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SUMMARY
A small number of somatic mutations drive the development of cancer, but all somatic mutations aremarkers
of the evolutionary history of a tumor. Prominent methods to construct phylogenies from single-cell-
sequencing data use single-nucleotide variants (SNVs) as markers but fail to adequately account for copy-
number aberrations (CNAs), which can overlap SNVs and result in SNV losses. Here, we introduce SCARLET,
an algorithm that infers tumor phylogenies from single-cell DNA sequencing data while accounting for both
CNA-driven loss of SNVs and sequencing errors. SCARLET outperforms existingmethods on simulated data,
with more accurate inference of the order in which mutations were acquired and the mutations present in in-
dividual cells. Using a single-cell dataset from a patient with colorectal cancer, SCARLET constructs a tumor
phylogeny that is consistent with the observed CNAs and suggests an alternate origin for the patient’s me-
tastases. SCARLET is available at: github.com/raphael-group/scarlet.
INTRODUCTION

Cancer arises from an evolutionary process during which so-

matic mutations accumulate in a population of cells. Different

cells within a tumor acquire distinct complements of somatic

mutations, resulting in a heterogeneous tumor. Quantifying

this intra-tumor heterogeneity and reconstructing the evolu-

tionary history of a tumor is crucial for diagnosis and treatment

of cancer (Burrell et al., 2013; Tabassum and Polyak, 2015). The

evolution of a tumor is typically described by a phylogenetic

tree or phylogeny, whose leaves represent the cells observed

at the present time and whose internal nodes represent ances-

tral cells (see Box 1). Tumor phylogenies are challenging to

reconstruct using DNA sequencing data from bulk tumor sam-

ples, since these data contain mixtures of mutations from thou-

sands to millions of heterogeneous cells in the sample (Jiao

et al., 2014; El-Kebir et al., 2015, 2016 Malikic et al., 2015;

Popic et al., 2015; Deshwar et al., 2015; Jiang et al., 2016; Alves

et al., 2017; Satas and Raphael, 2017; Pradhan and El-Kebir,

2018; Zaccaria et al., 2018; Miura et al., 2019; Myers et al.,

2019). Recently, single-cell DNA sequencing (scDNA-seq) of

tumors has become more common, and new technologies,

such as those from 10 X Genomics (10X Genomics, 2018),

Mission Bio (Mission Bio, 2019), and others (Gawad et al.,

2016; Zahn et al., 2017; Navin, 2015) are improving the effi-

ciency and lowering the costs of isolating, labeling, and

sequencing individual cells. While scDNA-seq overcomes the

difficulties of phylogeny reconstruction from bulk samples, it in-

troduces a new challenge of higher rates of missing data and
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errors due to DNA amplification errors, undersampling, and

sequencing errors (Gawad et al., 2016).

Early work in phylogeny inference from scDNA-seq data uses

single-nucleotide variants (SNVs) as phylogenetic markers. A

particular challenge for SNV-based analysis is high rates (up

to 30% for high-depth scDNA-seq; Gawad et al., 2016) of allele

dropout errors, where only one of two alleles is observed at a

heterozygous site. Methods address this challenge by using

an evolutionary model to infer a phylogeny while simultaneously

imputing missing data and correcting errors in the observed

SNVs. Algorithms such as SCITE (Jahn et al., 2016), OncoNEM

(Ross and Markowetz, 2016), SciF (Singer et al., 2018), and

B-SCITE (Malikic et al., 2019a, 2019b) use the simplest phyloge-

netic model for SNVs—the infinite-sites model. In this model, a

locus in a cell has one of two states: an SNV (or mutation) is

either present at the locus (state 1) or absent (state 0). Transi-

tions between states are constrained in the phylogeny such

that each mutation is gained (0/ 1) at most once during evolu-

tion, and never subsequently lost (1 / 0). A phylogeny that re-

spects the infinite-sites model is known as a perfect phylogeny,

and the state of mutations in the leaves of the phylogeny is sum-

marized by a mutation matrix, whose binary entries indicate the

presence (state 1) or absence (state 0) of every mutation in each

observed cell (Figure 1A). On error-free data, the perfect phylog-

eny is unique (Gusfield, 1991). However, on typical scDNA-seq

data, errors in the mutation matrix must be corrected to yield a

perfect phylogeny model. Because many such corrections are

possible, multiple phylogenies are typically equally consistent

with the data (Figure 1B). An additional challenge in inferring
April 22, 2020 ª 2020 The Authors. Published by Elsevier Inc. 323
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Box 1. Primer

Cancer is an evolutionary process where cells in a tumor accumulate somatic mutations over time. While only a small number of

these somatic mutations drive the development of cancer, all somatic mutations are a marker of the evolutionary history of a tumor.

Recent scDNA-seq technologies enable the measurement of somatic mutations in individual cells from a tumor, providing data to

construct a phylogenetic tree, or phylogeny, that represents the past evolution of the tumor.

Constructing a phylogenetic tree that describes the ancestral relationships between cells in a tumor relies on a choice ofmarkers, or

characters, that distinguish the individual cells as well as an evolutionary model describing how these markers change over time.

For scDNa-seq of tumors, a popular choice ofmarkers is single-nucleotide differences between cancer cells, known as SNVs. How-

ever, current scDNA-seq technologies measure SNVs with high rates of missing data and errors due to technical limitations such as

DNA amplification artifacts, undersampling, and sequencing errors. Standard phylogenetic methods do not handle such high rates

of missing data and errors. Thus, specialized algorithms have been developed to construct phylogenetic trees from single-cell mea-

surements of SNVs. Early works used the simplest evolutionary model for SNVs, the infinite-sites model, where a position in the

genome is mutated at most once.

However, SNVs are not the only type of somatic mutation that occur in cancer. In particular, most solid tumors have many CNAs,

mutations that duplicate or delete segments of the genome that range in scale from hundreds of nucleotides through whole chro-

mosomes. CNAs often overlap SNVs; for example, a deletion may remove SNVs. The infinite-sites model does not allow loss of

SNVs, and thus methods that use this model do not accurately reconstruct the phylogenetic trees of tumors with many CNAs.

More general evolutionary models that allow loss of SNVs, or mutation losses, have recently been used in single-cell phylogenetic

analysis, such as the Dollo and finite-sites models. However, thesemodels do not examine the underlying DNA sequencing data for

evidence of CNAs. Thus, such models are generally too permissive, admitting many different phylogenies even when these contra-

dict the observed CNA data.

In this paper, we introduce a loss-supported evolutionary model that allows SNV losses only when accompanied by evidence in the

DNA sequencing data of a deletion at the same locus. We use this loss-supported model as the basis for an algorithm, SCARLET

(single-cell algorithm for reconstructing loss-supported evolution of tumors), that infer tumor phylogenies from scDNA-seq data,

accounting for both mutation loss and sequencing errors. We show that SCARLET infers single-cell tumor phylogenies more accu-

rately than existing methods.
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phylogenies from cancer sequencing data is that somatic muta-

tions in tumors occur across all genomic scales from SNVs to

copy-number aberrations (CNAs), which amplify or delete larger

genomic regions. CNAs may overlap SNVs and affect the state

of SNVs in cells; e.g., a deletion that overlaps an SNVmay result

in a mutation loss (1/0). The infinite-sites model does not allow

mutation losses and therefore may yield incorrect phylogenies

when applied to SNVs in regions containing CNAs. One solution

is to exclude regions containing CNAs and build phylogenies

from SNVs in diploid or copy-neutral regions. However,

z90% of solid tumors are highly aneuploid (Taylor et al.,

2018) containing extensive CNAs, and z30% of solid tumors

have whole-genome duplications (Bielski et al., 2018). Identi-

fying collections of SNVs with no possibility of overlapping

CNAs during evolution of such tumors may be challenging.

Recently, several methods (El-Kebir, 2018; Ciccolella et al.,

2018; McPherson et al., 2016; Zafar et al., 2017, 2019; Malikic

et al., 2019a, 2019b) have been introduced for single-cell phy-

logeny inference that allows loss of mutations. SPhyR (El-Kebir,

2018), SASC (Ciccolella et al., 2018), and PyDollo (McPherson

et al., 2016) use the Dollo model (Dollo, 1893), which relaxes

the infinite-sites model. In the Dollo model, a mutation may be

gained (0 / 1) at most once but may be lost (1 / 0) multiple

times. SiFit (Zafar et al., 2017), SiCloneFit (Zafar et al., 2019),

and PhiSCS (Malikic et al., 2019a, 2019b) use the finite-sites

model, a further relaxation that allows a mutation to be gained

more than once. A challenge in using these less-stringent evolu-

tionary models is that they increase the ambiguity in phyloge-

netic reconstruction (Figure 1C). Even in simple cases with no

error, multiple phylogenies are consistent with the data, and
324 Cell Systems 10, 323–332, April 22, 2020
the number of phylogenies further increase when there are er-

rors and uncertainty in the mutation matrix. Both the errors in

scDNA-seq data and the mutation losses in the phylogeny

conspire to yield considerable challenges and ambiguity in

the single-cell phylogeny inference problem. This ambiguity is

further amplified because both sequencing errors and losses

result in the same signal in the observed data: an observed

‘‘0’’ in themutation matrix instead of a ‘‘1.’’ Thus, it is particularly

difficult to distinguish between errors in the data and potential

mutation losses.

A major limitation in using the Dollo or finite-sites models to

allow mutation losses is that neither of these models consider

evidence from CNAs that support or refute a mutation loss at

a locus. While more general multi-state models of tumor evolu-

tion have been used to infer phylogenies from bulk tumor

sequencing data (Deshwar et al., 2015; El-Kebir et al., 2016;

Jiang et al., 2016), these approaches neither model the errors

in scDNA-seq data nor scale to hundreds to thousands of

observed cells. Since mutation losses are the major complica-

tion in SNV evolution and responsible for most of the violations

of the infinite-sites model in scDNA-seq data (Kuipers et al.,

2017; McPherson et al., 2016), the full generality of a multi-state

model may not be necessary to obtain accurate phylogenies

from scDNA-seq data. Rather, we describe an approach that

constrains mutation losses by using copy-number data from

the same cells.

We introduce SCARLET (single-cell algorithm for reconstruct-

ing loss-supported evolution of tumors), an algorithm that infers

phylogenies from scDNA-seq data by integrating SNVs and

copy-number data. SCARLET is based on the loss-supported
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Figure 1. Loss-Supported Phylogeny Model and SCARLET Algorithm for the Maximum-Likelihood Loss-Supported Refinement Problem

(A) A mutation matrix with two mutations in three cells does not admit a perfect phylogeny. This may be due to either errors or mutation losses.

(B) Under the infinite -sites model, existing methods correct errors in the observed matrix to yield a perfect phylogeny.

(C) Under the Dollo model, existing methods identify mutation losses to explain violations of the infinite -sites model. Both the infinite-sites and Dollo models yield

multiple equally plausible phylogenies.

(D) The loss-supported model overcomes this ambiguity by using copy-number data to constrain mutation losses.

(E) SCARLET algorithm for the maximum-likelihood loss-supported refinement problem. SCARLET integrates SNVs and CNAs for tumor phylogeny

inference. For CNAs, observed copy-number profiles indicate amplified (red) or deleted (blue) genomic regions along the entire genome and are used to

obtain two inputs for SCARLET. First, supported loss sets Lðc; c0Þ for pairs of copy-number profiles (empty sets are not shown) indicate mutations that are

affected by deletions. Second, a copy-number tree T, which describes the ancestral relationships between observed cells (leaves) as determined by copy-

number profiles. For SNVs, variant X and total Y read counts are provided to SCARLET for every cell and every mutation. SCARLET computes a joint tree

T 0 on the observed cells and a maximum-likelihood mutation matrix B� by constraining mutation losses to the supported loss sets L, computing a

refinement T 0 of T, and selecting the maximum-likelihood B� using a probabilistic model for the presence (bi;j = 1) or absence (bi;j = 0) of each SNV in

each cell.
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phylogeny model that constrains mutation losses to loci, where

the copy-number data have evidence of a deletion (Figure 1D).

The loss-supported phylogeny generalizes the infinite-sites

and Dollo models. SCARLET also relies on a probabilistic model

of the read counts for each SNV to address errors and missing

data that are common in scDNA-seq. On simulated data, we

show that SCARLET infers more accurate phylogenies

compared with existing methods. We then use SCARLET to

analyze scDNA-seq data from ametastatic colorectal cancer pa-

tient (Leung et al., 2017). We find that the published phylogeny—

constructed from SNVs under the infinite-sites model—has the

implausible conclusion that genome-wide copy-number profiles
evolved twice independently during the evolution of this tumor. In

contrast, SCARLET infers a loss-supported phylogeny that has

three mutation losses, with each loss supported by a copy-num-

ber change at the locus. Moreover, the SCARLET phylogeny

supports the hypothesis of a single migration between the colon

primary tumor and liver metastasis (monoclonal seeding). In

contrast, previous published phylogenies (Leung et al., 2017; Za-

far et al., 2019) reported a more complex origin of the metastasis

with multiple migrations (polyclonal seeding). By integrating in-

formation from both SNVs and CNAs, SCARLET obtains more

accurate reconstructions of tumor evolution at single-cell

resolution.
Cell Systems 10, 323–332, April 22, 2020 325
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RESULTS

SCARLET Algorithm for Loss-Supported
Phylogeny Model
We developed an algorithm, SCARLET, to infer phylogenetic

trees from scDNA-seq data by integrating data from both

SNVs and CNAs. SCARLET has three important features (Fig-

ure 1E): (1) the loss-supported phylogeny model, which con-

strains mutation losses to loci where there is a corresponding

decrease in copy number; (2) an algorithm to compute a loss-

supported phylogeny by refinement of a coarse phylogenetic

tree derived from copy-number data alone; and (3) maximum-

likelihood inference of SNVs using a probabilistic model of

observed read counts in scDNA-seq data. We describe each

of these key features below.

The loss-supported model is a model of SNV evolution where

mutation gains ð0/1Þ occur at most once, but mutation losses

ð1/0Þ are constrained by sets L of supported losses that are

defined by CNAs in the same cells (Figure 1D). Specifically, we

assume that for each cell we measure both a mutation profile

b of SNVs and a copy-number profile c. For each pair ðc; c0Þ of
copy-number profiles, we define the supported loss set

Lðc; c0Þ as the set of SNVs at loci where there is a decrease in

copy number (e.g., due to a deletion or loss-of-heterozygosity

[LOH] event) between profiles c and c0. In the loss-supported

phylogeny, a mutation loss at an SNV loci a is allowed between

cells v and w only if a is in Lðcv;cwÞ. The loss-supported model

can thus be viewed as a generalization of other models for

SNV evolution: the perfect phylogeny model is the special case

where L=B, while the Dollo model and finite-sites model corre-

sponds to L being the complete set of all mutations. In contrast

to these extremes, the loss-supported model allows for interme-

diate values of L derived from copy-number data. The loss-

supported model depends on the copy-number profiles of

both the observed and ancestral cells. However, we do not

directly measure the copy-number profiles of the ancestral cells.

To overcome this limitation, SCARLET takes as input a copy-

number tree T, which is derived from the copy-number profiles

of the observed cells using copy-number phylogenetic recon-

struction algorithms (such as described in Schwarz et al.,

2014; Chowdhury et al., 2015; El-Kebir et al., 2017; Zaccaria

et al., 2018) (Figure 1E). SCARLET computes the supported

loss sets L from the copy-number profiles of the observed cells

(leaves of T ) and the copy-number profiles of the ancestral cells

(internal vertices of T ). Typically, scDNA-seq data of SNVs (e.g.,

from targeted sequencing) measures copy-number profiles with

low resolution, and thus tumor cells share a limited number of

distinct copy-number profiles. Consequently, the copy-number

tree T has many multifurcations or unresolved ancestral vertices

with more than two children. SCARLET finds a joint tree T 0 that is

a loss-supported phylogeny and a refinement (Wang et al., 2014)

of T by resolving multifurcations in T using the mutation profiles

of the observed cells (Figure 1E). Data from scDNA-seq typically

have high error rates in identifying SNVs, and particularly high

rates of false negatives and missing data due to amplification

bias and allele dropout (Gawad et al., 2016). SCARLET models

these errors using a beta-binominal distribution (Singer et al.,

2018) of the observed read counts. As such, SCARLET com-

putes the loss-supported refinement T 0 that maximizes the likeli-
326 Cell Systems 10, 323–332, April 22, 2020
hood of the observed sequencing data under this probabilistic

model (Figure 1E).
Simulated Data
We compared SCARLET to four existing algorithms that build

phylogenies from single-cell sequencing data, SCITE (Jahn

et al., 2016), SciF (Singer et al., 2018), SPhyR (El-Kebir, 2018),

and SiFit (Zafar et al., 2017), on simulated data. We simulated

50 trees, each with 20 mutations, 4 copy-number profiles, and

1--8 mutation losses per tree. From these trees, we simulated

100 observed cells with each cell having equal probability of be-

ing a child of any vertex in the simulated tree, and simulated

sequencing data with an expected sequencing depth of 1003

and allelic dropout rate of 0:15. Additional details of simulated

data and parameters of each method are included in STAR

Methods. We evaluated the phylogenies output by the methods

by two measures, the mutation matrix error and the pairwise

ancestral relationship error, that have been previously used in tu-

mor evolution studies (Ciccolella et al., 2018; Myers et al., 2019;

Govek et al., 2018; Singer et al., 2018; El-Kebir, 2018; Satas and

Raphael, 2017). The mutation matrix error

MðB; bBÞ= 1
mn

Pm
i = 1

Pn
j =1

��bi;j � bbi;j

�� is the normalized Hamming

distance between the inferred binary mutation matrix bB and

the true binary mutation matrix B and assesses the accuracy

of the error-corrected mutation profiles for each observed cell.

The pairwise ancestral relationship error EðT ; bT Þ is the proportion
of pairwise ancestral relationships between mutations in the in-

ferred tree bT that differ from the ancestral relationships in the

true tree T. Specifically, every pair a; a0 of mutations has one of

four possible ancestral relationships in bT and in T: (1) a and a0

occur on the same branch; (2) a is ancestral to a0; (3) a0 is ances-

tral to a; and (4) a and a0 are incomparable. Note that only muta-

tion gains are considered in the calculation of this error, so that all

methods are evaluated on the same set of mutations. We do not

calculate the pairwise ancestral relationship error for SiFit

because it uses a finite-sites model, which allows mutations to

recur and, consequently, pairs of mutations may not have a

unique relationship.

SCARLET outperforms all other methods on both mutation

matrix error and ancestral relationship error (Figures 2A and

2B). The high errors of SCITE and SciF were expected since

these methods use an infinite-sites model while the simulations

include mutation losses, which violates the model assumptions.

However, the methods that do allow mutation losses, SPhyR

(based on the k-Dollo model) and SiFit (based on the finite-sites

model), do not exhibit improvement over the other methods and

perform worse than SCARLET. These results confirm that

models that include unconstrained mutation losses have signifi-

cant ambiguity as it is difficult to distinguish between true muta-

tion losses and false positives or negatives in the data (Figure 1).

By using copy-number information to constrain mutation losses,

SCARLET overcomes the ambiguity in phylogeny reconstruction

and obtains lower error in the inferred mutation matrix and

phylogeny.

We evaluated the effect of the input copy-number tree on

SCARLET’s accuracy by running SCARLET in two modes:



Figure 2. SCARLET Outperforms Existing Methods for Phylogeny Inference on Simulated Single-Cell Data

(Left) Mutation matrix error, (center) Pairwise ancestral relationship error, and (right) runtime for each method. SCARLET was run either knowing (true CN tree) or

not knowing (optimal CN tree) the true copy-number tree.
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when the true copy-number tree is either known (‘‘SCARLET true

CN tree’’) or unknown (‘‘SCARLET optimal CN tree’’). In the latter

case, we enumerated all copy-number trees, ran SCARLET once

for each copy-number tree, and output the solutionwith the high-

est likelihood. In both cases, we provided SCARLETwith the true

copy-number profiles of each cell and the true setL of supported

losses. SCARLET exhibited comparable performance when

running with or without knowledge of the copy-number tree (Fig-

ures 2A and 2B). Notably, in 46/50 simulated instances, the

maximum-likelihood solution obtained when running SCARLET

with unknown copy-number tree was identical to the solution

found when providing the true copy-number tree. Clearly,

running SCARLET with all possible copy-number trees (16

copy-number trees in this simulation) increases the runtime (Fig-

ure 2C), but the runtime remains reasonable when the number of

copy-number profiles is small, which is the case for many real

datasets (see below).

We further tested SCARLET to evaluate scalability to datasets

for larger numbers of mutations (up to m= 100) and larger num-

ber of copy-number profiles (up to k = 10) (Figures 3A and 3B).

SCARLET has no loss of accuracy for larger datasets and in

some cases has better accuracy on larger datasets. The runtime

of SCARLET increases withm, and increases moderately with k,

but remains reasonable (with all simulated instances taking < 3

min to run). In addition, we tested how errors in inferring the cor-

rect number of copy-number profiles affected the accuracy of

SCARLET (Figure 3C). In particular, we tested two types of er-

rors. In ‘‘merge’’ errors, two sets of cells with distinct copy-num-

ber profiles are merged together into one. In ‘‘split’’ errors, one

set of cells is split and inferred to have two distinct copy-number

profiles. With either type of error, SCARLET outperforms other

algorithms, with ‘‘split’’ errors leading to a larger reduction in per-

formance than ‘‘merge’’ errors.

Single-Cell Phylogeny of Metastatic Colorectal Cancer
We used SCARLET to analyze scDNA-seq of a metastatic colo-

rectal cancer patient CRC2 from Leung et al. (2017). This data-
set included targeted sequencing of 1,000 genes in 141 cells

from a primary colon tumor and 45 cells from a matched liver

metastasis (Figure 4A). The authors identified 36 SNVs and

used SCITE (Jahn et al., 2016) to derive a perfect phylogeny

from these SNVs (Figure 4B). This perfect phylogeny tree shows

two distinct branches of metastatic cells and (Leung et al.,

2017) concluded that this was evidence of polyclonal seeding

of the liver metastasis; i.e., two distinct cells (or groups of cells)

with different complements of mutations migrated from the pri-

mary colon tumor to the liver metastasis. Examining the copy-

number data, one finds a curious discrepancy between

the SCITE tree and the single-cell copy-number profiles.

Whole-genome sequencing of 42 single cells from the same pa-

tient reveals that all metastatic cells share losses of chromo-

somes 2, 3p, 4, 7, 9, 16, and 22 relative to the cells in the pri-

mary tumor (Figure 4C). According to the SCITE tree, all of

these large CNAs would had to have occurred twice indepen-

dently in the two distinct branches of metastatic cells. Although

CNAs can exhibit homoplasy, this high rate of occurrence of the

exact same events seems highly unlikely. Thus, we observe an

inconsistency between the copy-number data and the SCITE

tree constructed using only SNV data. Notably, this same data-

set was recently analyzed by SiCloneFit (Zafar et al., 2019) us-

ing a finite-sites model. The SiCloneFit tree also showed two

branches of metastatic cells and concluded that there was

polyclonal seeding of the metastases. Thus, the SiCloneFit

phylogeny also has the same inconsistency between the SNV

phylogeny and copy-number data.

We analyzed this dataset using SCARLET to see whether joint

analysis of SNVs and CNAs data could help resolve the incon-

sistency between the tree derived from SNVs and the observed

copy-number profiles. We first derived four distinct copy-num-

ber profiles by hierarchical clustering of ploidy-corrected read-

depth ratios from the targeted single-cell sequencing data.

These copy-number profiles included an aneuploid profile for

all primary cells (P), two different aneuploid profiles for metasta-

tic cells (M1 and M2), and the profile of diploid cells (D); (Leung
Cell Systems 10, 323–332, April 22, 2020 327
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Figure 3. SCARLET Scales to Larger Datasets and Tolerates Errors in Copy-Number Profiles

(A) SCARLET results on simulated data with varying number of mutations, n= 100 cells and k = 4 copy-number profiles. (Left) Mutation matrix error; (Center)

pairwise ancestral relationship error; (Right) runtime.

(B) SCARLET results on simulated data with varying number of copy-number profiles, n=100 cells and m= 20 mutations. (Left) Mutation matrix error; (center)

pairwise ancestral relationship error; (right) runtime.

(C) SCARLET results on simulated data with incorrect number of copy-number profiles. We introduce errors in the number of copy-number profiles by either

merging two distinct copy-number profiles together (merged profile), or splitting one copy-number profile into two (split profile) and compare performance against

the correct number of copy-number profiles.
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et al., 2017) and similarly derived four copy-number profiles

from whole-genome sequencing of a different set of 42 cells

from the same patient. Since four copy-number profiles is a

small number to infer a tree using a copy-number evolution

model, we instead ran SCARLET in the ‘‘optimal CN tree’’

setting selecting the copy-number tree that produced the high-

est likelihood. Specifically, we ran SCARLET on all nine possible

rooted copy-number trees with the root having the diploid

profile (D) and internal vertices labeled by one of the three aneu-

ploid copy profiles (P, M1, andM2). For each copy-number tree,

we derived the set L of supported losses as the mutation loci

that exhibited significant decreases in read depth (i.e., number

of aligned sequencing reads). Additional details are included in

STAR Methods.
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SCARLET constructed a tree (Figure 4D and 4E) with a single

clade containing all metastatic cells. This is consistent with the

copy-number data, since the shared chromosomal losses could

have occurred once in a common ancestor of all metastatic cells.

Moreover, this tree suggests that the liver metastasis was the

product of monoclonal seeding; i.e., a single cell (or small group

of cells) with the same somatic mutations migrated from the pri-

mary colon tumor to the metastasis and all metastatic cells de-

scended from the founder cells present in this single migration.

This result contradicts previous results (Leung et al., 2017; Zafar

et al., 2019) of a more complicated polyclonal seeding of the

metastasis. The SCARLET tree contains three mutation losses:

in genes FHIT, LRP1B, and LINGO2. Each of these losses is sup-

ported by a significant decrease in read depth (Figure 4D),
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Figure 4. SCARLET Infers a Loss-Supported Phylogeny Consistent with Copy-Number Profiles from a Metastatic Colorectal Cancer Patient

SCARLET was applied to targeted scDNA-seq of 141 single cells from the primary colon tumor (blue) and 45 single cells from the liver metastasis (green) of

patient CRC2.

(A) Variant allele frequencies of 36 somatic SNVs in 96 cells as inferred by SCITE.

(B) Perfect phylogeny tree inferred by SCITE in Leung et al. (2017) of patient CRC2. Two distinct branches of metastatic cells—suggesting polyclonal seeding of

the liver metastasis—are separated by the four indicated ‘‘bridge mutations’’ occurring in cells of the primary tumor.

(C) Published copy-number profiles fromDOP-PCR (degenerate oligonucleotide-primed polymerase chain reaction) whole-genome sequencing of 42 single cells

from both the primary tumor and metastasis of CRC2; figure adapted from Leung et al. (2017). All metastatic cells share deletions of six chromosomes (black

boxes) but are separated into two groups (light and dark green) by a small number of additional CNAs.

(D) Mutation matrix derived from the loss-supported phylogeny inferred by SCARLET on the same data.

(E) The loss-supported phylogeny inferred by SCARLET has a single branch containing all metastatic cells —suggesting monoclonal seeding of the liver

metastasis and consistent with the similar copy-number profiles of all metastatic cells. SCARLET identifies mutation losses (red) in LINGO2, LRP1B, and FHIT.

(F) Significant decreases in read depths are observed at the loci of the three mutation losses identified by SCARLET (p values derived from Wilcoxon Rank-

Sum test).
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providing evidence that the loci containing these mutations were

likely affected by deletions. Notably FHIT and LRP1B are located

in fragile sites in the genome (Smith et al., 2006), which are

known regions of genomic instability. In addition, the loss of

the mutation LINGO2:1 in LINGO2 is further supported by a shift
in the variant allele frequency of another mutation, LINGO2:2, in

the same gene. Specifically, the variant allele frequency of

LINGO2:2 is z1 in the metastatic cells (Figure 4A), suggesting

that this mutant allele is homozygous, consistent with a deletion

or LOH event where the LINGO2:1 mutation was lost.
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We examined further the evidence for polyclonal seeding in

the initial study of this patient. Leung et al. (2017) included a

statistical analysis of the variant read counts of the four ‘‘bridge

mutations,’’ ATP7B, FHIT, APC, and CHN1 that occurred be-

tween the first and second metastatic branches in the SCITE

tree. This analysis showed that mutations in ATP7B and FHIT

were present in a subset of primary tumor cells and in the sec-

ond metastatic branch (detected in 10/13 and 13/13 cells,

respectively) while being absent in the second metastatic

branch (detected in 1/15 and 1/15 cells, respectively). Under

the infinite-sites model used by SCITE, mutation loss is not al-

lowed and thus polyclonal seeding is necessary to explain the

absence of these mutations. The same analysis found high un-

certainty regarding the placement of mutations in APC and

CHN1 and thus these were not cited as evidence for polyclonal

seeding.

The loss-supported model used by SCARLET provides an

alternate explanation for the absence of FHIT and ATP7B.

SCARLET identifies a supported mutation loss to explain the

presence of the mutation in FHIT only in a subset of metastatic

cells (M1). This loss is supported by a shift in read depth (p=

0:005) in the 10-Mb region containing the locus (Figure 4F).

SCARLET does not identify a supported mutation loss to simi-

larly explain ATP7B as we did not observe a significant decrease

in read depth for the corresponding locus (p= 0:34). However,

this lack of a significant decrease in read depth at the ATP7B lo-

cus does not necessarily imply that there was no mutation loss.

In particular, because targeted sequencing was performed for

only 1,000 genes, the copy-number data are fairly low resolution,

and we calculated read depth in 10-Mb bins. Thus, we may lack

the statistical power to identify a shorter deletion, especially a

deletion present in only the 10 metastatic cells with copy-num-

ber profile M2. In summary, we argue that the sequencing data

provide stronger evidence for the phylogeny constructed by

SCARLET, which is consistent with both SNV and copy-number

data and supports a more parsimonious explanation of mono-

clonal seeding of the liver metastasis.

DISCUSSION

Somatic mutations in tumors range across all genomic scales,

from SNVs through large CNAs. To date, most methods for con-

structing phylogenies from scDNA-seq data (Jahn et al., 2016;

Singer et al., 2018; Ross and Markowetz, 2016; Zafar et al.,

2017, 2019; El-Kebir, 2018; Ciccolella et al., 2018; McPherson

et al., 2016; Malikic et al., 2019a, 2019b) used only SNVs,

ignoring CNAs and thus throwing out important information for

phylogenetic inference. Here, we introduced SCARLET, which

uses measurements of both SNVs and CNAs to reconstruct tu-

mor phylogenies from scDNA-seq data. SCARLET is based on

a loss-supported evolutionary model, which constrains mutation

losses to loci containing evidence of a CNA. By using the infor-

mation about CNAs that is readily available in scDNA-seq data,

the loss-supported model has less ambiguity in the phylogeny

inference than the Dollo and finite-sites models that allow muta-

tion losses to occur anywhere on the tree. In scDNA-seq data,

where there is often considerable uncertainty in the mutations

present in each cell, this reduction in ambiguity enablesmore ac-

curate phylogeny inference. On simulated scDNA-seq data, we
330 Cell Systems 10, 323–332, April 22, 2020
find that SCARLET outperforms existingmethods that do not uti-

lize copy-number data. On targeted scDNA-seq data from a

metastatic colorectal cancer patient, we showed that SCARLET

found a phylogeny containing three mutation losses. Notably,

SCARLET’s tree was both more consistent with the copy-num-

ber data and provided a simpler explanation of monoclonal

seeding of the liver metastasis compared with the more complex

phylogenies reported previously (Leung et al., 2017; Zafar et al.,

2019). Thus, accurate modeling of mutations losses results in

different conclusions regarding the migration patterns of

metastasis.

There are a number of directions for future improvement. First,

the current implementation of SCARLET either requires the

copy-number tree in input or enumerates all possible copy-num-

ber trees and selects the maximum-likelihood result. This

approach is applicable when the number of distinct copy-num-

ber profiles is small; e.g., in the case of targeted scDNA-seq

data (Leung et al., 2016; Xu et al., 2012; Mission Bio, 2019),

where copy-number data typically are lower resolution. Howev-

er, with higher-quality copy-number data, extensions to larger

numbers of copy-number profiles are needed. One approach

is to use copy-number evolution models (Chowdhury et al.,

2015; Schwarz et al., 2014; El-Kebir et al., 2017; Zaccaria

et al., 2018) to identify a modest number of copy-number trees

that summarize the uncertainty in the copy-number evolutionary

history. Second, one could extend the loss-supported model

into a unified evolutionary model for SNVs and CNAs. Indeed,

the loss-supported model provides a natural framework to inte-

grate SNVs directly with evolutionary models of CNAs. As single-

cell sequencing technologies continue to improve, higher quality

measurements of both SNVs and CNAs from the same sets of

cells will become available. We anticipate that SCARLET and

the loss-supported model will play a crucial role in the analysis

of these data.
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METHOD DETAILS

Loss-Supported Phylogeny Model
We model the evolutionary history of a tumor as a rooted, directed phylogenetic tree T = ðVðTÞ;EðTÞÞ, whose vertex set VðTÞ=
LðTÞWIðTÞ consists of a set LðTÞ of n leaves corresponding to observed cells and a set IðTÞ of inner vertices corresponding to ances-

tral cells. A directed edge ðv;wÞ˛EðTÞ indicates that cell v is an ancestor of cellw. We do not directly observe T but rather wemeasure

a set of phylogenetic markers for every observed cell v˛LðTÞ. In the case where the markers are somatic single-nucleotide variants

(SNV), the measurements correspond to a binary mutation profile bv ˛f0;1gmfor each observed cell v, where bv;a = 1 indicates that

cell v has a somatic mutation at locus a and bv;a = 0 indicates that cell v does not have a somatic mutation at locus a. We assume that

themutation profile br of the root r is br = 0
!

since the root represents the normal cell that preceded the tumor. We define themutation

matrix B= ½bv�v˛LðTÞ to be the matrix whose rows are the mutation profiles of leaves v˛LðTÞ.
The problem of phylogenetic tree inference is to find a tree T and an augmented mutation matrix B0 = ½b0

v�v˛VðTÞ whose rows corre-

spond to binary mutation profiles of the vertices of T and where the submatrix ½b0
v�v˛LðTÞ is equal to B. Since there are many possible

trees that relate the observed cells, methods for phylogeny inference find T and B0 that best fit a specific evolutionary model.

The simplest evolutionary model for SNVs is the infinite sites, or perfect phylogeny model. In this model, each mutation is gained

(0/1) at most once, and is never subsequently lost. A more general model the Dollo model allows mutations to be gained (0/1)

at most once, but lost (1/0) multiple times. Formally, the Dollo model is defined as follows.

Definition 1 A phylogenetic tree T is a Dollo phylogeny with respect to augmented mutation matrix B0 provided that for every locus

a, there is at most one edge ðv;wÞ˛EðTÞ such that b0
v;a = 0 and b0

w;a = 0.

In contrast to the perfect phylogeny model, under the Dollo model there are often multiple phylogenies that are consistent with

input data (Figure 1).

DNA sequencing data often contains contains additional information about the genomic locations where mutation losses are

possible. Specifically, we assume that for each cell v, we also observe a copy-number profile pv = ½pv;1;.;pv;N� where pv; i indicates

the number of copies of genomic segment i in cell v. For simplicity, we label the unique copy-number profiles observed for all the cells

by integers f1;.;kg, such that the vector c= ½cv� represents the copy-number profile assignment cv˛f1;.; kg of every cell v. The

copy-number profiles of cells provide constraints on mutation losses. In particular, we allow mutation losses only at loci where an

overlapping deletion or loss-of-heterozygosity (LOH) distinguishes the copy-number profiles. We record the information about the

loci where losses are allowed in a collection L of supported loss sets. For each pair c, c0 of distinct copy-number profiles we define

the setLðc; c0Þ4f1;.;mg of supported losses to be the set of all themutation loci located in genomic regionswith a decrease in copy
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number (indicating possible deletion or LOH) between c and c0. We define Lðc; cÞ=B for all c. We denote the collection of supported

losses asL = fLðc;c0Þ : ðc;c0Þ˛f1;.;kg 3 f1;.;kgg. We define a loss-supported phylogeny as a Dollo phylogeny where all mutation

losses are supported.

Definition 2Given copy number profiles c0 = ½cv�v˛VðTÞ and supported lossesL, a phylogenetic tree T is a loss-supported phylogeny

with respect to augmented mutation matrix B0 provided that: (1) T is a Dollo phylogeny; (2) If b0
v;a = 1 and b0

w;a = 0 for edge ðv;wÞ then
a˛Lðc0v;c0wÞ.

The loss-supported phylogeny inference problem is to infer a loss-supported phylogeny T given a mutation matrix B and copy-

number profile vector c that label the leaves of T ; as well as a set L of supported losses. However, this general problem has a major

complication: the copy-number profiles of the ancestral cells are unknown. Without knowledge of ancestral copy-number profiles,

the loss sets L cannot be used to constrain mutation losses. Ideally, one might infer copy-number profiles of ancestral cells (e.g.,

using a copy-number evolution model (Schwarz et al., 2014; Chowdhury et al., 2015; El-Kebir et al., 2017; Zaccaria et al., 2018)) while

simultaneously inferring a loss-supported phylogeny on the SNVs. The derivation of a score/likelihood for such joint model is not

straightforward, and is left for future work. Instead, in the next section, we describe an algorithm that infers a loss-supported phy-

logeny by refining a copy-number tree given in input.

Loss-Supported Refinement Problem
In this section, we introduce the Loss-Supported Refinement (LSR) problem, a special case of the loss-supported phylogeny infer-

ence problem, where we have additional information about the evolutionary relationships between copy-number profiles. In partic-

ular, we assume that we are given a copy-number tree b0
v;a = 1 and a copy-number profile vector b0

w;a = 0 for all vertices in T. A copy-

number tree is a phylogenetic tree constructed using CNAs as evolutionary markers. Leaves of T correspond to observed cells, inner

vertices of T to ancestral cells with distinct copy-number profiles, and edges to ancestral relationships. As single-cell DNA

sequencing data of SNVs typically measures copy-number profiles with low-resolution, this copy-number tree typically has many

multifurcations (i.e., unresolved ancestral vertices with more than two children). We use the mutation matrix ðv;wÞ for all a˛
Lðc0v; c0wÞ to refine vertices in T, which results in a joint tree T 0 that reflects the evolutionary history of both the SNVs and CNAs.

This sequential approach is inspired by an asymmetry between SNVs and CNAs in the loss-supported model: CNAs affect the

observed state transitions of SNVs as deletions result in SNV loss, but SNVs do not result in changes in copy-number state. The joint

tree T 0 is a refinement (Wu et al., 2009) of T; i.e., LðT 0Þ= LðTÞ and T may be obtained by contracting edges in T 0.

A refinement is formalized as a mapping g : VðTÞ/2VðT
0 Þ, where for all v˛VðTÞ, gðvÞ is a rooted subtree T 0½gðvÞ� in T 0. Given T 0 one

can obtain T by contracting each subtree T 0½gðvÞ� into a single vertex v˛VðTÞ. We refer to the set of subtrees defined by g as the

refinement subtrees.

We define the LSR problem as the problem of finding a refinement T 0 of a copy-number tree T such that T 0 is a loss-supported

phylogeny.

Problem 1 Loss-Supported Refinement (LSR) problemGiven a copy-number tree T, a copy-number profile vector c= ½cv�v˛VðTÞ,
a mutation matrixB= ½bv�v˛LðTÞ, and supported lossesL, find a refinement T 0 of T, a copy-number profile vector c0 = ½cv0 �v0˛VðT 0Þ, and an

augmented mutation matrix B0 = ½b0
v0 �v0˛VðT 0Þ with bv0 =b0

v0 for all v
0˛LðT 0Þ, such that

(1) c0v0 = cv for all v˛VðTÞ and v0˛gðvÞ, and
(2) T 0 is a loss-supported phylogeny with respect to B0, c0, and L.

We provide four necessary and sufficient conditions for a solution T 0;c0;B0 to the LSR problem. These conditions constrain the set

of refinement subtrees defined by g. The four conditions state that (1) each mutation occurs at most once, (2) mutations are not lost

within refinement subtrees, (3) all mutation losses between refinement subtrees are supported, and (4) refinement subtree copy-num-

ber profiles are preserved. We formally define these four conditions as follows, using rðvÞ to denote the root of subtree T 0½gðvÞ� and
pðrðvÞÞ to denote the parent of rðvÞ.

Theorem 1Given copy-number tree T, copy-number profile vector c, mutationmatrixB, and supported lossesL, a refinement T 0 of

T, copy-number profile vector c0, and augmented mutation matrix B0 are a solution to the LSR problem if and only if

(1) For all loci a, there exists exactly one edge ðv0;w0Þ˛EðT 0Þ with b0
v0 ;a = 0 and b0

w0 ;a = 1;

And for all v˛VðTÞ:

(2) There does not exist any edge ðv0;w0Þ˛EðT 0½gðvÞ�Þ with b0
v0 ;a = 1 and b0

w0 ;a = 0;

(3) If b0
pðrðvÞÞ;a = 1 and b0

rðvÞ;a = 0, then a˛Lðc0pðrðvÞÞ;c0rðvÞÞ;
(4) c0v0 = cv for all v

0˛gðvÞ

Note that, taken together, conditions (1) and (2) imply that each of these subtrees T 0½gðvÞ� is a perfect phylogeny with respect to

submatrix B0½gðvÞ�. We use this structure to solve the LSR problem in the next section.

Solving the Loss-Supported Refinement problem
In this section, we derive an efficient algorithm to solve the LSR problem. This algorithm decomposes the LSR problem into k = jIðTÞj
instances of the Incomplete Directed Perfect Phylogeny (IDP) problem (Pe’er et al., 2004) – one instance for each copy-number profile
e2 Cell Systems 10, 323–332.e1–e8, April 22, 2020
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– using the characterization given in Theorem 1. Specifically, Theorem1 characterizes LSR solutions by giving conditions on the set of

refinement subtrees of T. We design an algorithm to find a set T = fT 0
v : v˛VðTÞg of subtrees, an augmented mutation matrix B0, and

copy-number profiles c0 that satisfy Theorem 1. Using T andB0, we then construct a refinement T 0 such that T 0½gðvÞ�=T 0
v and c0v0 = cv

for all vertices v0˛VðT 0
vÞ.

We present a recursive algorithm that refines T from the leaves to the root. The algorithm relies on three additional constraints on

the solution T 0, c0 and B0 that do not effect the existence of a solution, described in the following lemma.

Lemma 1 If there exists a solution to the LSR problem for a given T , c, B, L, then there exists a solution T 0, c0, B0 that satisfies the

following conditions.

(1) For all ðv;wÞ˛EðTÞ, pðrðwÞÞ is a leaf of subtree T 0½gðvÞ�.
(2) For all v˛VðTÞyfrg, if b0

v0 ;a = 1 for all v0˛LðT 0½gðvÞ�Þ then b0
rðvÞ;a = 1.

(3) For all v˛VðTÞ and all loci a, b0
pðrðvÞÞ;aRb0

rðvÞ;a.

Our recursive algorithm is composed of a base and recursive step.

Base Step
The base step determines T 0

v and B0½VðT 0
vÞ� for leaf vertices a˛Lðc0v;c0wÞ. For any leaf in a refinement T 0, gðvÞ= fvg. Thus the subtree

T 0
v˛T is composed of a single vertex v, with mutation profile b0

v =bv and copy-number profile c0v = cv.

RECURSIVE STEP

The recursive step aims to find T 0
v and B0½VðT 0

vÞ� for internal vertices v˛IðTÞ. We find T 0
v in two steps. First, we identify the set of con-

straints on the leaves LðT 0
vÞ of T 0

v given by Theorem 1. Second, given these constraints, we find mutation profiles B0½LðT 0
vÞ� for the

leaves that respect a perfect phylogeny, as required by condition (1) and (2) of Theorem 1. Thesemutation profiles uniquely determine

the structure of T 0
v as T 0

v is a perfect phylogeny (Gusfield, 1991). We describe these steps in detail below.

By condition (i) of Lemma 1, T 0
v has a leaf for every ðv;wÞ˛EðTÞ; thus LðT 0

vÞ= fpðrðwÞÞ : ðv;wÞ˛EðTÞg. We first recursively solve for

T 0
w and B0½VðT 0

wÞ� for every vertexw such that ðv;wÞ˛EðTÞ. Thus, we know the mutation profile b0
rðwÞ of the root of each child subtree.

Wedo not directly observeB0½LðTvÞ�, but themutation profile of a vertex is constrained by condition (3) of Theorem 1 and constraint (iii)

of Lemma 1 given the mutation profile of a child. Specifically, the parent has the samemutation profile as the child, except if there is a

mutation loss. The mutation profiles are further constrained by condition (1) of Theorem 1 as each mutation occurs at most once

across all subtrees. We respect this condition by minimizing the number of mutation gains per locus, by only having a mutation

gain at locus a in a subtree if a strict subset of the leaves have the mutation.

We summarize these leaf constraints onB0½LðTvÞ� as a ternary matrix B0
v = ½b0

v�v˛LðTvÞ where bv = ½b0
v;a�˛f0; 1; ?g

m. The first constraint

fixes the values for some entries ofB0½LðTvÞ�, such that b0
pðrðwÞÞ;a = 1 when b0

rðwÞ;a = 1, and b0
pðrðwÞÞ;a = 0 when b0

rðwÞ;a = 0 and a;Lðcv;cwÞ.
The second constraint further sets some of the previously non-fixed entries inB0½LðTvÞ� tominimize the total number ofmutation gains

in T 0
v. If there exist leaves v0;w0˛LðT 0

vÞ where bv0 ;a = 0 and bw0 ;a = 1Þ, then mutation a must be gained in subtree T 0
v. To achieve the

minimum number of mutation gains, we thus maximize the number of all-zero and all-one columns of B0
v: we set to 0 any previously

undetermined entries bv0 ;a for columns of B
0
that only have ‘0’ (‘1’, resp.) entries (setting of bv0 ;a = 0, bv0 ;a = 1 resp.). At last, we set any

remaining undetermined entry of B0
v to be ‘?’.

Finally, we aim to find B0½LðTvÞ� by filling the ‘?’ entries of B0
v. More specifically, given B0

v, we seek B0½LðTvÞ� such that if bv0 ;a˛ f0;1g
then b0

v0 ;a =b0
v0 ;a for all mutations a and B0½LðTvÞ� is a perfect phylogeny matrix. This problem is known as the Incomplete Directed Per-

fect Phylogeny (IDP) problem and has been shown to be solvable inOðn2mÞ time (Pe’er et al., 2004). In our case n= jLðTvÞj=dv where

dv is the out-degree of vertex v in T. Solving an instance of the IDP problem yields a perfect phylogeny mutation matrix B0½LðTvÞ�,
which in turn determines the perfect phylogeny tree T 0

v and mutation matrix B0½LðT 0
vÞ�.

Maximum Likelihood Loss-supported Refinement Problem
The LSR problem assumes that the mutation matrix B is error-free. In practice, we do not observe this mutation matrix B, but instead

we observe read counts from a sequencing experiment. Specifically, wemeasure a variant read count matrix X= ½xv�v˛LðTÞ and a total

read count matrixY= ½yv�v˛LðTÞ, where xv;a˛N is the number of variant reads at locus a in cell v and yv;a˛N is the total number of reads.

Whole-genome amplification (Gawad et al., 2016), which typically precedes single-cell DNA sequencing, introduces a considerable

amount of error into these read count matrices. Specifically, single-cell sequencing SNV data has high rates of false negative errors

(i.e., xv;a = 0 when bv;a = 1) and missing data (i.e., yv;a = 0). In addition, sequencing and whole-genome amplification introduce false

positive errors (i.e., xv;a>0 when bv;a = 0) as well. Most existing methods (Jahn et al., 2016; Malikic et al., 2019a, 2019b; Zafar

et al., 2017, 2019; El-Kebir, 2018; Ross and Markowetz, 2016) for single-cell phylogeny inference discretize read counts into an
Cell Systems 10, 323–332.e1–e8, April 22, 2020 e3
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observed mutation matrix ~B, using either two or three genotypes in addition to missing data (i.e ~bv;a˛f0;1; ?g or ~bv;a˛f00; 01;11;?g).
However, discretizing the mutation data loses information about the likelihood of errors. For example, a locus with a single variant

read is far more likely to be a false positive error than a locus with hundreds of variant reads, but a discretized mutation matrix

does not distinguish between these cases.

We use a maximum-likelihood approach to model the observed variant and total read counts. Specifically, we aim to find the mu-

tationmatrix B� = argmax PrðXY;BÞ that admits a solution T 0;B0; c0 to the LSR problem andmaximizes the likelihood of the observed

variant read counts X given the total read counts Y. Our approach to compute B� is not specific to a particular likelihood model for

read counts but does assume that the likelihood has the form PrðXrY;BÞ=
Yn

v =1

Ym
a= 1

Prðxv;aryv;a;bv;aÞ; i.e. the variant read counts X

are independent of each other across cells and loci given Y and B. In this work, we used a beta-binomial model similar to the one

previously used by SciF (Singer et al., 2018). If mutation a is absent in cell v (i.e., bv;a = 0), then the probability of observing a variant

read corresponds to the per-nucleotide rate of sequencing error ε. For Illumina sequencing reads, we use ε= 0:001. If mutation a is

present in cell v (i.e., bv;a = 1), then wemodel the variant counts at a locus using a beta-binomial distribution. We estimate parameters

a and b empirically from the distribution of heterozygous germline single-nucleotide polymorphisms (SNPs) in the data. We thus

define the data likelihood for observing xv;a variant reads at locus a in cell v as follows:

Pr
�
xv;a

��yv;a; bv; a

�
=

�
Beta� Binomial

�
xv;a

��n= yv;a; a; b
�
if bv;a = 1;

Binomial
�
xv;a

��n= yv;a; p= ε

�
jif bv;a = 0:

Let BT;c;L be the set of mutation matrices B such that there exists a solution T 0;c0;B0 to the LSR problem given T, c, L, and B. We

formulate the problem as follows.

Problem 2 Maximum Likelihood Loss-Supported Refinement (ML-LSR) problem Given variant read counts X = ½xv�v˛LðTÞ, total
read counts Y = ½yv�v˛LðTÞ, copy-number tree T, copy-number profile vector c= ½cv�v˛VðTÞ, and supported losses L, find B� =

argmaxBT ;c;L PrðX jY;BÞ:
We show the ML-LSR is NP-hard by reduction from the Minimum Flip Problem (Chen et al., 2006) in ‘‘Proofs’’. Since current data-

sets have mutation matrices with hundreds–thousands of cells, we derive an algorithm in the next section that finds an approximate

solution to theML-LSR problem by subdividing theML-LSR problem into k instances of themaximum likelihood Incomplete Directed

Perfect Phylogeny problem.

SCARLET Algorithm for Maximum-Likelihood Loss-Supported Refinement Problem
We introduce SCARLET (Single-Cell Algorithm for Reconstructing Loss-supported Evolution of Tumors), an algorithm to find a loss-

supported phylogeny from single-cell DNA sequencing data. SCARLET aims to solve theML-LSR problem, defined above in Problem

2, by finding themaximum likelihoodmutationmatrixB�. Since a solutionB� of theML-LSR is inBT ;c;L, there exists at least one tree T
0,

a copy-number profile vector c0, and an augmented mutation matrix B0 of B� such that ðT 0;B0;c0Þ is a solution to the LSR problem.

Given solution ðT 0;B0;c0Þ,B� is uniquely determined asB� = ½b0
v�v˛LðTÞ. We thus proceed here by finding a solution ðT 0;B0;c0Þ to the LSR

that yields a maximum-likelihood B�. To solve ML-LSR problem, we extend the algorithm we previously presented to solve the LSR

problem. The LSR problem decomposes into a set of IDP instances if we know the mutation profiles R= ½b0
rðvÞ�v˛IðTÞ of the roots of

subtrees T . In the LSR, we computed R recursively, starting with the leaves LðTÞ whose mutation profiles are given by B. In the

ML-LSR, however, we are not given B, and thus do not know R. Therefore, SCARLET uses two-step procedure where we first

compute themaximum-likelihoodmutation profilesR� of the roots and then independently infer eachmaximum-likelihood refinement

subtree givenR�. Note that this two-step procedure is not guaranteed to find the overall maximum likelihood solutionB�, as theremay

be cases where B� does not admit a solution with the maximum-likelihood roots R�. However, we show in Results that SCARLET is

both accurate and fast in practice.

Finding Maximum Likelihood Subtree Roots
SCARLET aims to find the maximum-likelihood subtree roots R� = ½rv�v˛VðTÞ such that there exists a loss-supported refinement T 0, c0,

B0 with subtree roots R�. The existence of a solution T 0, c0, B0 constrains the possible mutation profiles of the roots. Specifically, by

Definition [def:lsp] of a loss-supported phylogeny, a mutation at locus a is gained at most once in T 0. MatrixR is a valid mutation state

assignment for roots provided for each locus a, it is possible that a mutation at locus a occurred exactly once and was only lost when

the loss was supported. Specifically, (1) there exists a subtree Ta of T such that for all v˛VðTÞ, rv;a = 1 if v˛VðTaÞ and v is not the root of

Ta and rv;a = 0 otherwise; and (2) for any edge ðv;wÞ˛T such that v˛Ta andw;Ta, a˛Lðcv;cwÞ. Any validR uniquely defines a subtree

Ta for each locus a. Roots R admit a mutation profile ba for locus a provided that ba satisfies the following.
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1. If v;Ta then mutation a is absent in all cells v0 such that cv0 = cv.

2. If v˛Ta and v is not the root of Ta then mutation a is present in all cells v0 such that cv0 = cv.

3. If v˛Ta and v is the root of Ta then mutation a is either present or absent, as mutation a occurred in T
0

v

The likelihood given rootsR is computed bymarginalizing over all admittedmutation profiles. Let bR = fba : R admits bag be the set
of mutation profiles for mutation a admitted by roots R. Then:

PrðXrY;RÞ =
Ym

a= 1

Y
ba˛bR

Prðxarya;baÞ =
Ym

a= 1

Yn
v= 1

Pr
�
xv0 ;aryv0 ;a;R

�
such that

Pr
�
xv0 ;aryv0 ;a;R

�
=

8>>>>>>><
>>>>>>>:

Pr
�
xv0 ;aryv0 ;a;bv0 ;a = 0

�
if cv0 = cv and v;Sa

Pr
�
xv0 ;aryv0 ;a;bv0 ;a = 1

�
if cv0 = cv; v˛Sa and v is not root of Sa

1

2
Pr
�
xv0 ;aryv0 ;a;bv0 ;a = 1

�
+
1

2
Pr
�
xv0 ;aryv0 ;a;bv0 ;a = 0

�
otherwise:

We thus findR� by enumerating validmutation state assignments for roots for eachmutation locus a, then computing themaximum

likelihood as above.

Finding Refinement Subtrees
As input for theML-IDP, we define a ternary matrixB0

v = ½b0
w�w˛LðT 0

vÞ for each vertex v˛VðTÞ as before. For v˛IðTÞ, we define b0
pðrðvÞÞ as

previously given the mutation profile b0
rðvÞ of the root rðvÞ of T 0

v. For a˛Lðc0v;c0wÞ, we have that b0
pðrðvÞÞ =bv but unlike in the LSR prob-

lem, we are not given the mutation profile bv in the ML-LSR problem. Instead, we compute the likelihood of bv as in Equa-

tion [eq:likelihood]. As such, finding B� is equivalent to find the maximum likelihood submatrices fB�½fv : cw = cvg� : v˛IðTÞg such

that B0
v admits an incomplete directed perfect phylogeny.

We describe an integer-linear programming (ILP) formulation to compute these maximum likelihood submatrices. Given ternary

matrix B0
v and read count matrices Xv = ½xw�w˛LðTvÞ, Yv = ½yw�w˛LðTvÞ, we aim to find matrix B0 where PrðXvrYv;B

0
vÞ is maximized subject

to two constraints: (1) B0
v is perfect phylogeny matrix, and (2) b0

v;w;a =b0
v;w;a if b

0
v;w;as?. Let B0

v˛PBv
indicate that constraints (1) and (2)

aremet.We thus aim to findB
0�
v = argmax

B
0
v˛PBv

PrðXvrYv;B
0
vÞ andwe design an integer linear program (ILP) to findB0�

v. For simplicity in

the remainder of this section, we do not include subscripts for v – e.g., B0 =B0
v, X=Xv, Y=Yv. Below, we derive a linear objective for

the ILP.

PrðXrY;B0Þ = argmax
B
0
v˛PBv

X
w

X
a

logPr
�
xw;aryw;a;b

0
w;a

�

= argmax
B
0
v˛PBv

X
w

X
a

h
logPr

�
xw;aryw;a;b

0
w;a

�
� logPr

�
xw;aryw;a;b

0
w;a = 0

�i

= argmax
B
0
v˛PBv

X
w

X
a

b0
w;a

h
logPr

�
xw;aryw;a;b

0
w;a = 1

�
� logPr

�
xw;aryw;a;b

0
w;a = 0

�i
= argmax

B
0
v˛PBv

X
w

X
a

b0
w;a,Cw;a

where for observed cells w,

Cw;a = logPr
�
xw;aryw;a;bw;a = 1

�
� logPr

�
xw;aryw;a;bw;a = 0

�
:

For unobserved cells, we constrain that b0
w;a =b0

w;a if b
0
w;as? by setting Cw;a as follows:

Cw;a =

8<
:

M b0
w;a = 1

�M b0
w;a = 0

0 b0
w;a = ?;

whereM is a large constant. We use an ILP tomaximize
P
w

P
a
b0
w;a,Cw;a subject toB0 being a perfect phylogenymatrix. We introduce a

set of auxiliary variables F;G;H to enforce the three gametes condition, where Fa;b, Ga;b and Ha;b indicate that a pair of columns a;b

show the ð1; 1Þ, ð0; 1Þ and ð1; 0Þ gametes respectively, and Fw;a;b,Gw;a;b and Hw;a;b indicate that ðb0
w;a;b

0
w;bÞ show the ð1; 1Þ, ð0;1Þ and

ð1;0Þ gametes respectively. All auxiliary variables are constrained to be binary. This yields the following ILP.
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maximize
P
w;a

b0
w;a,Cw;a

subject to

Fa;b +Ga;b +Ha;b%2 for all a;b

b0
w;a +b0

w;b � 1%Fw;a;b%min
�
b0
w;a;b

0
w;b

�
for all a;b;w

max
w

Fw;a;b%Fa;b%
X
w

Fw;a;b for all a;b

�b0
w;a +b0

w;b%Gw;a;b%min
�
1� b0

w;a;b
0
w;b

�
for all a;b;w

maxGw;a;b
w

%Ga;b%
X
w

Gw;a;b for all a;b

b0
w;a � b0

w;b%Hw;a;b%min
�
b0
w;a; 1� b0

w;b

�
for all a;b;w

max
w

Hw;a;b%Ha;b%
X
w

Hw;a;b for all a;b

Proofs
Proof of Theorem 1

Proof.

We first show that any solution that meets these constraints is a solution to the LSR problem. Constraint (1) of the LSR problem is

explicitly enforced by condition (4) of Theorem 1. Constraint (2) is that T 0 is a loss-supported phylogeny, i.e., every mutation occurs

at most once (enforced by condition (1) of Theorem 1), and every mutation loss is supported. By condition (2), there are no mutation

losses between cells that have the same copy-number state, and by (3) mutation losses that are not supported are not allowed be-

tween cells with different copy-number states. Thus, if ðT 0;B0; c0Þ meet the conditions of Theorem 1, then ðT 0;B0;c0Þ is a solution to

the LSR.

We next show that any solution ðT 0;B0;c0Þ to the LSRmeets the four conditions stated in Theorem 1.Wewill do this by showing that

any (T 0, B0, c0) that violates any one of these constraints cannot be a solution to the LSR.

1. This condition is directly required by the definition of a loss-supported phylogeny

2. If this condition does not hold, there exists a mutation that is lost in subtree T 0½gðvÞ�. As every vertex in T 0½gðvÞ� has the same

copy-number state (by condition (4), this mutation loss is not supported and thus T 0 is not a solution to the LSR problem.

3. If this condition is violated, then there is a mutation loss that is not supported and thus T 0 is not a solution to the LSR problem.

4. This condition is directly required by the LSR problem statement.

Proof of Lemma 1

Proof.

We will show by construction that for any solution ðT 0;B0;c0Þ that violates these constraints, there exists another solution ðT 00;c00;B00Þ
that meets these constraints.

(1) For all ðv;wÞ˛EðTÞ, pðrðwÞÞ is a leaf of subtree T 0½gðvÞ�.

Consider an edge ðpðrðwÞÞ; rðwÞÞ˛EðT 0Þ such that pðrðwÞÞ is not a leaf of T 0½gðvÞ�. That is, pðrðwÞÞ has another child in T 0½gðvÞ�. We

construct T 00 by splitting pðrðwÞÞ into two vertices u and u0 such that there is an edge ðu;u0Þ˛EðT 00Þ, b00u =b00u0 and c00u = c00u0 , and the

only outgoing edge from u0 is ðu0;rðwÞÞ. Thus, u0 is now the parent of rðwÞ and u0 is a leaf. This split preserves the rest of the tree and

does not introduce violations of any of the conditions in Theorem 1 or any of the other assumptions in this Lemma. Thus T 00,B00, c00 is a
solution to the LSR problem.

(2) For all v˛VðTÞ such that v is not the root of T, brðvÞ = 1 if bv0 = 1 for all v0˛LðT 0½gðvÞ�Þ.

Assume that T 0;c0;B0 meet condition 1. If this constraint is violated, this means that there is some mutation a that is gained in a

subtree T 0½gðvÞ� but there are no leaves of T 0½gðvÞ� that do not contain a. Let T 00=T 0, c00= c0. Let b0
v0 ;a = 1 if v˛T 0½gðvÞ�. This change

does not violate any of the conditions in Theorem 1. Specifically, this change does not introduce new mutation gains, and as this

only alters the mutation profiles of internal vertices of T 0½gðvÞ� so this cannot introduce new mutation losses. As T 00 and c00 are pre-

served, refinement and copy-number consistency conditions are automatically met. This change may introduce violations to

Assumption 3 in this Lemma that can subsequently be corrected as below.

(3) For all v˛VðTÞ and all loci a, bpðrðvÞÞ;aRbrðvÞ;a.

This constraint states that there are nomutation gains on edges between subtrees.We construct T 00 by performing a similar split as

we did for constraint (1). Suppose there’s an edge ðpðrðvÞÞ; rðvÞÞ˛EðT 0Þ such that bpðrðvÞÞ;a = 0 and brðvÞ;a = 1. Split pðrðvÞÞ into vertices

u;u0 such that bu;a = 0 and bu0 ;a = 1, and for all a0sa, bu;a0 =bu0 ;a0 and the only outgoing edge from u0 is ðu0;rðwÞÞ. This split preserves the
e6 Cell Systems 10, 323–332.e1–e8, April 22, 2020
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rest of the tree and does not introduce violations of any of the conditions in Theorem 1 or any of the other assumptions in this Lemma.

Thus T 00, B00, c00 is a solution to the LSR problem.

Hardness of ML-LSR

Lemma 2 The ML-LSR is NP-hard.

Proof.

We show this by reduction from the Flip problem (Chen et al., 2006) which is known to be NP-Complete.

Given a binarymatrixB˛f0;1gm3n and integer k˛N, decide whether there exists a directed perfect phylogenymatrixB0˛ f0;1gm3n

such that no more than k entries in B0 differ from B.

Let ðB; kÞ be an instance of the Flip problem. For the corresponding instance of the ML-LSR problem, we let k = 1 and define the

inputs as follows:

1. T is the star phylogeny, where all leaves v˛VðTÞ are attached to a single internal vertex;

2. c= 1
!
;

3. No mutation losses are supported in L;
4. X=B, and Y= ½1�m3n

Define a likelihood function PrðXrY;B�Þ that is symmetric when xv;a˛f0;1g and yv;a = 1

log
�
Pr
�
xv;aryv;a;bv;a

��
=

�
a if xv;a =bv;a

b if xv;asbv;a

such that b<a. Thus the log-likelihood of a matrix B� is

logPrðXrY;B�Þ =
Pn

v =1

Pm
a= 1

log
�
Pr
�
xv;aryv;a;bv;a

��
= l,b+ ðmn� lÞa

We claim that there exists a perfect phylogeny matrix B0 with at most k changes if and only if there exists a solution B� to the

ML-LSR

logPrðXrY;B�ÞR k , b + ðmn� kÞ ,a

We first show the forward direction. If there exists a perfect phylogeny matrix B0 with at most k changes from B0 =X, then the log-

likelihood PrðXrY;B0ÞRk,b+ ðmn � kÞ,a. Thus for the maximum likelihood solution, B�, PrðXrY;B�ÞRPrðXrY;B0Þ.
We next show the reverse direction. If logPrðXrY;B�ÞRk,b+ ðmn�kÞ thenB� has atmost k changes fromX=B. Thus, there exists a

B0 =B�.

QUANTIFICATION AND STATISTICAL ANALYSIS

Simulation Details
We simulated 50 single-cell DNA sequencing datasets, each data set containing n=100 observed cells that were related by a phylo-

genetic tree containingm=20mutations, and k=4 copy-number profiles. We simulated each data set in four steps. First, we simulated

the topology of a tree. m+ k + 1= 25 vertices were randomly assigned to be in the trunk of the tree or in one of the k copy-number

profiles. Vertices in the trunk were joined into a linear path, and vertices not in the trunk were assigned attachments uniformly at

random, such that vertices in the same copy-number profile form connected subtrees. We assign themmutations onto the 20 edges

without copy-number profile changes. For each edge ðv;wÞ in the simulated tree with a change in the copy-number profiles c and c
0
,

we also simulated the set Lðc; c0 Þ of supported losses by selecting a random subset of the m loci such that
��Lðc;

c
0 Þ
�� � Poissonð0:2 �mÞ. Third, we introduced with probability 0:5 a mutation loss in every genomic locus a˛Lðc; c0 Þ if the mutation

is contained in the parent p. To respect the k-Dollo model with k = 1, we enforce that the same mutation is lost at most once in

the simulated tree. We thus obtained simulated trees with 1–8 mutation losses. Last, we add 100 leaves, corresponding to the

observed cells, and we append those to a random vertex of the simulated tree.

We simulated read counts from all the cells of each simulated tree with errors specific of single-cell DNA sequencing data. Spe-

cifically, we generated a total read count yv;a and a variant read count xv;a for each locus a in cell v with an allelic dropout rate of d =

0:15, according to previous analyses (Gawad et al., 2016). First, we generated yv;a according to a Poisson distribution and assuming

an expected sequencing coverage of 1003 such that yv;a � Poissonð100Þ. Note that when both the alleles drop out, yv;a = 0. Second,

we generated xv;a according to either the absence or presence of a mutation in locus a. If the variant is absent, xv;a � Binomialðtv;a; εÞ
where ε= 0:001 models the sequencing error rate. If the variant is present, we model the overdispersion in the variant read count xv;a
resulting from whole-genome amplification using a Beta-Binomial model as in previous studies (Singer et al., 2018) such that xv;a �
Binomialðtv;a; fv;aÞ and fv;a � maxfBetaða;aÞ; εg (with a= 0:25 in order to obtain an allele dropout rate of dz0:15).
Cell Systems 10, 323–332.e1–e8, April 22, 2020 e7
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Copy-Number Analysis of Colorectal Cancer Patient
We describe the analysis of copy number aberrations in colorectal cancer patient CRC2 from Leung et al. (2017), which provides part

of the input data for SCARLET. Leung et al. (2017) performed single-cell DNA sequencing of a 1000 cancer gene panel from 186 cells

from a primary tumor and metastasis. We computed copy-number profiles c and supported losses L from read-depth ratios as

follows.

First, we computed read depth ratios in 10-Mb genomic bins by calculating the read depth rv;i in every bin i of every cell v, as the

number of sequencing reads that align to the bin. To account for context-specific variation in read depth, we normalized rv;i using the

corresponding read depth ni in a matched normal sample. Moreover, to account for shifts in read depth due to differences in the

ploidy of each cell, we further corrected rv;i by using the ploidy 4v of cells v measured by DAPI staining (Leung et al., 2017) (4v =

3:3 for primary aneuploid cells, 4v = 3:0 for metastatic aneuploid cells, 4v = 2:0 for diploid cells). Therefore, we obtain the resulting

corrected read-depth ratio br v;i = rv;i
ni

4v

2 for every bin i in cell v. We performed hierarchical clustering on read depth ratios br v for all cells
v to infer copy-number profiles c. In particular, we fixed the number of clusters to 4 according to the the number of copy-number

clones previously identified (Leung et al., 2017).

We identified sets of supported losses in the same 186 cells by identifying significant shifts in the read depths of the bins that

contain the 36 somatic single-nucleotide variants previously identified by Leung et al. (2017). To test whether there was a loss of

variant a in bin i between copy-number profiles j and k, we performed a signed Wilcoxon rank-sum test. The two groups of obser-

vations correspond to cells with copy-number profiles j and k, such thatGj = fbr v;a; cv = jg andGk = fbr v;a; cv = kg. The Wilcoxon Rank-

sum Test tests whether observations in Gj and Gk are drawn from the same distribution. A mutation loss was supported if the test

yielded a p-value p<:01.

DATA AND CODE AVAILABILITY

SCARLET software, simulated data, and processed CRC2 data are available at github.com/raphael-group/scarlet. Original CRC2

data was downloaded from NCBI Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) under accession number

SRP074289.
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