa(τ). We further assume local independence,

namely that θτ | r are a priori independent:

p(θτ ) =
∏

r∈Ypa(τ)

p(θτ | r). (6)

Recall that each θτ | r consists of a vector of (conditional) probabilities θyτ | r, yτ ∈ Yτ .

Assuming that the underlying (decomposable) sub-graph Gτ is complete, we can set

p(θτ | r) = pDir(θτ | r |Aτ | r) ∝
∏
yτ∈Yτ

θ
a(yτ | r)−1
yτ | r . (7)

Let now S ⊆ τ and NS be the corresponding marginal table; see also Section 2.2. Accord-

ingly, the likelihood function restricted to S can be written as

p(NS |Npa(τ), r,θS | r) =
∏
s∈YS

θ
n(s | r)
s | r , (8)

where θs | r =
∑

yτ∈Yτ θyτ | r1(yτ (S) = s), whilst, fixing a(s | r) =
∑

yτ∈Yτ a(yτ | r)1(yτ (S) = s),

p(θS | r) = pDir(θS | r |AS | r) ∝
∏
s∈YS

θ
a(s | r)−1
s | r (9)

is the prior induced by (7).

3.3 Marginal likelihood of EG models

We now focus on the computation of the marginal likelihood of G,

mG(N) =

∫
pG(N |θG)p(θG) dθG , (10)

where we now emphasize the dependence on the EG G. Because of the independence assumptions

in (5), we can write

mG(N) =
∏
τ∈T

∫
pτ (Nτ |NpaG(τ),θτ )p(θτ ) dθτ

=
∏
τ∈T

mτ (Nτ |NpaG(τ)). (11)

where it appears that mG(N) admits the same factorization of the sampling density in (4).

Next, because of the independence assumption across θτ | r in (6), we can write

mτ (Nτ |NpaG(τ)) =
∏

r∈YpaG(τ)

mτ | r(Nτ |NpaG(τ), r).

Recall that for a decomposable UG Gτ with sets of cliques and separators CGτ and SGτ , the

marginal likelihood mτ |r(·) admits the factorization of [26]:
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mτ | r(Nτ |NpaG(τ), r) =

∏
C∈Cτ m(NC |NpaG(τ), r)∏
S∈Sτ m(NS |NpaG(τ), r)

. (12)

In addition, because of the theory presented in Geiger & Heckerman [17] and applied to de-

composable UGs by Consonni & La Rocca [11], each term m(NS | ·) in (12) corresponds to the

marginal data distribution computed under a complete graph as in Equation (2), and similarly

for m(NC |NpaG(τ), r), that is

m(NS |NpaG(τ), r) =
Γ
(∑

s∈YS a(s | r)
)

Γ
(∑

s∈YS (a(s | r) + n(s | r))
) · ∏

s∈YS

Γ
(
a(s | r) + n(s | r)

)
Γ
(
a(s | r)

) . (13)

Note that the total number of parameters is |θG | =
∑

τ lfa(τ), where fa(τ) = pa(τ)∪ τ . We stress

that we can handle the high-dimensional case of n << |θG |, with no constraints on the sparsity

of the graph, differently from the Gaussian context of Consonni & La Rocca [11] and Consonni

et al. [12], where the minimum number of observations is related to the clique number of the

graph, the dimension of the largest maximal clique.

3.4 Asymptotic behaviour of the marginal likelihood

In this section we derive the asymptotic distribution of the marginal likelihood. More precisely

we show, for a single clique or separator of the graph, that the logarithm of the marginal likeli-

hood, scaled by a factor of
√
n, converges in distribution to a Gaussian random variable when

the number of observations diverges, conditionally to the knowledge of parents configurations.

The asymptotic variance, for which we provide an easy estimator, reveals the speed of conver-

gence at which the marginal likelihood converges to its asymptotic mean, that is to the marginal

likelihood evaluated at the true population configuration probabilities.

We first fix ñ(c|r) = n(c|r)/n(r) as the observed relative frequency of a configuration c ∈ YC ,

given that ypa(C) = r; similarly for ñ(s|r), s ∈ YS . The hyperparameters a(c|r) and a(s|r) are

implied by a(yτ |r), yτ ∈ Yτ , through the aggregation property of the Dirichlet distribution.

Given a generic separator S ∈ τ (but the same can be stated for a clique C), it is a standard

result that

{ñ(s|r), s ∈ YS}
d−→ NlS

(
θ0
S | r,ΣS|r/n(r)

)
, (14)

where θ0
S | r is the vector of the true configuration probabilities in S, given a specific configuration

r of the parents, and where ΣS|r = (σs1,s2|r)lS×lS , with

σs1,s2|r =

{
θ0
s1|r(1− θ

0
s1|r), s1 = s2

−θ0
s1|rθ

0
s2|r, s1 6= s2

.

If a(s|r) is chosen so that a(s|r)/n(r)→ 0, the result in (14) is also valid for {n̄(s|r), yτ ∈ YS},
where n̄(s|r) := (n(s|r) + a(s|r))/n(r), for instance when a(s|r) = aS is a constant depending
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on the set S but not on the configurations of nodes in S or parents. Furthermore, assuming for

simplicity a(s|r) = a, we have that

1

n(r)
logm(NS |Npa(τ), r) = C1(a, S, r) +

1

n(r)

∑
s∈YS

log Γ (n(r)n̄(s|r))

− 1

n(r)
log Γ

n(r)
∑
s∈YS

n̄(s|r)


=: gS|r

(
{n̄(s|r), s ∈ YS}

)
(15)

for some function C1 depending on a, S and r, but not on the data, such that C1(a, S, r) → 0

as n(r)→∞. Since gS|r is continuous and with at least one non-null partial derivative in n̄(s|r)
fixed to θ0

s | r, all s ∈ YS , by the Delta method the asymptotic normality is preserved, with

1

n(r)
logm(NS |Npa(τ), r)

d−→ N
(
gS|r

(
{θ0
s|r, s ∈ YS}

)
, D′S|rΣS|rDS|r/n(r)

)
,

where DS|r = {Ds|r, s ∈ YS}, Ds|r = n(r)ψ(nθ0
s | r) − n(r)ψ (n(r)) and ψ is the digamma

function. From the approximation exp(ψ(x)) ≈ x− 1/2, valid for large x, we can write, for n(r)

large enough,

ψ
(
n(r)θ0

s | r

)
≈ log

(
n(r)θ0

s | r − 1/2
)

and

Ds|r ≈ log

(
n(r)θ0

s | r − 1/2

n(r)− 1/2

)
≈ log θ0

s | r,

so that the asymptotic variance becomes

D′S|rΣS|rDS|r/n(r) ≈ 1

n(r)

∑
s1∈YS

∑
s2∈YS

σs1,s2|r log θ0
s1 | r log θ0

s2 | r

and then finally√
n(r)

(
gS|r ({n̄(s|r), s ∈ YS})− gS

(
{θ0
s|r, s ∈ YS}

))
(∑

s1∈YS
∑

s2∈YS σs1,s2|r log θ0
s1 | r log θ0

s2 | r

)1/2

d−→ N (0, 1). (16)

From convergence in probability of n̄(s|r) and continuous mapping theorem, the result in (16)

is also valid with the denominator replaced by its estimate ∑
s1∈YS

∑
s2∈YS

σ̂s1,s2|r log n̄(s1|r) log n̄(s2|r)

1/2

,

where

σ̂s1,s2|r =

{
n̄(s1|r)(1− n̄(s1|r)), s1 = s2

−n̄(s1|r)n̄(s2|r), s1 6= s2

.
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See also that if we replace n(r) by n, we can repeat the steps above for

ḡS|r ({n̄(s|r), s ∈ YS}) :=
1

n
logm(NS |Npa(τ), r)

and obtain, asymptotically in n, that

√
n
(
ḡS|r ({n̄(s|r), s ∈ YS})− ḡS

(
{θ0
s|r, s ∈ YS}

))
√
θ0
r

∑
s1∈YS

∑
s2∈YS σs1,s2|r log θ0

s1 | r log θ0
s2 | r

d−→ N (0, 1), (17)

still valid with σ̂s1,s2|r, n̄(s|r) and n(r)/n replacing, respectively, σs1,s2|r, θ
0
s | r and θ0

r in the de-

nominator. Therefore with a(s|r)/n→ 0, an appropriately scaled version of logm(NS |Npa(τ), r)

is asymptotically Gaussian and correctly centered, with a variance that can be estimated.

3.5 On the hyperparameter choice

Following Geiger & Heckerman [17], we start from a unique prior at level of chain component

τ and all other priors for included cliques and separators are derived accordingly, in a way

that is coherent with the hyperparameter construction in the BDeu score of Heckerman et al.

[23]. As pointed out in Scutari [37], BDeu is the only score that guarantees equal scores to

Markov equivalent DAGs; see also Scutari [36]. Still, we stress that our marginal likelihood

derived in Section 3.3 does not coincide with the BDeu score of Heckerman et al. [23], since the

latter is on DAGs and not on EGs. Only the part of our marginal likelihood related to a single

chain component and conditionally to one observed configuration of the parent nodes can be

reconducted to the BDeu form.

Any possible value for a(s|r) for which a(s|r)/n → 0 guarantees the validity of the results

in Section 3.4. By choosing for all yτ ∈ Yτ and r ∈ Ypa(τ), a(yτ |r) < 1, we opt for the

sensible choice of a prior distribution with no mode on any chain configuration. We want this

property to be valid also for all clique and separator configurations within the chain component.

Furthermore, a prior choice of V(θyτ |r) = α implies V(θc|r) ≈ αlτ/lC , meaning more prior

uncertainty for probabilities associated to smaller cliques or separators, proportionally to their

dimension, relative to the dimension of the chain component they belong. Then, to have the

same prior information on cliques/separators of same dimension in different chain components,

to impose no prior mode on any cliques/separators configurations, and for results in Section 3.4

to be valid, we ultimately suggest the choice of a(yτ |r) = 1/lτ .

4 Computational implementation

In this Section we introduce the MCMC scheme that we adopt to sample from the posterior

distribution on the EG space and perform posterior model inference of categorical EGs.

11



4.1 MCMC scheme

Let Sq be the set of all EGs on q nodes. Our MCMC consists of a Metropolis Hastings (MH)

algorithm targeting the posterior distribution on the EG space,

p(G |N) ∝ mG(N) p(G), G ∈ Sq,

where mG(N) is the marginal likelihood of G computed as in Equation (11), p(G) a prior assigned

to G. A similar scheme was introduced in Castelletti et al. [7] within the context of Gaussian

EGs. The key feature of this algorithm is the choice of a suitable proposal distribution which

determines the transitions between EGs belonging to the (discrete) model space Sq. To this

end, Castelletti et al. [7] adopted the Markov chain originally proposed by He et al. [22] to

explore the EG space and investigate features of interest (such as the number of directed and

undirected edges, v -structures and so on). Some optimality properties, namely irreducibility

and reversibility, allows to efficiently compute the stationary distribution of the Markov chain,

used to weigh samples obtained from the proposal distribution.

Transitions between EGs are determined by six types of operators: inserting an undirected

edge (denoted by InsertU), deleting an undirected edge (DeleteU), inserting a directed edge

(InsertD), deleting a directed edge (DeleteD), converting two adjacent undirected edges in a v -

structure (MakeV) and converting a v -structure into two adjacent undirected edges (RemoveV).

Besides these, following Castelletti & Consonni [6] we also adopt the operator ReverseD originally

introduced by Chickering [10]. Such operator is not needed for the Markov chain to be irreducible

and reversible, but it adds extra-connectivity to the states of the chain, thus improving the

exploration of the EG space; see also Castelletti [5] for a general presentation of the MCMC

scheme. For each EG G we can then construct a set of perfect operators OG , i.e. guaranteeing

that the resulting graph is an EG. Let OG be a perfect set of operators on G, |OG | its cardinality.

It can be shown that the probability of transition from G to G′, the latter a direct successor of

G, is

q(G′ | G) = 1/|OG |.

Next, we need to specify a prior p(G), for G ∈ Sq. Let AG be the (symmetric) 0-1 adjacency

matrix of the skeleton of G, whose (u, v) element is denoted by AG(u,v). Conditionally on a

probability of edge inclusion π ∈ (0, 1), we first assign a Bernoulli prior independently to each

element AG(u,v) in the lower triangular part of AG , AG(u,v) |π
iid∼ Ber(π), u > v. Therefore,

p(AG) = π|A
G |(1− π)

q(q−1)
2
−|AG |, (18)

where |AG | denotes the number of edges in the skeleton of G and q(q − 1)/2 corresponds to the

maximum number of edges in the graph. We finally set p(G) ∝ p(AG) for each G ∈ Sq, which

results in a simple prior only depending on the number of edges in the graph and that can easily
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reflect prior knowledge of sparsity (Castelletti et al. [7]). Other priors, specific for DAGs and

based on the number of compatible perfect orderings of the vertices, are also present in the

literature (Friedman & Koller [15], Kuipers & Moffa [25]).

Let mG(N) be the marginal likelihood of G given the table of counts N , p(G) a prior on G
and q(G′ | G) a proposal distribution for the chain when we are at graph G. At each step of the

MH scheme we then propose a new EG G′ given the current graph G from q(G′ | G) and accept

G′ with probability

αG,G′ = min

{
1;
mG′(N)

mG(N)
· p(G

′)

p(G)
· q(G | G

′)

q(G′ | G)

}
. (19)

4.2 Posterior model inference

Our MCMC output consists of a collection of EGs visited by the chain, {G(1), . . . ,G(T )}. This

can be used to approximate the posterior distribution over the EG space as

p(G |N) =
mG(N)p(G)∑
G∈Sq mG(N)p(G)

≈ 1

T

T∑
t=1

1

{
G(t) = G

}
,

where 1(·) is the indicator function; see also Garćıa-Donato & Mart́ınez-Beneito [16] for a

discussion on frequency-based estimators in large model spaces. In addition we can recover from

the same output the (estimated) posterior probability of inclusion for each (directed) edge,

p̂u→v(N) =
1

T

T∑
t=1

1u→v

{
G(t)

}
, (20)

where 1u→v{G(t)} = 1 if G(t) contains u → v, 0 otherwise, and an undirected edge u − v is

equivalent to the union of u → v and u ← v. Starting from these quantities a single EG

estimate summarizing the whole output, if required, can be also obtained. For instance, one

can consider the maximum a posteriori (graph) model (MAP) which corresponds to the EG

with highest associated posterior probability. However, the MAP may not represent an optimal

choice especially from a predictive viewpoint as discussed for instance by Barbieri & Berger [3]

in a multiple linear regression framework. Differently, it was shown that the median probability

model, which in their context was obtained by including all variables whose posterior probability

of inclusion exceeds 0.5, is predictively optimal. In our EG setting, we can proceed similarly and

construct first a graph estimate (that we name median probability graph model) by including

all edges u → v such that p̂u→v(N) > 0.5. Since the latter is not guaranteed to be an EG,

while is in general a partially directed graph, one further possibility is to consider any consistent

extension [13] of the median probability model, as detailed in Castelletti et al. [7]. The resulting

EG estimate is called projected median probability graph model.
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5 Simulations

We now evaluate the performance of our method through simulations. Specifically, we vary the

number of variables q ∈ {5, 10, 20, 40} and the sample size n ∈ {100, 200, 500, 1000}. For each

combination of q and n (a scenario) we generate 40 categorical datasets as detailed in Section 5.1.

For simplicity we assume all variables being binary, namely Yj ∈ {0, 1}, j = 1, . . . , q. Results

and comparisons with some benchmark methods are presented in Section 5.2.

5.1 Data generation

For a given value of q we first randomly generate 40 DAGs using the function randomDAG in

the R package pcalg by fixing a probability of edge inclusion equal to pedge = 3/(2q − 2) as in

the sparse setting of [31]. Each DAG D defines a data generating process which in a Gaussian

setting [7] we can write as

Zi,j = µj +
∑

k∈paD(j)

βk,jZi,k + εi,j , (21)

for i = 1, . . . , n and j = 1, . . . , q, where εi,j ∼ N (0, σ2
j ) independently. For each j we fix

µj = 0 and σ2
j = 1, while regression coefficients βk,j are uniformly chosen in the interval

[−1,−0.1] ∪ [0.1, 1]; see also Peters & Bühlmann [31]. For expediency we then proceed by

generating first n multivariate Gaussian observations from (21); a categorical dataset consisting

of n observations from q binary variables is then obtained by setting

Yi,j =

 1 if Zi,j ≥ γj ,

0 if Zi,j < γj ,
(22)

where we fix γj = 0, for j = 1, . . . , q. Finally, for each DAG D we consider its representative

EG which will represent the benchmark of comparison with the EG estimate provided by each

method under evaluation; more details are given in the next section.

5.2 Simulation results

We evaluate the performance of our method, that we name DBEG (Discrete Bayesian EG),

in recovering the graphical structure of the true EG. To this end, for each q ∈ {5, 10, 20, 40}
we run T = 1000 · q iterations of our MCMC algorithm (Section 4). To favour sparsity, we

fix the hyperparameter π in the EG prior (18) as π = 1.5/(2q − 2) which corresponds to a

prior probability of edge inclusion smaller than the expected level of sparsity, as commonly

recommended; see for instance Peterson et al. [32]. Finally, we fix a(yτ | r) = 1/lτ in the

Dirichlet prior (7), as suggested in Section 3.5.

We compare our method with the PC algorithm for categorical data of Spirtes et al. [41],

a constraint-based method that estimates the EG through multiple conditional independence
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tests, at a significance level α that we fix as α ∈ {0.10, 0.05, 0.01}. As other benchmarks, we

use HC Bdeu, an optimized hill climbing greedy search that explores the space of DAGs by

single-arc additions, removals and reversals and that uses the BDeu score of Heckerman et al.

[23], and TABU BDeu (Russell & Norvig [34]), a modified hill-climbing algorithm able to escape

local optima by selecting DAGs that minimally decrease the score function. Since both HC

BDeu and TABU BDeu were not specifically designed for EGs but for DAG model selection,

their DAG estimates are converted in the EG representative of the corresponding equivalence

class.

We evaluate the ability of each method in recovering the true EG structure in terms of

Structural Hamming Distance (SHD) between true and estimated EG. The SHD represents

the number of edge insertions, deletions or flips needed to transform the estimated EG into

the true one. Accordingly, lower values of SHD correspond to better performances. Results

are summarized in the box-plots of Figure 1, where each plot reports the distribution of SHD

across the simulated datasets for a given value of q ∈ {5, 10, 20, 40} and increasing sample sizes

n ∈ {100, 200, 500, 1000}. With regard to our method we consider as EG point estimate the

projected median probability graph model (DBEG); see also Section 4.2. All methods improve

their performance as the sample size increases. Moreover, our DBEG method outperforms PC

0.10, PC 0.05, HC BDeu and TABU BDeu most of the times and remains highly competitive

with PC 0.01 under all scenarios.

For each scenario and method we also evaluate the performance in learning the structure

of the true EG in terms of misspecification rate, specificity, sensitivity, precision and Matthews

correlation coefficient:

MISR = FN+FP
q(q−1) , SPE = TN

TN+FP ,

SEN = TP
TP+FN , PRE = TP

TP+FP ,

MCC = TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

,

where TP , TN , FP , FN are the numbers of true positives, true negatives, false positives and

false negatives respectively. The four measures can be computed by comparing the true and

estimated EG through the corresponding adjacency matrices, where an undirected edge u− v is

treated as the union of the two directed edges u→ v and u← v. With the exception of MISR,

better performances correspond to higher values.

Results for number of nodes q ∈ {10, 20} are summarized in Tables 1 and 2, where we

compare our DBEG with the three versions of the PC algorithm, and with the score-based

methods of HC BDeu and TABU BDeu. In terms of specificity index (SPE), all methods are

comparable. The superiority of DBEG and PC 0.01, relative to the other methods, stems from

a higher precision (PRE) and higher Matthews correlation coefficient (MCC), the latter being

more evident in the setting q = 20 or for larger sample sizes. Moreover, there is no clear ranking
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Figure 1: Simulations. Structural Hamming Distance (SHD) between true and estimated EG for num-

ber of nodes q ∈ {5, 10, 20, 40} and increasing samples sizes n ∈ {100, 200, 500, 1000}. Methods under

comparison are: our DBEG method, the PC algorithm of Spirtes et al. [41], implemented for significance

levels α ∈ {0.10, 0.05, 0.01} (respectively PC 0.10, PC 0.05, PC 0.01), HC BDeu, a hill climbing greedy

search with the BDeu score of Heckerman et al. [23], and its modified version TABU BDeu (Russell &

Norvig [34]).
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between the three versions of the PC algorithm in terms of sensitivity index (SEN), while HC

BDeu and TOTEM BDeum are indistinguishable.

Simulated datasets were obtained by generating first (latent) continuous multivariate Gaus-

sian observations as in (21) that were subsequently discretized to obtain binary data by fixing

a threshold γj = 0; see Equation (22). The zero threshold, coupled with the assumption µj = 0

in (21) which implies a marginal mean equal to zero for each latent Zj , results in a collection of

categorical variables whose levels are well balanced, meaning that P (Yj = 1) = P (Yj = 0) = 0.5

for each j = 1, . . . , q. In the following we relax this assumption by drawing each γj uniformly in

the interval [0, 1]. As a consequence, each so-obtained dataset exhibits an excess of zeros, since

now P (Yj = 1) ≤ 0.5 with a lower bound which depends on the marginal variance of each latent

Zj (in our simulation settings approaching 0.15 in the “worst” case where γj = 1).

Simulation results are reported in Figure 2 where the box-plots summarize the distribution

of SHD for values of q ∈ {5, 10, 20, 40} and n ∈ {100, 200, 500, 10000} for each method under

comparison. Results are very similar to those obtained under the “balanced” setting where γj =

0, with our DBEG approach outperforming the two BDeu-based methods and being competitive

with PC in most of the settings, in particular for scenarios characterized by moderate sample

sizes. The same behaviour was observed for each of the five indexes in Tables 1-2 that we do

not include for brevity.

6 Real data analyses

6.1 Alarm data

We apply our method to the ALARM dataset presented in Beinlich et al. [4]. ALARM (A Logical

Alarm Reduction Mechanism) is an alarm message system for patient monitoring based on a

diagnostic tool. From a graphical model viewpoint, ALARM consists of a belief network, a DAG

describing dependence relationships between three types of categorical variables: 8 diagnoses

(at the top level of the network), 13 intermediate variables and 16 findings (clinical outcomes).

A number of observations n = 20000 are measured on each of the q = 37 categorical variables.

Of these, 13 variables are binary, while the others have a number of levels equal to 3 or 4 (17

and 7 variables respectively). The objective of the original study was to estimate parameters

(i.e. conditional probabilities) of interest as a diagnostic tool for patient monitoring, given a

known DAG structure with 46 directed edges; see also Beinlich et al. [4, Figure 1].

On the other hand, we account for uncertainty in the data-generating graphical model and

we implement our methodology to learn an EG structure. This can be compared with the

clinically justified DAG graphical structure assumed as known in the original study. We run

T = 50000 iterations of DBEG, by fixing a prior probability of edge inclusion π = 0.02 to favour

sparsity and hyperparameter a(yτ | r) = 1/lτ in the Dirichlet prior (7). The MCMC output
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MISR SPE SEN PRE MCC

n = 100

DBEG 8.31 97.87 45.76 75.69 57.54

PC 0.10 8.08 97.38 52.35 72.61 59.91

PC 0.05 7.67 98.07 49.99 77.08 60.26

PC 0.01 8.19 98.63 42.54 79.53 56.38

HC BDeu 8.92 98.32 37.00 74.91 51.25

TABU BDeu 8.92 98.32 37.00 74.91 51.25

n = 200

DBEG 6.14 98.75 61.21 82.97 69.33

PC 0.10 7.17 97.11 62.39 73.95 65.89

PC 0.05 6.31 97.94 63.80 81.29 69.99

PC 0.01 6.31 98.60 58.71 85.64 68.69

HC BDeu 7.58 99.08 42.85 88.24 59.25

TABU BDeu 7.58 99.08 42.85 88.24 59.25

n = 500

DBEG 4.69 98.44 73.17 86.55 77.90

PC 0.10 5.78 97.3 72.79 78.61 73.55

PC 0.05 5.33 97.94 71.77 83.35 75.33

PC 0.01 4.69 98.82 70.63 89.9 77.75

HC BDeu 7.33 98.6 48.41 83.43 61.8

TABU BDeu 7.33 98.6 48.41 83.43 61.8

n = 1000

DBEG 4.22 98.16 79.66 85.94 83.20

PC 0.10 5.33 97.36 75.37 78.41 74.97

PC 0.05 4.31 98.19 78.29 85.51 80.15

PC 0.01 3.72 98.86 77.84 90.36 82.23

HC BDeu 7.03 98.45 51.84 83.12 63.84

TABU BDeu 7.03 98.45 51.84 83.12 63.84

Table 1: Simulations. Misspecification rate (MISR), specificity (SPE), sensitivity (SEN), preci-

sion (PRE) and Matthews correlation coefficient (MCC) averaged over 40 simulations for number

of nodes q = 10 and sample size n ∈ {100, 200, 500, 1000} for each method under comparison.
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MISR SPE SEN PRE MCC

n = 100

DBEG 4.17 99.05 37.75 70.17 50.59

PC 0.10 4.48 98.47 42.45 59.71 49.89

PC 0.05 4.49 98.62 40.06 61.07 49.10

PC 0.01 4.11 99.13 38.39 70.95 51.46

HC BDeu 4.67 98.58 36.12 58.31 45.74

TABU BDeu 4.67 98.58 36.12 58.31 45.74

n = 200

DBEG 3.34 98.92 55.87 75.64 64.03

PC 0.10 3.78 98.49 55.20 66.22 59.87

PC 0.05 3.47 98.85 54.82 71.90 62.05

PC 0.01 3.37 99.22 50.74 77.64 61.97

HC BDeu 4.09 98.88 42.21 68.10 53.10

TABU BDeu 4.09 98.88 42.21 68.10 53.10

n = 500

DBEG 2.67 99.02 67.42 80.51 72.82

PC 0.10 2.81 98.64 71.91 74.24 72.22

PC 0.05 2.49 98.94 72.31 78.96 74.69

PC 0.01 2.30 99.33 69.51 85.19 76.04

HC BDeu 3.6 98.98 49.63 74.38 59.92

TABU BDeu 3.6 98.98 49.63 74.38 59.92

n = 1000

DBEG 2.32 98.96 78.06 81.06 80.48

PC 0.10 2.72 98.46 76.54 73.59 74.17

PC 0.05 2.36 98.83 77.01 78.62 77.02

PC 0.01 1.93 99.35 76.15 86.55 80.26

HC BDeu 3.09 99.17 55.63 79.89 65.70

TABU BDeu 3.09 99.17 55.63 79.89 65.70

Table 2: Simulations. Misspecification rate (MISR), specificity (SPE), sensitivity (SEN), preci-

sion (PRE) and Matthews correlation coefficient (MCC) averaged over 40 simulations for number

of nodes q = 20 and sample size n ∈ {100, 200, 500, 1000} for each method under comparison.
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Figure 2: Simulations (unbalanced setting). Structural Hamming Distance (SHD) between true and es-

timated EG for number of nodes q ∈ {5, 10, 20, 40} and increasing samples sizes n ∈ {100, 200, 500, 1000}.
Methods under comparison are: our DBEG method, the PC algorithm of Spirtes et al. [41], implemented

for significance levels α ∈ {0.10, 0.05, 0.01} (respectively PC 0.10, PC 0.05, PC 0.01), HC BDeu, a hill

climbing greedy search with the BDeu score of Heckerman et al. [23], and its modified version TABU

BDeu (Russell & Norvig [34]).
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Figure 3: ALARM data. Estimated EG (maximum a posteriori and median probability graph model)

obtained under DBEG.

estimates a posterior distribution on the EG space which is highly concentrated, with a single

EG model assigned a posterior probability of about 70%. Therefore, the maximum a posteriori

and the (projected) median probability graph models coincide (Figure 3). Estimated posterior

probabilities of edge inclusion, as in Equation (20), are summarized in the (left-side) heat map

of Figure 4 and confirm the low variability of the EG posterior distribution. All edges included

in the EG estimate of Figure 3 have indeed a posterior probability close to one. Few exceptions

are represented by edges 17− 19, 21− 23 and 3− 23, whose posterior probabilities however does

not exceed the threshold for edge inclusion. In the same figure we provide a comparison with

the EG implied by the DAG model assumed in Beinlich et al. [4], here represented as a heat map

with black dots in correspondence of edges. The two plots reveal strong similarities between the

EG structures, since they differ by 16 edges over 46 and 51 edges respectively included in the

two graphs.

6.2 Voting records

In this section we analyze the voting records from the 1984 United Stated Congress. The dataset

includes votes for each of the n = 434 U.S. House of Representatives Congressmen on sixteen
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Figure 4: ALARM data. Comparison between the original DAG assumed in Beinlich et al. [4] (left),

with black dots in correspondence of edges, and estimated posterior probabilities of edge inclusion from

our DBEG method (right).

key votes, identified by the Congressional Quarterly Almanac, on religion, immigration, crime,

education, and other relevant subjects. Each of the q = 16 (categorical) answers takes value in

{yes, no,NA}, with NA in case of missing response. The data are publicly available at https://

archive.ics.uci.edu/. In the following we also distinguish between democratic and republican

Congressmen by considering two datasets with nD = 267 and nR = 167 observations respectively.

Our method is then applied independently to each dataset, by fixing the number of MCMC

iterations T = 30000, the prior probability of edge inclusion π = 5% and the hyperparameter

a(yτ | r) = 1/lτ in the Dirichlet prior (7).

Differently from the previous application, the posterior distribution over the EG space ex-

hibits larger variability, possibly related to the more moderate group sample sizes. This is also

apparent from Figure 5 which summarizes the estimated posterior probabilities of edge inclusion

under each group. In addition, the two plots (democratic and republican) reveal strong differ-

ences, as evident from the estimated graphs in Figure 6. Few exceptions of similarity are the

(directed) links between 5 (el-salvador-aid) and 8 (aid-to-nicaraguan-contras), 7 (anti-satellite-

test-ban) and 16 (export-administration-act-south-africa), common to the two groups.

7 Conclusions and further directions

We propose a Bayesian method for learning the conditional dependence structures of multivariate

categorical data that we represent through a Directed Acyclic Graph (DAG). To account for

different DAGs encoding the same set of dependencies (Markov equivalent DAGs), and to avoid

hyperprior specifications that lead to undesirable properties of the marginal likelihood, our

methodology directly learns the essential graph (EG) representative of a DAG equivalence class.
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Figure 5: Voting records. Heat maps with estimated posterior probabilities of edge inclusion obtained

from our DBEG method for the two groups: democratic (left) and republican (right).

Figure 6: Voting records. Estimated EG (projected median probability graph model) obtained with

DBEG for the two groups: democratic (left) and republican (right).
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Following the method of Geiger & Heckerman [17] for parameter prior construction, we derive

a closed-form expression of the EG marginal likelihood, in accordance with the graph-driven

likelihood decomposition, and study related asymptotic properties. These developments serve

a proposed MCMC sampler on the EG space, that we apply to simulated data in comparison

with benchmarks and on two real datasets.

With interventional data subject to exogenous perturbations or randomized experiments, the

marginal likelihood can still be factorized according to the conditional independence structure

implied by the graph (Pearl [30], Hauser & Bühlmann [20]). Interventional Markov equivalence

classes (He & Geng [21], Hauser & Bühlmann [19]) preserve the characterization as chain graphs

with decomposable chain components, but they constitute a finer partition of the DAG space,

relative to their observational counterpart, and therefore improve the identifiability of the true

data generating DAG. A generalization of the proposed setting to interventional categorical data

is of interest, and would be based, following Castelletti & Consonni [6], on the extension of the

EG marginal likelihood to I-EGs (interventional essential graphs) and of the Markov chain of

He et al. [22] to the I-EG space.

Also, the US voting datasets of democratics and republicans were analyzed separately, as-

suming distinct graphical structures (one for each group) that accordingly were estimated in-

dependently. Alternatively, one could analyze them jointly to exploit potential shared features

among groups. Joint structural learning for multiple Gaussian undirected graphs is carried out

in Peterson et al. [32], through a Markov random field prior that encourages common edges, and

a spike-and-slab prior on network relatedness parameters. Their framework has been extended

to Gaussian EGs in Castelletti et al. [8] and, along the same dimension, an extension of our

methodology to infer multiple categorical EGs is feasible and under investigation.

Appendix: Graph notation

A graph G is a pair (V,E) where V = {1, . . . , q} is a set of vertices (or nodes) and E ⊆ V × V
a set of edges (or arcs). Nodes are associated to variables, while edges are used to represent

direct interactions between variables. Let u, v ∈ V , u 6= v be two nodes. We say that G contains

the directed edge u → v if and only if (u, v) ∈ E and (v, u) /∈ E. If instead both (u, v) ∈ E
and (v, u) ∈ E, then G contains the undirected edge u − v. Accordingly, we say that G is an

undirected (directed) graph if it contains only undirected (directed) edges; in addition, G is

partially directed if it contains at least one directed edge.

Two vertices u, v are adjacent if they are connected by an edge (directed or undirected). In

addition, we call u a neighbor of v if u−v is in G and denote the neighbor set of v as neG(v); the

common neighbor set of u and v is then neG(u, v) = neG(u) ∩ neG(v). We say that u is a parent

of v and that v is a child of u if u→ v is in G. The set of all parents of u in G is then denoted
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G G<

1 2

4 3

1 2

4 3

Figure 7: A decomposable graph G on the set of vertices V = {1, 2, 3, 4}; the cycle {1, 2, 4, 3} of length

l = 4 contains the chord 1− 3. G has the perfect sequence of cliques {C1, C2}, with C1 = {1, 2, 3}, C2 =

{1, 3, 4} and set of separators S = {S2}, S2 = {1, 3}. G< is the perfect directed version of G.

by paG(u). A sequence of nodes {v0, v1, . . . , vk} where v0 = vk and vj−1 − vj or vj−1 → vj for

all j = 1, . . . , k is called a cycle. A cycle is directed (undirected) if it contains only directed

(undirected) edges; conversely we call it a partially-directed cycle. A graph with only directed

edges is called a directed acyclic graph (DAG) if it does not contain cycles. For any subset

A ⊆ V we denote with GA = (A,EA) the subgraph of G induced by A, where EA = E ∩ (A×A).

A (sub)graph is complete if its vertices are all adjacent.

We now focus on a particular class of undirected graphs, namely decomposable graphs (also

called chordal or triangulated). Specifically, we say that an undirected (sub)graph is decompos-

able if every cycle of length l ≥ 4 has a chord, that is two nonconsecutive adjacent vertices. For

a decomposable graph G, a complete subset that is maximal with respect to inclusion is called

a clique. Let C = {C1, . . . , CK} be a perfect sequence of cliques. Let also Hk = C1 ∪ · · · ∪ Ck,
for k = 2, . . . ,K. We can then construct the set of separators S = {S2, . . . , SK} where

Sk = Ck ∩ Hk−1; see also Figure 7. It can be shown [26, p.18] that each decomposable graph

can be uniquely represented by its set of cliques and separators. Most importantly, for each

decomposable graph one can obtain a perfect numbering of its vertices [26] and then a perfect

directed version G< by directing its edges from lower to higher numbered vertices; see also Figure

7.

A partially directed graph with no partially-directed cycles is called a chain graph (CG) or

simply partially directed acyclic graph (PDAG). For a chain graph G we call chain component τ ⊆
V a set of nodes that are joined by an undirected path and denote the set of chain components of

G by T . A subgraph of the form u→ z ← v, where there are no edges between u and v, is called

a v-structure (or immorality). The skeleton of a graph G is the undirected graph on the same set

of vertices obtained by removing the orientation of all its edges. Finally, a consistent extension

of a PDAG G is a DAG on the same underlying set of edges, with the same orientations on the

directed edges of G and the same set of v -structures [13].
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