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Abstract—The recovery of motor functions after stroke is 

fostered by the functional integration of large-scale brain 

networks, including the motor network (MN) and high-order 

cognitive controls networks, such as the default mode (DMN) and 

executive control (ECN) networks. In this paper, 

electroencephalography signals are used to investigate 

interactions among these three resting state networks (RSNs) in 

subacute stroke patients after motor rehabilitation. A novel 

metric, the O-information rate (OIR), is used to quantify the 

balance between redundancy and synergy in the complex high-

order interactions among RSNs, as well as its causal decomposition 

to identify the direction of information flow. The paper also 

employs conditional spectral Granger causality to assess pairwise 

directed functional connectivity between RSNs. After 

rehabilitation, a synergy increase among these RSNs is found, 

especially driven by MN. From the pairwise description, a reduced 

directed functional connectivity towards MN is enhanced after 

treatment. Besides, inter-network connectivity changes are 

associated with motor recovery, for which the mediation role of 

ECN seems to play a relevant role, both from pairwise and high-

order interactions perspective.  

 
Index Terms—EEG, functional connectivity, Granger 

Causality, high-order interactions, redundancy, rehabilitation, 

resting-state networks, synergy, stroke. 

I. INTRODUCTION 

he identification of large-scale functional brain networks 

and the investigation of the interactions among different 

cerebral areas within and across these networks are of 

increasing interest to characterize neurophysiological 

mechanisms both in physiological and pathological conditions. 

In the field of computational neuroscience, a common strategy 

adopted to characterize complex interactions among a large 

number of brain regions is to build network models where 

pairwise relations are considered, and where metrics derived 

from graph theory [1] are calculated to describe the collective 

behavior of the networks. The pairwise approach is very useful 
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to detect and reconstruct causal networks in physiology [2] and 

neuroscience [3]. A major limitation of this approach, however, 

is that pairwise measures cannot detect high-order interactions 

(HOIs), i.e., interactions involving three or more network nodes 

[4]. There is increasing evidence that interactions within the 

brain involve more than two areas simultaneously, and that a 

collective emerging behavior is exhibited at different levels of 

integration [5], [6]. Therefore, pairwise strategies appear 

limited for the description of a complex system such as the 

brain, and high-order functional connectivity approaches 

should be instead adopted [7]. Different measures of HOIs have 

been defined in the field of information theory for multiple time 

series. Interaction information (II) [8] and partial information 

decomposition (PID) [9] are the most widely employed 

approaches to account for interactions among three random 

variables. Typically, these approaches describe the redundant 

or synergistic behavior limited to a group of three processes 

[10]. Broadly speaking, synergy arises when the interactions 

found observing the global system are stronger than those 

observed in parts of it, while redundancy refers to interactions 

of sub-groups of variables which explain fully the overall 

shared information [11]. The II approach provides a compact 

metric which describes the balance between redundancy and 

synergy in a network of three random variables: positive values 

of II indicate a predominance of redundancy, while negative 

values suggest a prevalence of synergy in the observed system. 

In 2019, Rosas et al. [10] proposed the O-information (OI) 

metric as an extension of II to more than three interacting 

variables. More recently, Faes et al. [11] introduced the O-

Information Rate (OIR), that is an extension to spectral causal 

decomposition as a further generalization of II to also account 

for random processes. This new metric allows to obtain both 

time-domain and spectral measures of high-order functional 

connectivity in a system of multivariate processes. 

HOIs analysis has already been applied, in the context of both 

II and PID, to a few neuroimaging studies employing functional 
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magnetic resonance imaging (fMRI) and 

electroencephalography (EEG) [4], [12]–[15]. Most of these 

studies characterized HOIs among different resting state 

networks (RSNs) in healthy subjects. However, these metrics 

could also provide interesting information in the investigation 

of brain conditions known to cause disruption in large-scale 

networks, as in the case of healthy brain aging [13] and 

dementia or Alzheimer’s disease [4]. Besides 

neurodegenerative diseases, other pathologies are known to 

cause brain networks disruptions. For example, the effects of 

cerebrovascular stroke on brain functional connectivity are 

widely investigated, due to the high incidence of stroke in the 

worldwide population and to the impact of resultant 

impairments on the quality of life of stroke survivors [16]. 

However, high-order functional connectivity approaches have 

not been yet applied to investigate stroke effects and the 

associated neuro-plasticity changes involved in recovery. To 

the best of our knowledge, findings reported in the literature 

about cerebrovascular stroke were exclusively based on metrics 

of pairwise interaction between signals, either from fMRI or 

EEG techniques, in brain regions belonging to different resting-

state sub-networks [17]. In particular, great attention has been 

given to the evaluation of recovery-related changes within the 

motor network (MN) [18], since more than a half of stroke 

survivors experience motor deficits [19]. However, the brain is 

a complex system, and it has been demonstrated that disruption 

of connections between large-scale RSNs may as well 

contribute to post-stroke impairments [20]. A few studies have 

investigated both within and between large-scale RSNs 

connectivity patterns in stroke populations [20]–[22]. In these 

works, altered functional connectivity has been found among 

different brain areas including not only sensory and 

sensorimotor cortices, but also high-order cognitive control 

networks such as the default mode network (DMN), the 

executive control network (ECN), and the dorsal attention 

network [21], [23]. The MN is primarily responsible for the 

execution of motor tasks and to this aim it integrates 

sensorimotor information [24]. The DMN mediates 

interoceptive monitoring and self-referential processes, and is 

involved in the integration of perceptual information for higher-

order cognitive processes [25]. The ECN is involved in the 

control and execution of externally directed activities [26], and 

exerts control over posterior sensorimotor representations to 

drive information selection and maintenance for behavioral 

responses [27]. The disruption of interactions among these three 

RSNs appears to be related to motor and cognitive impairments 

in stroke, and these interactions may play a relevant role in the 

cerebral reorganization associated with functional recovery 

after stroke [28]. In fact, correlations between motor 

functionality recovery and the strengths of connections between 

pairs of areas belonging to the motor cortex and higher-order 

control networks have already been observed in fMRI studies 

on subacute stroke patients following a Brain-Computer 

Interface rehabilitation training [29]. Moreover, it has been 

observed that some cognitive control regions show higher 

activity in the acute phase of stroke and in the process of motor 

recovery, as compared to controls, whereas increased functional 

connectivity in the ipsilesional areas of the ECN negatively 

correlate with upper limb motor recovery scales [22], [28]. As 

for the role of the DMN, some evidence of inter-network 

alterations of the DMN interaction with sensory-motor areas 

have been recently found in stroke patients [22]. Even though 

the role of the DMN in post-stroke motor deficit needs further 

investigation, fronto-parietal regions have been found to play a 

role in the recovery of motor function in stroke patients by 

providing compensatory neural pathways when traditional 

connections are compromised [30].  All these results have been 

obtained evaluating pairwise functional connectivity, mostly 

based on fMRI data. However, none of the above-mentioned 

studies have considered jointly the concurrent interactions 

between these three networks, and a longitudinal study on the 

effects of rehabilitation on HOIs is missing.  

In the present work, we propose to investigate changes 

ensuing from post-stroke rehabilitation in the interactions 

among the three above-mentioned RSNs, by applying high-

order metrics and thus going beyond the traditional pairwise 

analysis. In detail, we analyzed changes in cortical connectivity 

estimated from resting state EEG signals in a cohort of patients 

in the subacute post-stroke stage who followed a period of 

physical rehabilitation. Considering the high temporal 

resolution of EEG signals, we exploited the OIR metric to 

perform a causal and spectral high-order connectivity analysis 

of the temporal dynamics among large-scale brain networks. 

II. MATERIALS AND METHODS 

A. Participants 

Eighteen post-stroke patients participated in this study, 

which was approved by the local Ethics Committee “Comitato 

Etico Provinciale dell’Insubria” and conducted in compliance 

with the Declaration of Helsinki. Participants (7 females and 11 

males, aged 67 ± 10 (mean ± std) years) were all enrolled in the 

subacute stage after a single unilateral ischemic stroke and met 

the inclusion criteria of occurrence of the acute event less than 

30 days after the first evaluation. All subjects were right-

handed, had no other reported concomitant orthopedic or 

rheumatologic diseases, and had no global or comprehension 

aphasia. Each patient followed a physical rehabilitation 

treatment for both upper and lower limbs, tailored according to 

the individual residual motor capacity. More details about the 

dataset can be found in Ref. [31]. 

B. Clinical performance assessment  

Subjects were evaluated by clinicians both from a clinical 

and an electrophysiological point of view at two time-points: at 

the admission to the rehabilitation center (T0, on average after 

12 ± 5 days from the stroke event) and at the end of the 

treatment (T1, on average after 55 ± 11 days from the stroke 

event). The upper limb performance was evaluated with the 

upper extremities Fugl-Meyer Assessment (FMA), which 

includes a motor scale with scores ranging from 0 (hemiplegia) 

to 66 (normal motor performance) [32]. Likewise, the level of 

walking ability was assessed by the Functional Ambulation 

Category (FAC), a gait assessment scale that distinguishes 
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between 6 levels of walking ability (0, not able to walk; 5, 

independent walk) based on the amount of physical support 

required [33]. The variations FMAT1-T0 = FMAT1 – FMAT0 and 

FACT1-T0 = FACT1 – FACT0 were considered as primary clinical 

outcomes of subject’s motor recovery. 

C. EEG acquisition, pre-processing and source 

reconstruction 

At both T0 and T1, 5 minutes of eye-closed resting state EEG 

recordings were collected with a Neuroscan system 

(Compumedics Neuroscan, Compumedics, NC, USA). 64 

Ag/AgCl electrodes were placed on the scalp according to the 

International 10/20 standard system with the reference 

electrode placed between Fz and Cz positions and the ground 

electrode positioned anterior to Fz. Continuous data were 

acquired at a sampling rate of 1000 Hz. 

EEG signals were pre-processed offline in Matlab (The 

Mathworks, Inc.) using the open source EEGLab signal 

processing Toolbox [34]. Data were down-sampled at 128 Hz 

and band-pass filtered between 0.5 Hz and 45 Hz to remove 

slow drifts and high-frequency components. Flat (zero 

amplitude for more than 5 s) and “bad” (noisy for more than 

90% of the acquisition) channels were removed and the 

Artifacts Subspace Reconstruction (ASR) algorithm [35] was 

applied to all retained channels with a cut-off parameter k = 20. 

Independent Component Analysis (ICA) was then applied to 

the ASR-cleaned EEG exploiting the RUNICA Infomax 

algorithm [36], and the ICLabel automated classifier [37] was 

employed to guide the manual selection of non-brain artifactual 

components, e.g., eye, heart, muscle, line noise. The originally 

removed channels were reconstructed by the interpolation of 

the neighbor signals and the cleaned EEG data were re-

referenced to a common average value. For all the acquisitions, 

the first 30 s were discarded to account for a period of settling 

before reaching the proper resting state condition and the 

subsequent 1 min was used for brain sources estimation. We 

employed the exact low resolution brain electromagnetic 

tomography (eLORETA) approach, which allows the exact 

localization of the brain current source densities distribution 

implementing a discrete, linear, weighted minimum norm 

inverse solution [38]. Activity of brain sources was 

reconstructed only in the cortical grey matter (6239 isotropic 

voxels with 5 mm spatial resolution) in the MNI152 space. 

D. Regions of interest and time series extraction 

For the inter-network connectivity analysis, 16 Regions of 

Interest (ROIs) have been chosen according to the previous 

literature on RSNs identification [39]–[41]. In table I, centroid 

coordinates in the MNI152 space and number of voxels of 6 

ROIs within DMN, 5 ROIs belonging to ECN, and 5 ROIs 

within MN are reported Considering that EEG measurement 

sensibility  is largely confined to superficial cortical areas, we 

excluded from the analysis deeper cerebral structures such as 

cerebellum and basal nuclei, as proposed in [41]. All voxels 

within 8 mm of radius from a seed were considered as 

belonging to the specific ROI, with the constraint of non-

overlapping regions [41]. In case of overlap, the voxels were 

assigned to the closest centroid regions. Sixteen time series of 

7680 samples (1 min) each were thus obtained, by averaging 

the magnitude of sources activity among all voxels belonging 

to each ROI. For further analysis, the ROI signals were epoched 

in shorter windows of 10 s, hence obtaining 6 windows of 1280 

samples for each acquisition. 

E. Connectivity analysis 

We performed an inter-network resting state connectivity 

analysis, considering the three subsets of ROIs, grouped as 

reported in Table I, as vector targets constituting a three-node 

RSN. Both pairwise and high-order analysis were conducted in 

a linear parametric framework based on linear Multivariate 

Autoregressive (MVAR) modeling of multiple time series, 

under the assumption of wide-sense stationarity and of jointly 

Gaussian stochastic processes. The analysis follows the OIR 

framework introduced in Ref.[11]. 

1) MVAR models 

Let us consider a set of Q stochastic processes, 𝒀 =

[𝑌1, . . . , 𝑌𝑄]
𝑇
 grouped in M blocks 𝑿 =  [𝑋1, . . . , 𝑋𝑀]𝑇 (Q=16, 

M=3 in this work). In the linear signal processing frame, the 

processes can be described by the MVAR model 

 𝒀(𝑛) =  ∑ 𝑨(𝑘)𝑌(𝑛 − 𝑘) + 𝑼(𝑛)𝑝
𝑘=1 , (1) 

where p is the model order, A(k) is a Q×Q matrix of coefficients 

Aij(k) describing the dependence of 𝑌𝑖(𝑛) on 𝑌𝑗(𝑛 − 𝑘) (i,j = 

1,…, Q), and 𝑼(𝑛) is a Q×1 vector of uncorrelated white noises 

with Q×Q covariance matrix 𝜮𝑈 = 𝔼[𝑼(𝑛)𝑼(𝑛)𝑇]. Note that, 

while the MVAR model (1) gives an explicit representation of 

the overall multivariate process 𝒀 collecting Q=16 ROIs, 

information about the interactions between the M=3 subsets of 

TABLE I 
REGIONS OF INTEREST  

RSNa Region 
Coordinates in mm 

(X, Y, Z) 

Number of 

voxels 

DMN 

PCC/precuneus 0, -52, 27 14 

Medial Prefrontal -1, 54, 27 13 

L Lateral Parietal -46, -66, 30 12 

R Lateral Parietal 49, -63, 33 8 

L Middle Temporal -61, -24, -9 15 

R Middle Temporal 58, -24, -9 12 

ECN 

Dorsal Medial PFC 0, 24, 46 15 

L Anterior PFC -44, 45, 0 7 

R Anterior PFC 44, 45, 0 6 

L Inferior parietal -50, -51, 45 13 

R Inferior parietal 50, -51, 45 16 

MN 

  L M1 -33, -20, 52 12 

R M1 -36, -18, 52 13 

L PreMotor -34, -1, 56 13 

R PreMotor 35, 0, 55 13 

SMA 0, -4, 65 10 

Cerebral areas grouped by large-scale networks. Centroids coordinates (X, 

Y, Z) are reported in the MNI coordinate system.  
aRSN = Resting-State Network, DMN = Default Mode Network, ECN = 
Executive Controls Network, MN = Motor Network, PCC = Posterior 

Cingulate Cortex, PFC = pre-frontal cortex, M1 = primary motor cortex, SMA 

= Supplementary Motor Area, L = left, R = right. 
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RSNs can be extracted considering the blocks grouped in 𝑿. 

The linear parametric representation of the observed 

processes can be translated in the frequency domain taking the 

Fourier Transform (FT) of (1), which yields 

 𝒀(𝜔) = 𝑨(𝜔)𝒀(𝜔) + 𝑼(𝜔), (2) 

where 𝒀(𝜔) and 𝑼(𝜔) are the FTs of 𝒀(𝑛) and 𝑼(𝑛), 

ω ∈ [-π, π] is the normalized angular frequency, and 𝑨(𝜔) =
∑ 𝐴(𝑘)𝑒−𝑗𝜔𝑝

𝑘=1  provides the spectral representation of the 

coefficients, from which the model transfer function can be 

defined as: 𝑯(𝜔) = [𝑰 − 𝑨(𝜔)]−1 [42]. The Q×Q power 

spectral density (PSD) matrix is then computed using spectral 

factorization as: 

 𝑺(𝜔)  =  𝑯(𝜔)𝜮𝑈𝑯∗(𝜔), (3) 

where ∗ indicates the Hermitian transpose. From this vectorial 

AR representation of multiple time series and from the derived 

PSD matrix we can calculate both pairwise and high-order 

metrics of directed and undirected functional connectivity 

among the subsets of signals forming each analyzed RSN. 

2) Pairwise interactions 

To assess the directed functional connectivity between the 

three chosen RSNs, we exploited the concept of Granger 

causality (GC) [43]. To compute it, the reduced bivariate AR 

model describing the interactions between 𝑋𝑖 and 𝑋𝑗 is obtained 

in the framework of state-space models directly from the 

parameters of the overall VAR model (1) (see Ref. [11] for 

details). Then, since we are interested in the study of 

connectivity at specific rhythmic components of the neural 

signals, such model is converted in the frequency domain to 

obtain its transfer function 𝑯(𝜔), which is exploited to compute 

the logarithmic spectral measure of GC (sGC) from 𝑋𝑗 to 𝑋𝑖 as 

[44]: 

 𝑓𝑗→𝑖  (𝜔) = ln
|𝑺𝑖(𝜔)|

|𝑯𝑖𝑖(𝜔)𝜮𝑊𝑖
(𝜔)𝑯𝑖𝑖

∗ (𝜔)|
, (4) 

where 𝑺𝑖(𝜔) is the PSD of 𝑋𝑖, 𝑯𝑖𝑖(𝜔) is the transfer function 

of the reduced bivariate AR model at specific frequency 𝜔, and 

𝜮𝑊𝑖
 the covariance matrix of the error resulting from the 

prediction of 𝑋𝑖 in the reduced model. The reduced bivariate 

AR model can be exploited also to compute the spectral GC 

from 𝑋𝑗 to 𝑋𝑖, 𝑓𝑗→𝑖 (𝜔), as well as the Geweke measure of total 

(undirected) dependence between the two processes, which 

takes the form 

 𝑓𝑖,𝑗(𝜔) = ln
|𝑺𝑖𝑖 (𝜔)||𝑺𝑗𝑗(𝜔)|

|𝑺(𝜔)|
. (5) 

This total dependence measure is related to the two GC 

measures by the spectral decomposition [44], [45]: 

 𝑓𝑖,𝑗(𝜔)  =  𝑓𝑖→𝑗(𝜔) +  𝑓𝑗→𝑖(𝜔)  +  𝑓𝑖·𝑗(𝜔), (6) 

where 𝑓𝑖·𝑗(𝜔) quantifies the instantaneous interactions between 

𝑋𝑖 and 𝑋𝑗 expanded in the frequency domain [11]. 

Moreover, in a multivariate framework as the one here 

considered, it is important to compute also the conditional 

measure of spectral GC (csGC), 𝑓𝑗→𝑖|𝒁(𝜔), as defined in [46], 

whereby the causal interaction from 𝑋𝑗 to 𝑋𝑖 is conditioned to 

all other processes collected in the vector 𝒁 =  𝒀\{𝑋𝑖 , 𝑋𝑗}. This 

measure allows to rule out indirect causality links possibly 

arising along the pathway from 𝑋𝑗 to 𝑋𝑖 due to the other 

processes contained in 𝒁. It can be computed combining the full 

VAR model (1) with a reduced model in which 𝑋𝑗 is removed; 

again, calculations can be performed efficiently in the 

framework of state space models [11]. In this work, considering 

only the direct inter-network links estimated by csGC, we 

provide an indication of the net flow of information exchanged 

by two subsets of ROIs, i.e., two RSNs, calculating a Net Flow 

Index (NFI) for the i-th node as the difference between the 

csGC computed along the two directions of interaction: 

 𝑁𝐹𝐼𝑤𝑖
(𝜔) = 𝑓𝑖→𝑗|𝒁(𝜔) −  𝑓𝑗→𝑖|𝒁(𝜔) . (7) 

3) HOIs 

In this works, the analysis of HOIs is performed through the 

spectral O-information rate (OIR), following the framework 

proposed in [11], which we briefly recall here particularized to 

the case implemented in this work which considers three 

interacting vector processes. Specifically, at each frequency, 

the spectral OIR among the processes {𝑋1, 𝑋2, 𝑋3} is defined as: 

 ν𝑋1;𝑋2;𝑋3
(𝜔) =  𝑓𝑋𝑖;𝑋𝑗

(𝜔) +  𝑓𝑋𝑖;𝑋𝑘
(𝜔) − 𝑓𝑋𝑖;𝑋𝑗,𝑋𝑘

(𝜔) (8) 

where the three terms in the r.h.s. of (8) correspond to the 

spectral function of total coupling (5) computed between 𝑋𝑖 and 

𝑋𝑗,𝑋𝑘 either taken separately or together (𝑖, 𝑗, 𝑘𝜖{1,2,3}). 

The OIR is a symmetric measure, hence it does not provide 

information on the direction of the influence of one group of 

processes over another. However, the spectral OIR gradient can 

be decomposed as the sum of three terms: 

ν𝑋1;𝑋2;𝑋3
(𝜔)  = 𝛿𝑋𝑖→ 𝑋𝑗,𝑋𝑘

(𝜔)  + 𝛿𝑋𝑗,𝑋𝑘→ 𝑋𝑖
 (𝜔) +

 𝛿𝑋𝑖⋅ 𝑋𝑗,𝑋𝑘
(𝜔),  (9) 

which account for the directed information transfer from 𝑋𝑖 to 

𝑋𝑗,𝑋𝑘 and vice-versa, and for the instantaneous interactions 

shared by the processes. The three terms are obtained 

expanding the spectral functions in (8) according to (6) [11]. 

Both the OIR and the terms of its decomposition provide an 

informational character, which is redundant when the term is 

positive, and synergistic when the term is negative. Importantly, 

the spectral OIR is closely related to the time-domain measures 

of total coupling resulting from the full-frequency integration 

of the three spectral coupling functions in (8), in a way such that 

a time-domain OIR measure, Ω𝑋1;𝑋2;𝑋3
, can be obtained 

integrating ν𝑋1;𝑋2;𝑋3
(𝜔) over all frequencies (𝜔 ∈ [−𝜋, 𝜋]). An 

analogous integration can be applied to (9) to obtain time-

domain measures of directed and instantaneous information 

transfer. Again, all these time-domain measures reflect the 

redundant (when positive) or synergistic (when negative) 

character of the information shared and transferred among the 

processes [11]. 

This article has been accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSRE.2023.3332114

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



TNSRE-2023-00358 

 

5 

F. Data Analysis and statistical analysis 

In this work, all measures of interactions were computed 

identifying the MVAR model (1) through the least square 

method [11]. The Akaike information criterion (AIC) was used 

to select the optimum order p for each epoch of the acquired 

resting state signals. Conditional spectral GC (csCG), and 

spectral OIR ν𝑋1;𝑋2;𝑋3
(𝜔) with the causal decomposition terms 

of its gradient, 𝛿𝑋𝑖→ 𝑋𝑗,𝑋𝑘
(𝜔) and 𝛿𝑋𝑗,𝑋𝑘→ 𝑋𝑖

 (𝜔), were 

calculated among the three RSNs separately for each of the six 

signals’ epochs, at T0 and T1. Then, measures were integrated 

over the range of the three frequencies of interest, i.e., theta (θ), 

alpha (α), and beta (β), thus obtaining the equivalent metrics in 

time-domain at the specific oscillation, Ω𝑋1;𝑋2;𝑋3
(𝜔). Delta and 

gamma bands were excluded from this analysis since they may 

be affected by noise and spurious signals. To account for 

interindividual variability, frequency bands ranges were 

defined according to the Individual Alpha Frequency (IAF) 

criteria [47] as follows: θ = [IAF-6 Hz ÷ IAF-2.5 Hz], α = [IAF-

2 Hz ÷ IAF+2 Hz], and β = [IAF+2.5 Hz ÷ IAF+20 Hz]. 

The six epoch values were finally averaged to obtain one 

value per acquisition per subject. Considering the small sample 

size, we employed non-parametric statistical tests to assess the 

rehabilitation effect in terms of inter-networks connectivity 

changes. To control for spurious estimation, we tested the 

statistical significance of the estimated connections with the 

surrogates’ data approach [48]. For HOIs, we implemented a 

modified Iterative Adjusted Amplitude Fourier Transform 

(IAAFT) surrogate approach, which exploits the phase 

randomization procedure to satisfy the null hypothesis of 

balanced high-order interactions (absence of net redundancy or 

net synergy leading to null OIR) in a given frequency band, 

preserving the pairwise correlations within each RSN. 

Specifically, we applied phase randomization by summing the 

same random number to the Fourier phases of all signals 

belonging to a randomly chosen RSN, leaving untouched the 

signals of the two other RSNs. This preserved the auto- and 

cross-correlations within the block subjected to phase 

randomization, as well as the auto- and cross-correlations 

within and between the two other blocks. This procedure was 

iteratively applied 100, choosing randomly the block to be 

subjected to phase randomization, and thus creating a surrogate 

distribution of data. 

As for pairwise interactions, i.e., csGC values, the causal 

Fourier Transform (CFT) method [49] was used to generate 100 

surrogates time series, with the null hypothesis of absence of 

direct causal coupling in a given frequency band, for each link 

between two RSNs. With this approach, all individual 

correlations, as well as the directed correlations along other 

directions different than the observed one, were preserved. 

To test for statistical significance with a confidence level αs 

= 0.05, we compared the OIR values estimated for the original 

data with the 5th percentile, when OIR < 0, and 95th percentile, 

when OIR > 0, of their surrogate distribution. csGC values 

obtained for the original distribution were compared with the 

95th percentile of surrogate distribution. This procedure was 

repeated for each frequency, for data both pre- and post-

rehabilitation. Connections above the threshold were put to 1 

 
Fig. 1. (a) Total OIR distribution ΩDMN,ECN,MN of the population integrated for each frequency band. Boxplot lengths represent the interquartile range (IQR), 

horizontal line corresponds to the median value, the external whiskers include data within ±1.5×IQR. (b) Causal decomposition of the spectral OIR gradient. 

Population average differences ΩT1-T0
 are reported as mean ± std when DMN (first row), ECN (second row), and MN (third row) act as single target with respect 

to the rest of the system for θ, α, and β frequency bands (in columns). Red arrows indicate significant T1 – T0 differences. *, p-value < 0.05, **, p-value < 0.01. 

When average differences values of 0.00 are indicated, this corresponds to an average ΩT1-T0 < 10-2. (c) Modified IAAFT surrogates’ population analysis for HOIs 

measure. For each frequency, percentages of statistically significant interactions in the whole population are reported at both T0 and T1. Asterisks indicate a 

statistically T1 – T0 difference according to McNemar test, *, p-value < 0.05, **, p-value < 0.01. 
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and connections below were put to 0. Thus, we obtained 

binarized spectral connectivity matrices of significant HOIs and 

pairwise directed connections for each subject pre and post-

rehabilitation. 

 Then, we calculated the percentage of subjects for whom 

each connection turned out significant. We statistically 

compared the variation of population number of significant 

connections (Δ#) from T0 to T1 with the non-parametric 

McNemar Test for binomial data. Besides, T0 and T1values of 

all connectivity metrics, OIR and pairwise csGC were 

compared by a non-parametric one-tailed Wilcoxon’s test for 

paired samples. To further investigate the correlations of inter-

network connectivity changes with the functional outcomes, 

non-parametric Spearman’s correlations between the variation 

of both pairwise (csGCT1-T0) and high-order (ΩT1-T0) 

connectivity metrics with FMAT1-T0 and FACT1-T0 scores were 

computed. The statistical significance level was set at 0.05 for 

all tests. Because of the small sample size, in this work we did 

not correct the p-values from our statistical analysis for family-

wise error rate. This could increase the chance of type I error, 

but we aimed to avoid missing any potential significance in our 

exploratory analysis. Therefore, we highlighted the stronger 

significance values (p < 0.01) in the results section. 

III. RESULTS 

Hereafter, we firstly report the results obtained for the high-

order analysis, followed by the pairwise description on the 

inter-network directed functional connectivity. For each 

measure, correlation analysis results with motor outcomes are 

also reported. In Fig. 1, we report the population distributions 

of global OIR ΩDMN,ECN,MN in the three frequency bands (a), its 

causal decomposition (b) and the percentages of statistically 

significant interactions estimated for the population according 

to surrogate data analysis (c). As can be seen in Fig.1(c), more 

than 70% of estimated HOIs resulted to be statistically 

significant, thus detecting the presence of unbalanced high-

order interactions, with prevalence of redundancy over synergy. 

Moreover, we found a significant variation of the statistical 

representation of a few causal interactions. We observe an 

increased significant representation of ECN when it acts as the 

single driver towards the system {DMN,MN} in α, whereas a 

decreased significance can be observed in θ when MN acts as 

driver, alone towards the system {DMN,ECN} or in 

conjunction with DMN toward ECN. In Fig.1 (a), we report the 

population distributions of global OIR ΩDMN,ECN,MN in the three 

frequency bands. We observe overall positive values both at T0 

(Ω(θ) = 0.04 ± 0.04; Ω(α) = 0.08 ± 0.05; Ω(β) = 0.17± 0.17) and 

T1 (Ω(θ) = 0.03 ± 0.06; Ω(α) = 0.07 ± 0.06; Ω(β) = 0.16 ± 0.21), 

indicating the prevalence of redundancy in the interactions 

among the three RSNs investigated. On average, decreasing 

values can be noticed at T1, especially at θ, in which we found 

a significant T1 – T0 difference (p = 0.049), and α frequencies. 

Although OIR is still positive, on average, this trend suggests a 

relative shift toward less redundant and more synergistic values 

in the overall balance described by the OIR metric after the 

rehabilitation. The average ΩDMN,ECN,MN decrease at T1 is 

observed also in the causal decomposition of the spectral OIR, 

considering each of the three RSNs in turn as target process 

(Fig. 1 (b)). In particular, considering the statistically 

 
Fig. 2 Significant Spearman’s correlations between OIR variations T1-T0 and FMAT1-T0. R, correlation coefficient, p, p-value. 

 
Fig. 4. T1 – T0 differences of inter-network csGC estimated for each directed 

pairwise connection (mean ± std). Red arrows indicate statistically different 

connection, *, p-value < 0.05, **, p-value < 0.01. 

 
Fig. 3 CFT surrogate analysis for pairwise directed functional connectivity 
measure. In each table, one for each frequency, percentages of csGC significant 

connections in the whole population are reported at both T0 and T1. Asterisks 
indicate a statistically T1 – T0 difference, *, p-value < 0.05, **, p-value < 0.01. 
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significant T1 – T0 differences, the increasing 

synergy/decreasing redundancy (Ω𝐷𝑀𝑁,𝐸𝐶𝑁,𝑀𝑁
𝑇1−𝑇0 < 0) in the 

overall balance behavior of the system appears to be mostly 

explained by the MN acting as driver in two main cases: by its-

own towards the rest of the system in θ and α (p(θ) = 0.005 and 

p(α) = 0.009), and in combination with ECN as a driver towards 

DMN at all the considered frequency bands. Only in the α band, 

we found a mild (p(α) = 0.037) significant reduction of 

causality for ECN considered as a target of the vector process 

{DMN, MN}. Conversely, the ECN seems to play a role in the 

recovery of motor functions, especially of the upper limb. As 

shown in Fig. 2, we found a negative correlation between ΩT1-

T0 and FMAT1-T0 when ECN acts as a driver towards the process 

{DMN, MN} in both θ and α frequencies, and when ECN is 

driver in pairs with DMN towards MN in θ. Hence, increase in 

synergy driven by ECN appears to correlate with upper limb 

motor recovery. In Fig. 3, the CFT surrogate data analysis 

shows that the most represented connections (dark green) are 

those from DMN towards both ECN and MN, and the ones from 

ECN to MN, both at T0 and T1. Besides, at T1 with respect to 

T0, we found a significant increase of connections from MN to 

ECN in θ and α (Δ#MN→ECN(θ) = 15 %, p(θ) = 0.015; 

Δ#MN→ECN(α) = 20 %, p(α) = 0.001). Always in α, a 

significant increase of the number of connections from MN to 

DMN was observed, Δ#MN→DMN(α) = 15 %, p(α) = 0.012. 

In Fig. 4, we report the average (± std) difference between csGC 

at T1 with respect to T0. Consistently with the surrogate binary 

analysis, at all frequencies we observe a reduction of weighted 

connectivity strength towards the MN target originating from 

DMN and ECN. Conversely, an increase of outflow from MN 

is observed towards ECN at all frequencies and towards DMN 

in β band. Specifically, the weight of direct connection 

DMN→MN significantly decreases in α (p = 0.013) and β (p = 

0.049), whereas the connection ECN→MN significantly 

decreases in θ (p = 0.03) and α (p = 0.013) bands. The link 

MN→ECN significantly increases only in θ (p = 0.041). 

Finally, we also calculated the NFI to account for the net flow 

between inwards and outwards information transfer in each 

node (Fig. 5). At all frequencies, we observe a T1-T0 increase 

in the net flow directed from DMN to ECN and a T1-T0 

decrease in the MN in-flow. The topology resulting from the 

NFI calculation highlights the presence of a direct connection 

DMN→MN, plus a DMN→ECN→MN chain of information 

flow, which also provide an indirect communication route from 

DMN to MN. Moreover, as reported in Fig. 6, we found that the 

variation csGCECN→DMN
T1−T0  in the α band positively correlated with 

lower limb motor outcome FACT1-T0 (r = 0.51, p = 0.032), 

whereas the increase of csGCMN→ECN
T1−T0  in θ positively correlated 

with FACT1-T0 (r = 0.48, p = 0.045). Thus, improvements in 

ambulatory performance correlate with increased direct 

connectivity ECN → DMN in α and increased MN→ECN in θ. 

IV. DISCUSSION 

The main goal of this work was to investigate HOIs among 

three RSNs, i.e., DMN, ECN and MN, to identify their changes 

after rehabilitation of subacute stroke patients. All the previous 

studies only investigated pairwise interactions between these 

networks or the correlation of intra-network connectivity with 

functional impairment in different domains [50], while there is 

a lack in the characterization of their HOIs. Moreover, it is 

unclear whether the three interacting networks act 

synergistically or redundantly in stroke patients. For this 

reason, alongside the pairwise connectivity descriptors, we 

provided also a high-order characterization of these interactions 

using OIR, to investigate the causal processes underlying the 

redundant/synergic behavior among the three RSNs. 

A. HOIs 

In our analysis, we found a prevalence of redundancy 

(positive OIR values) in the interactions among the RSNs 

examined at all the frequency bands of interest, both before and 

after the rehabilitation. In addition, in our longitudinal 

evaluation of subacute stroke recovery, we observed a relative 

increase of shift toward less redundant and more synergistic 

values among DMN, ECN, and MN, which reached 

significance in θ frequency. Looking at the causal 

decomposition of the OIR, we found that this decrease in net 

redundancy appeared prevalently when MN acts alone as driver 

towards the other two networks, or when ECN and MN jointly 

drive DMN. More specifically, we found a significant increase 

of causal influence from T0 to T1, especially in α and θ 

frequencies 

In the literature, the description of high-order brain networks 

characteristics is very limited. Up to date, very few works 

 
Fig. 5. Weighted net flow index (NFI) between large-scale networks based on 
conditional spectral granger causality estimation, T0 and T1 (rows) and for θ, 

α, and β frequencies (columns). 

   

   

  

 
  
 
  
 
  
 

   

   

   

  

 
  
 
  
 
  
 

   

   

  

 
  
 
  
 
  
 

   

   

  

 
  
 
  
 
  
 

   

   

  

 
  
 
  
 
  
 

   

   

  

 
  
 
  
 
  
 

  

  

 
Fig. 6. Significant Spearman’s correlations between csGC variations T1-T0 

and FACT1-T0. R, correlation coefficient, p, p-value. 
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investigated the synergistic/redundant behavior within RSNs in 

healthy subjects, and, to our knowledge, no one has previously 

investigated a post-stroke population. Antonacci et al. [15], 

explored the functional interactions among different cortical 

areas during movement execution in normal subjects. In their 

work, dynamic EEG measures of high-order connectivity at the 

sensor level in the frequency domain highlighted the presence 

of redundancy among MN and frontal areas. This result agrees 

with our findings. 

Luppi et al. [14] provided a first description of neuronal 

profiles for synergy and redundancy of different RSNs to 

analyze resting state functional MRI data from 100 healthy 

participants of the Human Connectome Project. They found that 

redundancy tends to prevail within RSNs, in particular in MN, 

visual and salience networks, while synergistic interactions are 

stronger between RSNs, especially between DMN and 

frontoparietal regions belonging to ECN. However, these 

results are not directly comparable with ours since different 

conceptual definitions of redundancy and synergy were used. 

Indeed, they considered a pairwise approach, in which target 

and driver variables are defined based on their present and past 

states, evolving jointly over time. Moreover, it should be noted 

that, even when the same conceptual framework is applied, 

different sensitivity in determining the balance between 

redundancy and synergy across positive and negative values 

can be expected depending on the method used to assess such 

balance. For instance, metrics based on entropy tends to 

emphasize synergy over redundancy with respect to metrics 

based on variance; this effect is related to the nonlinearity of the 

logarithmic function used by the metrics based on entropy, that 

has been verified in theoretical simulations [51] and 

experimental data [52], [53]. Therefore, care should be taken 

when making a comparison among different studies assessing 

high-order interactions in complex systems, and future 

comparative works are encouraged to assess redundant and 

synergistic contributions before and after rehabilitation, to 

confirm and complement the results of the present work.  

B. Pairwise interactions 

As for pairwise interactions, we observed a significant 

reduction in weighted directed connectivity from DMN and 

ECN towards MN after rehabilitation therapy in α and β 

rhythms. On the other hand, we found a significant increased 

connectivity of MN outwards link only for the connection 

MN→ECN in θ. We can speculate that MN, after rehabilitation, 

is less influenced by DMN and ECN activity and, conversely, 

provides more feedback to high-order control networks, since it 

recovers some specific functionalities. On the other hand, we 

found a significant increased connectivity of MN outwards link 

only for the connection MN→ECN in θ. The role of θ band in 

stroke recovery has been previously observed by [54], and it has 

been related to the coordination of sensory and motor brain 

activities during the execution of complex motor task that 

require spatial and motor learning [55]. Since we investigated 

not only the brain primary motor circuits, but also the 

interactions with high-order cognitive control networks, the θ 

role in complex motor coordination could have been 

particularly emphasized. Moreover, we point out that in our 

results a consistent increasing trend from T0 to T1 across all 

frequencies was found, albeit without reaching statistical 

significance in α and β. Increasing the sample size could 

provide more robust statistical significance besides θ. 

A resting state fMRI study by Wang et al. [56], which 

investigated the role of large-scale network in the recovery of 

chronic stroke patients who followed a robot guided 

rehabilitation protocol, found that after rehabilitation in DMN 

and MN there was a significant increase in brain network 

temporal variability, a measure related to the strength of 

functional connectivity. Similarly, a fMRI study in chronic 

stroke patients by Wu et al. [21] found an increased functional 

connectivity between DMN and MN areas after motor 

rehabilitation, with an enhancement of specific connections that 

was positively associated with motor performance. These 

results appear to be in contrast with our findings. However, it 

should be considered that the two cited studies did not 

investigate directional causal relationship between networks, 

but only undirected functional connectivity. Thus, these results 

are not directly comparable to those we obtained by applying 

directed causal connectivity analysis (OIR and csGC). Besides, 

differently from the two cited studies [21], [56] which 

investigated chronic stroke patients, we considered patients in 

an early subacute stage. In the subacute stage, the affected brain 

tissue may be relatively more prone to benign neuroplastic 

reorganization, for instance due to perilesional edema 

reabsorption or synaptic formation [57], which may promote 

recovery of function in the MN, thus, as discussed above, 

disengaging it from vicarious support provided by ECN and 

DMN influences. Conversely, in the chronic stage, the motor 

system may be less liable to neurophysiological reactivation 

[58]. Thus, recovery in the chronic stage may be relatively more 

dependent on compensatory mechanisms, such that increased 

influences originating from ECN and DMN may act on the MN 

to at least partially drive functional restoration. 

Our results on NFI, which account for the balance between 

inwards and outwards information flux for each node, suggest 

that DMN may act as a common driver for MN and ECN. 

Alongside a direct influence from DMN upon the recovering 

MN, ECN may play the role of mediator in the communication 

between DMN and MN. Again, the influence of the two high-

order cognitive networks over the MN appears to reduce after 

the rehabilitation. We can speculate that these inter-network 

dynamics may reflect the exploitation of various strategies in 

stroke patients at T0, particularly combining proprioceptive and 

self-referential cues (DMN, [25]) with executive control 

mechanisms (ECN, [26]) in attempting to overcome the motor 

impairment. Rehabilitation may promote (partial) recovery of 

function in the MN, thus weakening these inter-network 

dynamics at T1 compared to T0. 

C. Correlations with Clinical Outcomes 

The literature on the correlation between connectivity 

measures and motor outcome in stroke is very heterogeneous 

and often contradictory, therefore further studies confirming the 

actual usefulness of these metrics in relation to post-stroke 
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motor rehabilitation are needed [59]. Several factors contribute 

to the heterogeneity of the current results, including the 

diversity of rehabilitation protocols, e.g., conventional, motor 

imagery, with or without Brain Computer Interface (BCI) [60], 

the time post-stroke when the measurements are made, the 

different degree of functional recovery achieved by the 

subjects, and the clinical scales used for correlation studies that 

often focus only on the upper limbs [59], [61]. In addition, the 

diversity of neuroimaging techniques and connectivity analysis 

metrics, such as functional connectivity, effective connectivity 

and lately high-order interactions measures, contribute to the 

heterogeneity of the results and the selection of the most 

appropriate measure as recovery biomarker is still an open 

issue. One of the most consistent result in the literature is the 

link between motor recovery and reduction of interhemispheric 

connectivity between primary motor regions [62], [63], which 

also found to be influenced by the degree of motor recovery 

[64]. However, it has been observed that functional recovery 

post-stroke is associated also with the interaction of different 

RSNs with the MN, since also cognitive networks are involved 

in neuroplasticity processes [65]. However, large-scale 

networks interaction effects have not been reported widely 

across the literature and thus require additional studies [59]. 

The present work fits into this context of investigation of RSNs 

interactions, trying to add knowledge to the existing literature. 

In our study we found some interesting correlations between 

connectivity metrics and clinical motor recovery scales. In 

particular, considering the high-order approach, the increased 

interactions and synergy when ECN acts as a driver towards the 

other networks are significantly correlated to the recovery of 

upper limb motor function, measured as FMA score. Even 

though a statistically significant increase in synergy was 

observed in HOIs involving MN as a driver and DMN as a 

target, no correlation with motor outcome was found for these 

interactions. Furthermore, even in the case of pairwise analysis, 

an increased causal connectivity between ECN and DMN, as 

well as between MN and ECN, was correlated with motor 

performance, in particular of the lower limb (FAC scale). We 

speculate that the observed difference in changes of RSNs 

interactions for upper and lower limb recovery may be due in 

the first instance to the EEG different sensitivity to the larger 

upper limb cortical representation and the proximity to the scalp 

electrodes as compared to the lower limb  [66]. Moreover, from 

a neurophysiological perspective, we hypothesize that the 

walking functionality measured by the FAC requires more 

integration and information exchange between MN and the 

other cognitive networks (DMN and ECN), as compared to a 

simple arm movement assessed with the FMA. Therefore, the 

pairwise connectivity ECN→ DMN and MN → ECN may be 

more relevant for lower limb measures, as they reflect the 

coordination of these cognitive processes during walking, 

whereas for the HOIs the joint involvement of two RSNs may 

blur this effect. All these results may suggest the involvement 

of ECN in motor functionality recovery, as previously 

hypothesized [22], [67]. However, this hypothesis should be 

further investigated and supported by studies in larger 

populations. It is noteworthy that we found the statistically 

significant correlations of RSNs interaction and motor recovery 

scales only in lower frequencies, θ and α bands. In agreement 

with our findings, previous studies have described the role of θ 

and α in the interaction between MN with other networks 

involved in other cognitive processes [54], [59], [68]. 

However, previous studies have also reported a correlation 

between β functional connectivity metrics and upper limb 

motor recovery in different settings [69]. In particular, the 

correlation in β has been observed in studies on motor imagery 

protocol rehabilitation using BCI [60], [70]. Pichiorri and 

colleagues [60] reported a comparison of effective connectivity 

estimated in a group of patients who underwent a BCI guided 

therapy with another group who received the same 

rehabilitation protocol without BCI. In agreement with [70], 

they found a correlation with FMA scale in β and γ only in the 

BCI group, suggesting a more effective impact of BCI in the 

functional recovery of stroke patients. Conversely, they did not 

find this correlation for the non-BCI group, in a population 

similar to ours. 

D. Limits of the work and future developments 

In our study we found a high variability in EEG derived 

metrics among subjects. This variability could be due to 

individual differences in brain activation, also caused by 

different locations of focal cortical and sub-cortical brain 

damages. The small sample size may represent a further 

limitation of this study, an increase of patients to be involved 

may improve the reliability and robustness of the population’s 

OIR estimates and their correlations with clinical outcomes. As 

for the correlation analysis, the most significant results have 

been observed concerning upper limb recovery scale. However, 

the results should be confirmed on a larger and more 

homogeneous population to evince the ECN involvement. 

Besides the three RSNs here investigated, other RSNs 

changes have been found to be involved in stroke recovery, 

such as the dorsal and ventral attention or language networks 

[50] as well as the auditory and the visual networks [16], [22]. 

Being based on linear parametric modeling, OIR requires a 

standard technique for the identification of the VAR model, 

such as the ordinary least square or the Levison’s algorithm for 

the solution of the Yule-walker equations. However, to avoid 

the increasing of bias and variance of estimation, which may 

result in ill-posed regression problems, the ratio between the 

amount of data samples available and the number of regression 

coefficients to be estimated should be at least equal to 10 to 

guarantee the accuracy of the estimation procedure [71], [72]. 

For this reason, we focused our analysis on three of the main 

RSNs known to be affected by stroke, without excessively 

increasing the number of time series to be fitted. In our case, we 

had 1280 samples available for each time series, and we could 

not fit more than the 16 selected ROIs, otherwise the goodness 

of the estimated autoregressive parameters would not be 

guaranteed. The 16 ROIs have been selected on the bases of 

previous literature in the field [39]–[41], using the centroids’ 

coordinates provided in the MNI space according to the 

template we employed for the source reconstruction and 

obtaining areas of comparable volume size. Besides the efforts 
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to be consistent with previous works, it should be considered 

that changes in the selection of ROIs and definition of 

conduction volume in the source reconstruction may induce 

changes in the results obtained. However, considering the 

limited spatial resolution of EEG (about 1 – 2 cm), a small 

variation ROI size around the same centroid’s coordinates 

should have a relatively small effect. 

As for the causal interpretation of the individual network 

contribution to the inter-network increase in synergy, we should 

point out that the driver role of MN and ECN cannot be stated 

with total confidence. In fact, in our data, the instantaneous 

causality term which appears in (9) is not null; thus, we cannot 

affirm that the directionality terms totally explain the 

redundancy/synergy balance. Indeed, the strict causality 

hypothesis [45] should be fulfilled to account exclusively for 

the directionality terms. However, the instantaneous 

synchronization is intrinsic in EEG techniques, and even though 

mitigated by source activity reconstruction, we could not 

completely overcome this issue. In future, this aspect should be 

further investigated. Besides, the OIR approach proves to be 

powerful for the investigation of HOIs in connectivity adding 

spectral and directional description. This method could be 

interestingly applied for the simultaneous investigation of a 

larger number of networks, but still, at the cost of lower-spatial 

resolution to obtain a lower number of cortical areas for each 

large-scale network. Finally, considering the recent literature in 

which HOIs were observed in healthy subjects [73], [74], a 

study on an aged-matched control population with the same 

metric here employed may be interesting to support our 

interpretations, eliminating those confounding factors that can 

arise considering only pathological individuals. 

V. CONCLUSION 

The use of high-order interaction metrics, like OIR, in 

addition to pairwise approach, in the study of inter network 

connectivity in stroke patients could be a powerful tool for 

better understanding complex multiple relationships among 

RSNs, giving a particular focus on their redundant/synergistic 

behavior. Adopting this perspective, in our study we found a 

predominance of redundant interactions among the RSNs both 

before and after the rehabilitation in subacute stroke. After 

rehabilitation, we observed an increased shift toward less 

redundant and more synergistic behavior, mainly related to the 

joint effect of MN and ECN on DMN. As to the pairwise 

connectivity analysis, we observed a reduction of both DMN 

and ECN influence over MN. Finally, the correlation analysis 

with clinical outcomes, suggests that ECN may be an 

interesting player in motor functionality improvement, even 

though further investigations are needed to better comprehend 

its role. 
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