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Abstract

A Hamiltonian reduction approach is defined, studied, and finally used to derive asymptotic models of
internal wave propagation in density stratified fluids in two-dimensional domains. Beginning with the general
Hamiltonian formalism of Benjamin [1] for an ideal, stably stratified Euler fluid, the corresponding structure
is systematically reduced to the setup of two homogeneous fluids under gravity, separated by an interface and
confined between two infinite horizontal plates. A long-wave, small-amplitude asymptotics is then used to
obtain a simplified model that encapsulates most of the known properties of the dynamics of such systems,
such as bidirectional wave propagation and maximal amplitude travelling waves in the form of fronts. Further
reductions, and in particular devising an asymptotic extension of Dirac’s theory of Hamiltonian constraints,
lead to the completely integrable evolution equations previously considered in the literature for limiting forms
of the dynamics of stratified fluids. To assess the performance of the asymptotic models, special solutions
are studied and compared with those of the parent equations.

1 Introduction

Density stratification in incompressible fluids is an important aspect of theoretical fluid dynamics, and is
an inherent component of a wide variety of phenomena related to geophysical application. Displacement of
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fluid parcels from their neutral buoyancy position within a density stratified flow can result in internal wave
motion, whose governing equations are not in general amenable to analytical methods for their solutions.
Simplified models able to isolate key mechanism of the dynamics that can be studied in detail, even in
their one space-dimensional limit, are therefore valuable and over the years many have been proposed in the
literature. A (very) partial list includes [15, 18, 17, 23, 2, 39, 40] among many others.

The main focus of our work is the study of an ideal stratified fluid from a Hamiltonian viewpoint. The
governing equations in the absence of viscosity and diffusivity of the stratifying agent are the Euler equations
augmented by density advection, and we consider the simplified case consisting of two homogeneous density
layers in two spatial dimensions, in the absence of surface tension and confined by two rigid, horizontal,
infinite plates. Hamiltonian aspects of such models with an emphasis on the 2-layer case have been considered,
notably in [2, 18, 17]. Our approach is an alternative to the one used in [17] for their two-layer case, and
similarly combines asymptotic expansions with the Hamiltonian structure of the original Euler equations.
However, our starting point is the general density-stratified Hamiltonian of Benjamin [1], and does not
make use of the generalization to the two-layer case, as in [17], of Zakharov’s Hamiltonian structure [41] for
free surface water waves. In our approach, once the Hamiltonian reduction [9] is applied to the two-layer
case, we consider different balances between nonlinearity and dispersion, which allows us to retain different
asymptotic orders in the ensuing models. In particular, in this paper we focus on a model for interfacial waves
propagation between two-homogeneous density fluids for which nonlinearity is stronger than dispersion. This
model, which we shall refer to as the ABC system, consists of a three-paremeter pair of coupled evolution
equations that generalize to bidirectional propagation the well-known KdV-mKdV or Gardner equation for
unidirectional motion, and it reduces to it (together with its Hamiltonian structure) through a systematic
application of Dirac’s Hamiltonian theory of constraints. In the weakly nonlinear regime, for which a precise
nonlinearity and dispersion balance is enforced, the model reduces to the well known integrable cases of
Kaup-Boussinesq [5, 26, 37, 27].

This paper is organized as follows. Section 2 is concerned with the details of the derivation of the model
equations. Specifically, after a brief review of the fundamental governing equations for ideal, density strati-
fied, incompressible fluids in the section’s introduction and in §2.1, we present the elements of Hamiltonian
reduction to two-layer flows in §2.2 and §2.3. We then proceed to define and apply our asymptotic assump-
tions in §2.4-2.6 to derive the limiting form of the Hamiltonian equations of motion. Section 3 studies the
structure of our main model, while the following section, §4, considers notable reductions that yield known
integrable systems for weakly nonlinear dynamics. Finally, Section 5 considers special solutions that serve
to illustrate the models’ main features and drawbacks, as well as propose asymptotic equivalences to remedy
the latter; lastly, Section 6 discusses future directions of investigation and concludes the paper.

2 Density stratified Euler fluids

We consider a perfect, incompressible and variable density fluid confined between two horizontal infinite
plates. Thus, the fluid occupies the two-dimensional (2D) domain (x, z) ∈ IR × (−h2, h1), with h1 + h2 ≡ h
the distance between bottom and upper boundary. Such a fluid is governed by the incompressible Euler
equations for the velocity field u = (u,w) and non-constant density ρ(x, z, t), in the presence of gravity −gk,

Dρ

Dt
= 0, ∇ · u = 0,

D(ρu)

Dt
+ ∇p+ ρgk = 0 (2.1)

with boundary conditions

u(x = ±∞, z, t) = 0, and w(x,−h2, t) = w(x, h1, t) = 0, x ∈ IR, z ∈ (−h2, h1), t ∈ IR+ , (2.2)

where z = −h2 and z = h1 are the locations of the bottom and top confining plates, respectively. As usual,
D/Dt = ∂/∂t+ u · ∇ is the material derivative.
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2.1 The 2D Benjamin model for heterogeneous fluids in a channel

The above system was given a Hamiltonian structure in [1] with basic, locally measurable variables, i.e., the
density ρ and the “weighted vorticity” ς defined by

ς = ∇× (ρu) = (ρw)x − (ρu)z. (2.3)

From (2.1), the equations of motion for these two fields are

ρt + uρx + wρz = 0
ςt + uςx + wςz + ρx

(
gz − 1

2 (u2 + w2)
)
z

+ 1
2ρz
(
u2 + w2

)
x

= 0 .
(2.4)

These can be written in the form

ρt = −
[
ρ,
δH
δς

]
, ςt = −

[
ρ,
δH
δρ

]
−
[
ς,
δH
δς

]
, (2.5)

where, by definition, [A,B] = AxBz −AzBx, and the functional

H =

∫
D
ρ

(
1

2
|u|2 + gz

)
dxdz =

∫
D
ρ

(
1

2
|∇Ψ|2 + gz

)
dxdz (2.6)

is simply given by the sum of the kinetic and potential energy, D being the fluid domain IR× (−h2, h1). The
streamfunction Ψ is here used as a placeholder for the map between the weighted vorticity ς and u defined
by ς = (ρ u)z − (ρw)x ≡ −(ρΨz)z − (ρΨx)x. As shown in [1], equations (2.5) are a Hamiltonian system with
respect to a linear Hamiltonian structure, that is, they can be written as

ρt = {ρ,H}, ςt = {ς,H}

for the Poisson brackets defined by the Hamiltonian operator

JB = −
(

0 ρx∂z − ρz∂x
ρx∂z − ρz∂x ςx∂z − ςz∂x

)
. (2.7)

2.2 Two-layer case

A simplification of system (2.1) which retains the essential properties of stratification can be obtained by
considering a system of two fluids of homogeneous densities ρ2 > ρ1 in the channel IR × (−h2, h1).

The interface between the two homogeneous fluids is described by a smooth function ζ = ζ(x, t) (see
Figure 1). In this case the density and velocity fields can be described as

ρ(x, z, t) = ρ2 + (ρ1 − ρ2)θ(z − ζ(x, t))

u(x, z, t) = u2(x, z, t) + (u1(x, z, t) − u2(x, z, t))θ(z − ζ(x, t))

w(x, z, t) = w2(x, z, t) + (w1(x, z, t) − w2(x, z, t))θ(z − ζ(x, t)) ,

(2.8)

where θ is the Heaviside function.
A nowadays standard way to reduce the dimensionality of the model is to introduce the layer-averaged

velocities as set forth by Wu [38], since in the case of fluids stratified by gravity the vertical direction plays
a distinguished role. Let us denote by

u1(x, t) =
1

η1(x, t)

∫ h1

ζ

u1(x, z, t) dz, u2(x, t) =
1

η2(x, t)

∫ ζ

−h2

u2(x, z, t) dz , (2.9)
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Figure 1: Schematics of the two-layered configuration. The quantity η2 (resp., η1) is the total thickness of the
lower, heavier (resp., upper, lighter) fluid. The interface ζ is measured from the quiescent state z = 0.

the layer-averaged velocities, where η1 = h1 − ζ, η2 = h2 + ζ are the thicknessess of the layers. Letting
P (x, t) denote the interfacial pressure, the non-homogeneous incompressible Euler equations (2.1) result in
the (non-closed) system

ηit + (ηiui)x = 0, i = 1, 2,

u1t + u1u1x − gη1x +
Px

ρ1
+D1 = 0,

u2t + u2u2x + gη2x +
Px

ρ2
+D2 = 0.

(2.10)

The terms D1, D2 at the right hand side of system (2.10) are

Di =
1

3ηi
∂x[η3i (uixt + uiuixx − (uix)2)] + . . . , i = 1, 2 , (2.11)

where dots represent terms with nonlocal dependence on the averaged velocities. These terms collect the
non-hydrostatic correction to the pressure field, and make the evolution of system (2.10) dispersive. When
an asymptotic expansion based on the long-wave assumption ϵ ≡ max[ηi/L] ≪ 1, i = 1, 2, is carried out
(where L is a typical wavelength), expressions (2.11) explicitly define the leading order dispersive terms in
the small parameter ϵ; truncating at this order makes equations (2.10) local in the layer averaged velocities,
resulting in the strongly nonlinear system studied in, e.g., [12].

It is important to notice that the first two equations in (2.10), which have the meaning of mass conservation
laws,

ηj t + ∂x(ηj uj) = 0 , (2.12)

are actually the counterpart of the kinematic boundary conditions at the interface. Denoting (here and in
what follows) interface velocities by ũj(x, t) = uj(x, ζ(x, t), t) and w̃j(x, t) = wj(x, ζ(x, t), t), this can be seen
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from the chain of equalities (with j = 2),

η2 t + ∂x

∫ ζ

−h2

u2(x, z, t) dz = ζt + ζxũ2 +

∫ ζ

−h2

u2 x(x, z, t) dz =

(using u2 x + w2 z = 0) = ζt + ζxũ2 −
∫ ζ

−h2

w2 z(x, z, t) dz

= ζt + ζxũ2 − w2

∣∣∣ζ
−h2

= (by the bottom no flux condition)

= ζt + ζxũ2 − w̃2 = 0 ,

(2.13)

and similarly for the upper fluid when j = 1. Equations (2.10) come equipped with two constraints. Namely,
we have the obvious geometrical constraint η1 + η2 = h and its consequence obtained by summing the
equations in the first line of (2.10),

(η1u1 + η2u2)x = 0 . (2.14)

We remark that under suitable far-field boundary conditions (such as vanishing or identical velocities for
x→ ±∞) this relation translates into the dynamical constraint

η1u1 + η2u2 = 0 . (2.15)

2.3 The Hamiltonian reduction process

We now discuss how a simple averaging process can be given a Hamiltonian structure, well suited to the
discussion of the constrained equations in which our set of reduced coordinates naturally appears. We follow
the setting already introduced in [9] and provide a full geometric description of the reduction process. We
begin with definitions (2.8), where we suppress time dependence for ease of notation in what follows. The
two momentum components are

ρu = ρ2u2(x, z) + (ρ1u1(x, z) − ρ2u2(x, z))θ(z − ζ(x)) ,

ρw = ρ2w2(x, z) + (ρ1w1(x, z) − ρ2w2(x, z))θ(z − ζ(x)) ,
(2.16)

so that the weighted vorticity (2.3) is

ς =ρ2(w2 x − u2 z) +
(
ρ1(w1 x − u1 z) − ρ2(w2 x − u2 z)θ(z − ζ(x))

−
(
ρ1u1(x, z) − ρ2u2(x, z) + ζx(ρ1w1(x, z) − ρ2w2(x, z))

)
δ(z − ζ(x)) ,

(2.17)

where δ(·) is the Dirac delta function.
We assume that the motion in each layer is irrotational, so that we are left with a “momentum vortex

line” along the interface, that is,

ς =
(
ρ2u2(x, z) − ρ1u1(x, z) + ζx(ρ2w2(x, z) − ρ1w1(x, z))

)
δ(z − ζ(x)). (2.18)

We define a projection map 2D → 1D as

ζ(x) =
1

ρ
∆

∫ h1

−h2

(ρ(x, z) − ρ1) dz − h2, σ(x) =

∫ h1

−h2

ς(x, z) dz , (2.19)

where ρ
∆

= ρ2 − ρ1. When applied to 2-layer configurations, the first of these relations is easily obtained
from the first of equations (2.8). Moreover, in the 2-layer bulk irrotational case,

σ(x) = ρ2u2(x, ζ(x)) − ρ1u1(x, ζ(x)) + ζx(x)(ρ2w2(x, ζ(x)) − ρ1w1(x, ζ(x))) , (2.20)

i.e., the averaged weighted vorticity σ is the tangential momentum shear at the interface.
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The geometry thus far outlined fits the Hamiltonian reduction scheme devised in [31]. Indeed, such
a scheme considers a manifold P endowed with a Poisson tensor, such as JB , a submanifold M ⊂ P,
a distribution D contained in the tangent bundle to P restricted to M, TP|M, and state that a Poisson
reduction to M/Φ, with Φ denoting the intersection TM∩D, is possible when (some geometrical assumptions
on the regularity of D and on its action on M being granted)

1. JB is invariant under D.

2. At each point of M it holds
JB(D0) ⊂ TM +D , (2.21)

D0 ⊂ T ∗P|M being the annihilator of D in the cotangent bundle to P restricted to M.
In particular (see the example in [31]), in our case we identify the following geometric objects:

1. P is the configuration space M (2) of the 2D fields, parametrized by (ρ(x, z), ς(x, z)), and JB is the
Benjamin Poisson tensor (2.7)

JB = −
(

0 ρx∂z − ρz∂x
ρx∂z − ρz∂x ςx∂z − ςz∂x

)
. (2.22)

2. M is given by the 2-layer configuration space

{ρ(x, z) = ρ2 − ρ∆θ(z − ζ(x)), ς(x, z) = σ(x)δ(z − ζ(x)) }. (2.23)

3. D is the image under JB of the annihilator TM0 of the tangent space to M in TM (2)|M.

To show how our model fits the Marsden–Ratiu scheme we first notice that the TM can be described as the
space of pairs of generalised functions of the form

{ρ̇ = ρ
∆
ζ̇δ(z − ζ), ς̇ = σ̇δ(z − ζ) − σζ̇δ′(z − ζ)} , (2.24)

δ′ being the derivative of the Dirac’s-δ function. Notice the link between the δ(z − ζ)-coefficient of ρ̇
and the δ′(z − ζ)-coefficient of ς̇. The annihilator TM0 is readily computed as pairs of smooth functions
(ϕ(x, z), ψ(x, z)) satisfying

ψ(x, ζ) = 0, ρ
∆
ϕ(x, ζ) + σψz(x, ζ) = 0 . (2.25)

Since on M we have
ρx = ρ∆ζxδ(z − ζ) , ρz = −ρ∆δ(z − ζ) ,
ςx = σxδ(z − ζ) − σζxδ

′(z − ζ) , ςz = σδ′(z − ζ) ,
(2.26)

the restriction of the Poisson tensor JB on M acquires the form

JB |M = −

(
0 δ(z − ζ)ρ

∆
(ζx∂z + ∂x)

δ(z − ζ)ρ
∆

(ζx∂z + ∂x) δ(z − ζ)σx∂z − δ′(z − ζ)σ (ζx∂z + ∂x)

)
. (2.27)

Hence the image of JB |M is the space of vectors(
ρ̇

ς̇

)
= −

(
ρ

∆
(ζxψz + ψx) δ(z − ζ)

(ρ
∆

(ζxϕz + ϕx) + σxψz) δ(z − ζ) − σ (ζxψz + ψx)δ′(z − ζ)

)
. (2.28)

This expression can be used to show that D = JB(TM0) reduces to the null vector. In fact, let us consider
(2.28) with (ϕ, ψ) in TM0. Thanks to the δ-function factor, the first component of (2.28) can be written as
ρ̇ = −ρ∆ (ζxψz(x, ζ) + ψx(x, ζ)) δ(z − ζ), and the coefficient of the δ vanishes being the total x-derivative of
the first of (2.25). By using the generalised function identity f(y)δ′(y) = f(0)δ′(y) − f ′(0)δ(y) the second
component of (2.28) can be written as

ς̇ = σ (ζxψz(x, ζ) + ψx(x, ζ))δ′(z − ζ)

−
(
ρ∆ (ζxϕz(x, ζ) + ϕx(x, ζ)) + σxψz(x, ζ) + σζxψzz(x, ζ) + σψxz(x, ζ)

)
δ(z − ζ) , (2.29)
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which vanishes as well thanks to (2.25). The vanishing of D confirms that the reduced manifold is isomorphic
to the submanifold M, which guarantees the invariance of JB . As for the characteristic condition for reduc-
tion, i.e., equation (2.21), this follows explicitly from (2.28) which displays how the image JB |M is contained
in TM as determined in equation (2.24).

We can now compute the expression of the reduced Poisson tensor as follows. We consider the pull-back
to M (2) of a generic 1-form (µζ(x), µσ(x)) on the manifold M (1), parametrized by (ζ(x), σ(x)), under the
map (2.19), given by (

1

ρ∆

µζ(x), µσ(x)

)
. (2.30)

Applying the Poisson tensor (2.7) evaluated on M to this covector, we obtain ρ̇(x, z)

ς̇(x, z)

 = −

(
ρ

∆
δ(z − ζ(x)) (µσ(x))x

δ(z − ζ(x)) (µζ(x))x − σ(x)δ′(z − ζ(x)) (µσ(x))x

)
. (2.31)

Pushing this vector to M (1) via the tangent map to (2.19),

ζ̇ =
1

ρ
∆

∫ h1

−h2

ρ̇(x, z) dz, σ̇ =

∫ h1

−h2

ς̇(x, z) dz,

yields the vector
(ζ̇, σ̇) = (−∂x µσ,−∂x µζ) ,

owing to the fact that
∫ h1

−h2
δ′(z − ζ(x)) dz = 0 (we work under the assumption that the fluid interface never

touches the boundary, i.e., the strict inequalities −h2 < ζ < h1 hold).
Hence, the expression of the reduction of the Benjamin Poisson tensor JB on the manifold M (1) is given

in the coordinates (ζ(x), σ(x)) by the constant tensor

Jred = −
(

0 ∂x
∂x 0

)
. (2.32)

This structure coincides with the one introduced in [2] by a direct inspection of the Hamiltonian formulation
of two-layer models. We stress that within our setting the above Poisson tensor is obtained by the process
of Hamiltonian reduction from the Lie-Poisson structure of the general heterogeneous incompressible Euler
2D fluids of [1]. Moreover, by means of our choice of reducing map (2.19), we directly obtain a set of
coordinates (ζ, σ) that can be called Darboux coordinates, since they are the analog of the coordinates (u, v)
for the non-linear wave equation in 1+1 dimensions utt = F ′′(u)uxx derived from the Hamiltonian functional
H = 1

2

∫
IR(u2t + F (u)) dx by means of the Poisson structure (2.32).

2.4 The evolution variables and the Hamiltonian

The basic feature of the Hamitonian reduction process is that with this approach the natural dependent
variables are the displacement from the equilibrium position ζ and the tangential interface momentum shear

σ(x) = ρ2u2(x, ζ(x)) − ρ1u1(x, ζ(x)) + ζx(x)(ρ2w2(x, ζ(x)) − ρ1w1(x, ζ(x)))

≡ ρ2ũ2(x) − ρ1ũ1(x) + ζx(x)(ρ2w̃2(x) − ρ1w̃1(x))
(2.33)

(we recall and use hereafter that a tilde over a quantity stands for its evaluation at the interface, e.g.,
ũ1(x, t) = u1(x, ζ(x, t), t) etc.).

In this respect, the approach we pursue here differs from the Green-Naghdi setting of, e.g., [12], which
considers layer averaged velocities (following the seminal paper [38]). Specifically, here we shall use and adapt
to our case the setting discussed in [40] (see also [41, 2]) where the equations for internal wave motion are
written using two sets of coordinates:

7



i) the boundary velocity basis, in which ζ is complemented by u0 1(x, t) = u1(x, h1, t) in the upper layer and
by u0 2(x, t) = u2(x, h2, t) in the lower layer.

ii) the interface velocity basis, where we use the variables entering the Hamiltonian reduction process, that
is ũj(x, t) = uj(x, ζ(x, t), t).

While for some aspects of the theory it is advantageous to use layer-mean velocities (see [40, 11, 12]), as
mentioned above these are not the ones most naturally suggested by our Hamiltonian reduction procedure,
and therefore we choose to express energy, the mass conservation as well as the ensuing dynamical constraint
in terms of interface variables.

Following [40, 37], we use the assumed bulk irrotationality of the fluid flow to introduce the bulk velocity
potentials φj(x, z), which we Taylor expand with respect to the vertical variable z. By the vanishing of the
vertical velocity at the physical boundaries z = h1, and z = −h2 we obtain the Taylor expansions

φj(x, z) =

∞∑
n=0

(−1)n

(2n)!
Hj(z)2n∂2nx φ0 j(x) (2.34)

where
H1(z) = z − h1, H2(z) = z + h2 , (2.35)

and φ0 1(x) = φ1(x, h1), φ0 2 = φ2(x,−h2) are the values of the potential at the rigid lids.
The horizontal velocities are then given by

uj = ∂xφj(x, z) =

∞∑
j=0

(−1)n

(2n)!
Hj(z)2n∂2nx ∂xφ0 j(x) =

∞∑
j=0

(−1)n

(2n)!
Hj(z)2n∂2nx u0 j(x) , (2.36)

u0 j(x) being the horizontal velocities at z = h1 (for j = 1) and at z = −h2 (for j = 2).
Likewise, the vertical velocities are given by

wj(x, z) = ∂zφj(x, z) =

∞∑
n=0

(−1)n+1

(2n+ 1)!
Hj(z)2n+1∂2n+1

x u0 j(x) (2.37)

Notice that the boundary conditions w1(x, h1) = w2(x,−h2) = 0 are satisfied.
Since

H1(ζ) = −η1, H2(ζ) = η2, i.e., Hj(ζ) = (−1)jηj , j = 1, 2 , (2.38)

where η1(x) = h1 − ζ(x) (resp. η2(x) = h2 + ζ(x)) is the thickness of the upper (resp. lower) layer, the
interface velocities can be directly obtained by formulas (2.36) and (2.37) as

ũj =
∞∑
j=0

(−1)n

(2n)!
η2nj ∂2nx u0 j(x) , w̃j = (−1)j−1

∞∑
n=0

(−1)n

(2n+ 1)!
η2n+1
j ∂2n+1

x u0 j(x) . (2.39)

For later use, we express (from the same formulas) the layer-mean horizontal velocities in terms of the
fluid thicknesses and the (respective) boundary velocities as

u1(x) ≡ 1

η1

∫ h1

ζ

u1(x, z) dz =

∞∑
n=0

(−1)n

(2n+ 1)!
η1(x)2n∂2nx u0 1(x)

u2(x) ≡ 1

η2

∫ ζ

−h2

u2(x, z) dz =

∞∑
n=0

(−1)n

(2n+ 1)!
η2(x)2n∂2nx u0 2(x) .

(2.40)
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2.5 Rescaling the spatial independent variables: the ϵ–expansion and the mass
conservation laws

To make the formal Taylor series (2.39,2.40) effective in the construction of asymptotic models for interfacial
wave motion we have to rescale variables (see, e.g., [37, 40]). In particular, we set

x = Lx∗, z = h z∗ , (2.41)

where L is a typical horizontal scale (say, a typical wavelength) and h is the total height of the vertical channel.
As usual, we assume that the ratio ϵ = h/L be the small dispersion parameter of the theory. Indeed, by
using these scalings, we can turn the Taylor series (2.36,2.37) as well as (2.39,2.40) into asymptotic series in
the small parameter ϵ.

For the sake of simplicity, hereafter we shall drop asterisks from the formulas. We remark that, unless
otherwise explicitly stated, horizontal lengths are scaled by L and vertical lengths by h. Henceforth, we
will abuse notation a little and use the order symbol O(·) to denote the magnitude of bounded dimensional
quantities whenever this can be done without generating confusion.

For the velocity fields we have

uj(x, z) =

∞∑
j=0

(−1)n

(2n)!
ϵ2nHj(z)2n∂2nx u0 j(x) ,

wj(x, z) = (−1)j−1ϵ

∞∑
n=0

(−1)n

(2n+ 1)!
ϵ2nHj(z)2n+1∂2n+1

x u0 j(x) .

(2.42)

It is worth taking into account here and below the expected (Lagrangian) scaling of vertical vs. horizontal
velocities wj/uj = O(ϵ). Similarly we have

ũj =

∞∑
j=0

(−1)n

(2n)!
ϵ2nηj

2n∂2nx u0 j = u0 j −
ϵ2

2
η2j u0 j xx +O(ϵ4)

w̃j = (−1)j−1ϵ

∞∑
n=0

(−1)n

(2n+ 1)!
ϵ2nηj

2n+1∂2n+1
x u0 j

= ϵ (−1)j−1

(
ηju0 j x − ϵ2

6
η3j u0 j xxx +O(ϵ4)

)
uj =

∞∑
n=0

(−1)n

(2n+ 1)!
ϵ2nηj

2n∂2nx u0 j = u0 j −
ϵ2

6
η2j u0 j xx +O(ϵ4) .

(2.43)

It should be noticed that, contrary to [40, 37], for the time being we do not rescale the dependent variables
u,w; this will be done at a later stage, when we shall rescale the Hamiltonian variable σ once the constraints
mentioned above in Section 2 will be taken into account.

At leading order in the expansion with respect to the small dispersion parameter ϵ, we have

uj = ũj , wj = w̃j ≃ 0, with σ = ρ2ũ2 − ρ1ũ1 = ρ2u2 − ρ1u1, (2.44)

that is, σ reduces to the horizontal momentum shear. At this order one can view the motion as satisfying
the so-called columnar motion ansatz (see, e.g., [36]). Thus at higher orders the ansatz fails, since we have

σ = ρ2ũ2 − ρ1ũ1 + ϵζx(ρ2w̃2 − ρ1w̃1) (2.45)

and columnar motion is no longer consistent with (2.42).
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For the reader’s convenience, we now collect in compact form a few consequences of the expansions (2.43),
that can be found in §13 of [37]. First, from (2.43) notice that inverting

ũj = u0 j −
ϵ2

2
η2ju0 j xx +O(ϵ4) . (2.46)

yields

u0 j = ũj +
ϵ2

2
η2j ũj xx +O(ϵ4) . (2.47)

A straightforward computation shows that

w̃j = (−1)j+1 ϵ

(
ηj ũj x +

ϵ2

3
(η3j ũj xx)x +O(ϵ4)

)
. (2.48)

Also, as far as the asymptotic relations between interface and layer-averaged velocities are concerned, we
have, again from (2.43),

uj = u0 j −
ϵ2

6
η2j u0 j xx +O(ϵ4) , (2.49)

which yields, thanks to (2.47),

uj = ũj +
ϵ2

3
η2j ũj xx +O(ϵ4) . (2.50)

The mass conservation laws for the two fluids, expressed without approximation by the pair of equations

ηj t + ∂x(ηj uj) = 0, j = 1, 2 , (2.51)

are translated, by (2.50), into the approximate mass conservation laws

ηj t + ∂x(ηj ũj) +
ϵ2

3
∂x(η3j ũj xx) = O(ϵ4) , j = 1, 2 . (2.52)

Hence, the dynamic constraint (2.15) obtained by summing the two equations (2.51), taking into account
the geometric constraint η1 + η2 = h together with the far-field vanishing conditions, translates into the
approximate dynamical constraint

η1 ũ1 + η2 ũ2 +
ϵ2

3

(
η31ũ1 xx + η32ũ2 xx

)
= O(ϵ4) . (2.53)

2.6 The energy

Our next task is to write the explicit form (at order O(ϵ2)) of the energy. All the asymptotic manipulations
needed are for the kinetic energy, the potential energy is straightforward and can be written out immediately
at every order. The asymptotic analysis is somewhat equivalent to that used in other approaches, (see,
e.g., [17]) starting from the different viewpoint of expanding, having assumed two-layer dynamics from the
outset, the so-called Dirichlet-to-Neumann operator in each layer, and we can anticipate here that it will
produce similar dispersive terms in the long-wave expansions below. However, besides the different starting
point of geometric Hamiltonian reduction, our approach will also focus on the need to allow for different
balances between nonlinearity and dispersion to capture, both qualitatively and quantitatively, fundamental
features of the dynamics, while simultaneously striving for the simplest possible models.

Let us consider the lower fluid first. Its kinetic energy density reads

T2 =
ρ2
2

∫ ζ

−h2

(u22 + w2
2)hdz , (2.54)
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(the dimensional factor h coming from the scaling of z). By Taylor-expanding, we have

u2(x, z) = u2 0(x) − ϵ2

2
(z + h2)2u2 0 xx(x) +O(ϵ4) . (2.55)

By (2.47) we get

u2(x, z) = ũ2(x) +
ϵ2

2

(
η22(x) − (z + h2)2

)
ũ2 xx(x) +O(ϵ4) , (2.56)

and by (2.42) and (2.47),
w2(x, z) = −ϵ(z + h2)ũ2 x(x) +O(ϵ2). (2.57)

This leads to

T2 =
h ρ2

2

∫ ζ

−h2

[
ũ22 + ϵ2

(
ũ2ũ2 xx

(
η22 − (z + h2)2

)
+ ũ22 x (z + h2)2

)
+O(ϵ4)

]
dz

=
h ρ2

2

[
η2ũ

2
2 +

ϵ2

3
η32
(
2ũ2ũ2 xx + ũ22 x

)]
+O(ϵ4) .

(2.58)

By the same arguments we obtain the contribution to the total kinetic energy density of the upper fluid as

T1 =
h ρ2

2

∫ h1

ζ

(u21 + w2
1) dz =

h ρ1
2

[
η1ũ

2
1 +

ϵ2

3
η32
(
2ũ1ũ1 xx + ũ21 x

)]
+O(ϵ4) . (2.59)

In formulas (2.58,2.59) we used, respectively, η2 = ζ + h2 and η1 = h1 − ζ.
As mentioned above, the computation of the potential energy density is more direct: taking non-

dimensionalization into account, we have

U = h2 g

(∫ ζ

−h2

ρ2z dz +

∫ h1

ζ

ρ1z dz

)
=

1

2
h2
(
g(ρ2 − ρ1)ζ2 − 1

2
g(ρ2h

2
2 − ρ1h

2
1)

)
, (2.60)

where h is again the total distance between top and bottom plates.

3 Nonlinear asymptotics

In what follows, we shall deal with a simplified model, defined by the following requirements:

1. The interface displacement ζ will be understood to be scaled by its maximum value a, to yield the

amplitude nondimensional small parameter α =
a

h
≪ 1. Namely, the non-dimensional fluid thicknesses

ηj will be written as
ηj = hj + (−1)jα ζ . (3.1)

2. We shall make an asymptotic expansion in the small parameters α and ϵ and mainly consider the
“Mildly Non-Linear” (MNL) case, defined by the relative scaling ϵ2 ≪ α ≪ ϵ. We shall thus discard
terms of order αϵ2, ϵ3 and higher, but retain terms of order α2. The usual Weakly Non-Linear (WNL)
case (see, e.g., [37]), where α = O(ϵ2), can be seen as a special case of the MNL case (see Section 4).

The first consequences of such scaling limits are the following:

i) The slope ζx of the normalized interface is small and scales as
a

h

h

L
= O(αϵ).

ii) Since w̃j scales as ϵ and, by the previous point, ζx scales as αϵ, the Hamiltonian variable

σ = ρ2ũ2 − ρ1ũ1 + ζx(ρ2w̃2 − ρ1w̃1) (3.2)

within this asymptotics becomes
σ = ρ2ũ2 − ρ1ũ1 , (3.3)

which has the same form as that of the dispersionless approximation.
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iii) The approximate dynamical constraint (2.53) gets simplified as well, and reads

η1ũ1 + η2ũ2 +
ϵ2

3
(h31ũ1 xx + h32ũ2 xx) = O(ϵ4) . (3.4)

iv) There is a notable simplification in the kinetic energy densities (2.58) and (2.59). Indeed, for the lower
fluid under approximations (2.58) one gets

T2 =
h ρ2

2

(
η2ũ

2
2 +

1

3
ϵ2h32

(
2ũ2ũ2 xx + ũ22 x

))
. (3.5)

Notice that the ϵ2 term can be written as
h32
3
ũ2ũ2 xx +

h32
6

(ũ22)xx, and this second term, being a total

derivative, does not contribute to the Hamiltonian formulation of the equations of motion.

Repeating the argument for the upper fluid, the total kinetic energy density, still within the same
MLN asymptotics, can be written as

T = T1 + T2 =
h

2

(
ρ1
(
η1ũ

2
1 +

ϵ2

3
h31(ũ1ũ1 xx +

1

2
(ũ21)xx)

)
+ ρ2

(
η2ũ

2
2 +

ϵ2

3
h32(ũ2ũ2 xx +

1

2
(ũ22)xx

))
.

(3.6)

3.1 The Hamiltonian in Darboux coordinates

Our next task is to express the Hamiltonian density H = T + U of the asymptotic model in terms of the
Darboux coordinates dictated by the Hamiltonian reduction process of §2.3, that is, the pair ζ and σ given
by (3.3). To this end, we make use of the geometrical constraint η1 + η2 = h and the approximate dynamical
constraint given by equation (2.53). Our strategy will be to use the weak nonlinearity assumption to simplify
the dispersive terms first, and deal with small α expansion for the quasilinear terms afterwards, since the
latter do not contain x-derivatives in the Hamiltonian, which can then be expanded in a standard Taylor
series.

As remarked above, within the present asymptotic theory, the dynamical constraint reads

η1ũ1 + η2ũ2 +
ϵ2

3
(h31ũ1 xx + h32ũ2 xx) = 0 . (3.7)

Rewriting the latter in operator form as the equality

η1

(
1 +

ϵ2

3
h21∂

2
x

)
ũ1 = −η2

(
1 +

ϵ2

3
h22∂

2
x

)
ũ2 , (3.8)

which is correct up to terms of order α ϵ2, and by using the approximate inversion formula for near-identity
operators (1 + ϵ2Â)−1 = 1− ϵ2Â+O(ϵ4), we get

ũ1 = −
(
1− ϵ2

3
h21∂

2
x

)(
η2
η1

(
1 +

ϵ2

3
h22∂

2
x

))
ũ2 , (3.9)

up to higher order terms in ϵ2. Since
η2
η1

=
h2
h1

+O(α) we arrive at the relation

ũ1 = −η2
η1
ũ2 +

ϵ2

3

h2
h1

(h21 − h22)ũ2 xx . (3.10)

Recall that the kinetic energy density is represented, at O(ϵ2) and in this weakly non-linear asymptotics, by

T =
h

2

(
ρ1
(
η1ũ

2
1 +

ϵ2

3
h31ũ1ũ1 xx

)
+ ρ2

(
η2ũ

2
2 +

ϵ2

3
h32ũ2ũ2 xx

))
plus total derivatives. (3.11)
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At the order of approximation we are working with we can substitute

ũ1 xx = −h2
h1
ũ2 xx (3.12)

in the O(ϵ2) terms of this expression as well as in the approximate dynamical constraint (3.7), which therefore
turns into

ũ1η1 + ũ2η2 +
1

3
ϵ2ũ2 xxh2(h22 − h21) = 0 . (3.13)

By solving this algebraic constraint and the defining relation (3.3) with respect to the velocities, we get the
implicit relations

ũ1 = − σ η2
η1ρ2 + η2ρ1

+
ϵ2

3

ũ2 xxh2ρ2
(
h1

2 − h2
2
)

η1ρ2 + η2ρ1

ũ2 =
σ η1

η1ρ2 + η2ρ1
+
ϵ2

3

ũ2 xxh2ρ1
(
h1

2 − h2
2
)

η1ρ2 + η2ρ1

(3.14)

Now we can use the fact that the second derivative ũ2 xx appears only in terms O(ϵ2), so that we can
substitute (3.12) into

σxx = ρ2 ũ2 xx − ρ1 ũ1 xx (3.15)

leading to

ũ2 xx =
σxxh1

h1ρ2 + h2ρ1
. (3.16)

Hence, equations (3.14) become

ũ1 = − η2 σ

η1ρ2 + η2ρ1
+ ρ2

ϵ2

3

h1 h2
(
h1

2 − h2
2
)

(h1ρ2 + h2ρ1)(η1ρ2 + η2ρ1)
σxx ,

ũ2 =
η1 σ

η1ρ2 + η2ρ1
+ ρ1

ϵ2

3

h1 h2
(
h1

2 − h2
2
)

(h1ρ2 + h2ρ1)(η1ρ2 + η2ρ1)
σxx .

(3.17)

Substituting these relations in the expression of the kinetic energy density (3.11) leads, dropping the total
derivative terms, to the intermediate expression

T =
h

2

(
η1η2σ

2

ρ2η1 + ρ1η2
+
ϵ2

3

h1
2h2

2 (h1ρ1 + h2ρ2)

(h1ρ2 + h2ρ1)
2 σ σxx

)
. (3.18)

Next, the first term in the kinetic energy must be expanded in powers of α to yield our final version of the
kinetic energy density

T =
h

2

h1 h2
(h1ρ2 + h2ρ1)

σ2 +
α

2

h (h21ρ2 − h22ρ1)

(h1ρ2 + h2ρ1)
2 ζ σ

2 − α2

2

h3 ρ1ρ2

(h1ρ2 + h2ρ1)
3 ζ

2σ2

+
ϵ2

6

hh1
2h2

2 (h1ρ1 + h2ρ2)

(h1ρ2 + h2ρ1)
2 σ σxx +O(α3, αϵ2, ϵ4) .

(3.19)

Therefore, with the potential energy expression (2.60), the total energy density at this order is

E =h

(
1

2

h1 h2
(h1ρ2 + h2ρ1)

σ2 +
α

2

(h21ρ2 − h22ρ1)

(h1ρ2 + h2ρ1)
2 ζσ

2 − α2

2

h2ρ1ρ2

(h1ρ2 + h2ρ1)
3 ζ

2 σ2

)

+ h
ϵ2

6

h1
2h2

2 (h1ρ1 + h2ρ2)

(h1ρ2 + h2ρ1)
2 σ σxx +

1

2
h2 g(ρ2 − ρ1)ζ2 .

(3.20)
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It is convenient to introduce the non-dimensional momentum shear σ∗ by

σ =
√
h g(ρ2 − ρ1)(h1ρ2 + h2ρ1) σ∗ (3.21)

so that the non-dimensional form E∗ of the total energy is (immediately dropping asterisks for ease of
notation)

E =
1

2
h1 h2σ

2 +
α

2

h1
2ρ2 − h2

2ρ1
(h1ρ2 + h2ρ1)

ζ σ2 − α2

2

h2 ρ1ρ2

(h1ρ2 + h2ρ1)
2 ζ

2 σ2

+
ϵ2

6

h1
2h2

2 (h1ρ1 + h2ρ2)

h1ρ2 + h2ρ1
σ σxx +

1

2
ζ2

=
1

2

(
Aσ2 + αB ζσ2 − α2C ζ2σ2 + ζ2 + ϵ2κσ σxx

)
(3.22)

where we denoted the constants by

A = h1 h2, B =
h1

2ρ2 − h2
2ρ1

(h1ρ2 + h2ρ1)
, C =

h2ρ1ρ2

(h1ρ2 + h2ρ1)
2 , κ =

1

3

h1
2h2

2 (h1ρ1 + h2ρ2)

h1ρ2 + h2ρ1
. (3.23)

Applying the Poisson tensor (2.32) to the variational differential of the energy (in fact, the Hamiltonian)
E =

∫
E dx yields the equations of motion as

(
ζt

σt

)
= −

(
0 ∂x

∂x 0

) 
δE
δζ

δE
δσ

 (3.24)

where t is the non-dimensional time, related with the physical time by

t→ ϵ

√
g(ρ2 − ρ1)

h (h1ρ2 + h2ρ1)
t . (3.25)

This shows explicitly how the evolution proceeds in a slow time gauged by the dispersion parameter ϵ as
required by the long-wave asymptotics.

The resulting system in conservation form is
ζt +

(
Aσ + αBζσ − α2Cζ2σ + ϵ2κσxx

)
x

= 0

σt +

(
ζ + α

B σ2

2
− α2Cζσ2

)
x

= 0
, (3.26)

or, carrying out the relevant spatial differentiations explicitly,{
ζt +Aσx + αB(ζσ)x − α2C(ζ2σ)x + ϵ2κσxxx = 0

σt + ζx + αBσσx − α2C(ζσ2)x = 0
. (3.27)

which from now on will be referred to as the ABC-system.

Remark 3.1 A few comments on the parameters A,B,C and their relations with the physical parameters
ρ1, ρ1, h1, h2 are in order. First, the parameter A is just the square of the linear wave velocity; in nondi-
mensional form it ranges from 0 to 1

4 , and could be set to unity by further rescaling σ. Next, note that
the parameter κ is nonnegative, and vanishes only when h1 → 0 or h2 → 0. Similarly, the parameter C is
nonnegative, and vanishes only in the air-water limit ρ1 → 0. The most interesting parameter is B, which is
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non sign-definite and appears in front of the cubic term σ2ζ of the Hamiltonian. It vanishes at the critical
ratio

ρ1
ρ2

=
h21
h22

. (3.28)

By denoting the density ratio parameter r = ρ1/ρ2, so that 0 < r < 1, the definition of B shows that it is
positive for h1 >

√
r h2, and negative for h1 <

√
r h2. One of the most relevant effects of this change in sign

shows up in the existence and polarity of solitary travelling wave solutions of system (3.26), as we shall see
below in Section 5. In this regard, to account for the break down of the theory near the vanishing of the B
coefficient of quadratic nonlinearity, we notice that under the WNL asymptotic scaling it would be necessary
to compute a plethora of higher order terms for asymptotic consistency, as shown in [32]. Such terms involve
higher order derivatives which make the search for travelling solutions a (mostly) numerical affair, whereas
reasonable qualitative and somewhat quantitative agreement with Euler solutions can already be obtained
under the present ABC model.

Remark 3.2 The Boussinesq approximation consists of retaining density differences in the potential (grav-
itational) energy density, while neglecting the associated inertial differences in the kinetic energy density, by
setting in (3.6)

ρ1 = ρ2 = ρ̄ . (3.29)

This Boussinesq approximation simplifies significantly the weakly or mildly nonlinear asymptotics; indeed,
the Hamiltonian variable for the weighted shear reduces to σ = ρ̄(ũ2 − ũ1), and the non-dimensional energy
density of the system becomes

EB =
1

2
h1 h2σ

2 +
α

2
(h1 − h2)ζσ2 − α2

2
ζ2 σ2 +

ϵ2

6
h1

2h2
2σ σxx +

1

2
ζ2

=
1

2

(
AB σ

2 + αBB ζσ
2 − α2CB ζ

2σ2 + ζ2 + ϵ2 κBσ σxx
)
,

(3.30)

where

AB = h1 h2, BB = h1 − h2, CB = 1, κB =
1

3
h1

2h2
2 . (3.31)

The Hamiltonian formulation of system (3.26) provides three additional constants of the motion besides
the energy E . They are the two Casimir functionals,

K1 =

∫
IR
ζ dx, K2 =

∫
IR
σ dx, (3.32)

and the generator of the x-translation

Π =

∫
IR
ζ σ dx . (3.33)

They are conserved quantities for any choice of the parameters A,B and C. As we shall see in the following
section, the weakly nonlinear case is rather special, as it reduces to the so-called completely integrable
Kaup-Boussinesq systems.

4 Two notable reductions and their complete integrability

It is worth considering further simplifications of the reduction (3.24) as they may be applicable to certain
physical regimes and offer the unexpected bonus of being completely integrable. We first look at the weakly
nonlinear limit (WNL) in the context of the bidirectional system (3.26). We then examine how the Hamil-
tonian reduction strategy can be used to derive unidirectional motion equations.
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4.1 The WNL case and the Kaup-Boussinesq system

The WNL asymptotics mentioned above, where α = O(ϵ2), formally corresponds to dropping the C-term
in the Hamiltonian, as the quartic terms of O(α2) becomes subdominant with respect to other terms unless
the “hardware” parameters (depths and densities) are near the critical ratio (3.28), where the coefficient of
the cubic term B vanishes. Away from the critical ratio, the WNL case leads to a “universal” representative
bidirectional system which can be viewed as standing at the same level as its unidirectional counterpart, the
well known KdV equation.

Suppressing the order parameters α and ϵ for ease of notation, system (3.27) in the WNL limit becomes{
ζt +Aσx +B(ζσ)x + κσxxx = 0

σt + ζx +Bσσx = 0
. (4.1)

This system is a parametric version of the Boussinesq system for water waves equations, introduced by [5, 37].
It is asymptotically equivalent, up to terms of order O(α, ϵ2), to the nonlocal one reported in [12] (the form
apparently favored by Boussinesq [37],§13.11), through the change of variables

σ̄ = σ + κσxx , and σ̄ =

(
ρ1h2 + ρ2h1

h2
− ρ2ζ

h22

)
ū1 . (4.2)

System (4.1) is completely integrable via the Inverse Scattering Method, as shown in [26], and further analyzed
in [27], where it was also shown how it can be derived in bi-Hamiltonian form. In our variables (which are
related to those in [27] by a nontrivial Miura-like transformation) the corresponding Poisson pencil (see,
e.g., [22, 24]) is

P (λ) = λP0 − P1 =

 1
2B(ζ∂x + ∂xζ) +A∂x + κ∂3x

(
1
2Bσ − λ

)
∂x

∂x
(
1
2Bσ − λ

)
∂x

 . (4.3)

Indeed, the equations of motion (4.1) can be written as the Hamiltonian evolution

(
ζt

σt

)
= P1


δΠ

δζ

δΠ

δσ

 = P0


δE
δζ

δE
δσ

 . (4.4)

Throughout this section and the next one, the differential operator ∂x is, as usual, meant to act on all
quantities that stand to its right, e.g., ∂x ζϕ = (ζ ϕ)x. Also, in the above formula, Π is the generator of
x-translations (3.33) and we renamed P0 the tensor Jred of (2.32).
This bi-Hamiltonian formulation can be used to construct recursively an infinite family of constants of motion.
We briefly review here the technique in [24], adapted to system (4.1). First, we seek the Casimir of the Poisson
pencil (4.3), in the form of a series H(λ) in inverse powers of λ, H(λ) =

∑∞
n=0 Hnλ

−n, whose variational
gradient satisfies

P (λ) · dH(λ) = 0 . (4.5)

Denoting by (γ, β) the components of the gradient of H(λ) one gets the following system{
B
2 (ζγx + (ζγ)x) +Aγx + κγxxx + (B

2 σ − λ)βx = 0

B
2 (σγ)x − λγx + βx = 0

(4.6)

Substituting βx = λγx−B(σγ)x/2 from the second equation into the first yields an expression for γ that can
be manipulated, by multiplying it by γ, into the total x-derivative.

B

2
[(γζ)γx + γ(γζ)x] − B2

4
(γσ)(γσ)x + λ

B

2
[(γσ)γx + γ(γσ)x] + (A− λ2)γγx + κγγxxx = 0 . (4.7)
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By integrating in x, system (4.6) can be replaced by{
1
2

(
−λ2 +A+B(λσ + ζ − B

4 σ
2)
)
γ2 + κ(γγxx − 1

2γ
2
x) = F (λ)

B
2 σγ − λγ + β = G(λ)

, (4.8)

where F (λ) and G(λ) are the arbitrary constants of integration with respect to x. The corresponding inverse
power series for γ = 1 +O( 1

λ ) and β = O( 1
λ ) can be obtained by setting

F (λ) = −λ
2

2
, G(λ) = −λ . (4.9)

It is straightforward to check that with this choice system (4.8) can be solved iteratively. It remains to show
that the one-form (γ, β) is exact. To this end we define

h(λ) :=
λ

2
√
κ

1

γ
+
γx
2 γ

=
λ

2
√
κ

+ h0 +
h1
λ

+
h2
λ2

+
h3
λ3

· · · . (4.10)

In terms of h(λ) we can write (4.8), subject to the choice (4.9), as h(λ)x + h(λ)2 =
1

4κ

(
λ2 −A−B

(
λσ + ζ − Bσ2

4

))
β(λ) = λ(γ − 1) − B

2 σγ .

(4.11)

Let us consider the one-form (γ, βγ) with βγ given by the second equation of this system, and denote by

(ζ̇, σ̇) the tangent vector to a generic curve in the phase space (ζ, σ). Then∫
IR

(γζ̇ + βγ σ̇) dx =

∫
IR

(
γζ̇ +

(
λ(γ − 1) − B

2
γσ

)
σ̇

)
dx . (4.12)

From the first of (4.11) we get

ḣx + 2hḣ = − B

4κ

(
ζ̇ + λσ̇ − B

2
σσ̇

)
. (4.13)

Multiplying by γ, integrating by parts, and using the definition (4.10) finally yields∫
IR

(
γζ̇ + βγ σ̇

)
dx = −λ d

dt

∫
IR

(
σ +

4
√
κ

B
h(λ)

)
dx . (4.14)

We can conclude that

H(λ) = −
∫

IR

(
σ +

4
√
κ

B
h(λ)

)
dx (4.15)

is a Casimir of the Poisson pencil (4.3); hence the coefficients of its expansion in inverse powers of λ are
mutually commuting constants of the motion. The first conserved quantities are

H1 =

∫
IR
ζ dx ,

H2 =
B

2

∫
IR
ζσ dx ,

H3 =
B

2

∫
IR

(
1

2
Aσ2 +

1

2
Bζσ2 +

ζ2

2
− 1

2
κσ2

x

)
dx ,

H4 =
B2

8

∫
IR

(
Aσ3 +Bζσ3 + 3ζ2σ − 3κσσ2

x − 4

B
κζxσx

)
dx .

(4.16)
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Note that H1 is a Casimir of P0, the quantity H2 was already identified with the generator of x-translations,
while H3 is (up to a factor 1/2) the energy (i.e., the Hamiltonian functional (3.22) for P0). Together with∫

IR σ dx, the first three conserved quantities come from basic physical principles. The fourth, H4, and all
the higher order H’s thus constructed are the conserved quantity more directly associated with the Liouville
integrability of the mathematical problem and the bi-Hamiltonian formulation we have described. It is
well known (see, e.g., [5]), that the energy H3 failing to be a positive-definite quantity implies that the
corresponding equations of motion are not “well protected against short wave instability,” the so-called bad
Boussinesq equation being possibly the prototypical example of an integrable equation displaying such a
drawback. Further comments on this phenomenon can be found in Section 5.1.

We remark that the full ABC system (3.26), unlike its WNL reduced case, seems to fail the complete
integrability property of a second local Hamiltonian structure. Following the WNL structure, one could make
use of the conserved quantity (proportional to) H2 above to provide such a structure with the anti-symmetric
operator

PABC =

− 1
2B(ζ∂x + ∂xζ) +A∂x + κ∂3x − 1

2Bσ∂x + C∂xσζ

− 1
2∂xBσ + Cσζ∂x ∂x + Cσ∂xσ

 . (4.17)

Used with the appropriate factor of H2, this operator does yield the equations of motion (3.26); however,
because its dispersionless limit is not associated with a flat metric, as detailed in [21], PABC fails to satisfy a
necessary condition for fulfilling Jacobi identity, and hence cannot be used to generate a second Hamiltonian
structure for system (3.26).

4.2 Unidirectional models

To obtain unidirectional nonlinear wave equations for our model, we at first observe that the rescaling
σ →

√
Aσ simplifies the Hamiltonian density (3.22) to

H̃ =
1

2

(
σ2 + ζ2 + αB̃ ζσ2 − α2C̃ ζ2σ2 + ϵ2κ̃σ σxx

)
(4.18)

(with B̃ =
B

A
and so on and so forth), and the ensuing Hamiltonian equations of motion to{

ζt = −(σx + αB̃(ζσ)x − α2C̃(ζ2σ)x + ϵ2κ̃σxxx)

σt = −(ζx + αB̃σσx − α2C̃(ζσ2)x)
. (4.19)

We seek (following, e.g., the classical steps of [37] §13) for a relation σ = σ(ζ) of the form

σ = ζ + αF (ζ) + α2G(ζ) + ϵ2K(ζ) (4.20)

with F,G,K differential polynomials in ζ such that the resulting equations obtained substituting (4.20) in
(4.19) coincide up to terms vanishing faster than α2 and ϵ2 in the limit α, ϵ→ 0, that is, at order O(α2, ϵ2).
This procedure can be carried on in a straightforward manner, the only difference with the derivation of the
KdV equation of [37] being that at order O(α) one has to use the relation

∂t = −∂x − 3

2
B̃α ζ∂x . (4.21)

The outcome is the following:

i) The link between ζ and σ of equation (4.20) is explicitly given by

σ = ζ − 1

4
α B̃ ζ2 +

1

8
α2B̃2ζ3 − 1

2
ϵ2κ̃ ζxx . (4.22)
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ii) The resulting unidirectional equation of motion is a parametric form of the (defocusing) Gardner (or
KdV-mKdV) equation

ζt = −ζx − 3

2
αB̃ζ ζx +

(
3α2C̃ +

3

8
α2B̃2

)
ζ2ζx − 1

2
ϵ2κ̃ ζxxx , (4.23)

which was derived in the theory of stratified fluids, e.g., in [20].
We first notice that, in the Weakly Non Linear (WNL) approximation, that is at O(α, ϵ2) with α =

O(ϵ2), equation (4.23) becomes the Korteweg-deVries (KdV) equation, and relation (4.22) reduces to the one

of [37] §13. Moreover, although for C̃ = 0 the Hamiltonian (4.18) becomes the Hamiltonian of the Kaup-
Boussinesq system (4.1), the resulting unidirectional equation for ζ has a modified KdV (mKdV) term, given

by 3α2B̃2 ζ2ζx/8.
These unidirectional equations can be given a Hamiltonian interpretation by providing an alternative

strategy by a geometric reshaping of the argument in [33, 34] (which refers to a single layer Euler fluid, an
inessential difference in this context). We regard equation (4.22) as an asymptotic constraint between the
two dependent variables σ, ζ and we apply the Dirac theory of constraints [19], and its related Dirac Poisson
brackets. First, a straightforward computation shows that, still in the O(ϵ2, α2) asymptotics, no secondary
constraint arise, that is, if we denote by

Φ ≡ σ − ζ +
1

4
α B̃ ζ2 − 1

8
α2B̃2ζ3 +

1

2
ϵ2κ̃ ζxx = 0 (4.24)

the constraint, the equations of motion, the constraint equation (4.22) and relation (4.21) imply

Φt ≈ 0 atO(α2, ϵ2) , (4.25)

where the “≈”symbol, as per the usual Dirac’s theory notation, stands for equality on the constrained
manifold. Second, we notice that the pair ζ, φ = σ− g(ζ), where g(ζ) = ζ − 1

4 α B̃ ζ
2 + 1

8 α
2B̃2ζ3 − 1

2 ϵ
2κ̃ ζxx ,

is a set of coordinates equivalent to the pair ζ, σ, and we express the Poisson tensor (2.32) in these new
coordinates. The result is the matrix of differential operators

P̃ =

(
0 −∂x

−∂x ∂x · g′(ζ) + g′(ζ) · ∂x

)
, (4.26)

where we denoted by g′(ζ) the Fréchet derivative of g(ζ), viz.

g′ = 1 − 1

2
B̃αζ +

3

8
B̃2α2 ζ2 − 1

2
ϵ2κ̃∂xx . (4.27)

In analogy with the usual formula of the Dirac Poisson brackets for the finite N -dimensional case q1, . . . qN ,
with a number M < N of constraints Φ1, . . .ΦM ,

{qi, qj}D = {qi, qj} −
M∑

a,b=1

{qi,Φa}(C−1)ab{Φb, qj} , (4.28)

where C is the matrix with entries {Φa,Φb}, the Dirac tensor in the coordinates (ζ, φ) is given by

PD ≡

(
P̃11 − P̃12

(
P̃22

)−1

P̃21 0

0 0

)
=

(
−∂x

(
P̃22

)−1

∂x 0

0 0

)
, (4.29)

with P̃22 = ∂x · g′(ζ) + g′(ζ) · ∂x. This yields the reduced Dirac Poisson tensor on the “constrained” manifold
of unidirectional right-moving waves,

PD
R ≡ −∂x

(
P̃22

)−1

∂x . (4.30)
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Our final task is to compute, still in the MNL asymptotics, the inverse of the operator P̃22.
A direct computation in this asymptotics shows that such an inverse is given by the pseudo-differential

operator

(P̃22)−1 =
1

4

(
2∂−1

x +
1

2
B̃α (∂−1

x ζ + ζ ∂−1
x ) − 1

8
B̃2α2(2∂−1

x ζ2 + 2ζ2∂−1
x − ∂−1

x ζ∂xζ∂
−1
x − ζ∂−1

x ζ) +
1

2
ϵ2κ̃∂x

)
,

(4.31)
which yields, after some manipulation, the reduced Dirac tensor

PD
R = −1

2
∂x − 1

8
αB̃(ζ∂x + ∂x ζ) +

1

32
α2B̃2(ζ2 ∂x + ∂x ζ

2 + ζx∂
−1
x ζx) − 1

4
ϵ2κ̃∂xxx . (4.32)

The Hamiltonian density reduces, on the constrained manifold σ = ζ − 1
4 α B̃ ζ

2 + 1
8 α

2B̃2ζ3 − 1
2 ϵ

2κ̃ ζxx and
in the MNL asymptotics, to

H̃D = ζ2 +
1

4
αB̃ζ3 − α2

(
3

32
B̃2 +

1

2
C̃

)
ζ4 . (4.33)

Finally, it is easy to verify that the combination

PD
R

δ

δ ζ

∫
IR
H̃D dx (4.34)

yields the unidirectional equation of motion (4.23).
It is remarkable that, in the WNL asymptotics α = O(ϵ2), the operator PD

R yields the bi-Hamiltonian
structure for the KdV equation. Indeed,

PD
R,KdV =

1

2
∂x − 1

8
αB̃(ζ∂x + ∂x ζ) − 1

2
ϵ2κ̃ ∂xxx (4.35)

can be written, after suitable rescaling of the variables, as

PD
R,KdV = ∂x − ϵ2 (∂xxx + ζ∂x + ∂x ζ) , (4.36)

which is the Magri Poisson pencil for KdV, where the usual role of the pencil parameter is here played by
the square of the inverse dispersion parameter ϵ−2.

5 Special solutions

In this section, we investigate some properties of the motion equations (3.26) which are relevant to their
actual applicability as models of wave propagation, viz. their dispersive behaviour and their traveling wave
solutions. This is a first step, which can be carried out without resorting to numerical methods, necessary
to assess the performance of the models we have derived with respect to established results for the parent
Euler equations.

5.1 Linearization and the dispersion relation

Linearizing system (3.26) around the constant solution (Z, S), ζ = Z + z(x, t) and σ = S + s(x, t) say, with
the functions z, s treated as infinitesimal, yields{

zt +Asx + αB(Zsx + Szx) − α2C(Z2sx + 2SZzx) + ϵ2κsxxx = 0

st + zx + αBSsx − α2C(S2zx + 2SZsx) = 0
. (5.1)
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Looking for sinusoidal wave solutions of the form (z, s) = (az, as)e
i(kx−ωt) leads to the following algebraic

eigenvalue problem for the phase speed cp ≡ ω/k as eigenvalue,[
αBS − 2α2CSZ − cp A+ αBZ − α2CZ2 − ϵ2κk2

1 − α2CS2 αBS − 2α2CZS − cp

][
az

as

]
=

[
0

0

]
, (5.2)

giving the following dispersion relation

cp = α(BS − 2αCSZ) ±
√

(1 − α2CS2)(A+ αBZ − α2CZ2 − ϵ2κk2) , (5.3)

whereby the critical threshold wavenumber

k2c = (A+ αBZ − α2CZ2)/(ϵ2κ) (5.4)

is identified, past which the system becomes Hadamard ill-posed with k > kc. Note that the factor 1−α2CS2

needs to be positive, for stability of long waves, i.e., k ≪ 1, where the asymptotic model applies. This puts a
bound on the admissible values of the equilibrium momentum shear S at the critical values S = ±1/(α

√
C),

with −1/(α
√
C) < S < 1/(α

√
C). Such a bound, and in particular the fact that the threshold wavenumber

for (3.27) is independent of the magnitude of the shear σ, limits the applicability of this system in possible
numerical applications. However, it is inherent to our local Hamiltonian setting and will consistently recur
in what follows, e.g. in the definitions of the domain of hyperbolicity of the dispersionless limit, as well as in
the analysis of the travelling wave solutions of the dispersive case.

With regard to the last point, it is worth noting that an asymptotic step, akin to the well know KdV
to BBM near identity relation, can here be used advantageously to circumvent the hindrance to numerical
applications due the lack of well posedness of (3.27). Indeed, a shift of the dependent variable σ, similar
to (4.2),

σ̄ ≡ σ + ϵ2κ̄ σxx =⇒ σ = σ̄ − ϵ2κ̄ σ̄xx +O(ϵ4) , (5.5)

where κ̄ = κ/A , takes system (3.27) into the asymptotically equivalent form{
ζt +Aσ̄x + αB(ζσ̄)x − α2C(ζ2σ̄)x = 0

σ̄t + ζx + αB σ̄σ̄x − α2C(ζσ̄2)x = ϵ2κ̄σ̄xxt
. (5.6)

As hinted by the notation used, this step is equivalent to that of using layer averaged velocities, in
defining the density weighted vorticity, instead of the velocities at the interface between layers used in the
definition (3.15) of σ. The dispersion relation for system (5.6) linearized around constant states σ̄ = S and
ζ = Z is readily obtained from modifying (5.2) above:[

αBS − 2α2CSZ − cp A+ αBZ − α2CZ2

1 − α2CS2 αBS − 2α2CZS − cp(1 + ϵ2κ̄k2)

][
az

as

]
=

[
0

0

]
. (5.7)

This is more resilient for well-posedness than (5.3). In fact, the eigenvalue cp is given by the solution of the
quadratic equation

(1 + ϵ2κ̄k2)c2p − q1(2 + ϵ2κ̄k2)cp − q2 + q21 = 0 , (5.8)

where we have introduced the shorthand notation

q1 = αBS − 2α2CSZ , q2 = (A+ αBZ − α2CZ2)(1 − α2CS2) .

The asymptotic expansion of the discriminant of (5.8) is

∆ = 4
(
A+ αBZ − α2C(AS2 + Z2) +Aϵ2κ̄k2

)
+O(α3, αϵ2) ,
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which is certainly asymptotically positive for values of S and Z of order O(1) with respect to the small α
parameter.

The standard dispersion relations for infinitesimal disturbances around the quiescent state ζ = σ = 0 are
obtained from the above relations setting Z = S = 0,

c2p = A− ϵ2κk2 , (5.9)

and

c2p =
A

1 + ϵ2κ̄k2
, (5.10)

for systems (3.27) and (5.6) respectively. The role of the coefficient A as the limiting long wave phase speed,
and the different behaviors of these speeds in the large wavenumber k limit, are especially transparent in this
case.

Remark 5.1 The analysis of the dispersionless counterpart of the system (3.26) goes as follows (see [9] for
the fully non-linear dispersionless case). The dispersionless Hamiltonian density can be read off equation
(3.22),

Hd =
1

2

(
Aσ2 + αB ζσ2 − α2C ζ2σ2 + ζ2

)
. (5.11)

Hence, the dispersionless equations can be written as(
ζt

σt

)
+

(
Hd, ζσ Hd, σσ

Hd, ζζ Hd, ζσ

) (
ζx

σx

)
=

(
0

0

)
. (5.12)

The characteristic matrix of the system is, explicitly,

V =

(
αBσ − 2α2Cσ ζ −α2Cζ2 + αBζ +A

1 − α2Cσ2 αBσ − 2α2Cσ ζσ

)
, (5.13)

and so the characteristic velocities are given by

v± = αBσ − 2α2Cσ ζ ±
√

(−α2Cζ2 + αBζ +A)(1 − α2Cσ2) . (5.14)

The hyperbolicity domain is thus the rectangular region in the hodograph space

(ζ, σ) ∈

(
B −

√
4CA+B2

2αC
,
B +

√
4CA+B2

2αC

)
×
(
− 1

α
√
C
,

1

α
√
C

)
. (5.15)

Remark 5.2 The regularization (5.5) is different from those used in [13, 28, 4], where the change of variables
leading to the shear is done through the choice of a reference height of the horizontal velocities in the layers.
The resulting models can be still ill-posed with respect to a dispersion critical wavenumber, however with an
optimal choice of the reference height (typically, that of the bottom and top layer) the critical wavenumber
can be made to maximize the well posed interval of the dispersion relation.

5.2 Travelling wave solutions and their properties

Travelling waves for the ABC-system,
ζt +

(
Aσ +Bζσ − Cζ2σ + κσxx

)
x

= 0

σt +

(
ζ +

B

2
σ2 − Cζσ2

)
x

= 0
, (5.16)
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rewritten here droppings stars and setting α = ϵ = 1 in (3.26), are obtained via the ansatz ζ(t, x) =
ζ(x− c t), σ(t, x) = σ(x− c t) as the solution of the system

− cζ +Aσ +Bζσ − Cζ2σ + κσxx = K1

− cσ + ζ +
B

2
σ2 − Cζσ2 = K2

, (5.17)

K1 and K2 being integration constants. We limit ourselves to seek solitary wave solutions propagating into
a quiescent state, i.e., ζ → 0 and σ → 0 as x→ ∞, which sets K1 = K2 = 0. The second equation in (5.17)
yields the relation between ζ and σ,

ζ = σ
c−Bσ/2

1 − Cσ2
, (5.18)

and substituting this into the first of (5.17) provides the quadrature formula

κσ2
x = −σ2

(
A− 1

4

(Bσ − 2c)2

1 − Cσ2

)
, (5.19)

which can be interpreted as the mechanical analog of particle of mass 2κ in a potential well U(σ),

U(σ) ≡ σ2

(
A− 1

4

(Bσ − 2c)2

1 − Cσ2

)
. (5.20)

An exact expression for x as a function of σ for the solution of (5.19) can be found in terms of elliptic
functions, but it is not particularly illuminating and will not be reported here. Once such an expression
is obtained, its counterpart for the displacement ζ follows immediately from (5.18). Typical wave solution
profiles are shown in Figure 2, where they are compared with those of the same amplitudes for the two-layer
model of [12]; this in turn is known to provide good approximations to full Euler solutions in a broad range
of physical parameters, including large nonlinearity. As this figure suggests, the differences between the
two models become smaller for decreasing amplitudes, in agreement with the mild nonlinearity assumption
underlying system (5.16). The potential (5.20) has been normalized to have a double zero for σ = 0, and
limits to −∞ when σ tends to 1/

√
C from the right and to −1/

√
C from the left. Solitary waves — always

associated with the null value of the energy of the corresponding mechanical system — exist when σ = 0 is a
local maximum for U(σ), and U(σ) has two more distinct non-zero roots σ∗

1,2 in the interval (−1/
√
C, 1/

√
C),

so that −U(σ) is non-negative for σ between 0 and the smallest (in absolute value) of these additional roots
(the limiting case of σ∗

1 → σ∗
2 corresponds to soliton solutions degenerating to front-like solutions, as the orbit
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Figure 2: Comparison of internal solitary wave profiles ζ(x) of different amplitudes: red – solution of (5.16),
black – solution of strongly nonlinear model of [12]. Here the physical parameters are g = 981 cm/s2, h1 =
15 cm, h2 = 62 cm, ρ1 = 0.999 g/cm3, ρ2 = 1.022 g/cm3 (used in the experiment of [25]), and the maximum
displacement is measured in units of the upper layer thickness h1: (a) ζa = 0.91h1; (b) ζa = 0.36h1.
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becomes heteroclinic). This implies that (smooth) solitary waves (ζ(x− ct), σ(x− ct)) form a one-parameter
family with respect to the speed c in the interval

A < c2 < A+
B2

4C
. (5.21)

Since c0 ≡
√
A can be interpreted as the linearized speed of interfacial long-waves in a two-fluid system, this

shows that nonlinear, solitary waves move faster than c0 up to a limiting maximum speed defined by

c2m ≡ c20 +
B2

4C
.

The dependence on the speed parameter c of the maximum displacements of solitary waves from equilibrium
is (taking right-moving waves and B > 0 to fix ideas)

σa =
2Bc− 2

√
A
(
B2 − 4C(c2 −A)

)
B2 + 4AC

, ζa =
−2AB + 2c

√
A
(
B2 − 4C(c2 −A)

)
B2 − 4c2C

, (5.22)

respectively for σ and ζ. (If B < 0, and with right moving waves, the opposite sign of the square roots in
the above formulae needs to be taken.) Regardless of the sign of B, at c = cm these waves degenerate into
fronts, with amplitude of displacement given by

σm =
B√

C(B2 + 4AC)
, ζm =

B

2C
. (5.23)

Note that the sign of the B coefficient in these relations determines whether the displacement ζ of internal
solitary waves is positive (waves of elevation) or negative (waves of depression), for B > 0 and B < 0,
respectively. This sign is in turn determined by the value of the ratio h1/h2 with respect to the critical
value

√
ρ1/ρ2 (see Remark 3.1). Notice that for the WNL limit, which, as mentioned above, yields the

Kaup-Boussinesq system (4.1) by formally taking C = 0, the relation between wave amplitude and speed
does not have a limiting extremum (at which the solitary waves degenerate into fronts), and this relation is
linear,

ζa = 2
√
A
c−

√
A

B
.

In terms of the “hardware parameters” h’s and ρ’s the maximum speed cm and displacement amplitude
ζm read, in the original dimensional variables,

c2m = c20

(
1 +

(ρ1h
2
2 − ρ2h

2
1)2

4(h1 + h2)2h1h2ρ1ρ2

)
, ζm =

(ρ1h2 + ρ2h1)(ρ2h
2
1 − ρ1h

2
2)

2ρ1ρ2(h1 + h2)2
, (5.24)

where, in dimensional form, the internal long-wave linear speed is given by

c20 = g(ρ2 − ρ1)
h1h2

ρ1h2 + ρ2h1
.

As expected for the present asymptotic theory, carried out under the assumption of weak nonlinearity, these
limiting values will in general be different from their exact counterparts of the two-layer Euler system which
coincide with the ones obtained with the fully non-linear model [12]. The latter, cEm and ζEm say, are (see,
e.g., [12])

(cEm)2 = c20
(h1 + h2)(ρ1h2 + ρ2h1)

h1h2(ρ1 + ρ2 + 2
√
ρ1ρ2)

, ζEm =
ρ2h

2
1 − ρ1h

2
2

ρ2h1 + ρ1h2 + (h1 + h2)
√
ρ1ρ2

,

and they can be expected to be asymptotically close to cm and ζm as the critical ratio of depths and densities
h1

h2
=
√

ρ1

ρ2
is approached. This is due to the fact that the MNL model includes the α2-term which is dominant
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Figure 3: Effective wavelength vs. maximum displacement amplitude for internal solitary waves modeled
by (5.16) (red), by (4.1) (blue), and by the strongly nonlinear model of [12] (black). (a) h1 = 15 cm, h2 = 62 cm,
g = 981 cm/s2, ρ1 = 0.999 g/cm3, ρ2 = 1.022 g/cm3. (b) h1 = 55.1 cm, all other parameters as in (a). The axes
are scaled with respect to the top layer thickness h1. Note the different axis range in the two cases: for (b)
the amplitude range is much smaller and the waves are generally longer. Also note how in both cases the
location of the vertical asymptote at the front value ζm is captured reasonably well by model (5.16), while the
Kaup-Boussinesq system (4.1) lacks the front limiting case. As expected, for case (a) which is far from the
critical ratio, the intermediate amplitudes are off, while for the near-critical ratio case (b) the black curve is
graphically indistinguishable from the red one.

in this regime, since the coefficient of the term of order α vanishes in this limit. Thus, the travelling solitary
wave solutions of the present asymptotic model can be expected to provide a good approximation for their
exact counterparts in the whole amplitude range, even approaching their front limit, when the depths and
densities are such that the critical aspect ratio is approached to within an error of order O(α); more precisely,
it can be shown that

h1
h2

−
√
ρ1
ρ2

= α =⇒ cEm − cm
cEm − c0

= O(α) , and
ζm − ζEm
ζEm

= O(α) , (5.25)

in the limit α → 0, for which cEm, cm → c0 and ζEm, ζm → 0. These observations are exemplified by Figure 3
where the so-called effective wavelength

λI ≡ 1

ζa

∫ +∞

0

ζ(x) dx

is plotted vs. ζa for two cases, one corresponding to the hardware parameters used in the experiment in [25]
and the other where the depth of the upper layer h1 is adjusted to be close to the critical ratio as in (5.25)
with α = 0.1. Figures 3, and its companion Figure 4 where the so called nonlinear dispersion relation curve
is also depicted, show a comparison with the analogous curves from the strongly nonlinear model [12]. It is
remarkable that the limiting values where solitary waves degenerate into fronts are somewhat accurately cap-
tured by the model even when these values fall well beyond the model’s asymptotic validity. It is remarkable
that this agreement occurs without recourse to an ad-hoc adjustment of the coefficients of the various term
in the model, as done in [14] in the context of a unidirectional reduction. For the example provided in Fig-
ure 4(a), for instance, the limiting values are, respectively for the model and Euler systems, cm/c0 = 1.2565
and cEm/c0 = 1.2580, and ζm/h1 = −1.5361 and ζEm/h1 = −1.5521. Also, the nonlinear dispersion relation
curve representing the wave velocity dependence on amplitude, c = f(ζa) with the function f determined by
the second equation in (5.22), remains close to that of the strongly nonlinear system throughout the range of
admissible displacement amplitudes, as seen in Figure 4(a). Once again, notice how all differences between
models become graphically undetectable as the critical ratio is approached, as demonstrated by the (b) panels
of these figures.
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Figure 4: Same as Figure 3, but for speed of internal solitary waves vs. maximum displacement amplitude
modeled by (5.16) (red), by (4.1) (blue), and by the strongly nonlinear model of [12] (black). Note that the
discrepancy between (5.16) and the strongly nonlinear model [12] is far less pronounced for speed than its
effective wavelength counterpart, while the Kaup-Boussinesq (4.1) model is only asymptotically valid for small
amplitudes in all cases. As for Figure 3, notice the different range of case (a) with respect to (b), and the
undistinguishable overlapping between the red and the black curves.

6 Conclusions and perspectives

We have applied the technique of Hamiltonian reduction in its entirety, including the handling of constraints
when present, to derive model equations that inherit their structure from the parent Benjamin Hamiltonian
formulation of a density stratified ideal fluid, under the asymptotic scalings of small amplitudes of fluid parcel
displacements from their equilibrium positions and under slow variations in their horizontal positions, i.e.,
long wave approximation and small dispersion.

The resulting main model generalizes to a bidirectional system the properties of the so-called Gardner
unidirectional wave propagation equation, by allowing a quartic nonlinear term to enter the equations and
provide the necessary nonlinear contribution to set a critical maximum displacement at which travelling
solitary wave solutions degenerate into fronts, as well handle wave dynamics in a neighbourhood of critical
depth ratio. In contrast to its unidirectional counterpart, the additional nonlinearity within the bidirectional
system makes wave properties such as the maximum amplitude ζm and the nonlinear dispersion relation
c(ζa) close to their exact Euler counterparts, at least for the parameter range we have explored, even though
the quartic term is formally subdominant to the other terms in the Hamiltonian with respect to the small
asymptotic parameters carried by the coefficients. This is an unexpected feature of the MNL model that
would have been difficult to anticipate based on the derivation alone. Of course, based on this metrics of
travelling wave solutions the fidelity of the strongly nonlinear model [12] with respect to the parent Euler
system remains unmatched. However, we should stress that the reasonable agreement is obtained here with
a substantially simpler, local structure of the model. Further, the Hamiltonian reduction techniques also
allow for a systematic derivation of completely integrable models and in particular of Magri’s bi-Hamiltonian
structure [30] of the KdV equation from the parent Euler system, a program that fulfills the goal posed
in [33, 34] (for single layer fluids).

Future work will address reductions that are closer to the physical system by retaining higher order
nonlinearity and dispersion, as well as remedy the drawbacks of ill-posedness injected by the asympotic
truncations. The subtleties related to the double scaling limits with the two small parameters α and ϵ with
respect to the physical hardware parameters densities ρ’s and depths h’s (see, e.g., [3]), deserve further
investigation which will be reported elsewhere.
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