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In Brief

Both single-nucleotide variants (SNVs)
and copy-number aberrations (CNAs)
accumulate during cancer evolution, and
these mutations may overlap on the
genome. We introduce SCARLET (single-
cell algorithm for reconstructing loss-
supported evolution of tumors), an
algorithm to construct phylogenies from
single-cell DNA sequencing data using
both SNVs and CNAs.
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SUMMARY

A small number of somatic mutations drive the development of cancer, but all somatic mutations are markers
of the evolutionary history of a tumor. Prominent methods to construct phylogenies from single-cell-
sequencing data use single-nucleotide variants (SNVs) as markers but fail to adequately account for copy-
number aberrations (CNAs), which can overlap SNVs and result in SNV losses. Here, we introduce SCARLET,
an algorithm that infers tumor phylogenies from single-cell DNA sequencing data while accounting for both
CNA-driven loss of SNVs and sequencing errors. SCARLET outperforms existing methods on simulated data,
with more accurate inference of the order in which mutations were acquired and the mutations present in in-
dividual cells. Using a single-cell dataset from a patient with colorectal cancer, SCARLET constructs a tumor
phylogeny that is consistent with the observed CNAs and suggests an alternate origin for the patient’s me-
tastases. SCARLET is available at: github.com/raphael-group/scarlet.

INTRODUCTION

Cancer arises from an evolutionary process during which so-
matic mutations accumulate in a population of cells. Different
cells within a tumor acquire distinct complements of somatic
mutations, resulting in a heterogeneous tumor. Quantifying
this intra-tumor heterogeneity and reconstructing the evolu-
tionary history of a tumor is crucial for diagnosis and treatment
of cancer (Burrell et al., 2013; Tabassum and Polyak, 2015). The
evolution of a tumor is typically described by a phylogenetic
tree or phylogeny, whose leaves represent the cells observed
at the present time and whose internal nodes represent ances-
tral cells (see Box 1). Tumor phylogenies are challenging to
reconstruct using DNA sequencing data from bulk tumor sam-
ples, since these data contain mixtures of mutations from thou-
sands to millions of heterogeneous cells in the sample (Jiao
et al., 2014; El-Kebir et al., 2015, 2016 Malikic et al., 2015;
Popic et al., 2015; Deshwar et al., 2015; Jiang et al., 2016; Alves
et al., 2017; Satas and Raphael, 2017; Pradhan and El-Kebir,
2018; Zaccaria et al., 2018; Miura et al., 2019; Myers et al.,
2019). Recently, single-cell DNA sequencing (scDNA-seq) of
tumors has become more common, and new technologies,
such as those from 10 X Genomics (10X Genomics, 2018),
Mission Bio (Mission Bio, 2019), and others (Gawad et al.,
2016; Zahn et al., 2017; Navin, 2015) are improving the effi-
ciency and lowering the costs of isolating, labeling, and
sequencing individual cells. While scDNA-seq overcomes the
difficulties of phylogeny reconstruction from bulk samples, it in-
troduces a new challenge of higher rates of missing data and
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errors due to DNA amplification errors, undersampling, and
sequencing errors (Gawad et al., 2016).

Early work in phylogeny inference from scDNA-seq data uses
single-nucleotide variants (SNVs) as phylogenetic markers. A
particular challenge for SNV-based analysis is high rates (up
to 30% for high-depth scDNA-seq; Gawad et al., 2016) of allele
dropout errors, where only one of two alleles is observed at a
heterozygous site. Methods address this challenge by using
an evolutionary model to infer a phylogeny while simultaneously
imputing missing data and correcting errors in the observed
SNVs. Algorithms such as SCITE (Jahn et al., 2016), OncoNEM
(Ross and Markowetz, 2016), Sci® (Singer et al., 2018), and
B-SCITE (Malikic et al., 20192, 2019b) use the simplest phyloge-
netic model for SNVs—the infinite-sites model. In this model, a
locus in a cell has one of two states: an SNV (or mutation) is
either present at the locus (state 1) or absent (state 0). Transi-
tions between states are constrained in the phylogeny such
that each mutation is gained (0 — 1) at most once during evolu-
tion, and never subsequently lost (1 — 0). A phylogeny that re-
spects the infinite-sites model is known as a perfect phylogeny,
and the state of mutations in the leaves of the phylogeny is sum-
marized by a mutation matrix, whose binary entries indicate the
presence (state 1) or absence (state 0) of every mutation in each
observed cell (Figure 1A). On error-free data, the perfect phylog-
eny is unique (Gusfield, 1991). However, on typical scDNA-seq
data, errors in the mutation matrix must be corrected to yield a
perfect phylogeny model. Because many such corrections are
possible, multiple phylogenies are typically equally consistent
with the data (Figure 1B). An additional challenge in inferring
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Cancer is an evolutionary process where cells in a tumor accumulate somatic mutations over time. While only a small number of
these somatic mutations drive the development of cancer, all somatic mutations are a marker of the evolutionary history of a tumor.
Recent scDNA-seq technologies enable the measurement of somatic mutations in individual cells from a tumor, providing data to
construct a phylogenetic tree, or phylogeny, that represents the past evolution of the tumor.

Constructing a phylogenetic tree that describes the ancestral relationships between cells in a tumor relies on a choice of markers, or
characters, that distinguish the individual cells as well as an evolutionary model describing how these markers change over time.
For scDNa-seq of tumors, a popular choice of markers is single-nucleotide differences between cancer cells, known as SNVs. How-
ever, current sScDNA-seq technologies measure SNVs with high rates of missing data and errors due to technical limitations such as
DNA amplification artifacts, undersampling, and sequencing errors. Standard phylogenetic methods do not handle such high rates
of missing data and errors. Thus, specialized algorithms have been developed to construct phylogenetic trees from single-cell mea-
surements of SNVs. Early works used the simplest evolutionary model for SNVs, the infinite-sites model, where a position in the
genome is mutated at most once.

However, SNVs are not the only type of somatic mutation that occur in cancer. In particular, most solid tumors have many CNAs,
mutations that duplicate or delete segments of the genome that range in scale from hundreds of nucleotides through whole chro-
mosomes. CNAs often overlap SNVs; for example, a deletion may remove SNVs. The infinite-sites model does not allow loss of
SNVs, and thus methods that use this model do not accurately reconstruct the phylogenetic trees of tumors with many CNAs.
More general evolutionary models that allow loss of SNVs, or mutation losses, have recently been used in single-cell phylogenetic
analysis, such as the Dollo and finite-sites models. However, these models do not examine the underlying DNA sequencing data for
evidence of CNAs. Thus, such models are generally too permissive, admitting many different phylogenies even when these contra-
dict the observed CNA data.

In this paper, we introduce a loss-supported evolutionary model that allows SNV losses only when accompanied by evidence in the
DNA sequencing data of a deletion at the same locus. We use this loss-supported model as the basis for an algorithm, SCARLET
(single-cell algorithm for reconstructing loss-supported evolution of tumors), that infer tumor phylogenies from scDNA-seq data,
accounting for both mutation loss and sequencing errors. We show that SCARLET infers single-cell tumor phylogenies more accu-

rately than existing methods.

phylogenies from cancer sequencing data is that somatic muta-
tions in tumors occur across all genomic scales from SNVs to
copy-number aberrations (CNAs), which amplify or delete larger
genomic regions. CNAs may overlap SNVs and affect the state
of SNVs in cells; e.g., a deletion that overlaps an SNV may result
in a mutation loss (1 — 0). The infinite-sites model does not allow
mutation losses and therefore may vyield incorrect phylogenies
when applied to SNVs in regions containing CNAs. One solution
is to exclude regions containing CNAs and build phylogenies
from SNVs in diploid or copy-neutral regions. However,
=90% of solid tumors are highly aneuploid (Taylor et al,,
2018) containing extensive CNAs, and =30% of solid tumors
have whole-genome duplications (Bielski et al., 2018). Identi-
fying collections of SNVs with no possibility of overlapping
CNAs during evolution of such tumors may be challenging.
Recently, several methods (El-Kebir, 2018; Ciccolella et al.,
2018; McPherson et al., 2016; Zafar et al., 2017, 2019; Malikic
et al., 2019a, 2019b) have been introduced for single-cell phy-
logeny inference that allows loss of mutations. SPhyR (El-Kebir,
2018), SASC (Ciccolella et al., 2018), and PyDollo (McPherson
et al., 2016) use the Dollo model (Dollo, 1893), which relaxes
the infinite-sites model. In the Dollo model, a mutation may be
gained (0 — 1) at most once but may be lost (1 — 0) multiple
times. SiFit (Zafar et al., 2017), SiCloneFit (Zafar et al., 2019),
and PhiSCS (Malikic et al., 2019a, 2019b) use the finite-sites
model, a further relaxation that allows a mutation to be gained
more than once. A challenge in using these less-stringent evolu-
tionary models is that they increase the ambiguity in phyloge-
netic reconstruction (Figure 1C). Even in simple cases with no
error, multiple phylogenies are consistent with the data, and

324 Cell Systems 10, 323-332, April 22, 2020

the number of phylogenies further increase when there are er-
rors and uncertainty in the mutation matrix. Both the errors in
scDNA-seq data and the mutation losses in the phylogeny
conspire to yield considerable challenges and ambiguity in
the single-cell phylogeny inference problem. This ambiguity is
further amplified because both sequencing errors and losses
result in the same signal in the observed data: an observed
“0” in the mutation matrix instead of a “1.” Thus, it is particularly
difficult to distinguish between errors in the data and potential
mutation losses.

A major limitation in using the Dollo or finite-sites models to
allow mutation losses is that neither of these models consider
evidence from CNAs that support or refute a mutation loss at
a locus. While more general multi-state models of tumor evolu-
tion have been used to infer phylogenies from bulk tumor
sequencing data (Deshwar et al., 2015; El-Kebir et al., 2016;
Jiang et al., 2016), these approaches neither model the errors
in scDNA-seq data nor scale to hundreds to thousands of
observed cells. Since mutation losses are the major complica-
tion in SNV evolution and responsible for most of the violations
of the infinite-sites model in scDNA-seq data (Kuipers et al.,
2017; McPherson et al., 2016), the full generality of a multi-state
model may not be necessary to obtain accurate phylogenies
from scDNA-seq data. Rather, we describe an approach that
constrains mutation losses by using copy-number data from
the same cells.

We introduce SCARLET (single-cell algorithm for reconstruct-
ing loss-supported evolution of tumors), an algorithm that infers
phylogenies from scDNA-seq data by integrating SNVs and
copy-number data. SCARLET is based on the loss-supported
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Figure 1. Loss-Supported Phylogeny Model and SCARLET Algorithm for the Maximum-Likelihood Loss-Supported Refinement Problem
(A) A mutation matrix with two mutations in three cells does not admit a perfect phylogeny. This may be due to either errors or mutation losses.

(B) Under the infinite -sites model, existing methods correct errors in the observed matrix to yield a perfect phylogeny.

(C) Under the Dollo model, existing methods identify mutation losses to explain violations of the infinite -sites model. Both the infinite-sites and Dollo models yield

multiple equally plausible phylogenies.

(D) The loss-supported model overcomes this ambiguity by using copy-number data to constrain mutation losses.

(E) SCARLET algorithm for the maximum-likelihood loss-supported refinement problem. SCARLET integrates SNVs and CNAs for tumor phylogeny
inference. For CNAs, observed copy-number profiles indicate amplified (red) or deleted (blue) genomic regions along the entire genome and are used to
obtain two inputs for SCARLET. First, supported loss sets £(c,c’) for pairs of copy-number profiles (empty sets are not shown) indicate mutations that are
affected by deletions. Second, a copy-number tree T, which describes the ancestral relationships between observed cells (leaves) as determined by copy-
number profiles. For SNVs, variant X and total Y read counts are provided to SCARLET for every cell and every mutation. SCARLET computes a joint tree
T' on the observed cells and a maximum-likelihood mutation matrix B* by constraining mutation losses to the supported loss sets £, computing a
refinement T’ of T, and selecting the maximum-likelihood B* using a probabilistic model for the presence (b;;=1) or absence (b;;=0) of each SNV in

each cell.

phylogeny model that constrains mutation losses to loci, where
the copy-number data have evidence of a deletion (Figure 1D).
The loss-supported phylogeny generalizes the infinite-sites
and Dollo models. SCARLET also relies on a probabilistic model
of the read counts for each SNV to address errors and missing
data that are common in scDNA-seq. On simulated data, we
show that SCARLET infers more accurate phylogenies
compared with existing methods. We then use SCARLET to
analyze scDNA-seq data from a metastatic colorectal cancer pa-
tient (Leung et al., 2017). We find that the published phylogeny —
constructed from SNVs under the infinite-sites model—has the
implausible conclusion that genome-wide copy-number profiles

evolved twice independently during the evolution of this tumor. In
contrast, SCARLET infers a loss-supported phylogeny that has
three mutation losses, with each loss supported by a copy-num-
ber change at the locus. Moreover, the SCARLET phylogeny
supports the hypothesis of a single migration between the colon
primary tumor and liver metastasis (monoclonal seeding). In
contrast, previous published phylogenies (Leung et al., 2017; Za-
far et al., 2019) reported a more complex origin of the metastasis
with multiple migrations (polyclonal seeding). By integrating in-
formation from both SNVs and CNAs, SCARLET obtains more
accurate reconstructions of tumor evolution at single-cell
resolution.
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RESULTS

SCARLET Algorithm for Loss-Supported

Phylogeny Model

We developed an algorithm, SCARLET, to infer phylogenetic
trees from scDNA-seq data by integrating data from both
SNVs and CNAs. SCARLET has three important features (Fig-
ure 1E): (1) the loss-supported phylogeny model, which con-
strains mutation losses to loci where there is a corresponding
decrease in copy number; (2) an algorithm to compute a loss-
supported phylogeny by refinement of a coarse phylogenetic
tree derived from copy-number data alone; and (3) maximum-
likelihood inference of SNVs using a probabilistic model of
observed read counts in scDNA-seq data. We describe each
of these key features below.

The loss-supported model is a model of SNV evolution where
mutation gains (0 — 1) occur at most once, but mutation losses
(1 —0) are constrained by sets £ of supported losses that are
defined by CNAs in the same cells (Figure 1D). Specifically, we
assume that for each cell we measure both a mutation profile
b of SNVs and a copy-number profile c. For each pair (c,c’) of
copy-number profiles, we define the supported loss set
L(c,c’) as the set of SNVs at loci where there is a decrease in
copy number (e.g., due to a deletion or loss-of-heterozygosity
[LOH] event) between profiles ¢ and ¢’. In the loss-supported
phylogeny, a mutation loss at an SNV loci a is allowed between
cellsvand w only ifais in £L(cy,cy). The loss-supported model
can thus be viewed as a generalization of other models for
SNV evolution: the perfect phylogeny model is the special case
where £ =, while the Dollo model and finite-sites model corre-
sponds to £ being the complete set of all mutations. In contrast
to these extremes, the loss-supported model allows for interme-
diate values of £ derived from copy-number data. The loss-
supported model depends on the copy-number profiles of
both the observed and ancestral cells. However, we do not
directly measure the copy-number profiles of the ancestral cells.
To overcome this limitation, SCARLET takes as input a copy-
number tree T, which is derived from the copy-number profiles
of the observed cells using copy-number phylogenetic recon-
struction algorithms (such as described in Schwarz et al,
2014; Chowdhury et al., 2015; El-Kebir et al., 2017; Zaccaria
et al., 2018) (Figure 1E). SCARLET computes the supported
loss sets L from the copy-number profiles of the observed cells
(leaves of T) and the copy-number profiles of the ancestral cells
(internal vertices of T). Typically, scDNA-seq data of SNVs (e.g.,
from targeted sequencing) measures copy-number profiles with
low resolution, and thus tumor cells share a limited number of
distinct copy-number profiles. Consequently, the copy-number
tree T has many multifurcations or unresolved ancestral vertices
with more than two children. SCARLET finds a joint tree T’ that is
a loss-supported phylogeny and a refinement (Wang et al., 2014)
of T by resolving multifurcations in T using the mutation profiles
of the observed cells (Figure 1E). Data from scDNA-seq typically
have high error rates in identifying SNVs, and particularly high
rates of false negatives and missing data due to amplification
bias and allele dropout (Gawad et al., 2016). SCARLET models
these errors using a beta-binominal distribution (Singer et al.,
2018) of the observed read counts. As such, SCARLET com-
putes the loss-supported refinement T’ that maximizes the likeli-
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hood of the observed sequencing data under this probabilistic
model (Figure 1E).

Simulated Data

We compared SCARLET to four existing algorithms that build
phylogenies from single-cell sequencing data, SCITE (Jahn
et al., 2016), Sci® (Singer et al., 2018), SPhyR (El-Kebir, 2018),
and SiFit (Zafar et al., 2017), on simulated data. We simulated
50 trees, each with 20 mutations, 4 copy-number profiles, and
1-8 mutation losses per tree. From these trees, we simulated
100 observed cells with each cell having equal probability of be-
ing a child of any vertex in the simulated tree, and simulated
sequencing data with an expected sequencing depth of 100x
and allelic dropout rate of 0.15. Additional details of simulated
data and parameters of each method are included in STAR
Methods. We evaluated the phylogenies output by the methods
by two measures, the mutation matrix error and the pairwise
ancestral relationship error, that have been previously used in tu-
mor evolution studies (Ciccolella et al., 2018; Myers et al., 2019;
Govek et al., 2018; Singer et al., 2018; El-Kebir, 2018; Satas and

Raphael, 2017). The mutation matrix error
~ m n ~
M(B,B)=:1. > > |bjj—bjj| is the normalized Hamming
i=1 j=1
distance between the inferred binary mutation matrix B and
the true binary mutation matrix B and assesses the accuracy

of the error-corrected mutation profiles for each observed cell.

The pairwise ancestral relationship error E(T, f) is the proportion
of pairwise ancestral relationships between mutations in the in-

ferred tree T that differ from the ancestral relationships in the
true tree T. Specifically, every pair a,a’ of mutations has one of

four possible ancestral relationships in TandinT: (1)aand &
occur on the same branch; (2) a is ancestral to @'; (3) &’ is ances-
tral to a; and (4) a and &’ are incomparable. Note that only muta-
tion gains are considered in the calculation of this error, so that all
methods are evaluated on the same set of mutations. We do not
calculate the pairwise ancestral relationship error for SiFit
because it uses a finite-sites model, which allows mutations to
recur and, consequently, pairs of mutations may not have a
unique relationship.

SCARLET outperforms all other methods on both mutation
matrix error and ancestral relationship error (Figures 2A and
2B). The high errors of SCITE and Sci® were expected since
these methods use an infinite-sites model while the simulations
include mutation losses, which violates the model assumptions.
However, the methods that do allow mutation losses, SPhyR
(based on the k-Dollo model) and SiFit (based on the finite-sites
model), do not exhibit improvement over the other methods and
perform worse than SCARLET. These results confirm that
models that include unconstrained mutation losses have signifi-
cant ambiguity as it is difficult to distinguish between true muta-
tion losses and false positives or negatives in the data (Figure 1).
By using copy-number information to constrain mutation losses,
SCARLET overcomes the ambiguity in phylogeny reconstruction
and obtains lower error in the inferred mutation matrix and
phylogeny.

We evaluated the effect of the input copy-number tree on
SCARLET’s accuracy by running SCARLET in two modes:
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Figure 2. SCARLET Outperforms Existing Methods for Phylogeny Inference on Simulated Single-Cell Data
(Left) Mutation matrix error, (center) Pairwise ancestral relationship error, and (right) runtime for each method. SCARLET was run either knowing (true CN tree) or

not knowing (optimal CN tree) the true copy-number tree.

when the true copy-number tree is either known (“SCARLET true
CN tree”) or unknown (“SCARLET optimal CN tree”). In the latter
case, we enumerated all copy-number trees, ran SCARLET once
for each copy-number tree, and output the solution with the high-
est likelihood. In both cases, we provided SCARLET with the true
copy-number profiles of each cell and the true set £ of supported
losses. SCARLET exhibited comparable performance when
running with or without knowledge of the copy-number tree (Fig-
ures 2A and 2B). Notably, in 46/50 simulated instances, the
maximum-likelihood solution obtained when running SCARLET
with unknown copy-number tree was identical to the solution
found when providing the true copy-number tree. Clearly,
running SCARLET with all possible copy-number trees (16
copy-number trees in this simulation) increases the runtime (Fig-
ure 2C), but the runtime remains reasonable when the number of
copy-number profiles is small, which is the case for many real
datasets (see below).

We further tested SCARLET to evaluate scalability to datasets
for larger numbers of mutations (up to m=100) and larger num-
ber of copy-number profiles (up to k=10) (Figures 3A and 3B).
SCARLET has no loss of accuracy for larger datasets and in
some cases has better accuracy on larger datasets. The runtime
of SCARLET increases with m, and increases moderately with k,
but remains reasonable (with all simulated instances taking < 3
min to run). In addition, we tested how errors in inferring the cor-
rect number of copy-number profiles affected the accuracy of
SCARLET (Figure 3C). In particular, we tested two types of er-
rors. In “merge” errors, two sets of cells with distinct copy-num-
ber profiles are merged together into one. In “split” errors, one
set of cells is split and inferred to have two distinct copy-number
profiles. With either type of error, SCARLET outperforms other
algorithms, with “split” errors leading to a larger reduction in per-
formance than “merge” errors.

Single-Cell Phylogeny of Metastatic Colorectal Cancer
We used SCARLET to analyze scDNA-seq of a metastatic colo-
rectal cancer patient CRC2 from Leung et al. (2017). This data-

set included targeted sequencing of 1,000 genes in 141 cells
from a primary colon tumor and 45 cells from a matched liver
metastasis (Figure 4A). The authors identified 36 SNVs and
used SCITE (Jahn et al., 2016) to derive a perfect phylogeny
from these SNVs (Figure 4B). This perfect phylogeny tree shows
two distinct branches of metastatic cells and (Leung et al.,
2017) concluded that this was evidence of polyclonal seeding
of the liver metastasis; i.e., two distinct cells (or groups of cells)
with different complements of mutations migrated from the pri-
mary colon tumor to the liver metastasis. Examining the copy-
number data, one finds a curious discrepancy between
the SCITE tree and the single-cell copy-number profiles.
Whole-genome sequencing of 42 single cells from the same pa-
tient reveals that all metastatic cells share losses of chromo-
somes 2, 3p, 4, 7, 9, 16, and 22 relative to the cells in the pri-
mary tumor (Figure 4C). According to the SCITE tree, all of
these large CNAs would had to have occurred twice indepen-
dently in the two distinct branches of metastatic cells. Although
CNAs can exhibit homoplasy, this high rate of occurrence of the
exact same events seems highly unlikely. Thus, we observe an
inconsistency between the copy-number data and the SCITE
tree constructed using only SNV data. Notably, this same data-
set was recently analyzed by SiCloneFit (Zafar et al., 2019) us-
ing a finite-sites model. The SiCloneFit tree also showed two
branches of metastatic cells and concluded that there was
polyclonal seeding of the metastases. Thus, the SiCloneFit
phylogeny also has the same inconsistency between the SNV
phylogeny and copy-number data.

We analyzed this dataset using SCARLET to see whether joint
analysis of SNVs and CNAs data could help resolve the incon-
sistency between the tree derived from SNVs and the observed
copy-number profiles. We first derived four distinct copy-num-
ber profiles by hierarchical clustering of ploidy-corrected read-
depth ratios from the targeted single-cell sequencing data.
These copy-number profiles included an aneuploid profile for
all primary cells (P), two different aneuploid profiles for metasta-
tic cells (M1 and M2), and the profile of diploid cells (D); (Leung
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Figure 3. SCARLET Scales to Larger Datasets and Tolerates Errors in Copy-Number Profiles
(A) SCARLET results on simulated data with varying number of mutations, n=100 cells and k =4 copy-number profiles. (Left) Mutation matrix error; (Center)

pairwise ancestral relationship error; (Right) runtime.

(B) SCARLET results on simulated data with varying number of copy-number profiles, n=100 cells and m =20 mutations. (Left) Mutation matrix error; (center)

pairwise ancestral relationship error; (right) runtime.

(C) SCARLET results on simulated data with incorrect number of copy-number profiles. We introduce errors in the number of copy-number profiles by either
merging two distinct copy-number profiles together (merged profile), or splitting one copy-number profile into two (split profile) and compare performance against

the correct number of copy-number profiles.

et al., 2017) and similarly derived four copy-number profiles
from whole-genome sequencing of a different set of 42 cells
from the same patient. Since four copy-number profiles is a
small number to infer a tree using a copy-number evolution
model, we instead ran SCARLET in the “optimal CN tree”
setting selecting the copy-number tree that produced the high-
est likelihood. Specifically, we ran SCARLET on all nine possible
rooted copy-number trees with the root having the diploid
profile (D) and internal vertices labeled by one of the three aneu-
ploid copy profiles (P, M1, and M2). For each copy-number tree,
we derived the set £ of supported losses as the mutation loci
that exhibited significant decreases in read depth (i.e., number
of aligned sequencing reads). Additional details are included in
STAR Methods.
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SCARLET constructed a tree (Figure 4D and 4E) with a single
clade containing all metastatic cells. This is consistent with the
copy-number data, since the shared chromosomal losses could
have occurred once in a common ancestor of all metastatic cells.
Moreover, this tree suggests that the liver metastasis was the
product of monoclonal seeding; i.e., a single cell (or small group
of cells) with the same somatic mutations migrated from the pri-
mary colon tumor to the metastasis and all metastatic cells de-
scended from the founder cells present in this single migration.
This result contradicts previous results (Leung et al., 2017; Zafar
et al., 2019) of a more complicated polyclonal seeding of the
metastasis. The SCARLET tree contains three mutation losses:
in genes FHIT, LRP1B, and LINGO2. Each of these losses is sup-
ported by a significant decrease in read depth (Figure 4D),



Cell Systems

¢? CellPress

OPEN ACCESS

A D SCARLET Mutation Matrix
[ Absent
Diploid Diploid
iploi VAF plot - Present
1
Primary = I Primary &
Aneuploid = i 2 os Aneuploid =
= .
. _—= _
Metastasis = | Metastasis
Aneuploid 1 = e 0 Aneuploid 1
Metastasis ] DO d Metastasis
Aneuploid 2 = TdS- | Aneuploid 2
* SNVs with mutation losses
B E SCARLET Tree
Copy-number profiles 1R
ATR TOX
EPHB6 = Diploid TPS3, APC:2
SNPR;\CIZI @D Primary Aneuploid STRN
) 3 Met. Aneuploid 1 ATR
] : CHN1, VN1,
Met. Aneuploid 2 LINGO2:1, LINGO2:2 ALK, EPHB6
T MVYH11, LRP1B NR3C2
Condensed Representation 2‘!2 SPEN:L
polyclonal seeding ATP7B monoclonal seeding
CHN1 of liver metastasis ’ of liver mgtastasis
“bridge” FHIT MB4, PICK3CG 0, » ’ PTPRD
mutations|  APC LINGO2:5 = LINGO2:3, FUS,
ATP7B SPEND "LRP1B, -LINGO2:1 -FHIT, LAVIBS,
e Vertex colors = NR4A3 |INGO2:4, IL7R,
LINGO2:1 STPRD Copy-number prof. HELZ : =
LRP1B of attached leaves TSHZ3 PIK3CG > ,
PRKCB LINGO2:5 -
SPEN:2 @
C F
E LINGO2:1 LRP1B FHIT
£ i
- _E : i % - 0 p=10° p=4x10+, p=005
E i s 22 . - B
8 5 - H ES &8s —— .
17] = = ; S &E 3 ,
ol = i 2RS == . -
= " ——i B go
E = - SF * . s 1
B -2 o o
Copymnba Primary ~ Met. | Primary ~ Met. 1 Met. 1 Met 2
0123452

Figure 4. SCARLET Infers a Loss-Supported Phylogeny Consistent with Copy-Number Profiles from a Metastatic Colorectal Cancer Patient
SCARLET was applied to targeted scDNA-seq of 141 single cells from the primary colon tumor (blue) and 45 single cells from the liver metastasis (green) of

patient CRC2.

(A) Variant allele frequencies of 36 somatic SNVs in 96 cells as inferred by SCITE.
(B) Perfect phylogeny tree inferred by SCITE in Leung et al. (2017) of patient CRC2. Two distinct branches of metastatic cells —suggesting polyclonal seeding of
the liver metastasis—are separated by the four indicated “bridge mutations” occurring in cells of the primary tumor.
(C) Published copy-number profiles from DOP-PCR (degenerate oligonucleotide-primed polymerase chain reaction) whole-genome sequencing of 42 single cells
from both the primary tumor and metastasis of CRC2; figure adapted from Leung et al. (2017). All metastatic cells share deletions of six chromosomes (black
boxes) but are separated into two groups (light and dark green) by a small number of additional CNAs.

(D) Mutation matrix derived from the loss-supported phylogeny inferred by SCARLET on the same data.
(E) The loss-supported phylogeny inferred by SCARLET has a single branch containing all metastatic cells —suggesting monoclonal seeding of the liver
metastasis and consistent with the similar copy-number profiles of all metastatic cells. SCARLET identifies mutation losses (red) in LINGO2, LRP1B, and FHIT.
(F) Significant decreases in read depths are observed at the loci of the three mutation losses identified by SCARLET (p values derived from Wilcoxon Rank-

Sum test).

providing evidence that the loci containing these mutations were
likely affected by deletions. Notably FHIT and LRP1B are located
in fragile sites in the genome (Smith et al., 2006), which are
known regions of genomic instability. In addition, the loss of
the mutation LINGO2:1 in LINGO2 is further supported by a shift

in the variant allele frequency of another mutation, LINGO2:2, in
the same gene. Specifically, the variant allele frequency of
LINGO2:2 is =1 in the metastatic cells (Figure 4A), suggesting
that this mutant allele is homozygous, consistent with a deletion
or LOH event where the LINGO2:1 mutation was lost.
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We examined further the evidence for polyclonal seeding in
the initial study of this patient. Leung et al. (2017) included a
statistical analysis of the variant read counts of the four “bridge
mutations,” ATP7B, FHIT, APC, and CHN1 that occurred be-
tween the first and second metastatic branches in the SCITE
tree. This analysis showed that mutations in ATP7B and FHIT
were present in a subset of primary tumor cells and in the sec-
ond metastatic branch (detected in 10/13 and 13/13 cells,
respectively) while being absent in the second metastatic
branch (detected in 1/15 and 1/15 cells, respectively). Under
the infinite-sites model used by SCITE, mutation loss is not al-
lowed and thus polyclonal seeding is necessary to explain the
absence of these mutations. The same analysis found high un-
certainty regarding the placement of mutations in APC and
CHN?1 and thus these were not cited as evidence for polyclonal
seeding.

The loss-supported model used by SCARLET provides an
alternate explanation for the absence of FHIT and ATP7B.
SCARLET identifies a supported mutation loss to explain the
presence of the mutation in FHIT only in a subset of metastatic
cells (M1). This loss is supported by a shift in read depth (p=
0.005) in the 10-Mb region containing the locus (Figure 4F).
SCARLET does not identify a supported mutation loss to simi-
larly explain ATP7B as we did not observe a significant decrease
in read depth for the corresponding locus (p=0.34). However,
this lack of a significant decrease in read depth at the ATP7B lo-
cus does not necessarily imply that there was no mutation loss.
In particular, because targeted sequencing was performed for
only 1,000 genes, the copy-number data are fairly low resolution,
and we calculated read depth in 10-Mb bins. Thus, we may lack
the statistical power to identify a shorter deletion, especially a
deletion present in only the 10 metastatic cells with copy-num-
ber profile M2. In summary, we argue that the sequencing data
provide stronger evidence for the phylogeny constructed by
SCARLET, which is consistent with both SNV and copy-number
data and supports a more parsimonious explanation of mono-
clonal seeding of the liver metastasis.

DISCUSSION

Somatic mutations in tumors range across all genomic scales,
from SNVs through large CNAs. To date, most methods for con-
structing phylogenies from scDNA-seq data (Jahn et al., 2016;
Singer et al., 2018; Ross and Markowetz, 2016; Zafar et al.,
2017, 2019; El-Kebir, 2018; Ciccolella et al., 2018; McPherson
et al., 2016; Malikic et al., 2019a, 2019b) used only SNVs,
ignoring CNAs and thus throwing out important information for
phylogenetic inference. Here, we introduced SCARLET, which
uses measurements of both SNVs and CNAs to reconstruct tu-
mor phylogenies from scDNA-seq data. SCARLET is based on
a loss-supported evolutionary model, which constrains mutation
losses to loci containing evidence of a CNA. By using the infor-
mation about CNAs that is readily available in scDNA-seq data,
the loss-supported model has less ambiguity in the phylogeny
inference than the Dollo and finite-sites models that allow muta-
tion losses to occur anywhere on the tree. In scDNA-seq data,
where there is often considerable uncertainty in the mutations
present in each cell, this reduction in ambiguity enables more ac-
curate phylogeny inference. On simulated scDNA-seq data, we
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find that SCARLET outperforms existing methods that do not uti-
lize copy-number data. On targeted scDNA-seq data from a
metastatic colorectal cancer patient, we showed that SCARLET
found a phylogeny containing three mutation losses. Notably,
SCARLET’s tree was both more consistent with the copy-num-
ber data and provided a simpler explanation of monoclonal
seeding of the liver metastasis compared with the more complex
phylogenies reported previously (Leung et al., 2017; Zafar et al.,
2019). Thus, accurate modeling of mutations losses results in
different conclusions regarding the migration patterns of
metastasis.

There are a number of directions for future improvement. First,
the current implementation of SCARLET either requires the
copy-number tree in input or enumerates all possible copy-num-
ber trees and selects the maximum-likelihood result. This
approach is applicable when the number of distinct copy-num-
ber profiles is small; e.g., in the case of targeted scDNA-seq
data (Leung et al., 2016; Xu et al., 2012; Mission Bio, 2019),
where copy-number data typically are lower resolution. Howev-
er, with higher-quality copy-number data, extensions to larger
numbers of copy-number profiles are needed. One approach
is to use copy-number evolution models (Chowdhury et al.,
2015; Schwarz et al.,, 2014; El-Kebir et al., 2017; Zaccaria
et al., 2018) to identify a modest number of copy-number trees
that summarize the uncertainty in the copy-number evolutionary
history. Second, one could extend the loss-supported model
into a unified evolutionary model for SNVs and CNAs. Indeed,
the loss-supported model provides a natural framework to inte-
grate SNVs directly with evolutionary models of CNAs. As single-
cell sequencing technologies continue to improve, higher quality
measurements of both SNVs and CNAs from the same sets of
cells will become available. We anticipate that SCARLET and
the loss-supported model will play a crucial role in the analysis
of these data.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Simulated Data This paper https://github.com/raphael-group/scarlet
Colorectal cancer single-cell DNA NCBI Sequence Read Archive https://trace.ncbi.nim.nih.gov/Traces/sra/?
sequencing study=SRP074289

Software and Algorithms

SCARLET This paper https://github.com/raphael-group/scarlet
SCITE Jahn et al.,, 2016 https://github.com/cbg-ethz/SCITE/
SiFit Zafar et al., 2017 https://bitbucket.org/hamimzafar/sifit/
SciPhi Singer et al., 2018 https://github.com/cbg-ethz/SCIPhI/
SPhyR El-Kebir, 2018 https://github.com/elkebir-group/SPhyR

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Ben Raphael
(braphael@princeton.edu). This study did not generate any reagents.

METHOD DETAILS

Loss-Supported Phylogeny Model

We model the evolutionary history of a tumor as a rooted, directed phylogenetic tree T = (V(T),E(T)), whose vertex set V(T)=
L(T) UI(T) consists of a set L(T) of n leaves corresponding to observed cells and a set /(T) of inner vertices corresponding to ances-
tral cells. A directed edge (v, w)e E(T) indicates that cell v is an ancestor of cell w. We do not directly observe T but rather we measure
a set of phylogenetic markers for every observed cell ve L(T). In the case where the markers are somatic single-nucleotide variants
(SNV), the measurements correspond to a binary mutation profile b, € {0,1}"for each observed cell v, where b, , = 1 indicates that
cell v has a somatic mutation at locus a and b, 5, = 0 indicates that cell v does not have a somatic mutation at locus a. We assume that

the mutation profile b, of the rootris b, = 0 since the root represents the normal cell that preceded the tumor. We define the mutation
matrix B=[b,],, 1 to be the matrix whose rows are the mutation profiles of leaves ve L(T).

The problem of phylogenetic tree inference is to find a tree T and an augmented mutation matrix B' = [b'y], .+, whose rows corre-
spond to binary mutation profiles of the vertices of T and where the submatrix [b'v]veL(T) is equal to B. Since there are many possible

trees that relate the observed cells, methods for phylogeny inference find T and B’ that best fit a specific evolutionary model.
The simplest evolutionary model for SNVs is the infinite sites, or perfect phylogeny model. In this model, each mutation is gained
(0— 1) at most once, and is never subsequently lost. A more general model the Dollo model allows mutations to be gained (0— 1)
at most once, but lost (1 — 0) multiple times. Formally, the Dollo model is defined as follows.

Definition 1 A phylogenetic tree T is a Dollo phylogeny with respect to augmented mutation matrix B’ provided that for every locus
a, there is at most one edge (v,w)e E(T) such that b, ,=0and b’ 5 = 0.

In contrast to the perfect phylogeny model, under the Dollo model there are often multiple phylogenies that are consistent with
input data (Figure 1).

DNA sequencing data often contains contains additional information about the genomic locations where mutation losses are
possible. Specifically, we assume that for each cell v, we also observe a copy-number profile p, =[py 1, ..., pvn] Where p, ; indicates
the number of copies of genomic segment i in cell v. For simplicity, we label the unique copy-number profiles observed for all the cells
by integers {1,...,k}, such that the vector ¢ = [c,] represents the copy-number profile assignment c,e {1, ...,k} of every cell v. The
copy-number profiles of cells provide constraints on mutation losses. In particular, we allow mutation losses only at loci where an
overlapping deletion or loss-of-heterozygosity (LOH) distinguishes the copy-number profiles. We record the information about the
loci where losses are allowed in a collection £ of supported loss sets. For each pair ¢, ¢’ of distinct copy-number profiles we define
theset £(c,c’)={1,...,m} of supported losses to be the set of all the mutation loci located in genomic regions with a decrease in copy
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number (indicating possible deletion or LOH) between c and ¢’. We define £L(c, c) = for all c. We denote the collection of supported
lossesas £ = {L(c,c') : (c,c’)e{1,....k} x{1,...,k}}. We define aloss-supported phylogeny as a Dollo phylogeny where all mutation
losses are supported.

Definition 2 Given copy number profiles ¢’ = [c] V() and supported losses L, a phylogenetic tree T is a loss-supported phylogeny
with respect to augmented mutation matrix B’ provided that: (1) T is a Dollo phylogeny; (2) If b, , =1 and b’,, , =0 for edge (v, w) then
aeL(c'y,C'w).

The loss-supported phylogeny inference problem is to infer a loss-supported phylogeny T given a mutation matrix B and copy-
number profile vector c that label the leaves of T, as well as a set £ of supported losses. However, this general problem has a major
complication: the copy-number profiles of the ancestral cells are unknown. Without knowledge of ancestral copy-number profiles,
the loss sets £ cannot be used to constrain mutation losses. Ideally, one might infer copy-number profiles of ancestral cells (e.g.,
using a copy-number evolution model (Schwarz et al., 2014; Chowdhury et al., 2015; El-Kebir et al., 2017; Zaccaria et al., 2018)) while
simultaneously inferring a loss-supported phylogeny on the SNVs. The derivation of a score/likelihood for such joint model is not
straightforward, and is left for future work. Instead, in the next section, we describe an algorithm that infers a loss-supported phy-
logeny by refining a copy-number tree given in input.

Loss-Supported Refinement Problem

In this section, we introduce the Loss-Supported Refinement (LSR) problem, a special case of the loss-supported phylogeny infer-
ence problem, where we have additional information about the evolutionary relationships between copy-number profiles. In partic-
ular, we assume that we are given a copy-number tree b’, , = 1 and a copy-number profile vector b’ , =0 for all vertices in T. A copy-
number tree is a phylogenetic tree constructed using CNAs as evolutionary markers. Leaves of T correspond to observed cells, inner
vertices of T to ancestral cells with distinct copy-number profiles, and edges to ancestral relationships. As single-cell DNA
sequencing data of SNVs typically measures copy-number profiles with low-resolution, this copy-number tree typically has many
multifurcations (i.e., unresolved ancestral vertices with more than two children). We use the mutation matrix (v,w) for all ae
L(c'y,c'w) to refine vertices in T, which results in a joint tree T’ that reflects the evolutionary history of both the SNVs and CNAs.
This sequential approach is inspired by an asymmetry between SNVs and CNAs in the loss-supported model: CNAs affect the
observed state transitions of SNVs as deletions result in SNV loss, but SNVs do not result in changes in copy-number state. The joint
tree T’ is a refinement (Wu et al., 2009) of T; i.e., L(T")=L(T) and T may be obtained by contracting edges in T".

A refinement is formalized as a mapping v : V(T) —2Y(T) where for all ve V(T), y(v) is arooted subtree T'[y(v)] in T'. Given T’ one
can obtain T by contracting each subtree T'[y(v)] into a single vertex ve V(T). We refer to the set of subtrees defined by v as the
refinement subtrees.

We define the LSR problem as the problem of finding a refinement T’ of a copy-number tree T such that T’ is a loss-supported
phylogeny.

Problem 1 Loss-Supported Refinement (LSR) problem Given a copy-number tree T, a copy-number profile vector ¢ = [c,],. V()
a mutation matrix B = [b,],., ), and supported losses L, find a refinement T' of T, a copy-number profile vector ¢’ = [y ],y and an
augmented mutation matrix B' = [by,],.y ., with b, =b|, for all v'e L(T"), such that

(1) ¢/v =cy, forallveV(T) and V'ey(v), and
(2) T’ is a loss-supported phylogeny with respect to B', ¢/, and L.

We provide four necessary and sufficient conditions for a solution 77, ¢/, B' to the LSR problem. These conditions constrain the set
of refinement subtrees defined by v. The four conditions state that (1) each mutation occurs at most once, (2) mutations are not lost
within refinement subtrees, (3) all mutation losses between refinement subtrees are supported, and (4) refinement subtree copy-num-
ber profiles are preserved. We formally define these four conditions as follows, using r(v) to denote the root of subtree T'[y(v)] and
p(r(v)) to denote the parent of r(v).

Theorem 1 Given copy-number tree T, copy-number profile vector ¢, mutation matrix B, and supported losses L, a refinement T' of
T, copy-number profile vector ¢/, and augmented mutation matrix B’ are a solution to the LSR problem if and only if

(1) For all loci a, there exists exactly one edge (v',w')e E(T") with by, , =0 and b}, ,=1;

And for all ve V(T):

(2) There does not exist any edge (v/,w')e E(T'[y(v)]) with b, , =1 and by, , =0;
/ / / / .

@) If b, .=1and by, ,=0, then ae L(c;,)),Cr))

4) c,, =cy, forallv'ey(v)

Note that, taken together, conditions (1) and (2) imply that each of these subtrees T'[y(v)] is a perfect phylogeny with respect to
submatrix B'[y(v)]. We use this structure to solve the LSR problem in the next section.

Solving the Loss-Supported Refinement problem

In this section, we derive an efficient algorithm to solve the LSR problem. This algorithm decomposes the LSR problem into k= |/(T)|
instances of the Incomplete Directed Perfect Phylogeny (IDP) problem (Pe’er et al., 2004) — one instance for each copy-number profile
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—using the characterization given in Theorem 1. Specifically, Theorem 1 characterizes LSR solutions by giving conditions on the set of
refinement subtrees of T. We design an algorithm to find a set 7= {T}, : ve V(T)} of subtrees, an augmented mutation matrix B, and
copy-number profiles ¢’ that satisfy Theorem 1. Using 7 and B, we then construct a refinement T’ such that T'[y(v)] =T, and ¢}, = ¢,
for all vertices v'e V(T7).

We present a recursive algorithm that refines T from the leaves to the root. The algorithm relies on three additional constraints on
the solution 77, ¢’ and B’ that do not effect the existence of a solution, described in the following lemma.

Lemma 1 If there exists a solution to the LSR problem for a given T, ¢, B, L, then there exists a solution T', ¢/, B’ that satisfies the
following conditions.

(1) Forall (v,w)eE(T), p(r(w)) is a leaf of subtree T'[y(v)].
(2) ForallveV(T)\A{r},ifb'y =1 for all Ve L(T'[y(v)]) then b, =1.

(3) ForallveV(T) and all loci a, by, ;) o =6}, .-

Our recursive algorithm is composed of a base and recursive step.

Base Step
The base step determines T/, and B'[V/(T),)] for leaf vertices ac L(c',,c’y). For any leaf in a refinement T, y(v) = {v}. Thus the subtree
T, eT is composed of a single vertex v, with mutation profile b, =b, and copy-number profile ¢, =c,.

RECURSIVE STEP

The recursive step aims to find T}, and B'[V(T},)] for internal vertices ve/(T). We find T}, in two steps. First, we identify the set of con-
straints on the leaves L(T},) of T/, given by Theorem 1. Second, given these constraints, we find mutation profiles B'[L(T’,)] for the
leaves that respect a perfect phylogeny, as required by condition (1) and (2) of Theorem 1. These mutation profiles uniquely determine
the structure of T}, as T}, is a perfect phylogeny (Gusfield, 1991). We describe these steps in detail below.

By condition (i) of Lemma 1, T}, has a leaf for every (v,w)e E(T); thus L(T,) ={p(r(w)) : (v,w) € E(T)}. We first recursively solve for
T, and B'[V(T,,)] for every vertex w such that (v,w)e E(T). Thus, we know the mutation profile b;(w) of the root of each child subtree.
We do not directly observe B'[L(T, )], but the mutation profile of a vertex is constrained by condition (3) of Theorem 1 and constraint (iii)
of Lemma 1 given the mutation profile of a child. Specifically, the parent has the same mutation profile as the child, except if there is a
mutation loss. The mutation profiles are further constrained by condition (1) of Theorem 1 as each mutation occurs at most once
across all subtrees. We respect this condition by minimizing the number of mutation gains per locus, by only having a mutation
gain at locus a in a subtree if a strict subset of the leaves have the mutation.

We summarize these leaf constraints on B'[L(T,)] as a ternary matrix B, = [b],_, 7, where b, = [b], ,]e {0,1,?}". The first constraint
fixes the values for some entries of B'[L(T, )], such that b, ,=1whenb},, .=1,andb,, . .=0whenb/  =0anda& L(c,.Cw).
The second constraint further sets some of the previously non-fixed entries in B'[L (T, )] to minimize the total number of mutation gains
in T},. If there exist leaves v/, w'eL(T}) where b, =0 and by, = 1), then mutation a must be gained in subtree T;,. To achieve the
minimum number of mutation gains, we thus maximize the number of all-zero and all-one columns of E’,,: we set to 0 any previously
undetermined entries b, , for columns of B that only have ‘0’ (‘1°, resp.) entries (setting of b, , =0, b, , = 1 resp.). At last, we set any
remaining undetermined entry of B}, to be ‘7.

Finally, we aim to find B'[L(T, )] by filling the ‘?’ entries of B,. More specifically, given B/, we seek B'[L(T,)] such that if b, € {0,1}
thenby, , = 5(,/,3 for all mutations a and B'[L(T, )] is a perfect phylogeny matrix. This problem is known as the Incomplete Directed Per-
fect Phylogeny (IDP) problem and has been shown to be solvable in O(n?m) time (Pe’er et al., 2004). In our case n = |L(T,)| = d, where
d, is the out-degree of vertex v in T. Solving an instance of the IDP problem yields a perfect phylogeny mutation matrix B'[L(T,)],
which in turn determines the perfect phylogeny tree T, and mutation matrix B'[L(T7,)].

Maximum Likelihood Loss-supported Refinement Problem

The LSR problem assumes that the mutation matrix B is error-free. In practice, we do not observe this mutation matrix B, but instead
we observe read counts from a sequencing experiment. Specifically, we measure a variant read count matrix X = [XV]veLm and a total
read count matrix Y =y, ], ), where x, o€ N is the number of variant reads at locus a in cell v and y, & N is the total number of reads.
Whole-genome amplification (Gawad et al., 2016), which typically precedes single-cell DNA sequencing, introduces a considerable
amount of error into these read count matrices. Specifically, single-cell sequencing SNV data has high rates of false negative errors
(i.e., Xy =0 when b, 5 = 1) and missing data (i.e., y, o =0). In addition, sequencing and whole-genome amplification introduce false
positive errors (i.e., x,,>0 when b, ,=0) as well. Most existing methods (Jahn et al., 2016; Malikic et al., 2019a, 2019b; Zafar
et al.,, 2017, 2019; El-Kebir, 2018; Ross and Markowetz, 2016) for single-cell phylogeny inference discretize read counts into an
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observed mutation matrix B, using either two or three genotypes in addition to missing data (i.e b, .e {0,1,7} or BV,ae {00,01,11,7}).
However, discretizing the mutation data loses information about the likelihood of errors. For example, a locus with a single variant
read is far more likely to be a false positive error than a locus with hundreds of variant reads, but a discretized mutation matrix
does not distinguish between these cases.

We use a maximum-likelihood approach to model the observed variant and total read counts. Specifically, we aim to find the mu-
tation matrix B* = argmax Pr(XY, B) that admits a solution T, B, ¢’ to the LSR problem and maximizes the likelihood of the observed

variant read counts X given the total read counts Y. Our approach to compute B* is not specific to a particular likelihood model for
n

m
read counts but does assume that the likelihood has the form Pr(X|Y,B) = H H Pr(xvalyva,bva); i.e. the variant read counts X
v=1 a=1
are independent of each other across cells and loci given Y and B. In this work, we used a beta-binomial model similar to the one
previously used by Sci® (Singer et al., 2018). If mutation a is absent in cell v (i.e., by 5 =0), then the probability of observing a variant
read corresponds to the per-nucleotide rate of sequencing error e. For lllumina sequencing reads, we use ¢=0.001. If mutation a is
presentincell v (i.e., by 5 = 1), then we model the variant counts at a locus using a beta-binomial distribution. We estimate parameters
a and @ empirically from the distribution of heterozygous germline single-nucleotide polymorphisms (SNPs) in the data. We thus
define the data likelihood for observing x, 5 variant reads at locus a in cell v as follows:

Beta — Binomial (x,a|n= yva, o, B) if bya=1,

Pr(Xvalyva, by.a) = { Binomial (X, 2|[n= yya, p=¢) |if b,2=0.

Let Br ¢ . be the set of mutation matrices B such that there exists a solution 7', ¢/, B to the LSR problem given T, ¢, £, and B. We
formulate the problem as follows.

Problem 2 Maximum Likelihood Loss-Supported Refinement (ML-LSR) problem Given variant read counts X = [x,],. LTy total
read counts Y =[y,] ., 1), copy-number tree T, copy-number profile vector ¢=[C/],.\ ), and supported losses L, find B"=
argmaxg_ . Pr(X|Y,B).

We show the ML-LSR is NP-hard by reduction from the Minimum Flip Problem (Chen et al., 2006) in “Proofs”. Since current data-
sets have mutation matrices with hundreds-thousands of cells, we derive an algorithm in the next section that finds an approximate
solution to the ML-LSR problem by subdividing the ML-LSR problem into k instances of the maximum likelihood Incomplete Directed
Perfect Phylogeny problem.

SCARLET Algorithm for Maximum-Likelihood Loss-Supported Refinement Problem

We introduce SCARLET (Single-Cell Algorithm for Reconstructing Loss-supported Evolution of Tumors), an algorithm to find a loss-
supported phylogeny from single-cell DNA sequencing data. SCARLET aims to solve the ML-LSR problem, defined above in Problem
2, by finding the maximum likelihood mutation matrix B*. Since a solution B* of the ML-LSR is in B7 ¢ ., there exists at least one tree T”,
a copy-number profile vector ¢/, and an augmented mutation matrix B’ of B* such that (7', B’, ¢’) is a solution to the LSR problem.
Given solution (T",B’,¢’), B* is uniquely determined as B* = [bHVEL(r)- We thus proceed here by finding a solution (T/,B’, ¢’) to the LSR
that yields a maximume-likelihood B*. To solve ML-LSR problem, we extend the algorithm we previously presented to solve the LSR
problem. The LSR problem decomposes into a set of IDP instances if we know the mutation profiles R= [b;(v)]v€,<7) of the roots of
subtrees 7. In the LSR, we computed R recursively, starting with the leaves L(T) whose mutation profiles are given by B. In the
ML-LSR, however, we are not given B, and thus do not know R. Therefore, SCARLET uses two-step procedure where we first
compute the maximum-likelihood mutation profiles R* of the roots and then independently infer each maximum-likelihood refinement
subtree given R*. Note that this two-step procedure is not guaranteed to find the overall maximum likelihood solution B*, as there may
be cases where B* does not admit a solution with the maximume-likelihood roots Rx. However, we show in Results that SCARLET is
both accurate and fast in practice.

Finding Maximum Likelihood Subtree Roots

SCARLET aims to find the maximum-likelihood subtree roots R" = [r,],. 7, such that there exists a loss-supported refinement T’, ¢,
B’ with subtree roots R*. The existence of a solution T/, ¢/, B’ constrains the possible mutation profiles of the roots. Specifically, by
Definition [def:Isp] of a loss-supported phylogeny, a mutation at locus a is gained at most once in T'. Matrix R is a valid mutation state
assignment for roots provided for each locus a, it is possible that a mutation at locus a occurred exactly once and was only lost when
the loss was supported. Specifically, (1) there exists a subtree T, of T such that forallve V(T), r, o =1 if ve V(T,) and v is not the root of
T, andr, 4 = 0 otherwise; and (2) for any edge (v,w)e T such that ve T, and w & T, ac L(cy,Cw). Any valid R uniquely defines a subtree
T, for each locus a. Roots R admit a mutation profile b, for locus a provided that b, satisfies the following.
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1. If v&T, then mutation a is absent in all cells v/ such that ¢, =c,.
2. If ve T, and v is not the root of T, then mutation a is present in all cells v’ such that ¢, =c, .
3. Ifve T, and v is the root of T, then mutation a is either present or absent, as mutation a occurred in 7“\,

The likelihood given roots R is computed by marginalizing over all admitted mutation profiles. Let g = {b, : R admits b, } be the set
of mutation profiles for mutation a admitted by roots R. Then:

PF(X|Y, R) = l_m[ H Pr(anavba) = ﬁ ﬁ Pr(Xv/,aU/v/,avR)
a=1 baeBr a=1 v=1
such that
Pr(Xv’.a 1Yy a5 by s = 0) if c, =c, and V&S,
Pr(x,alyva,bya=1) if ¢, =c,,veS, and v is not root of S,

Pr(xv/,a |yw,a7R) =

1 1
5 Pr(Xv"a Vv asbva=1 ) + 5 Pr(xv’.a 1Yy a,bva= 0)

otherwise.

We thus find R* by enumerating valid mutation state assignments for roots for each mutation locus a, then computing the maximum
likelihood as above.

Finding Refinement Subtrees o o
As input for the ML-IDP, we define a ternary matrix B/, = [b'w]ye1 (7, for each vertex ve V(T) as before. For ve(T), we define b/, as

previously given the mutation profile b;(v) of theroot r(v) of T,.. Forae £(c'y,c’w), we have that gp(r(v» =b, but unlike in the LSR prob-
lem, we are not given the mutation profile b, in the ML-LSR problem. Instead, we compute the likelihood of b, as in Equa-
tion [eq:likelihood]. As such, finding B* is equivalent to find the maximum likelihood submatrices {B*[{v : c, =c,}] : vel(T)} such
that B!, admits an incomplete directed perfect phylogeny.

We describe an integer-linear programming (ILP) formulation to compute these maximum likelihood submatrices. Given ternary
matrix B}, and read count matrices X, = [Xu/],,. L7,y Yv = Wwlwer(7,)» We aim to find matrix B’ where Pr(X, Yy, B},) is maximized subject

to two constraints: (1) B, is perfect phylogeny matrix, and (2) b', , . =b!, , . ifb!,, .+ 7. Let B e Pg, indicate that constraints (1) and (2)

v.w.a v.wa v.w.a

are met. We thus aim to find B:,* =argmaxg _,_ Pr(X,1Y,,B;) and we design an integer linear program (ILP) to find B';.. For simplicity in

P5,
the remainder of this section, we do not include subscripts forv-e.g., B = B,, X=X,, Y=Y,. Below, we derive a linear objective for
the ILP.

Pr(XIY,B) = argmaxy . ZZIogPr(xwﬁa Vwa, b’w‘a)
=argmaxg _p_ ZZ [IogPr (Xw,a |}/w,a7bf,.,_a) - IogPr(XW_,a [Ywa: by a= 0)}
= argmaxB/vepsv szza:b@‘a [IogPr (xw.a Ywar by o= 1) - IogPr(xW.a Ywarbyy o= O)]

=argmaxy Zzb(m,& ‘Cya
V'w  a
where for observed cells w,
Cw,a = logPr(Xw,a Ywas bya = 1) - |OgPI’(XW_a [Ywas bw‘a = 0)
For unobserved cells, we constrain that b}, , =b, , if b}, , #? by setting Cy  as follows:
M é’wﬁ =1
Cwa=4¢ —M lz’w‘a =0
0 b, .=7,
where M is a large constant. We use an ILP to maximize 3 b, .+ Cy ., subject to B’ being a perfect phylogeny matrix. We introduce a
w a

set of auxiliary variables F, G, H to enforce the three gametes condition, where F, 4, Ga» and H,, indicate that a pair of columns a, b
show the (1,1), (0,1) and (1,0) gametes respectively, and Fy, 45, Gw 2 and H,, 5 indicate that (b,’”’a,b’web) show the (1,1), (0,1) and
(1,0) gametes respectively. All auxiliary variables are constrained to be binary. This yields the following ILP.
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maximize b}, ,*Cuw.a
wa

subject to
Fap+Gap+Hap <2 for all a,b
Blya+blyp — 1<Fuvas <min (b5}, ) for all a,b,w
max Fw.a,b <Fap SZ:Fw,a,b for all a,b

v w

wb — wa’~wb

maXGwa.b < Ga,b < ZGW.a.b for all a, b
w w

—b, . +b, <GW,a,bSmin<1—b’ b, ) for all a,b,w

bl . — bl <Huap<min (b(,vva, 1- b;v_b) for all a,b,w

max Hyap <Hap <Y Huas for all a,b
w ’ w

Proofs
Proof of Theorem 1
Proof.
We first show that any solution that meets these constraints is a solution to the LSR problem. Constraint (1) of the LSR problem is
explicitly enforced by condition (4) of Theorem 1. Constraint (2) is that 7" is a loss-supported phylogeny, i.e., every mutation occurs
at most once (enforced by condition (1) of Theorem 1), and every mutation loss is supported. By condition (2), there are no mutation
losses between cells that have the same copy-number state, and by (3) mutation losses that are not supported are not allowed be-
tween cells with different copy-number states. Thus, if (T/,B’, ¢’) meet the conditions of Theorem 1, then (T’,B’, ¢) is a solution to
the LSR.

We next show that any solution (77, B’, ¢’) to the LSR meets the four conditions stated in Theorem 1. We will do this by showing that
any (T, B', ¢') that violates any one of these constraints cannot be a solution to the LSR.

1. This condition is directly required by the definition of a loss-supported phylogeny

2. If this condition does not hold, there exists a mutation that is lost in subtree T'[y(v)]. As every vertex in T'[y(v)] has the same
copy-number state (by condition (4), this mutation loss is not supported and thus T’ is not a solution to the LSR problem.

3. If this condition is violated, then there is a mutation loss that is not supported and thus T’ is not a solution to the LSR problem.

4. This condition is directly required by the LSR problem statement.

Proof of Lemma 1

Proof.

We will show by construction that for any solution (77, B', ¢’) that violates these constraints, there exists another solution (T, ¢, Brr)
that meets these constraints.

(1) Forall (v,w)eE(T), p(r(w)) is a leaf of subtree T'[y(v)].

Consider an edge (p(r(w)),r(w))e E(T’) such that p(r(w)) is not a leaf of T'[y(v)]. That is, p(r(w)) has another child in T'[y(v)]. We
construct T by splitting p(r(w)) into two vertices u and v’ such that there is an edge (u,u’)e E(T), br, =b, and ci, =cit,, and the
only outgoing edge from u’ is (U/,r(w)). Thus, U’ is now the parent of r(w) and u’ is a leaf. This split preserves the rest of the tree and
does not introduce violations of any of the conditions in Theorem 1 or any of the other assumptions in this Lemma. Thus T/, Bi/, crris a
solution to the LSR problem.

(2) For all ve V(T) such that v is not the root of T, by =1 if by =1 for all v'e L(T'[y(v))).

Assume that T’, ¢/, B’ meet condition 1. If this constraint is violated, this means that there is some mutation a that is gained in a
subtree T'[v(v)] but there are no leaves of T'[y(v)] that do not contain a. Let T=T', ci7=c'. Let b;, , =1 if ve T'[y(v)]. This change
does not violate any of the conditions in Theorem 1. Specifically, this change does not introduce new mutation gains, and as this
only alters the mutation profiles of internal vertices of T'[y(v)] so this cannot introduce new mutation losses. As T/ and c// are pre-
served, refinement and copy-number consistency conditions are automatically met. This change may introduce violations to
Assumption 3 in this Lemma that can subsequently be corrected as below.

(3) For all ve V(T) and all loci a, byrv)) a =bry) a-

This constraint states that there are no mutation gains on edges between subtrees. We construct T/ by performing a similar split as
we did for constraint (1). Suppose there’s an edge (p(r(v)),r(v))e E(T") such that by () s =0 and by, = 1. Split p(r(v)) into vertices
u,u’ suchthatb,,=0and by , =1, and foralla’ #a, b, # =by » and the only outgoing edge from u’ is (v’ ,r(w)). This split preserves the
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rest of the tree and does not introduce violations of any of the conditions in Theorem 1 or any of the other assumptions in this Lemma.
Thus T, Brr, crr is a solution to the LSR problem.
Hardness of ML-LSR
Lemma 2 The ML-LSR is NP-hard.
Proof.
We show this by reduction from the Flip problem (Chen et al., 2006) which is known to be NP-Complete.

Given a binary matrix Be {0, 1}™*" and integer ke N, decide whether there exists a directed perfect phylogeny matrix B'e {0,1}7"
such that no more than « entries in B’ differ from B.

Let (B, k) be an instance of the Flip problem. For the corresponding instance of the ML-LSR problem, we let k =1 and define the
inputs as follows:

1. T is_t)he star phylogeny, where all leaves ve V(T) are attached to a single internal vertex;
2. ¢c=1;

3. No mutation losses are supported in £;

4, X=B,and Y=[1]"*"

Define a likelihood function Pr(X|Y,B") that is symmetric when x, ,€ {0,1} and y, o =1

if va= bva
oalPrinann) = {3 15

such that 8<a. Thus the log-likelihood of a matrix B* is

logPr(XIY,B") = > 3 log(Pr(xalyva:bva))

v=1 a=1

=26+ (mn — A

We claim that there exists a perfect phylogeny matrix B’ with at most « changes if and only if there exists a solution B* to the
ML-LSR

logPr(X|Y,B*) > k-8 + (Mn—«) * a

We first show the forward direction. If there exists a perfect phylogeny matrix B’ with at most « changes from B’ = X, then the log-
likelihood Pr(X|Y,B')>«+8+ (mn — k)-a. Thus for the maximum likelihood solution, B, Pr(X|Y,B*) >Pr(X|Y,B’).

We next show the reverse direction. If logPr(X|Y, B*) >« 8 + (mn —«) then B* has at most x changes from X =B. Thus, there exists a
B'=B".

QUANTIFICATION AND STATISTICAL ANALYSIS

Simulation Details

We simulated 50 single-cell DNA sequencing datasets, each data set containing n=100 observed cells that were related by a phylo-
genetic tree containing m=20 mutations, and k=4 copy-number profiles. We simulated each data set in four steps. First, we simulated
the topology of a tree. m + k + 1 =25 vertices were randomly assigned to be in the trunk of the tree or in one of the k copy-number
profiles. Vertices in the trunk were joined into a linear path, and vertices not in the trunk were assigned attachments uniformly at
random, such that vertices in the same copy-number profile form connected subtrees. We assign the m mutations onto the 20 edges
without copy-number profile changes. For each edge (v, w) in the simulated tree with a change in the copy-number profiles c and ¢,
we also simulated the set L(c,c') of supported losses by selecting a random subset of the m loci such that |£(c,
c')| ~ Poisson(0.2 xm). Third, we introduced with probability 0.5 a mutation loss in every genomic locus ae £(c, c') if the mutation
is contained in the parent p. To respect the k-Dollo model with k=1, we enforce that the same mutation is lost at most once in
the simulated tree. We thus obtained simulated trees with 1-8 mutation losses. Last, we add 100 leaves, corresponding to the
observed cells, and we append those to a random vertex of the simulated tree.

We simulated read counts from all the cells of each simulated tree with errors specific of single-cell DNA sequencing data. Spe-
cifically, we generated a total read count y, , and a variant read count x, , for each locus a in cell v with an allelic dropout rate of d =
0.15, according to previous analyses (Gawad et al., 2016). First, we generated y, ; according to a Poisson distribution and assuming
an expected sequencing coverage of 100X such thaty, , ~ Poisson(100). Note that when both the alleles drop out, y, , = 0. Second,
we generated x, 5 according to either the absence or presence of a mutation in locus a. If the variant is absent, x, 5 ~ Binomial(t, 4, €)
where ¢ =0.001 models the sequencing error rate. If the variant is present, we model the overdispersion in the variant read count x, 4
resulting from whole-genome amplification using a Beta-Binomial model as in previous studies (Singer et al., 2018) such that x, ; ~
Binomial(t, a,f,42) and f, s ~ max{Beta(«q, ), ¢} (with «=0.25 in order to obtain an allele dropout rate of d=0.15).
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Copy-Number Analysis of Colorectal Cancer Patient

We describe the analysis of copy number aberrations in colorectal cancer patient CRC2 from Leung et al. (2017), which provides part
of the input data for SCARLET. Leung et al. (2017) performed single-cell DNA sequencing of a 1000 cancer gene panel from 186 cells
from a primary tumor and metastasis. We computed copy-number profiles ¢ and supported losses £ from read-depth ratios as
follows.

First, we computed read depth ratios in 10-Mb genomic bins by calculating the read depth r, ; in every bin i of every cell v, as the
number of sequencing reads that align to the bin. To account for context-specific variation in read depth, we normalized r,; using the
corresponding read depth n; in a matched normal sample. Moreover, to account for shifts in read depth due to differences in the
ploidy of each cell, we further corrected r,; by using the ploidy ¢, of cells v measured by DAPI staining (Leung et al., 2017) (¢, =
3.3 for primary aneuploid cells, (pv 3.0 for metastatic aneuploid cells, ¢, =2.0 for diploid cells). Therefore, we obtain the resulting
corrected read-depth ratio r,; = Ly % for every bin i in cell v. We performed hierarchical clustering on read depth ratios r, for all cells
v to infer copy-number profiles c In particular, we fixed the number of clusters to 4 according to the the number of copy-number
clones previously identified (Leung et al., 2017).

We identified sets of supported losses in the same 186 cells by identifying significant shifts in the read depths of the bins that
contain the 36 somatic single-nucleotide variants previously identified by Leung et al. (2017). To test whether there was a loss of
variant a in bin i between copy-number profiles j and k, we performed a signed Wilcoxon rank-sum test. The two groups of obser-
vations correspond to cells with copy-number profiles j and k, such that G; = {F.,,a; cy =j}and Gx = {F,,,a; ¢v =k}. The Wilcoxon Rank-
sum Test tests whether observations in G; and G, are drawn from the same distribution. A mutation loss was supported if the test
yielded a p-value p<.01.

DATA AND CODE AVAILABILITY
SCARLET software, simulated data, and processed CRC2 data are available at github.com/raphael-group/scarlet. Original CRC2

data was downloaded from NCBI Sequence Read Archive (SRA; https://www.ncbi.nim.nih.gov/sra) under accession number
SRP074289.
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