
1

Generalized Nash Equilibria for the Service

Provisioning Problem in Cloud Systems

Danilo Ardagna∗, Barbara Panicucci∗,∗∗, Mauro Passacantando∗∗∗

This paper has been published in IEEE Transactions on Services Computing, vol. 6 (4), pp. 429-442, see:
https://ieeexplore.ieee.org/document/6185529.

∗Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milan, Italy. E-mail:
ardagna@elet.polimi.it.
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Abstract
In recent years the evolution and the widespread adoption of virtualization, service-oriented architectures,

autonomic, and utility computing have converged letting a new paradigm to emerge: Cloud computing. Clouds

allow the on-demand delivering of software, hardware, and data as services. Currently the Cloud offer is becoming

day by day wider, since all the major IT Companies and Service providers, like Microsoft, Google, Amazon, HP,

IBM, and VMWare have started providing solutions involving this new technological paradigm.

As Cloud-based services are more numerous and dynamic, the development of efficient service provisioning

policies becomes increasingly challenging. In this paper we take the perspective of Software as a Service (SaaS)

providers which host their applications at an Infrastructure as a Service (IaaS) provider. Each SaaS needs to comply

with quality of service requirements, specified in Service Level Agreement (SLA) contracts with the end-users,

which determine the revenues and penalties on the basis of the achieved performance level. SaaS providers want to

maximize their revenues from SLAs, while minimizing the cost of use of resources supplied by the IaaS provider.

Moreover, SaaS providers compete and bid for the use of infrastructural resources. On the other hand, the IaaS wants

to maximize the revenues obtained providing virtualized resources.

In this paper we model the service provisioning problem as a generalized Nash game and we show the existence

of equilibria for such game. Moreover, we propose two solution methods based on the best-reply dynamics and we

prove their convergence in a finite number of iterations to a generalized Nash equilibrium. In particular, we develop

an efficient distributed algorithm for the run-time allocation of IaaS resources among competing SaaS providers. We

demonstrate the effectiveness of our approach by simulation and performing tests on a real prototype environment

deployed on Amazon EC2. Results show that, compared to other state-of-the-art solutions, our model can improve

the efficiency of the Cloud system evaluated in term of Price of Anarchy by 50-70%.

I. INTRODUCTION

Cloud Computing has been a dominant IT news topic over the past few years. It is essentially

a way for IT companies to deliver software/hardware on-demand as services through the Internet.

Cloud computing applications are generally priced on a subscription model, so end-users may

pay a yearly usage fee, for example, rather than the more familiar model of purchasing software

licenses. The Cloud-based services are not only restricted to software applications (Software as a

Service – SaaS), but could also be the platform for the deployment and execution of applications

developed in house (Platform as a Service – PaaS) and the hardware infrastructure (Infrastructure

as a Service – IaaS).

In the SaaS paradigm, applications are available over the Web and provide Quality of Service

(QoS) guarantees to end-users. The SaaS provider hosts both the application and the data, hence the

end-user is able to use and access the service from all over the world. With PaaS, applications are

developed and deployed on platforms transparently managed by the Cloud provider. The platform

typically includes databases, middleware, and also development tools. In IaaS systems, virtual

computer environments are provided as services and servers, storage, and network equipment can

be outsourced by customers without the expertise to operate them.
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Many Companies, e.g. Google, Amazon, and Microsoft are offering Cloud computing services

such as Google’s App Engine and Amazon’s Elastic Compute Cloud (EC2) or Microsoft Win-

dows Azure. Large data centers provide the infrastructure behind the Cloud and virtualization

technology makes Cloud computing resources more efficient and cost-effective both for providers

and customers. Indeed, end-users obtain the benefits of the infrastructure without the need to

implement and administer it directly adding or removing capacity almost instantaneously on a

“pay-as-you-use” basis. Cloud providers can, on the other hand, maximize the utilization of their

physical resources also obtaining economies of scale.

The development of efficient service provisioning policies is among the major issues in Cloud

research. Indeed, modern Clouds live in an open world characterized by continuous changes which

occur autonomously and unpredictably. In this context, game theory models and approaches allow

to gain an in-depth analytical understanding of the service provisioning problem. Game Theory

has been successfully applied to diverse problems such as Internet pricing, flow and congestion

control, routing, and networking [7], [46]. One of the most widely used “solution concept” in

Game Theory is the Nash Equilibrium approach: A set of strategies for the players constitute a

Nash Equilibrium if no player can benefit by changing his/her strategy unilaterally or, in other

words, every player is playing a best response to the strategy choices of his/her opponents.

In this paper we take the perspective of SaaS providers which host their applications at an IaaS

provider. Each SaaS provider want to maximize its profit while complying with QoS requirements,

specified in Service Level Agreement (SLA) contracts with the end-users, which determine the

revenues and penalties on the basis of the achieved performance level. The profit of the SaaS is

given by the revenues from SLAs minus the cost sustained for using the resources supplied by

the IaaS. The profit maximization is challenging since on-line services see dynamic workloads

that fluctuate over multiple time scales [18], [2]. Resources have to be allocated flexibly at run-

time according to workload fluctuations. Furthermore, each SaaS behaves selfishly and competes

with others SaaSs for the use of infrastructural resources supplied by the IaaS. The IaaS, in his

turn, wants to maximize the revenues obtained providing the resources. To capture the behavior of

SaaSs and IaaS in this conflicting situation in which the best choice for one depends on the choices

of the others, we recur to the Generalized Nash Equilibrium (GNE) concept [22], which is an

extension of the classical Nash equilibrium [42]. In this paper the run-time service provisioning

problem will be modelled as a Generalized Nash game. We then use Game Theory results to

develop efficient algorithms for the run-time management and allocation of IaaS resources to
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competing SaaSs suitable also for a fully distributed implementation. Multiple solutions achieving

generalized equilibria are proposed and evaluated in terms of their efficiency with respect to the

social optimum of the Cloud.

We demonstrate the effectiveness of our approach by simulation and performing tests on a real

prototype environment. Extensive experiments show that, compared to state-of-the-art resource

management approaches [20], [57], [53] also proposed as basic mechanisms by current IaaS

systems [9], our model can yield a significant improvement in terms of efficiency, in the range

50-70%.

The remainder of the paper is organized as follows. Section II describes the reference system

under study. In Section III we introduce our model based on the concept of GNE. In Section IV

we prove the existence of at least a GNE and we provide two alternative solution methods. The

experimental results discussed in Section V demonstrate the efficiency of our solutions. Other

approaches proposed in the literature are discussed in Section VI. Conclusions are finally drawn

in Section VII.
II. PROBLEM STATEMENT AND ASSUMPTIONS

As stated in the previous Section, we consider SaaS providers using Cloud computing facilities

according to the IaaS paradigm to offer multiple transactional Web services (WSs), each service

representing a different application.

The hosted WSs can be heterogeneous with respect to resource demands, workload intensities

and QoS requirements. The set of WS applications offered by the p-th SaaS provider is denoted

by Ap, while P will indicate the set of SaaSs.

An SLA contract, associated with each WS application, is established between the SaaS provider

and its end-users. In particular, as in other approaches [12], [14], [50], for each WS application

k ∈ Ap, a linear utility function specifies the per request revenue (or penalty) Vk = νk +mk Rk

incurred when the end-to-end response time Rk assumes a given value (see Figure 1). The slope of

the utility function is mk = −νk/Rk < 0 and Rk is the threshold that identifies the revenue/penalty

region, that is, if Rk > Rk the SLA is violated and the SaaS incurs in penalties.

Linear utility functions are a flexible mechanism to rank different applications (e.g., assigning

higher slopes to more important applications), and allow also to implement soft constraints on

response times since the SaaS goal is to keep the infrastructure working in a profitability region,

i.e., to provide an average response time lower than Rk looking for the trade-off between the SLA

revenues and IaaS costs [12].
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Fig. 1. Utility function regulating SaaS provider SLA contracts.
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Fig. 2. System performance model.

Applications are hosted in virtual machines (VMs) which are dynamically instantiated by the

IaaS provider. Since nowadays is not easy to migrate VMs at run-time from one IaaS provider to

another for interoperability reasons and even in Cloud federations (where a common technology

stack is adopted by cooperating IaaS providers) SaaSs sign contract with a single IaaS [25], in

the following we will consider the run-time provisioning of resources at a single IaaS provider.

Furthermore, we make the simplifying assumption that each VM hosts a single WS application.

Multiple VMs implementing the same WS application can run in parallel.

IaaS providers usually charge the use of their resources on an hourly basis [8]. Hence, the SaaS

has to face the problem of determining every hour the optimal number of VMs for each WS class

in order to maximize the net revenues, performing resource allocation on the basis of a prediction

of future WS workloads [1], [14]. The SaaS needs also an estimate of the future performance of

each VM in order to determine application average response time. In the following we model, as

a first approximation, each WS class hosted in a VM as an M/G/1 queue in tandem with a delay

center [15], as done in [40], [33], [3]. We assume (as common among Web service containers) that

requests are served according to the processor sharing scheduling discipline. As discussed in [33]

the delay center allows to model network delays and/or protocol delays introduced in establishing

connections, etc. Performance parameters are also continuously updated at run-time (see [33] for

further details) in order to capture transient behaviour, VMs network and I/O interference [38],

[39], and performance time of the day variability of the Cloud provider [2].

Multiple VMs can run in parallel to support the same application. In that case, we suppose

that the running VMs are homogeneous in terms of RAM and CPU capacity and the workload

is evenly shared among multiple instances (see Figure 2), which is common for current Cloud

solutions [9]. We assume that in house VMs can be assigned the same capacity of Cloud resources
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by capping the virtual machine monitor scheduling parameters [57]. However, our model can be

easily generalized to consider also heterogeneous resources relying for the load balancing on the

proportional assignment schema [36].

For the IaaS provider we consider a pricing model similar to Amazon EC2 [8]. The IaaS provider

offers: (i) flat VMs, for which SaaS providers applies for a one-time payment (currently every one

or three years) for each instance they want to reserve, (ii) on demand VMs, which allows SaaS

to access computing capacity with no long-term commitments, and (iii) on spot VMs, for which

SaaS providers bid and compete for unused IaaS capacity. Furthermore, we assume that each SaaS

provider owns, possibly, an enterprise infrastructure and implements an hybrid Cloud [13]. In this

way the SaaS usually runs the applications in its own infrastructure whose capacity planning is

performed considering the average workload and takes advantage of the Cloud to manage workload

peaks. For the sake of simplicity, we assume that the SaaS infrastructure is located in the same

region of the IaaS site and hence the end users experience the same performance accessing the

SaaS or the IaaS infrastructure, indifferently (this assumption does not change the nature of the

problem under study and can be relaxed).

The VM instances are charged with the on spot cost σk for application k, which is set by the IaaS

and fluctuates periodically depending on the IaaS provider time of the day energy costs and also

on the supply and demand from SaaS for on spot VMs [8], [29]. Indeed, SaaS providers compete

among them for the use of on spot VMs specifying the maximum cost σU
k for each application k

they are willing to pay per instance hour. The on spot cost σk is fixed by the IaaS provider, which

can also decide to do not allocate any on spot instance to a SaaS. For example, in the Amazon

case on spot costs are available via the EC2 API [8] or by third party sites [48]. On spot costs

fluctuate according to the time of the day and on the Cloud site region, and could be less or greater

than the time unit cost φk for flat VMs hosting a given WS application k. On spot instances have

been traditionally adopted to support batch computing intensive workloads [8]. However, since

nowadays IaaS providers allow specifying autonomic policies which can dynamically allocate

VM instances in few minutes as a reaction to failures (see, e.g., Amazon AWS Elastic Beanstalk

[9]), we advocate the use of on spot instances also to support the execution of traditional WS

applications. We assume that in house resources hosted at the SaaS location can be accessed at

no cost. We denote with δk the cost for WS application k on demand instances; with the current

pricing models, δk is strictly greater than φk and we assume δk > σU
k for all k. Indeed, since the

IaaS provider can arbitrarily terminate on spot instances from a SaaS resource pool [8], no one is
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willing to pay for a less reliable resource a time unit cost higher than on demand instances which

provide a higher availability level.

Finally, we will denote with hU
p the overall number of VMs that can be hosted at the p-th SaaS

enterprise infrastructure (according to its capacity). The number of flat VMs each SaaS provider

p is guaranteed to have access to by applying to the one-time payment is denoted by fU
p , while

the number of on spot VMs available at the IaaS Cloud service center at a given time instant is

denoted by sU .

III. GENERALIZED NASH GAME MODEL

In this Section we formulate the resource provisioning problem for the Cloud computing system

under study as a Generalized Nash Equilibrium Problem (GNEP). The goal of SaaS provider p is

to determine every hour the number of in house hk, flat fk, on demand dk, and on spot sk VMs

to be devoted for the execution of all WS applications k ∈ Ap, in order to maximize its profits

and, at the same time, to satisfy the prediction Λk for the arrival rate of the WS application k. Let

us denote with µk the maximum service rate for the requests of application k. If the workload is

evenly shared among the VMs, then the average response time for the execution of application k

requests is given by:

E[Rk] = Dk +
1

µk − Λk

hk+fk+dk+sk

, (1)

where Dk denotes the queueing network delay (see Figure 2) and we further assume that the

VMs are not saturated (i.e., the equilibrium conditions for the M/G/1 queues hold, µk (hk + fk +

dk + sk)− Λk > 0).

The average per time unit revenues for application k requests are given by Vk Λk = (νk +

mk E[Rk]) Λk. Considering the infrastructural costs to access flat, on demand, and on spot VM

instances the goal of a SaaS provider is to maximize its profits given by:∑
k∈Ap

(
νk Λk +mk Λk Dk +

mk Λk(hk + fk + dk + sk)

µk (hk + fk + dk + sk)− Λk

− φfk − δk dk − σk sk

)
.

With this setting in mind, the problem that the generic SaaS provider p has to periodically solve
becomes:

max Θp =
∑
k∈Ap

mk Λk(hk + fk + dk + sk)

µk (hk + fk + dk + sk)− Λk

−
∑
k∈Ap

φfk −
∑
k∈Ap

δk dk −
∑
k∈Ap

σk sk
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hk, fk, dk, sk ≥ 0, ∀ k ∈ Ap, (2)

hk + fk + dk + sk > Λk/µk, ∀ k ∈ Ap, (3)

sk ≤
αk

1− αk

(hk + fk + dk), ∀ k ∈ Ap, (4)∑
k∈Ap

hk ≤ hU
p , (5)

∑
k∈Ap

fk ≤ fU
p , (6)

∑
k∈A

sk ≤ sU , (7)

where A denotes the set of indexes of all WS applications (i.e., A = ∪pAp, Ap1 ∩ Ap2 = ∅ if

p1 ̸= p2). Note that the term
∑
k∈A

νk Λk +mk Λk Dk can be dropped in the SaaS objective function

since it is independent of the decision variables.

Constraint (3) guarantees that resources are not saturated. Constraint (4) is introduced for fault

tolerance reasons and guarantees that the on spot instances are at most a fraction αk < 1 than the

overall resources allocated to application k. Indeed, since the on spot VMs are less reliable than

flat and on demand, one can be conservative in their use since if only on spot VMs are adopted

and they are terminated by the IaaS, then application k could become unavailable. Constraints (5)

and (6) entail that the in house and flat VMs allocated to applications are less or equal to the ones

available. Finally, constraint (7) guarantees than the on spot VMs allocated to competing SaaS

providers are lower than the one available at the IaaS Cloud service center sU .

We would like to remark that, in the formulation of the problem, we have not imposed variables

hk, fk, dk, sk to be integer, as in reality they are. In fact, requiring variables to be integer makes

the solution much more difficult (NP-hard). However, experimental results have shown that if the

optimal values of the variables are fractional and they are rounded to the closest integer solution,

the gap between the solution of the real integer problem and the relaxed one is very small (this

is intuitive for large scale services that require tens or hundreds of VMs and also because, given

current pricing models, the weight of the individual server in the whole payoff function is small),

justifying the use of a relaxed model. We therefore decide to deal with continuous variables,

actually considering a relaxation of the real problem.

On the other side, the IaaS provider’s goal is to determine the time unit cost σk for on spot

VM instances for all applications k ∈ Ap and every SaaS provider p, in order to maximize its
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total revenue:

max ΘI =
∑
k∈A

(φfk + δk dk + σk sk)

σL
k ≤ σk ≤ σU

k ∀ k ∈ A. (8)

Note that the on spot instance cost lower bound σL
k is fixed according to the time of the day

and includes the energy costs for running a single VM instance for one hour and the amortized

cost of the hosting physical machine [29]. For the sake of clarity, the notation adopted in this

paper is summarized in Table I.

System Parameters

P Set of SaaS providers
Ap Set of applications of the p SaaS provider
A Set of applications of all the SaaS providers
hU
p Maximum number of in house VMs that can be hosted at the SaaS provider p facility

fU
p Maximum number of flat computational resources available for provider p
sU Maximum number of on spot computational resources IaaS can provide to all the SaaS providers
Λk Prediction of the arrival rate for application k
µk Maximum service rate for executing class k application
Dk Queueing delay for executing class k application
mk Application k utility function slope
αk Maximum fraction of resources allocated as on spot VMs for application k
φk Time unit cost for flat VMs used for application k
δk Time unit cost for on demand VMs used for application k
σL
k Minimum time unit cost for on spot VMs used for application k, set by the IaaS provider

σU
k Maximum time unit cost for on spot VMs used for application k, set by the SaaS provider

Decision Variables
hk Number of in house VMs used for application k fk Number of flat VMs used for application k
dk Number of on demand VMs used for application k sk Number of on spot VMs used for application k
σk Time unit cost for on spot VMs used for application k

TABLE I

PARAMETERS AND DECISION VARIABLES.

If the maximum time unit cost of an application is lower than the minimum set by the IaaS, i.e.

σU
k < σL

k , formally the SaaSs and IaaS problems have no solution. In that case we can set sk = 0

and consider a simplified problem where the capacity allocation for application k is limited to

determine the number of in house, flat, and on demand instances. Hence, in the following we

will always assume that σL
k ≤ σU

k for all k. Note that, if the on spot instances are terminated by

the IaaS provider, then the SaaS can dynamically start the execution of an equal number of on

demand instances.

In this framework, SaaS providers and the IaaS provider are making decisions at the same time:
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The decisions of a SaaS depend on those of the others SaaS and the IaaS, while the IaaS objective

function depends on SaaS decisions. In this setting, we can not analyze decision in isolation, but

we must ask what a SaaS would do, taking into account the decision of the IaaS and other SaaSs.

To capture the behavior of SaaSs and IaaS in this conflicting situation (game) in which what a

SaaS or the IaaS (the players of the game) does directly affects what others do, we consider the

Generalized Nash game [22], [24], which is broadly used in Game Theory and other fields. We

remind the reader that the GNEP differs from the classical Nash Equilibrium Problem since, not

only the objective functions of each player (called payoff functions) depend upon the strategies

chosen by all the other players, but also each player’s strategy set may depend on the rival players’

strategies. In our setting the constraint of each problem involving other player’s variables (joint

constraint) comes from (7).

Following the Nash equilibrium concept, SaaS and IaaS providers adopt a strategy such that

none of them can improve its revenue by changing its strategy unilaterally (i.e., while the other

players keep their strategies unchanged). The service provisioning problem results therefore in a

GNEP where the players are the SaaS providers and the IaaS provider, the strategy variables of

SaaS provider p are hk, fk, dk, and sk, for k ∈ Ap, while the strategy variables of the IaaS are

the costs σk for on spot VMs, for all k ∈ A.

Another important feature of the derived GNEP is that it satisfies the Convexity Assumption: The

payoff functions of both SaaS providers and IaaS, are concave in its own variables (Θp is concave

being the sum of linear and concave functions1, and ΘI is linear) and the set of strategies are

convex (only linear constraints are introduced). Moreover, even if the decision of a SaaS depends

on the decisions of the other SaaSs and the IaaS, the constraint of each problem involving other

players’ variables (coming from (7) in each SaaS problem), is the same for all players: We refer

to this special class of GNEP as jointly convex GNEP [24].

IV. SOLUTION METHODS

In this Section we deal with existence, properties, and algorithms for the solutions of the

generalized Nash game previously described. In particular, in the next Section we prove the

existence of at least one social equilibrium and we determine the conditions which guarantee

that a GNE is also a social equilibrium. In Section IV-B we provide two different methods for

identifying GNE.
1The concavity of each summand mk Λk(hk+fk+dk+sk)

µk (hk+fk+dk+sk)−Λk
follows by direct evaluation of the Hessian matrix. The eigenvalues

are zero and 8mk µk Λ2
k

[µk (hk+fk+dk+sk)−Λk]
3 , which is negative since mk < 0 and hk + fk + dk + sk > Λk/µk.
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A. Social and Nash equilibria for the Service Provisioning Game

To simplify the discussion we introduce the following notations. Let xp = (hk, fk, dk, sk)k∈Ap

denotes the strategies vector of SaaS provider p, x−p the vector formed by the strategies of all

SaaS providers different from p, and x = (xp)p∈P. Moreover we indicate by Xp(x
−p) the set of

strategies for provider p and X the set of vectors x satisfying constraints (2)–(7) ∀p ∈ P.

First, we note that the IaaS’s behaviour is simple. In fact, if a SaaS provider decides to use on

spot VMs for application k, that is sk > 0, then the best response of the IaaS is to play σk = σU
k ;

otherwise if sk = 0, the value of the IaaS payoff is constant and independent of his choice σk

that can be any value in the interval [σL
k , σ

U
k ]. Therefore, the strategy σk = σU

k for all k ∈ A is

a dominant strategy for the IaaS provider. Hereafter we suppose, without loss of generality, that

IaaS provider plays this strategy. Assuming that the IaaS chooses his dominant strategy, the payoff

function Θp of each SaaS provider p only depends on his own strategy xp. This is a potential

game [41], where the sum of all payoff functions:

Π(x) =
∑
p∈P

Θp(x
p)

is the potential function. This means that the GNE of our game coincide with those of a game

where all the payoff functions are equal to the potential Π.

The maximizers of Π on the set X are called social equilibria of the game. It is clear from the

above definitions that each social equilibrium is a special GNE, indeed no one player can improve

its payoff by unilaterally deviating his strategy. In other words, social equilibria represent the GNE

which are optimal from a social point of view. We now show the existence of social equilibria

for our problem.

Theorem 1: There exists at least one social equilibrium of the game.

Proof: We exploit the well-known Weierstrass theorem, which guarantees that a continuous

function admits a maximizer on a closed and bounded set. The potential function is defined as:

Π(x) =
∑
k∈A

[
mk Λk(hk + fk + dk + sk)

µk (hk + fk + dk + sk)− Λk

− φfk − δk dk − σU
k sk

]
.

It is continuous, but the set X is neither closed nor bounded. However, we remark that if hk+fk+

dk+sk → Λk/µk for some k ∈ Ap, then Π(x) → −∞. Moreover, if dk → +∞ then Π(x) → −∞

as well. Therefore there exists a suitable value v such that the superlevel set {x ∈ X : Π(x) ≥ v}

is closed and bounded. Since the maximizers of Π on X coincide with the maximizers of Π on

this superlevel set, the existence of a social equilibrium follows from the Weierstrass theorem.
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We remark that there can be multiple social equilibria (the potential function is concave but

not strictly concave); however the value of all social equilibria is obviously unique.

A GNE is not necessarily a social equilibrium. However, it is possible to identify which Nash

equilibria are social equilibria by means of a property on Karush-Kuhn-Tucker (KKT) multipliers.

We rewrite the problem of SaaS provider p as:

max{Θp(x
p) s.t. gp(xp) ≤ 0, z(x) ≤ 0}, (9)

where gp(x
p) ≤ 0 summarizes individual constraints (2)–(6) and z(x) ≤ 0 is the joint constraint

(7). We denote by βp and γp the optimal KKT multipliers associated to gp(x
p) ≤ 0 and z(x) ≤ 0,

respectively.

Theorem 2: If x = (x1, . . . , x|P|) is a GNE of the game and the KKT multipliers (β, γ)

associated to x satisfy the relation γ1 = · · · = γ|P|, then x is a social equilibrium.

Proof: Since x is a Nash equilibria, xp is an optimal solution of problem (9) ∀p ∈ P.

Therefore the relative KKT multipliers βp and γp satisfy the following system:

∇Θp(x
p) + β

T

p∇gp(x
p) + γp∇xpz(x) = 0

β
T

p gp(x
p) = 0

γp z(x) = 0

βp ≤ 0, gp(x
p) ≤ 0

γp ≤ 0, z(x) ≤ 0.

From the definition of the potential function we have that ∇Θp(x
p) = ∇xpΠ(x). Taking into

account the assumption on multipliers γ1, . . . , γ|P| we obtain the following system:

∇xpΠ(x) + β
T

p∇gp(x
p) + γ1∇xpz(x) = 0 ∀ p ∈ P

β
T

p gp(x
p) = 0 ∀ p ∈ P

γ1 z(x) = 0

βp ≤ 0, gp(x
p) ≤ 0 ∀ p ∈ P

γ1 ≤ 0, z(x) ≤ 0,

that is (x, β, γ1) solves the KKT system associated to the problem maxx∈X Π(x). Since Π is a

concave function and X is defined by linear constraints, we obtain that x is a maximizer of Π on

X , that is x is a social equilibrium.
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B. Algorithms for identifying Generalized Nash Equilibria

We now present a first algorithm (see Figure 3), based on the best-reply dynamics, for finding

GNE of the game. Starting from a feasible vector, each player solves in turn his own optimization

problem (steps 0, 1). After that, if joint constraint (7) has become active or if all the players have

multiplier γp equal to zero, then the algorithm has found a GNE (step 2). Otherwise, we have not

a GNE because some on spot VMs are available (constraint (7) is not active), but there are also

players (with γp < 0) wishing more on spot resources than those computed by the algorithm so far.

Thus, the players with multiplier γp < 0 solve for the second time in turn their own optimization

problem and the algorithms stops with a GNE (step 3). The condition leading to step 3 can occur

when, in step 1, first some players saturate the use of on spot resources, then other players find

an optimal value of on spot resources lower than the initial one established at step 0 releasing

common resources.

0. (Inizialization) Set σk = σU
k for all k ∈ A and select x̃ ∈ X .

1. (First round of best-reply dynamics)
for all p ∈ P do

Find an optimal solution xp of {maxxp Θp(x
p) s.t. gp(xp) ≤ 0, z(xp, x̃−p) ≤ 0}

Let γp be the optimal multiplier relative to constraint z(x) ≤ 0
Set x̃p = xp

end
2. (Stopping criterion)

if γp = 0 for all p ∈ P or z(x̃) = 0 then STOP
3. (Possible second round of best-reply dynamics)

for all p ∈ P do
if γp < 0 then

Find an optimal solution xp of {maxxp Θp(x
p) s.t. gp(xp) ≤ 0, z(xp, x̃−p) ≤ 0}

Set x̃p = xp

if z(x̃) = 0 then STOP
end

end

Fig. 3. Algorithm 1 for finding Generalized Nash Equilibria.

Theorem 3: Algorithm 1 finds a Generalized Nash Equilibrium.
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Proof: At the end of step 1 each player p has computed the best reply xp to strategy x̃−p

of the other players. Therefore the following KKT system holds ∀p ∈ P:

∇Θp(x
p) + β

T

p ∇gp(x
p) + γp∇xpz(x

p, x̃−p) = 0

β
T

p gp(x
p) = 0

γp z(x
p, x̃−p) = 0

βp ≤ 0, gp(x
p) ≤ 0

γp ≤ 0, z(xp, x̃−p) ≤ 0.

From this system we can deduce that if γp = 0 then xp is the best reply of player p also to every

feasible strategy x−p, i.e. such that z(xp, x−p) ≤ 0. Conversely, since ∇xpz is a constant vector

and independent from x−p, we obtain that if γp < 0, then xp is the best reply of player p to every

strategy x−p of the other players provided that z(xp, x−p) = 0.

The previous discussion proves the correctness of the stopping criterion at step 2. In fact, if at

the end of step 1 we have γp = 0 for all p or z(x̃) = 0, then the strategy xp of player p is the

best reply to strategies x−p of other players, i.e. x is a GNE.

When there are some multipliers γp < 0 and z(x̃) < 0, then the players with γp < 0 have

strategy xp which is not the best reply to the other players’ strategies. Therefore, at step 3 we

recompute the best reply strategy for these players. If during the execution of step 3 we obtain

z(x̃) = 0, then we can prove as before that a GNE has been found. Otherwise, if z(x̃) < 0 after

each new best reply calculation, then all the players have multipliers γp = 0 and thus we obtain

also in this case a GNE.

We remark that Algorithm 1 finds a GNE after resolving at least |P| and no more than 2 |P| − 1

optimization problems. Since each problem is convex and can be optimally solved in polynomial

time, Algorithm 1 complexity is polynomial.

We now present another algorithm (see Figure 4) determining a GNE which is simpler than

Algorithm 1. At step 1 each SaaS provider p finds the optimal solution x̃p of his relaxed prob-

lem where the joint constraint (7) is removed. If the solution x̃ = (h̃, f̃ , d̃, s̃) satisfies con-

straint (7), then it is a social equilibrium. Otherwise, the on spot VMs are shared proportionally

among SaaS providers according to the relaxed solutions, i.e. we set a new upper bound sUp =

(sU
∑

k∈Ap

s̃k)/
∑
k∈A

s̃k for the on spot resources of each player p. Finally, each SaaS provider solves

his problem with this new individual bound and a GNE is found.
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0. (Inizialization) Set σk = σU
k for all k ∈ A.

1. (Solution of relaxed subproblems)
for all p ∈ P do

Find an optimal solution x̃p of {max Θp(x
p) s.t. gp(x

p) ≤ 0}
end

2. (Stopping criterion)
if z(x̃) ≤ 0 then STOP

else set sUp =

∑
k∈Ap

s̃k∑
k∈A

s̃k
sU for all p ∈ P

3. (Solution of new subproblems)
for all p ∈ P do

Find an optimal solution xp of {maxxp Θp(x
p) s.t. gp(x

p) ≤ 0,
∑

k∈Ap

sk ≤ sUp }

end

Fig. 4. Algorithm 2 for finding Generalized Nash Equilibria.

Theorem 4: Algorithm 2 finds a Generalized Nash Equilibrium.

Proof: At step 1 each provider p finds individually the optimal solution x̃p of the relaxed

problem, thus there are optimal KKT multipliers β̃p such that the following system holds ∀p ∈ P:
∇Θp(x̃

p) + β̃T
p ∇gp(x̃

p) = 0,

β̃T
p gp(x̃

p) = 0,

β̃p ≤ 0, gp(x̃
p) ≤ 0.

If x̃ also satisfies the joint constraint, then (x̃, β̃, γ̃), with γ̃ = 0, solves the KKT system associated

to the problem maxx∈X Π(x). Since Π is concave and X is defined by linear constraints, it follows

that x̃ is a maximizer of Π on X , i.e. a social equilibrium.

Otherwise, if the joint constraint is not satisfied at x̃, i.e.
∑
k∈A

s̃k > sU , then the on spot resources

are proportionally rescaled for each player p to obtain a new individual upper bound sUp lower

than the optimal amount of on spot VMs
∑

k∈Ap

s̃k computed at step 1. Therefore, each optimal

solution xp at step 3 makes active the constraint
∑

k∈Ap

sk ≤ sUp and the associated KKT multiplier

is negative. Thus there are KKT multipliers (βp, γp), with γp < 0, such that the following system

holds ∀p ∈ P: 
∇Θp(x

p) + β
T

p∇gp(x
p) + γp∇zp(x

p) = 0,

β
T

p gp(x
p) = 0,

βp ≤ 0, gp(x
p) ≤ 0,

γp < 0, zp(x
p) = 0,
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where zp(xp) ≤ 0 denotes the constraint
∑

k∈Ap

sk ≤ sUp . Since zp(x
p) = 0, i.e.

∑
k∈Ap

sk = sUp , we
obtain: ∑

k∈A

sk =
∑
p∈P

∑
k∈Ap

sk =
∑
p∈P

sUp = sU ,

hence the joint constraint satisfies z(x) = 0. Moreover, we note that ∇zp(xp) = ∇xpz(x),
therefore we obtain the following system ∀p ∈ P:

∇Θp(x
p) + β

T

p∇gp(x
p) + γp∇xpz(x) = 0,

β
T

p gp(x
p) = 0,

βp ≤ 0, gp(x
p) ≤ 0,

γp < 0, z(x) = 0.

This means that xp is the optimal solution of the problem:
maxxp Θp(x

p)

gp(x
p) ≤ 0

z(xp, x−p) ≤ 0

that is xp is the best reply of player p to the strategies x−p of the other players. i.e. x is a GNE.

Note that, Algorithm 2 finds a GNE after resolving exactly |P| convex optimization problems

when the joint constraint (7) is satisfied at x̃, and 2 |P| otherwise. Hence, Algorithm 2 complexity

is polynomial.

As a final remark it is worth noticing that Algorithm 1 has to be executed at the IaaS provider

site, since the best reply problems at step 1 and step 3 of Figure 3 have to be solved sequentially.

Alternatively, the IaaS provider has to coordinate the SaaS providers setting an initial feasible

value (step 0) for SaaS provider p on spot resources (s̃k)k∈Ap and setting also an upper bound

sU −
∑

k∈Ap

s̃k for the remaining SaaS providers.

Vice versa, Algorithm 2 can be implemented in a fully distributed manner: The SaaS providers

initially send to the IaaS their bid σU
k and the required value for the on spot resources, i.e.,

s̃k obtained solving the relaxed sub-problem at step 1. Then, the IaaS provider sends back to

individual SaaSs the effective on spot cost and the number of on spot VMs available sUp . In this

latter case, each SaaS provider solves independently its individual sub-problem at step 3. Finally

each SaaS starts on spot, on demand, and flat VMs according to the determined solution. As a

final remark note that Algorithm 2 does not require to share the information on the SLA contracts

and performance parameters (i.e., mk, µk, etc.) among SaaSs and IaaS.
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V. NUMERICAL ANALYSIS

The resource management algorithms proposed have been evaluated for a variety of system and

workload configurations. Section V-A is devoted to quantitatively analyse the efficiency of the

equilibria achieved by our approach, while the scalability is discussed in Section V-B. Section V-

C illustrates the equilibria properties for a medium size system by varying application performance

parameters. Finally, Section V-D shows the results of the application of our resource allocation

techniques in a real prototype environment deployed on Amazon EC2.

A. Equilibria Efficiency

To evaluate the efficiency of our algorithms we have considered a very large set of randomly

generated instances. The number of SaaS providers has been varied between 10 and 100, the

number of applications (evenly shared among SaaSs) between 100 and 1,000.

sU [100,1000] mk [-10,-1] Λk [1,100] req/s µk [1,10] req/s
φk [0.03,0.24]$ δk [0.08,1.24]$ σL

k [0.02,0.08]$ σU
k [0.09,0.30]$

TABLE II

PERFORMANCE PARAMETERS AND TIME UNIT COST RANGES.

The performance parameters of Web applications and infrastructural resources costs have been

randomly generated uniformly in the ranges reported in Table II as in other literature approaches

[3], [12], [35] and according to commercial fees applied by IaaS Cloud providers [8]. The number

of in house VMs hU
p has been obtained by varying the capacity ratio ρ of the system, that is we

have:
hU
p =

ρ

U

∑
k∈Ap

Λk

µk

.

In other terms for each provider p, hU
p has been obtained as a fraction ρ of the number of

VMs required to serve the overall incoming workload with maximum utilization U . As in other

approaches considered in the literature [20], [57], [53] we set U = 0.6, and ρ has been set equal

to 0, i.e. a purely Cloud based system is considered, 0.5 i.e. the in house resources can manage

around 50% of the peak workload, and 0.1 i.e. the in house resources can manage only 10% of the

peak workload. Note that, this latter case is representative of scenarios where SaaS providers are

characterized by highly variable workloads and want to effectively exploit the on demand nature

of the Cloud.

The lower is the value of ρ and the higher is the use of Cloud resources for the SaaS providers.

The analyses have been performed also varying the αk parameters: the values 0.1, 0.5, and 0.8
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have been considered. For the equilibria analysis the value of sU has been randomly generated

guaranteeing that the joint constraint (7) is active at each GNE found (this has been obtained by

solving, for each player, problem (9) without the joint constraint, and setting sU equal to 80% of

the total on spot resources actually used).

We denote with x the social equilibrium and with x̃ the equilibrium found by Algorithms 1 and

2. The efficiency has been measured in terms of the Price of Anarchy (PoA) and of the Individual

Worst Case (IWC) evaluated as:

PoA =
Π(x)

Π(x̃)
, IWC = max

p∈P

Θp(x)

Θp(x̃)
.

Both PoA and IWC are a measure of the inefficiency due to SaaSs selfish behaviour with

respect to the scenario where the social optimum is pursued. In particular, the IWC is a measure

of the gap between the social optimum and a GNE achieved in the worst case by a SaaS provider.

Furthermore, we compared our solutions with an heuristic based on the utilization thresholds

principle proposed in other literature approaches [20], [57], [53]. In particular for each WS

application:
• The number of in house VMs is evenly shared among applications;
• The number of on spot VMs is assigned by the IaaS proportionally to the bid;
• The number of flat and on demand VMs is determined such that average utilization of all

VMs is equal to U. First flat VMs are used since they are cheaper than on demand ones.
Note that, if a particular WS application is under light load and hence a utilization lower than

U can be obtained by adopting only in house and, possibly, on spot VMs, then a lower number

of resources is used such that the utilization of running instances is equal to U . In that case, the

exceeding in house and on spot resources are evenly shared among the remaining WS applications.

Threshold based approaches are advocated also by IaaS providers. For example, Amazon AWS

Elastic Beanstalk [9] provides basic mechanism to trigger the start up or termination of VM

instances according to the threshold values which can be specified by SaaS providers accessing

the Amazon EC2 API.

Results are reported in Tables IV-VI in Appendix A. The figures are the means computed on

ten different runs. In particular, Table IV includes also the number of second round optimizations

performed by Algorithm 1 at step 3. This value is very low and in practice the overall number of

optimization problems solved by Algorithm 1 is very close to |P|. From the efficiency point of

view, Algorithms 1 and 2 provides similar results: The PoA is lower than 1.01 (i.e., on average

the percentage difference of the sum of the payoff functions with respect to the social optimum
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is lower than 1%), while the IWC is lower than 1.12 (i.e., in the worst case the revenue of

a SaaS provider in the social equilibrium is 12% greater than in the GNE). As expected the

PoA and IWC are higher when the SaaS providers significantly use the Cloud resources (e.g.,

because they do not own in house private infrastructure ρ = 0, or they are not conservative

in the use of on spot resources, i.e., αk is high). Vice versa, the heuristic solution is less far

efficient than Algorithms 1 and 2, since the average value for PoA and IWC are around 1.42 and

1.62, respectively. Furthermore, these values are almost independent of the number of SaaS and

WS applications but are very sensitive to ρ and αk parameters achieving in the worst case values

equal to 1.59 and 1.73, respectively. These results show how performing the resource provisioning

through our generalized Nash game allows obtaining better and more robust results with respect

to heuristics based on utilization thresholds.

B. Algorithms Scalability

The scalability of our approach has been evaluated performing tests on VMWare virtual machine

based on Ubuntu 9.10 server running on an Intel Nehalem dual socket quad-core system with 32

GB of RAM. The virtual machine has a physical core dedicated with guaranteed performance and

4 GB of memory reserved. KNITRO 7.0 has been use as non linear optimization solver. We have

considered a very large set of randomly generated instances obtained as in the previous Section

varying the model parameters according to the ranges reported in Table II. The number of WS

applications has been varied between 1,000 and 10,000, while guaranteeing that constraint (7)

is active. We compare our algorithms with the solution we proposed in [11], where the social

welfare is obtained by solving the generalized Nash game through its corresponding variational

inequality relying on a projection method (see [11] for further details). Results are reported in

Table III, where also in this case, the figures are the means computed on ten different runs. The

speedup is computed as the ratio between the execution time of the VI solution with respect to

Algorithm 1 and 2 for the same problem instance.

Overall Algorithm 1 performs better than Algorithm 2 solving on average almost |P| instead

of 2 |P| optimization problems. However, Algorithm 2 is suitable for a fully distributed solution,

while Algorithm 1 has to be executed at the IaaS site. With respect to the variational inequality

solution in [11], the speedup achieved (which on average ranges between 8 and 17) shows that

Algorithm 1 and 2 allows reducing the overall execution time by one order of magnitude. Since

the computation time in the worst case is less than one minute, our solutions are suitable to

determine the resource provisioning of very large Cloud infrastructures on a hourly basis without
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introducing any system overhead.

(|P|, |A|) Algorithm 1 Exe. time (sec.) Algorithm 2 Exe. time (sec.) Algorithm 1 speedup Algorithm 2 speedup
(10,1000) 1.87 4.67 10.13 4.05
(20,2000) 4.03 8.70 33.17 15.37
(30,3000) 6.03 12.66 49.62 23.65
(40,4000) 8.30 17.21 13.92 6.71
(50,5000) 10.67 22.27 10.91 5.23
(60,6000) 13.30 27.55 9.45 4.56
(70,7000) 16.03 32.14 16.17 8.07
(80,8000) 18.63 37.86 16.02 7.88
(90,9000) 21.53 43.76 8.66 4.26

(100,10000) 24.63 49.37 10.47 5.23

TABLE III

ALGORITHM 1 AND 2 AVERAGE EXECUTION TIME AND SPEEDUP WITH RESPECT TO THE SOLUTION PROPOSED IN [11].

C. Equilibria Sharing Analysis

The aim of this Section is to analyse how the on spot VMs are shared among competing SaaS

providers changing the game parameters. The results have been obtained by Algorithm 2 only

since the two solutions proposed do not differ significantly in terms of equilibria efficiency and

execution time. Furthermore, Algorithm 2 is suitable for a fully distributed implementation.

In particular we considered three SaaSs offering five heterogeneous applications each. If not

differently stated we set sU = 30, φk = 0.1$, δk := 0.11$, hU
p = 20, fU

p = 10, Λk = 1 req/sec,

µk = k req/sec, mk = −1, σL
k = 0.03$, and σU

k = 0.09$. In the following we will vary one

parameter at the time for the first application k = 1, while the parameters of the remaining ones

will be held fixed. Figures 5-8 show how the number of resources devoted to the first application

(in terms of in house, flat, on demand, and on spot instances) and the overall capacity allocated to

the remaining classes change as a function of the varying parameter. In particular, in Figure 5 the

incoming workload Λ1, in terms of Web sessions, varies between 1 and 16 req/sec. As the Figure

shows, all of the in house instances are always used, and, as the workload increases, they are

migrated from the other applications to application 1. In order to profitably sustain the workload,

the number of on spot, flat, and on demand instances is also increased, when Λ1 is around 3.7

req/sec, 11 req/sec, and 13.9 req/sec, respectively. As Λ1 increases the resource allocation policy

saturates the cheapest resource first. In general the resource allocation trends are linear with Λ1,

but are non-smooth. This is due to the fact that the equilibrium is not unique and hence the same
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performance and revenues can be obtained with multiple values of (hk, fk, dk, sk) (recall also that

the social welfare function is concave but not strictly concave).

Figure 6 shows the resource sharing at the equilibrium changing the slope of application 1

utility function (which has been varied in the range [−50,−1], we also set µ1 = 0.25 req/sec).

As in the previous analysis, the in house capacity is migrated to application 1 which becomes

more sensitive to response time variations and hence requires additional capacity. Again, cheaper

resources are used first until their saturation (which is obtained for m1 = −10 for on spot VMs,

and m1 = −16 for flat VMs). Also in this case the resource allocation trends are linear with |m1|.

Figure 7 analyses how the GNE changes by varying application 1 maximum service rate (the

range [0.02, 1] req/sec has been considered). If the maximum service rate increases, the service

time required to process each application 1 request decreases and the overall capacity required to

process application 1 decreases accordingly. Hence, in this case on spot instances are migrated

from application 1 to the other classes and on demand instances are used only when application

1 requests are very CPU intensive (µ1 < 0.09 req/sec).

Finally, Figure 8 shows how the equilibrium changes by varying the maximum time unit cost

for application 1 (σU
1 has been varied in the range [0.02, 0.19]$, while for the remaining classes

we set σL
k = 0.01$ and σU

k = 0.02$). We considered µ1 = 0.05. As σU
1 increases the number of on

spot VMs allocated to application 1 decreases since the IaaS set σ1 = σU
1 and the SaaS provider

can use in a more cost efficient way the on spot VMs to serve his remaining applications, while

application 1 is supported by in house, flat, and on demand instances. The number of on demand

resources varies abruptly when σU
1 = 0.11$, i.e. when σU

1 = δ1. This is very unintuitive, since

increasing the maximum time unit cost one is willing to pay for a given application implies that

the number of on spot instances devoted to the same application is reduced.

D. Amazon EC2 Test

The effectiveness of our resource management algorithms has been also evaluated on a real

prototype environment deployed on Amazon EC2. We performed experiments running the JSP

implementation of the SPECweb2005 [47] benchmark. SPECweb2005 is the industry standard

benchmark for the performance assessment of Web servers. We have considered the e-commerce

and banking workloads, which simulate the access to an on-line trading and to an on-line banking

Web site implementing an HTTPS/HTTP mix and HTTPS only load, respectively.
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Fig. 5. Resource allocation with varying application 1
incoming workload.

Fig. 6. Resource allocation with varying application 1 utility
function slope.

Fig. 7. Resource allocation with varying application 1
maximum service rate.

Fig. 8. Resource allocation with varying application 1 on
spot maximum time unit cost.

SPECweb2005 includes four components: The load generators, the client coordinator, the Web

server, and the back-end simulator. The SPECweb2005 load generators inject workload to the

system according to a closed model. Users sessions are started according to a given number of

users who continuously send requests for dynamic Web pages, wait for an average think time

Z = 10 sec, and then access another page or leave the system according to a pre-defined session

profile2. The client coordinator initializes all the other systems, monitors the test, and collects the

results. The Web server is the component target of the performance assessment (Apache Tomcat

5.5.27 in our setup), while the back-end simulator emulates the database and application parts of

the benchmark and it is used to determine the dynamic content of the Web pages.

The Web server has been deployed on a large instance, while the load generators, the client

coordinator, and the back-end simulator have been hosted by extra-large Amazon instances (in this

way we are guaranteed that they are not the system bottleneck). The test is performed deploying

2Our optimization framework is based on an open performance model: We have estimated the overall incoming workload a
priori as Λk = Nk/Z, since in the considered number of users range, VMs response time was significantly lower than the user
think time (we recall that, for the response time law, Nk = (Rk + Zk) · Λk).
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Fig. 9. Number of users used in the EC2 experiment. Fig. 10. VM instances used in the EC2 experiment.

Fig. 11. Overall workload served for the e-commerce work-
load.

Fig. 12. Overall workload served for the banking workload.

Fig. 13. Average response time measured for the e-commerce
workload.

Fig. 14. Average response time measured for the banking
workload.

VM server instances in Virginia, while the client components have been deployed in the North

California Amazon region. We have obtained an estimate of the maximum service rate parameters

and the network delay by performing an extensive off-line profiling along the lines of [43], [32]

collecting a set of statistics and minimizing the mean square error for the response time. In

particular we got D1 = 2.00 sec and µ1 = 222.26 req/sec for the e-commerce workload, while

we obtained D2 = 1.04 sec and µ2 = 281.67 req/sec for banking. The maximum percentage error
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on the average response time estimation is less than 18%. We set α1 = α2 = 0.4, m1 = −1,

m2 = −10, R1 = 2.1 sec, R2 = 1.1 sec, σU
1 = 0.25$, σU

2 = 0.30$, and considered the two

workloads as two different applications offered by two independent SaaS providers.

For our validation we considered realistic incoming workloads, created from a trace of real

requests to a large Web system in Italy. The real system includes almost 100 servers and the

trace contains the number of sessions, on a per-hour basis, over a one year period. Incoming

workloads are built as in [3], [12], assuming that the request arrivals follow non-homogeneous

Poisson processes with rates changing every hour according to the trace. Data collected from the

log on a hourly basis have been interpolated linearly and oversampled adding also some noise

to obtain workload traces varying every 10 minutes as in [35]. The plot in Figure 9 reports

the number of users during the experiment for the two workloads. We considered the peak hours

(10.00-19.00) gathered from the log trace during the days which lead to the highest workload over

the year. During the experiment only on demand and on spot instances have been considered. The

numbers of VMs are determined every hour by Algorithm 2 and are plotted in Figure 10. For each

application, since multiple VMs are used, the load is evenly shared among multiple instances by

registering the VMs with an Amazon Elastic Load Balancer [8].

Figures 11 and 12 show the overall traffic served during the experiment, while Figures 13 and 14

report the end users average response time sampled every 10 sec. Results show that our resource

allocation policies are effective, since the average response times are almost always below the

thresholds.

VI. RELATED WORK

The recent development of Cloud systems and the rapid growth of the Internet have led to a

remarkable development in the use of the Game Theory tools. Problems arising in the ICT industry,

such as resource or quality of service allocation problem, pricing, and load shedding, can not be

handled with classical optimization approaches. Indeed, in a pure optimization approach the goal

of, in general, a complex system does not depend on the interrelationships among different users,

or players [7]. However, interaction across different players is non-negligible: Each player can

be affected by the actions of all players, not only by his own actions. In this setting, a natural

modelling framework involves seeking an equilibrium, or stable operating point for the system.

More precisely, each player seeks to optimize his own goal, which depends on the strategies of

the other players upon his own, and this optimization is performed simultaneously by different

players. An equilibrium (in the sense of Nash) is reached when no player can decrease his objective
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function by changing unilaterally its strategy.

A survey of different modelling and solution concepts of networking games, as well as a number

of different applications in telecommunications and wireless networks, based on Game Theory,

can be found in [51], [7].

With respect to telecommunication applications, a rich literature exists which includes solutions

for flow and congestion control [37], [21], network routing [6], [16], file allocation [34], load

balancing [31], [30], multi-commodity flow [52], resource allocation [55], [27] and quality of

service provisioning [23]. In the area of distributed computing systems, [26] the static load

balancing problem in heterogeneous distributed systems is formulated as a non-cooperative game

among users. Based on the Nash equilibrium concept, the authors derive a distributed load

balancing algorithm, whose performance are compared with other existing schemes. The main

advantages of the proposed solution are the distributed structure, low complexity and optimality of

allocation for each user. Authors in [10] analysed the impact of non-cooperative users in a system

of multiple parallel non-observable queues by studying the PoA under different workload and

system configurations. The PoA has been evaluated recently for a wide spectrum of applications

ranging from network routing [45] to cluster management [28], load balancing and scheduling

[5], [19].

Regarding Cloud computing, the use of Game Theory for the resource allocation problem in

Cloud environment is investigated in [49]. Here, the authors start from the bid proportional auction

resource allocation model proposed in [17], and evolve the model from perfect information to an

incomplete common information where one bidder does not know how much the others would like

to pay for the computing resource. To this end a Bayesian learning mechanism is introduced, and

it is shown that a Nash equilibrium solution exists among all the possibilities prices, which means

that no one can get a better benefit without damaging others. Learning techniques are used also in

[54] to devise an admission control schema for Database-as-a-Service systems. An utility based

admission control for job scheduling is proposed in [44], where resource-availability uncertainty

on the infrastructure provider side is also considered.

In [4], the authors consider centralized and decentralized load balancing strategies in a system

with multiple and heterogeneous processor sharing servers. Each server has an associated service

capacity and a holding cost per unit time. The requests arrive as a Poisson process, and the service

time of incoming jobs is assumed to be known. For such system, the load balancing problem is

investigated in two different scenarios: (i) a centralized setting leading to a global optimization
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problem, in which a dispatcher decides where each job will get service so as to minimize the

weighted mean number of jobs in the system, and (ii) a distributed non-cooperative setting leading

to a non-cooperative game transformed into a standard convex optimization problem. The paper

studies structural properties of both strategies, and the efficiency loss in terms of PoA of the

decentralized scheme relative to the global optimal (centralized) one.

In [56] the authors propose a pricing mechanism for allocation capacity in a utility computing

system among competing end-users requests. The fixed available service capacity is allocated

among the different flows proportionally to their monetary bids. The paper studies the resulting

equilibrium point, establishes convergence of a best-response algorithm, and bounds the efficiency

loss (PoA) of this distributed mechanism. More precisely: End-users requests are represented as

job flows in a controlled queueing system. These jobs arrive to the system through a fixed,

random process, are stored in a buffer, and then are serviced by the resource in a first come,

first served manner. The service rate is set through a proportional share mechanism. Within this

framework, the interactions between end-users are modelled as a game. Then, authors show that

the equilibrium can be reached in a distributed, asynchronous manner. The paper also reports the

sensitivity analysis with respect to the variation of problem’s parameters (e.g., load intensity and

relative importance of the competing user requests). Differently from our point of view, in [56] the

problem of the capacity allocation is considered for a single virtualized server among competing

user requests, while in this paper we consider the infrastructure data center at a higher granularity

(i.e., VMs).

In this paper we extend our work we presented in [11], by extending the Game model including

also hybrid Cloud infrastructures. Furthermore, we proposed new algorithms able to determine a

GNE up to one order of magnitude faster than our previous solution, without introducing significant

efficiency loss in terms of PoA and IWC and suitable for a fully distributed implementation. A

more in depth analysis of the proposed solution has also been performed, validating our resource

allocation policies in a real prototype environment.

VII. CONCLUSIONS

We proposed a game theory based approach for the run-time management of a IaaS provider

capacity among multiple competing SaaSs. The cost model consists of a class of utility functions

which include revenues and penalties incurred depending on the achieved performance level and

the infrastructural costs associated with IaaS resources. The solution is effective even for very large

size problem instances. Systems up to thousands of applications can be managed very efficiently.
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The effectiveness of our approach has been assessed by performing simulation and experiments in

a real prototype environment. Synthetic as well as realistic workloads and a number of different

scenarios of interest have been considered. A comparison with utilization based state-of-the-art

techniques shows that our solutions outperform alternative methods providing results up to 50-

60% better in terms of equilibrium efficiency. Moreover, solutions are more robust to performance

parameters settings and system configurations.

Future work will extend the proposed solution to consider multiple time-scales and including

also a request redirect mechanism to share the workload among multiple Cloud sites.
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APPENDIX A

α = 0.1, ρ = 0.5 α = 0.5, ρ = 0.5 α = 0.1, ρ = 0.1 α = 0.5, ρ = 0.1
(|P|, |A|) PoA IWC # Reopt PoA IWC # Reopt PoA IWC # Reopt PoA IWC # Reopt
(10,100) 1.0005 1.0060 10.3 1.0063 1.0302 12.0 1.0004 1.0051 9.4 1.0052 1.0292 10.6
(20,200) 1.0004 1.0058 10.8 1.0041 1.0332 11.3 1.0002 1.0049 7.7 1.0036 1.0318 10.3
(30,300) 1.0003 1.0063 12.7 1.0038 1.0348 10.2 1.0003 1.006 14.4 1.0034 1.0333 10.0
(40,400) 1.0004 1.0076 12.8 1.0039 1.0413 8.3 1.0003 1.0062 14.5 1.0034 1.0389 8.2
(50,500) 1.0004 1.0072 10.2 1.0042 1.0444 6.9 1.0003 1.0070 8.5 1.0036 1.0431 6.0
(60,600) 1.0004 1.0099 16.2 1.0051 1.0582 9.4 1.0003 1.0086 15.1 1.0037 1.0566 13.0
(70,700) 1.0004 1.0091 13.0 1.0036 1.0551 7.5 1.0003 1.0072 13.4 1.0027 1.0507 9.3
(80,800) 1.0002 1.008 25.0 1.0021 1.0494 7.9 1.0002 1.0070 22.4 1.0016 1.0469 7.9

(90.,900) 1.0003 1.0085 13.5 1.0027 1.0602 5.6 1.0002 1.0082 13.3 1.0019 1.0564 5.9
(100,1000) 1.0005 1.0097 9.2 1.0050 1.0744 0.6 1.0003 1.0091 13.8 1.0028 1.0681 0.5

α = 0.1, ρ = 0 α = 0.5, ρ = 0 α = 0.8, ρ = 0
(|P|, |A|) PoA IWC # Reopt PoA IWC # Reopt PoA IWC # Reopt
(10,100) 1.0002 1.0049 13.6 1.0006 1.0239 13.1 1.0054 1.0323 13.9
(20,200) 1.0002 1.0051 11.4 1.0016 1.0303 8.4 1.0037 1.0476 9.3
(30,300) 1.0002 1.0057 19.1 1.001 1.0302 16.6 1.0045 1.0440 16.1
(40,400) 1.0003 1.0076 13.2 1,0017 1.0471 11.3 1.0060 1,0795 8.2
(50,500) 1.0002 1.0067 12.6 1.0010 1.0371 10.8 1.0075 1.0872 6.7
(60,600) 1.0003 1.0085 20.4 1.0023 1.0542 12.8 1.0061 1.1065 3.4
(70,700) 1.0002 1.0074 19.7 1.0028 1.0499 3.3 1.0033 1.0964 1.2
(80,800) 1.0003 1.007 18.0 1.0039 1.0482 6.1 1.0028 1.0896 1.8
(90,900) 1.0002 1.0078 12.1 1.0043 1.0502 3.5 1.0023 1.097 0.0

(100,1000) 1.0003 1.0105 10.7 1.0044 1.0617 1.3 1.004 1.113 0.6

TABLE IV

ALGORITHM 1 EFFICIENCY.
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α = 0.1, ρ = 0.5 α = 0.5, ρ = 0.5 α = 0.1, ρ = 0.1 α = 0.5, ρ = 0.1
(|P|, |A|) PoA IWC PoA IWC PoA IWC PoA IWC
(10,100) 1.0005 1.0020 1.0014 1.005 1.0004 1.0018 1.0002 1.0022
(20,200) 1.0004 1.0018 1.0019 1.0123 1.0003 1.0016 1.0006 1.0022
(30,300) 1.0003 1.0017 1.0016 1.0117 1.0003 1.0016 1.0003 1.0081
(40,400) 1.0004 1.0021 1.0022 1.0180 1.0003 1.0016 1.0001 1.0091
(50,500) 1.0004 1.0020 1.0029 1.0205 1.0003 1.0019 1.0007 1.0064
(60,600) 1.0004 1.0032 1.0031 1.0333 1.0003 1.0029 1.0008 1.0078
(70,700) 1.0005 1.0030 1.0045 1.0411 1.0003 1.0026 1.0003 1.0014
(80,800) 1.0004 1.0028 1.0046 1.0412 1.0004 1.0025 1.0052 1.0229
(90,900) 1.0004 1.0032 1.0051 1.0473 1.0004 1.0029 1.0057 1.0332

(100,1000) 1.0006 1.0035 1.0069 1.0591 1.0005 1.0033 1.0056 1.0395
α = 0.1, ρ = 0 α = 0.5, ρ = 0 α = 0.8, ρ = 0

(|P|, |A|) PoA IWC PoA IWC PoA IWC
(10,100) 1.0003 1.0019 1.0006 1.0033 1.0009 1.0055
(20,200) 1.0003 1.0016 1.0016 1.0102 1.0025 1.0225
(30,300) 1.0003 1.0016 1.0010 1.0087 1.0029 1.0214
(40,400) 1.0003 1.0019 1.0017 1.0180 1.0047 1.0600
(50,500) 1.0003 1.0023 1.001 1.0127 1.0056 1.0584
(60,600) 1.0003 1.0023 1.0023 1.0291 1.0062 1.0836
(70,700) 1.0003 1.0032 1.0028 1.0399 1.0052 1.0870
(80,800) 1.0004 1.002 1.0039 1.0348 1.0065 1.0792
(90,900) 1.0004 1.0031 1.0043 1.0419 1.0061 1.0918

(100,1000) 1.0005 1.0041 1.0044 1.0454 1.0060 1.1043

TABLE V

ALGORITHM 2 EFFICIENCY.

α = 0.1, ρ = 0.5 α = 0.5, ρ = 0.5 α = 0.1, ρ = 0.1 α = 0.5, ρ = 0.1
(|P|, |A|) PoA IWC PoA IWC PoA IWC PoA IWC
(10,100) 1.4293 1.5604 1.2914 1.5337 1.4779 1.5868 1.3833 1.6038
(20,200) 1.4696 1.6282 1.3210 1.5900 1.5427 1.6521 1.3670 1.5997
(30,300) 1.4984 1.6590 1.3304 1.5774 1.5734 1.6912 1.4139 1.629
(40,400) 1.4582 1.6298 1.3201 1.5967 1.3739 1.4815 1.3804 1.6026
(50,500) 1.4835 1.6472 1.3465 1.6417 1.5479 1.6694 1.4784 1.7146
(60,600) 1.4062 1.5781 1.2803 1.5974 1.4584 1.5914 1.3422 1.608
(70,700) 1.4221 1.5976 1.2947 1.5903 1.4873 1.6286 1.3685 1.6113
(80,800) 1.4508 1.6474 1.3361 1.6364 1.5224 1.6704 1.4229 1.6706
(90,900) 1.4269 1.6225 1.3231 1.6266 1.5027 1.6472 1.3988 1.6500

(100,1000) 1.4038 1.5833 1.3284 1.6102 1.4578 1.5944 1.4200 1.6498
α = 0.1, ρ = 0 α = 0.5, ρ = 0 α = 0.8, ρ = 0

(|P|, |A|) PoA IWC PoA IWC PoA IWC
(10,100) 1.4819 1.5879 1.3155 1.5262 1.2259 1.4310
(20,200) 1.5615 1.6582 1.4155 1.6431 1.3665 1.6272
(30,300) 1.5874 1.6895 1.4304 1.6695 1.3813 1.6429
(40,400) 1.5312 1.6441 1.4053 1.6406 1.3736 1.6541
(50,500) 1.5475 1.6723 1.4020 1.6643 1.3889 1.7076
(60,600) 1.4753 1.5942 1.3586 1.6146 1.3446 1.6791
(70,700) 1.5059 1.6312 1.4039 1.6568 1.3922 1.6736
(80,800) 1.5411 1.6771 1.4277 1.6827 1.4319 1.7288
(90,900) 1.5283 1.6488 1.4353 1.6707 1.4387 1.7187

(100,1000) 1.4652 1.592 1.3913 1.6132 1.3953 1.6699

TABLE VI

THRESHOLD BASED HEURISTIC EFFICIENCY.
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