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Abstract

Nowadays, the global volume of written text is growing at an ever-increasing pace. Since 2011,

the number of posts per minute on Facebook has increased from 650’000 to 3 million. These

unstructured data represent a vast source of information that can be exploited with automatic

engines. This is primarily achieved through Natural Language Processing (NLP), a field of

Artificial Intelligence (AI) dedicated to the analysis and comprehension of human language as

it is spoken and written.

One common task in NLP is topics identification, which involves recognizing the topic(s)

of a text. Among the automatic solutions (in contrast to engines developed and maintained by

linguistic experts), there are two main approaches: Statistical Learning Models (SLM) trained

on supervised datasets, capable of identifying real topics and Topic Models (TM), capable of

identifying latent topics in unsupervised corpora of documents.

In general, in topic identification research, it is always challenging to find a high-quality

training dataset with a known mixture of topics for each text and so that topics come from a

taxonomy that covers all possible subjects. A dataset of this kind, preferably extensive and easy

updatable, could be of enormous value to train supervised models or to validate the results of

various types of models.

Furthermore, TMs have proven to be highly effective in numerous tests since the introduction

of the Latent Dirichlet Allocation (LDA) model. While many variants and advancements have

been developed in recent years, they all face two issues. Firstly, it is difficult to comprehend what

are the ”meaning” the identified latent topics. To address this, several methods for labeling these

latent topics have been proposed. Secondly, comparing different TMs is tricky because there is

no direct relationship between the topics of one model and those of another. Consequently today

we have only been able to rely on ”self-referential” indicators or manual verification.
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In this PhD research many novel methodologies are proposed on these three challenges: two

methodologies for creating a large corpus of documents with well-defined mix of topics, four

methods for labeling latent topics using this corpus with a supervised approach, six metrics used

for performances evaluation of topic models in this context.

These three significant advancements allows to get the main contribution of this research: to

establish a rigorous methodological framework compare different TMs on a common and object-

ive ”arena”, providing the opportunity for quantitative performance comparisons, particularly in

terms of their ability to accurately identify the actual mix of real topics in documents.

Several experiments have been conducted to validate the effectiveness of this approach.

Firstly, extensive comparisons of the ability to identify topics in unknown documents have been

carried out between the methodology proposed in this study and random models on one side

and supervised statistical learning models on the other side. This was done to ensure that the

proposed solution yields reliable outcomes, and the results indeed confirm the correctness of the

proposed methodology.

Secondly, multiple comparisons of four TMs, the already cited LDA, Correlated Topic

Model (CTM), Hierarchical Dirichlet Process (HDP) and Pachinko Allocation Model (PAM)

have been conducted measuring how well they identify the real topics using the proposed meth-

odology. This was assessed using both classical indicators of classification (accuracy, precision,

and recall) and all of new metrics proposed in this work.

Last but not least, as a byproduct, a new SLM based on TM has been developed, capable of

competing with established ones. This could serve as a viable alternative, given its low compu-

tational demands and its production of additional information that can be valuable for refining

taxonomies. Consequently in the last part of the research a tuning of the hyperparameters of the

best TM emerged from the comparison tests has been performed. At the end, with that optimal

settings, a test over a huge dataset of 6 Millions of documents has been conducted.
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Chapter 1

Introduction

1.1 Context

Artificial Intelligence (AI) stands at the forefront of contemporary statistical applications. One

of the most important components of any AI model are Natural Language Processing (NLP)

methods1, as language serves as the natural interface for interacting with human beings. Within

NLP methods the identification of topics in texts is a very important task. This is crucial as it

aids NLP engines in comprehending text but it has also a plethora of direct applications. These

include automatic document classification, identification of crucial content (e.g., for privacy,

classified information or intellectual properties), automatic categorization of customer tickets,

filtering of queries to chatbot, user profiling based on their reading interests, discerning types of

complaints on the web, and many others. It is in the area of topic identification that this research

aims to make its contribution.

With the advent of machine learning techniques, many tasks that were once manual are now

executed by algorithms trained on large datasets. This holds true in NLP, especially in Topic

Identification, where linguists can be replaced by automated algorithms. There exist numerous

automatic solutions, but they can generally be categorized into two main type of model:

• Statistical Learning Model (SLM) trained on supervised datasets, used to identify real

topics,

1https://online.york.ac.uk/the-role-of-natural-language-processing-in-ai/,
https://onlinedegrees.sandiego.edu/natural-language-processing-overview/
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• Topic Model (TM), used to identify latent topics in unsupervised corpora of documents.

For the first type of models (SLMs), it’s imperative to have a supervised dataset, essentially

a corpus of documents, each with a known mixture of topics. Acquiring such a dataset proves

to be challenging and, as language evolves rapidly, it needs frequent updates to prevent it from

becoming outdated. In this work two solutions to address this crucial need are proposed.

The second type of models (TMs) do not encounter this problem. Among them, there exists

a substantial family of highly potent models falling under the umbrella of generative statist-

ical models. They originated with the widely acclaimed Latent Dirichlet Allocation LDA [6].

However, a proliferation of new models has emerged since its introduction, evolving its original

approach and promising to enhance the engine’s capabilities. While these models have demon-

strated remarkable effectiveness in identifying latent topics in documents, they are not designed

to provide insights into the actual topics of documents. They are usually employed in an un-

supervised environment to cluster corpora of documents. This characteristic not only typically

restricts the interpretability of results (a challenge faced by many researches attempting to as-

sign ”labels” to latent topics), but it also makes it unclear how to evaluate the ”performance”

of this family of engines. Usually generic indicators like ”coherence” [23] and perplexity [15]

are employed. However, they primarily assess the robustness of the models themselves rather

than comparing how effectively they truly identify topics (as humans perceive them) in com-

parison to others. This distinction is crucial because over the years, many evolutions of LDA

have emerged, each claiming superiority in one particular aspect. For instance, Correlated Topic

Model (CTM) [5] is constructed with consideration for the correlation between topics, suggest-

ing it may excel in identifying the correct mix of topics in a document. Yet, without a means to

test this, these improvements remain uncertain.

Thus, what it is required is an ”arena” in which TMs can be compared with rigorous meas-

urements. This is precisely this research scope.

1.2 Motivation and Objectives

The core idea revolves around utilizing powerful TMs, initially pioneered by the well known

LDA [6], in a novel manner. These models have proven highly effective in uncovering latent
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topics within documents but, as stressed before, they do not directly provide information about

the actual topics of documents and evaluating the performance of this family of engines re-

mains a complex task. To accomplish this a new methodology is proposed that needs three key

prerequisites:

1. Corpora of documents with deterministic real topics, ideally with known measured mixes2.

Additionally, this dataset should possess the following characteristics:

• Updatability on demand

• Big data dimensions to facilitate noise reduction (as this type of data tends to contain

a significant amount of noise)

• Availability in multiple languages

2. Methods to assign each latent topic identified by the model to a real topic. While there

are numerous attempts to assign real topics to latent topics (as explored in Chapter 2.1.2),

none uses a dataset of documents with known mixes of topics. Consequently, without the

use of documents with deterministic topics, none of these methods afford the opportunity

to verify and quantify the accuracy of predictions.

3. Metrics for gauging the model’s proficiency in predicting the mix of real topics. While

classical indicators like precision, accuracy, and recall are suitable when both the predic-

tion and the value to predict are singular, additional metrics are necessary to measure the

ability to predict the mix in this context.

In this research, all three fronts of this endeavor are addressed, always remembering that the

final outcome is to establish, thanks to these three ingredients, a methodology for assessing the

true capability of TMs in identifying real topics, providing a tool to ascertain which model is

superior (and how) in this task.

Of course there is even the intention to use the new methodology to compare several TMs.

However, before doing this, it has been necessary to pass through a validation step. The last

objective is to use the best TMs as a SLMs on a very huge dataset of 6 Millions of documents,

after tuning its hyperparameters.
2Indeed is more realistic to consider a mix of real topics for a document than to think it is about a single topic.
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1.3 Contributions

The primary contributions of this work lies in realizing a methodological framework able to

perform an objective comparison of TMs.

To achieve this scope, all three goals presented in chapter 1.2 are addressed and each of them

carries other original contributions. More precisely:

1. Development of two methods to create a novel big data corpus of documents with a de-

terministic mix of topics. In details:

• First method dynamically creates big data corpora in every language using a custom-

ized web crawler to download texts from monothematic websites. So it acquires sets

of deterministic monotopic documents (as big as it needed). Moreover it can get sets

of deterministic bi-topic documents from subarea of that sites about complementary

topics (the two topic would be the topic of the site and the topic of the sub area).

• Second method can dynamically create big data corpora of deterministic multi-topic

documents in every language starting from Wikipedia documents and their categories

by an innovative graph algorithm.

2. Development of four methods of automatic topic identification in a supervised envir-

onment, namely distribution-based, top words-based, regression-based, and correlation-

based methods.

3. Introduction of a new set of performance metrics to evaluate topic labeling approaches in

cases of mixed topics (that are typical compositional data)

At the end of all the result will be not just a methodology to compare TMs, but even a new

SLMs built using a TMs, that can be an interesting alternative to the existing ones.

1.4 Experiments

In the two papers merged in this thesis several experiments has been performed using four TMs:

Latent Dirichlet Allocation (LDA) [6], Correlated Topic Model (CTM) [5], Hierarchical Dirich-

let Process (HDP) [7] and Pachinko Allocation Model (PAM) [19].

15



In the first paper the tests have been focused on two TMs (LDA and CTM). First of all

two classical TMs indicators, Coherence [23] and Perplexity [15], have been measured in a

big data dataset got by the crawler. Then using two of the four introduced labelling methods

(called baptisms) several tests has been performed to evaluate performances using classification

indicators (accuracy, precision and recall).

In the second paper the tests cover all the four selected TMs, using even the new metrics, over

the new big data corpus of documents built from Wikipedia. First of all many experiments have

been conducted to validate the effectiveness of this approach comparing it versus random models

and versus SLMs. Then the new comparison methods is used with the four TMs selected. At the

end it has been interesting to test the winner on a very huge dataset of 6 Millions of documents

after tuning its hyperparameters.

1.5 Original Papers

This thesis comes from the two papers listed below:

1. Gerli, S., Ascari, R., Migliorati, S., Cigna, T., and Borrotti, M., Beyond human labelling:

an automatic topic identification framework for big web data, Submitted to Electronic

Journal of Applied Statistical Analysis, currently under review.

2. Gerli, S., Cigna, T., and Borrotti, M., A novel methodology for developing and testing

automatic topic models in big data environment, in preparation.

1.6 Thesis Overview

To allow an easy reading of the research, the contents of the two papers listed in chapter 1.5 are

merged in a single document.

The thesis is organized as follows. Section 2 gives a brief introduction to the primary the-

oretical background. Section 3 presents in details the methodologies proposed in both the two

papers. Section 4 and 5 describe the experiments and results in the first paper and in the second

paper respectively. Section 6 includes final considerations and outlines future works.
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Furthermore, appendix A provides a set of definitions used in this thesis. After that there are

other three appendixes: one (B) about hyperparameters used and other two (C, D) about details

of project 1.
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Chapter 2

Background and Theory

2.1 State-of-the-art

Without the possibility to compare different topic models on a common, objective and measur-

able field actually the only possibility is to use self-referential metrics. In chapter 2.3 two of the

most common will be presented: Coherence ([23],[27],[29]) and Perplexity ([15]). They will

even be used them in chapter 4.

As explained in chapter 1.2, to provide a methodology to overcome this limit, it is necessary

to tackle three challenges. Therefore in the following three paragraphs the state of the art of

each of these three fronts is described.

2.1.1 Corpus of document with deterministic topics

Numerous efforts have been undertaken to automatically compile document corpora, associating

a set of topics with each document. Most of these approaches, such as those outlined in Lau et

al. (2011) [17], Hulpus et al. (2013) [14] and Misra et al. (2021) [24], involve web crawling or

utilizing APIs to retrieve documents on specific subjects. For instance, they may involve down-

loading all articles from a single-themed website, a particular section of a generalist website, or

from Usenet newsgroups. However, certain limitations have been identified, including the fact

that not all topics are comprehensively covered, and typically, each document is associated with

only one topic, rather than a combination of topics.

18



2.1.2 Automatic labelling of latent topics

Topic Models (TM) produce a collection of latent topics, where each topic is described by a

distribution of words. The association of a semantic meaning to these latent topic is not always

straightforward. Traditionally, this task is left to human interpretation. However, in the last 15

years, an increasing number of works proposed different approaches for automatic labelling of

latent topics. We can divide them in two main families:

• the ones that try to ”create” a label for each topic from its textual content

• the ones that try to find which real semantic topic is more ”similar” to the latent topic

(as shown afterwards, a third way is proposed in this work using a supervised dataset).

Let’s see several solutions for both approaches before proceeding.

Labelling from texts

In 2007 Mei et al. [22] proposed an unsupervised probabilistic framework to automatically

assign a label to a topic model extracting frequent n-grams and phrases in the corpus and as-

signing to each latent topic the one most semantically similar to it, most discriminating and with

the greatest coverage. In 2010 Lau et al. [18] developed a method for labelling topics based on

the top-n terms. The method exploits different ranking mechanisms based on pointwise mutual

information and conditional probabilities. In 2011 Lau et al.[17] generated label candidates for

a topic using its top words to query Wikipedia and using significant n-grams of titles of the res-

ulting articles to generate candidate labels. Then, they built a Support Vector Regression (SVR)

model for ranking the label candidates. In 2021 He et al. [12] introduced a novel two-phase

neural embedding framework to generate candidate labels on the basis of similarity between

sentences embeddings and the average of the top words embeddings of each topic. Then, a

redundancy-aware graph-based ranking process has been implied to rank candidates labels.

Similarity with real topics

Methods relying on external sources for automatic labelling of topics include the work of 2009

by Magatti et al. [20] which, starting from a hierarchy obtained from the Google Directory
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service, and expanded through the use of the OpenOffice English Thesaurus, assigned to each

latent topic the label of the most similar topic inside the hierarchy. In 2013 Hulpus et al. [14]

developed an automatic topic labelling approach by using a structured data source (DBpedia1),

and deploying graph centrality measures to find the most important concepts corresponding

to each latent topic and using their labels to generate candidate labels that can characterize the

content of the corresponding latent topic. More recently, in 2017, Allahyaru et al. [3] proposed a

knowledge-based topic model, namely KB-LDA, which integrates the previous structured data,

DBpedia, as a knowledge base for the statistical topic models and makes use of concepts, as

before, to find the candidate labels.

2.1.3 Metrics

Metrics, able to measure if and how much a predicted mix of topics is right given the real mix

of topics, are needed.

Typical classification indicators (accuracy, recall, precision) could be used but they don’t fit

well this need, as they are thought to measure correctness of prediction in situation where the

target belongs just to one class. So the prediction could be only right or wrong.

As we are working on a Simplex we could use the often used Hilbert distance defined in [26]

dH(p,r) = log
maxi∈(i,...,T )

pi
ri

mini∈(i,...,T )
ri
pi

(2.1)

where T is the length of r and p i.e. the number of real topics, but it is not suitable because it

enlarges distances till infinity near boundaries, that doesn’t fit in our case.

Another possibility could be to use simple Euclidean metric, however it may not be most

suitable, because for instance if in a simple case of three topics (Animals, Sports and Food), if

in a document the real topics are: Animals and Sports and the predicted is Food, their distance

depends on the weights of the two real topics (that sum to 1), but indeed, it must be always the

maximum values (i.e. 1), since the method didn’t guess any real topic whatever balance between

Animals and Sport.

1http://dbpedia.org
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2.2 Topic models

2.2.1 LDA, HDP, CTM and PAM

In this section, the Latent Dirichlet Allocation (LDA) ([6]), the Correlated Topic Model (CTM)

([5]), the Hierarchical Dirichlet Process (HDP) ([7]) and Pachinko2 Allocation Model (PAM)

([19]) are introduced.

LDA is chosen because it is the first acclaimed Topic Model, ancestor of all the other, and

still on the edge. As LDA needs to be fed with the number of topics k, that is always tricky to

define, the obvious alternative is HDP, that estimates the number of topics too. Moreover, as

for the aim of this research it is important to show the ability to recognize mix of topic, the last

two ones are chosen because they claim to take into consideration the correlation between topics

even in a different way. Moreover all these model are implemented in the same Python libraries

(Tomotopy) making it easy to uniform results.

Let’s start from LDA ([6]) from which all other TM are derived. Let D be the number of

documents belonging to a corpus, the d-th document having Nd words (d = 1, . . . ,D). The set V

of unique words appearing in the corpus has cardinality V , and it is referred to as “vocabulary”.

TM techniques are based on the “bag-of-words” assumption, which implies that word order

in a document is irrelevant. The only relevant information in a document is the number of times

(i.e., the frequency) each word appears in the document itself. The “bag-of-words” coincides

with an exchangeability assumption for the words within a document.

A further assumption of these approaches is the representation of a document as a probability

distribution over a set of K (latent) topics, where a topic is represented by a distribution over

words (i.e., with support the vocabulary V ). Thus, a document can be depicted as a point θ in

the K-part topic simplex

S K =

{
θ = (θ1, . . . ,θK)

⊺,θk > 0,
K

∑
k=1

θk = 1

}
(2.2)

2The name comes from a mechanical arcade game originating in Japan
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whereas a topic corresponds to a vector ϕ belonging to the V -part word simplex

S V =

{
ϕ= (φ1, . . . ,φV )

⊺,φv > 0,
V

∑
v=1

φv = 1

}
(2.3)

Once the K topic-specific word distributions ϕ1, . . . ,ϕK have been generated from a proper

distribution, the generative process for the d-th document can be summarized by the following

steps:

1. sample θd from a distribution F defined on S K;

2. for the n-th word of the document (n = 1, . . . ,Nd):

(a) sample a topic zd,n from Zd,n ∼Categorical(θd);

(b) sample a word wd,n from Wd,n|Zd,n = zd,n ∼Categorical(ϕzd,n).

LDA assumes a Dirichlet distribution for the word distribution for k-th topic

ϕk ∼ Dir(β), k = 1, . . . ,K, (2.4)

where

β = (β1, . . . ,βV )
⊺ (2.5)

and

βv > 0 f orv = 1, . . . ,V (2.6)

and again a Dirichlet distribution for the topic distribution on the d-th document

θd ∼ Dir(α), d = 1, . . . ,D, (2.7)

where

α= (α1, . . . ,αK)
⊺ (2.8)

and

αk > 0 ∀k = 1, . . . ,K (2.9)
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Figure 2.1 summarize the LDA by means of a directed acyclic graph (DAG).

ϕβ

α θ z w

K

N
D

Figure 2.1: DAG representing the LDA model. Filled nodes represent observed variables.

Differently, CTM ([5]) assumes that θd follows a logistic-normal distribution [2, 5], that is

the log-ratio transformation

ηd =
(
log(θd1/θdK) , . . . , log

(
θd(K−1)/θdK

))⊺ (2.10)

is assumed to follow a (K− 1)-dimensional normal distribution with mean vector µ and co-

variance matrix Σ. Therefore, CTM enriches the dependence structure of LDA by including

any kind of correlation (i.e., not only negative but also positive) between log-ratio transformed

elements of θ. Though, this comes at the cost of complicating the interpretation of the depend-

ence structure on the original space. There is not a clear relationship between the correlations

between log-ratio transformed elements and the original ones. Moreover, and differently from

the Dirichlet distribution, the logistic-normal distribution does not possess conjugacy with re-

spect to the categorical distribution, which has a negative impact on the computational aspects

of model inference.

Figure 2.2 summarize CTM model by means of a DAG.

ϕβ

μ

η z w

Σ

K

N
D

Figure 2.2: DAG representing the CTM model. Filled nodes represent observed variables.
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HPD ([7]) is a nonparametric extensions of LDA, which allows the number of topics to be

learnt from data. It uses again a Dirichlet process to capture the uncertainty in the number K

of topics. So a common base distribution is selected which represents the countably-infinite set

of possible topics for the corpus, and then the finite distribution of topics for each document is

sampled from this base distribution.

HDP model assumes three matrices to establish relationships between words, topics and

documents, constructed as below:

• αk represents top level Dirichlet variables sampled for a given topic k

• θd represents the topic distribution for a given document d

• φk represents the word distribution for a given topic k

Thus the generative process for HDP is, given parameters β ,γ,η :

αk ∼ Dir(γ/K)

θd ∼ Dir(ηαk)

φk ∼ Dir(β )

zid ∼ θd , w jd ∼ φzid

In this model, K denotes the number of topics, and for the purposes of HDP, is taken to

tend to infinity. Like in the LDA model, each variable is modelled by a symmetric Dirichlet

distribution, while each topic zid of a document d (i = 1, ...kd) is sampled from θd and each word

wi j is sampled from the corresponding topic θzid . This process is ’hierarchical’ in the sense that

it adds another layer to the model, the Dirichlet Process, which determines the number of topics.

The last topic model, PAM [19], tries to intercept captures arbitrary, nested, and possibly

sparse correlations between topics using a directed acyclic graph (DAG). The leaves of the DAG

represent individual words in the vocabulary, while each interior node represents a correlation

among its children, which may be words or other interior nodes (topics). In other words the

concept of topics are extended to be distributions both over words and over other topics; PAM

therefore captures not only correlations among words (as in LDA), but also correlations among

topics.
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In the tests the four-level version is used, well represented by the figure 2.3, consisting, from

the upper part, of a root, a set of super-topics, a set of sub-topics and a words vocabulary. Both

the root and the super-topics are associated with Dirichlet distributions, from which we sample

multinomials over their children for each document.

Figure 2.3: Four-level hierarchy PAM

So for this model we have to define two number of topics: the number s1 of the first level

topics and the number s2 of second level topics, higher than the first (called respectively ”super-

topics” and ”subtopics”, not to be confused with what it is called in this way as in A).

2.2.2 Inference with topic models

TM can be fitted by either a variational inference approach, as originally proposed by [6], or by

a fully collapsed Gibbs sampling [10]. The latter approach can be improved by partitioning the

data across separate processors and performing inference in parallel, as suggested by [25].

Furthermore, inference for unseen documents is based on techniques from discriminative

text classification as proposed by [31]. The main idea of their approach is to move the collapsed

Gibbs for additional iterations on an “updated” corpus including also the unseen documents.

At the end of these additional iterations, an estimate for the vector of topic proportions of the

new documents is obtained, namely θ̂new. Additional details on the implementation of these

techniques can be found in the cited works.
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2.3 Typical latent topic performance indicators

To evaluate the performance of competing models, two well-established classes of measures,

namely coherence and perplexity have been used.

2.3.1 Coherence

Coherence measures (e.g., see [23], [27], and [29]) give an evaluation of how much the model

is ”certain” in what it says. They have been introduced to assess the intrinsic coherence of the

k-th latent topic (k = 1, . . . ,K) identified by a latent topic model. These measures are strictly

connected with the largest estimated elements of ϕk. More precisely, for each pair of words

in I M
k , a “confirmation measure” is computed, which is a function depending on the probab-

ility P
(

w(k)
m

)
that a document contains the word w(k)

m ∈ I M
k at least once, and the probability

P
(

w(k)
m ,w(k)

l

)
that a document contains at least once word w(k)

m ∈ I M
k and at least once word

w(k)
l ∈I M

k (m, l = 1, . . . ,M; m ̸= l). Then, a coherence measure for topic k is simply obtained

by computing the mean of the confirmation measures over all the pairs of words in I M
k . Higher

values of coherence measures are associated with the most interpretable topics.

In particular, three types of coherence measures based on different confirmation measures

have been used. The first considers the pointwise mutual information (PMI) as a confirmation

measure:

C(k)
UCI =

2
M · (M−1)

M−1

∑
m=1

M

∑
l=m+1

PMI
(

w(k)
m ,w(k)

l

)
, (2.11)

where

PMI
(

w(k)
m ,w(k)

l

)
= log

 P
(

w(k)
m ,w(k)

l

)
+ ε

P
(

w(k)
m

)
·P
(

w(k)
l

)


and ε is a small positive term added to ensure stability of the logarithm function.

A slightly modification of PMI is its normalized version (NPMI), which allows to define a

second coherence measure:

C(k)
NPMI =

2
M · (M−1)

M−1

∑
m=1

M

∑
l=m+1

NPMI
(

w(k)
m ,w(k)

l

)
, (2.12)
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where

NPMI
(

w(k)
m ,w(k)

l

)
=

PMI
(

w(k)
m ,w(k)

l

)
− log

(
P
(

w(k)
m ,w(k)

l

)
+ ε

) .
Lastly, the topic coherence measure introduced by [23] is defined as:

C(k)
UMass =

2
M · (M−1)

M

∑
m=2

m−1

∑
l=1

log
P
(

w(k)
m ,w(k)

l

)
+ ε

P
(

w(k)
l

) . (2.13)

Coherence measures can also be aggregated by averaging the same measures over topics (e.g.,

CUMass = ∑
K
k=1C(k)

UMass/K).

2.3.2 Perplexity

The perplexity index is a further measure of model performance. It gives a measure of how

much the model is ”uncertain” in front of new documents. In particular, given a new corpus

composed of D′ unseen documents C T (playing the role of a test set), perplexity is computed as

perplexity
(
C T)= exp

{
−∑

D′
d=1 log p(wd)

∑
D′
d=1 Nd

}
, (2.14)

where wd = (wd,1, . . . ,wd,Nd)
⊺ is the vector of words composing the d-th document, and p(wd)

denotes the probability assigned by the model to words in document d (i.e., its likelihood). [6]

showed that this measure can be represented as the inverse of the geometric mean of per-word

likelihood, thus the larger the likelihood, the smaller the value of the perplexity. This entails

that, in comparing fitted models, the lower the perplexity the better the model.

2.4 Compositional data

In all this research there are mix of topics, i.e. vectors of n values that are not independent as

they are all positive and bound to sum to 1. It is true both for the vector of latent topic and for

the vectors of real topics (actual of predicted). Vectors of positive real numbers in which the

sum S is fixed are called compositional data (see [1]. Called N the dimension of the vector, there
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are (N-1) degrees of freedom, as know (N-1) of them the remaining one is uniquely determined

by the difference between S and the other (N-1). In fact they take values on a portion of (N-1)-

dimensional hyperplane that owns all the point Pk (k = 1, ...N):

Pk = (v1,v2, ...,vN) where

vi = S i f i = k

vi = 0 i f i ̸= k
k = 1, ...,N (2.15)

This portion of the (N-1)-dimensional hyperplane is called Simplex. In a 3-D space the Simplex

is the triangle with vertexes (S,0,0), (0,S,0) and (0,0,S), as it is possible to see in figure 2.4 in

the case of S=1.

Figure 2.4: The 3-D simplex with S=1
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2.4.1 Regression with compositional data

Another element to be taken into consideration is that they are bounded in the range [0,S] that

in cases of this research, with quotas and probabilities, is [0,1] (S=1). So dealing with this data

in a regression this bounds have to been managed.

One possibility is to use Dirichlet regression (see [13]).

Another possibility is to use linear regression modifying the response variable with Logit

function:

ynew
i = logit(yi) =

1
1+ e−yi

, i = 1, . . . ,H (2.16)

In this way the original range [0,1] is dilated to the range to [−∞,+∞]. To manage the problem

of infinity values in case of original 0 or 1 values they can be substituted by 0.001 and 9.999

respectively and then conduct regression analysis on this transformed dataset. Consequently, if

necessary, the prediction are re-transformed using the softmax function.

ŷnew
i =

eŷi

∑
H
j=1 eŷ j

, i = 1, . . . ,H (2.17)

The second approach has been preferred for many reasons. First of all Dirichlet regression

is not well implemented yet anywhere. There is a library in R 3 (as analysed in [21]) that is not

so efficient and able to manage big data datasets (furthermore coding is developed in Python).

Moreover linear regression is computationally far less expensive. And, last but not least, a test

to compare two approaches on a small dataset on R gave similar performances (surprisingly the

linear regression with logit transformation is even slightly better).

3https://cran.r-project.org/web/packages/DirichletReg/
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Chapter 3

Proposed Methodologies

This chapter describes the solutions proposed in the two papers for each of the three challenges

presented in chapter 1.2. Furthermore, in the last section, details on how data has been prepared

for the experiments are given.

3.1 Corpus of document with deterministic topics

Currently, there is an urgent need to establish methods for constructing labeled data corpora,

i.e. datasets of documents in which the real topic of each document is known. Such a dataset

would be of enormous value in topic analysis, Not only for our purpose to label latent topics,

for instance it would be very valuable to train and test all statistical learning methods. Another

important fact is that in real world a text is not about single topic, instead a text is quite always

about several subjects in a specific proportion. Consequently our aim is to create a big data

corpus with documents where, in each document, the topics and their proportions are known.

So, even if a corpus with ”single topic documents” (i.e. where just the main topic is known)

would be acceptable for our aims, it would be far better to have a corpus with ”mix of topics

documents” (i.e. where different topics and their proportions are known).
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3.1.1 Crawling thematic websites

To achieve this result, the first introduced method 1 uses a web crawler 2 executed on mono-

thematic portals (i.e. websites that speak about a particular topic). The use of mono-thematic

portal guarantee us that articles of that site are most likely about the topic of website. Thus, it

can create a dataset where two types of recorded information are provided for each raw:

• the article text

• the real topic of the text (=the topic of the mono-thematic website it is downloaded from)

To obtain articles with a mix of known real topics, subsection of mono-thematic portals are

considered. Indeed, portals are organized in subsections, typically sub-homepages, on which

articles are related both to the main topic of the portal and to the topic of the subsection (e.g.,

a subsection about “Health” in a mono-thematic portal about “Animals”). Thus, all texts down-

loaded from a subsection are labelled with a mix of this two real topics (considered agnostically

50% each).

3.1.2 Download from Wikipedia using its categories

Big data corpus of documents with defined topics: download from Wikipedia

A very interesting alternative (followed in the second paper) to create huge corpus of documents

is to use one of the biggest and best-structured free source of documents in the world: Wikipedia.

The dataset can be created from the Wikimedia dumps https://dumps.wikimedia.org/

enwiki/latest/ which has all articles of the English version of Wikipedia (∼ 6,5 Million of

articles). Each article is related to a vector or topics (called ”categories”) taken from a set of ∼

2 Million of topics. This is an unmanageable number of topics, but they are not independent as

they are interconnected through a complex network of approximately 8 million relationships.

1In the first paper.
2A web crawler is a software able to browse autonomously a website following all internal links and to down-

load text from all articles.
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Taxonomy construction on Wikipedia categories

Starting from Wikipedia’s topics/categories, we aim to create a methodology to assemble on

demand a custom, unique and very rich corpus of documents starting from the selection of

a language and the definition of a topics taxonomy. As a matter of fact with the proposed

methodology one can select a language (e.g. French) and choose a set of topics (ideally that

covers all possible subjects of a document) and obtain a big data corpus of texts, each with the

measured mix of real topics among the ones in the chosen taxonomy.

For this work we decided to select English language and to use a taxonomy based on first

level topics list the Wikipedia choice (https://en.wikipedia.org/wiki/Category:Main_

topic_classifications). Wikipedia identifies 39 primary or first-level topics, which are

listed in Table 3.1.

Our ultimate objective is to automatically assign each of the 2 million categories to one of

these 39 main topics, so, using our convention, H = 39.

Table 3.1: List of the 39 top-level topics according to Wikipedia

Academic disciplines Entities Internet Philosophy
Business Ethics Knowledge Politics

Communication Food and drink Language Religion
Concepts Geography Law Science
Culture Government Life Society
Economy Health Mass media Sports
Education History Mathematics Technology
Energy Human behavior Military Time

Engineering Humanities Nature Universe
Entertainment Information People

For their origin and maintenance the 2 million of topics are not organized in a taxonomy.

Each editor can introduce a new topic placing it as subtopic of one or more existing ones. So

each topic is associated with a set of child topics and can have multiple parent topics. These

topic relationships can be structured in a directed graph with 2 million nodes representing the

topics and 8 million directed edges indicating the ’subtopic of’ relationships. And this is what

we did, and then we imported this huge structure in Neo4J3 cluster for further analysis.

We define the ’distance between topics’ as the minimum4 number of hops between two

nodes. Selected two topics a and b, called p one of the the possible Pa−b path to get from a to b,

and called n(p) the number of nodes in the p path, we define the distance between a and b as:
3https://neo4j.com/
4Obviously there could be a lot of paths connecting two nodes in such a graph
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d(a,b) = minp∈(0,1,...,Pa−b)(n(p)) (3.1)

For each node, which represents a Wikipedia topic, we identify the ’first-level’ topic it be-

longs to as the nearest ’main node’. Called fh the h-th ’first-level’ topic with h ∈ (0,1, ..,H),

selected a topic a and defining ra

ra = argmin
h∈(0,1,...,H)

d(a, fh) (3.2)

we say that a topic a belongs to the ’first-level’ topic fra (see Figure 3.1 for an example). In rare

cases where a topic has equal distances to m ’first-level’ topic nodes (i.e. ra is not a single value

but an arrey of values), all those ’first-level’ topics are considered in equal proportions for that

topic to sum to 1. In other words in this rare case each ’first-level’ topic for the original topic a

has a coefficient s not equal to 1 but to 1/m.

Subsequently, based on these associations, we replace each original topic of the T topics in

each article with their associated ’first-level’ topic(s). After this process each article is associated

with a list of ’first-level’ topics with their coefficient s. To calculate the percentages of the ’first-

level’ topic h related for each article, we sum all coefficient sh of that ’first-level’ topic and divide

by the number of original topics. Considering an article let’s define nh with h ∈ (0,1, ...,H)

the number of time that the h-th ’first-level’ topic appears in the document and call sn with

n ∈ (0,1, ...,nh) the coefficient of each ’first-level’ topic. The quota qh of that d-th first-level

topic in that document is:

qh =
∑

nh
n=1 sn

∑
H
i=1 ni

=
∑

nh
n=1 sn

T

If an original topic is related to multiple ’first-level’ topics, the summed value of each ’first-

level’ topic is not an integer anymore but 1 divided by the total number of ’first-level’ topics

associated with that topic (see Table 3.2 for an example).

Therefore, the final dataset is composed of the title, text of the article, and an array of ’first

level’ topics with their percentages.

Note that the proposed method is independent of the selection of the first-level topics. A

different list of first-level topics (among the 2 Million categories in Wikipedia) can be selected
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Figure 3.1: Nuclear energy is categorized as a subtopic of Science because the minimum dis-
tance from this first-level topic is 5 hops, which is shorter than the minimum distance from the
other two first-level topics, Academic discipline and Nature, where the minimum distance is
greater, specifically 6 hops.

and a new mix of topics per article can be defined by exploiting the direct graph.

Values of the dataset

The main features of a dataset created with this methodology are:

1. Language independent: In this work it is created in English. But using the same method,

a similar dataset could be created in every language present articles of other languages

Wikipedia (18 languages have more than 1M of documents, and 30 more then 500K 5).

2. Big data: It is a very large dataset made of about 6 million articles (in English).

3. Topics coverage: Topics cover all human knowledge and they are organizable in a Tax-

onomy of different levels. With the same procedure the second level list of topics could

be used (and so on).

4. Measured mix: Even the measure of the weight of each topic in an article comes auto-

matically, computed from the Wikipedia categorization.

5https://meta.wikimedia.org/wiki/List_of_Wikipedias
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Categories Nearest main topic
Comparative Politics Politics

Revolution Human Behaviour, Society
Revolutions Government, Society

Social concepts Society
Social conflicts Society

Main topic Percentage
Society 60%
Politics 20%

Human Behaviour 10%
Government 10%

Table 3.2: Example of main topics mix of the Wikipedia article about Revolution (ht-
tps://en.wikipedia.org/wiki/Revolution). In the left table the first column shows the categories
assigned by Wikipedia to this article. In the second column, the correspondent nearest main
topics are shown. It is notable that Revolution and Revolutions have 2 main topics at the same
distance. In the second table, the final mix for this article is shown.

5. Updatable: Is is possible to keep it up-to-date following the changes in the languages. It’s

enough to download the up-to-date dump from Wikipedia and to perform the automatic

procedure again.

6. Taxonomy independent. It is not limited to the first level topics of Wikipedia. A different

list of ”first level” topics can be selected (among the 2 Million of categories in Wikipedia)

and, using the graph, the mix of these topics for each article can be identified . I have

to say that I don’t think that the Wikipedia choice of the first level topics is the best one

that could be produced. But this subject is outside the scope of this work and it has been

decided to trust the choice of Wikipedia.

3.2 Automatic labelling of latent topics

As seen in Appendix A ”baptism” is the process that leads to the assignment of a real topic to a

latent topic or to the definition of it as a pseudo-topic.

In the two papers four methods are introduced. The first two needs monotopic documents to

be trained, the following two, instead, can work on documents with a know mix of topics.

3.2.1 Baptism methods using monotopic documents

In the first paper, two methods for baptizing topics are proposed, that need monotopic documents

dataset to be trained: “distribution-based” method and a “top words-based” method.
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Distribution-based method

Let y be the real topics vector, with elements yd ∈R = {r1, . . . ,rH} representing the real topic

of document d, and let θ̂d be the score distributions obtained from a latent topic engine (that

is, the estimate of the topic-composition of document d, d = 1, . . . ,D). To assess whether

latent topic k should be associated to real topic r, r ∈ R, let’s consider the scores vectors

θ̃k =
(
θ̂1k, θ̂2k, . . . , θ̂Dk

)⊺
, k = 1, . . . ,K, where θ̂dk is the k-th element of θ̂d (i.e., the estimated

proportion of topic k in document d).

Then, the distribution-based method sums the elements of θ̃k corresponding to those docu-

ments whose real topic is r, that is

p̃r
k =

D

∑
d=1

θ̂dkI(yd = r) , r ∈R (3.3)

where I(·) denotes the indicator function.

Finally, a probability distribution is computed by normalization:

pr
k =

p̃r
k

∑
l∈R

p̃ l
k
, r ∈R. (3.4)

Let’s define the K-dimensional vector B as the vector with elements bk representing the real

topic that is going to be assigned to latent topic k. In order to baptize the k-th latent topic, only the

largest probability pr
k and the second largest probability pr′

k are considered, and the decision is

based on their difference. If this difference is equal to or greater than a given threshold td (that is

an hyperparameter), then latent topic k is baptized as “real topic r” (i.e., the one corresponding

to the highest probability) and bk = r, otherwise it is considered as a pseudo-topic and thus

discarded.

Algorithm 1 summarizes the main steps of the distribution-based method, while Table 3.3

illustrates it by means of a simple example. Here, a latent topic model has been fitted on a

corpus composed of D = 9 documents, and H = 4 real topics, namely “Health”, “Fashion”,

“Celebrities”, and “Animals”. The example considers the baptism of latent topic k when θ̃k =

(0.1,0.8,0.7,0.15,0.1,0.2,0.01,0.9,0.04)⊺. The latent topic k will be baptized as real topic

“Fashion”, since it is the real topic associated to the largest probability (i.e., 0.8), differing from
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the second largest probability (i.e., 0.13) by more than a threshold td equal to 0.2.

Algorithm 1 Pseudo-code: distribution-based method (learning phase)

procedure DISTRIBUTION(C ,R, θ̃k)
∀r ∈R compute p̃r

k = ∑
D
d=1 θ̂dkI(yd = r) ▷ I(·) denotes the indicator function

Normalization step:
∀r ∈R compute pr

k =
p̃r

k

∑
l∈R

p̃ l
k

r̂top1← real topic with the highest value pr
k

r̂top2← real topic with the second highest value pr
k

if P(r̂top1)−P(r̂top2)> td then ▷ td is a fixed threshold
bk← real topic r̂top1

else
bk← “pseudo-topic” ▷ The latent topic k is discarded

end if
end procedure

Real topic

Documents Health Fashion Celebrities Animals

Doc1 (Health) 0.1
Doc2 (Fashion) 0.8
Doc3 (Fashion) 0.7
Doc4 (Animals) 0.15
Doc5 (Health) 0.1
Doc6 (Health) 0.2
Doc7 (Celebrities) 0.01
Doc8 (Fashion) 0.9
Doc9 (Celebrities) 0.04

p̃r
k (Equation (3.3)) 0.4 2.4 0.05 0.15

pr
k (Equation (3.4)) 0.13 0.8 0.02 0.05

Table 3.3: Toy example - Baptism of latent topic k by means of the distribution-based method
with threshold td = 0.2.

Top words-based method

The second method compares the most probable words recovered by a latent topic engine and

the most frequent words appearing in a real topic.
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Given a corpus C and a set of real topics R as in Algorithm 1, for each real topic r ∈ R

let’s define the set T r
5 of top-5 unique words, namely the set of the five most frequent words in

documents for which yd = r. The term “unique” means that words in T r
5 and T r′

5 are selected

such that T r
5 ∩T r′

5 =∅ for any r ̸= r′. Also select the set I 10
k containing the ten most probable

words of latent topic k is selected (i.e., the ten words associated to the largest values in ϕ̂k, which

is an estimate of ϕk, the word distribution for topic k). Then, the frequencies of words in I 10
k

which appear in each of the sets T r
5 ,r ∈R are computed, and the difference between the largest

and the second largest frequencies is considered. If this difference is equal to or greater than a

given threshold ttw (that is an hyperparameter), then latent topic k is baptized with the real topic

r corresponding to the highest frequency, otherwise it is considered as a pseudo-topic and thus

discarded. The method is summarized in Algorithm 2, while Table 3.4 shows a simple example

with ttw = 2. In the example, the latent topic k will be baptized as real topic “Health”, since it

has the highest frequency (i.e., 4) and the difference between this value and the second largest

frequency (i.e., 2) is greater than or equal to ttw = 2. Then, the result will be stored in position k

of the vector B, by assigning bk = “Health”.

Algorithm 2 Pseudo-code: top words-based method (learning phase)

procedure TOPWORDS(C ,R,I 10
k )

▷ I 10
k , ten most probable words of latent topic k

∀r ∈R find T r
5

Initialize w as a vector of 0 with size equal to the number of real topics
r ∈R,wr← frequency of words in I 10

k that appear in each of the sets T r
5

r̂top1← real topic with the highest value wr
r̂top2← real topic with the second highest value wr
if P(r̂top1)−P(r̂top2)≥ ttw then ▷ ttw is a fixed threshold

bk← real topic r̂top1

else
bk← pseudo-topic ▷ The latent topic k is discarded

end if
end procedure
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Real topics Frequency Top 5 words

Health 4 ‘patients’, ‘treatment’, ‘visit’, ‘medicine’, ‘report’
Animals 0 ‘dog’, ‘cow’, ‘cat’, ‘animals’, ‘veterinary’
Celebrities 2 ‘photos’, ‘gossip’, ‘event’, ‘daughter’, ‘vip’
Fashion 1 ‘fashion’, ‘look’, ‘showroom’, ‘collection’, ‘style’

Latent topic k ‘patients’, ‘treatment’, ‘visit’, ‘daughter’, ‘car’, ‘report’,
‘photo’, ‘street’, ‘style’, ‘word’

ho

Table 3.4: Toy example - Baptism of latent topic k by means of the top words-based method
with threshold ttw = 2.

3.2.2 Baptism methods using documents with known mix of topics

Using a corpus of documents with a known mix of real topics, in the second paper the former

baptism methods for generative topic models have been evolved in two new ones able to manage

this more complex but richer dataset . The generative topic models have been trained on a subset

of documents (the train set): a model that, for each document, gives the mix of latent topic with

different proportions (that sum to 1). So for each document of the train set the mix of real topic

on one side and the mix of latent topic on the other side have been obtained.

Two new methods have been introduced for this situation (”Regression Based” and ”Correl-

ation based”).

Regression-Based

Given a training set of D documents labelled with H topics, let X be a matrix of size D×H,

where each row represents the vector xd of quotas of the H real topics of the document d of

the training set: the element xdh represents the proportion of real topic h in document d. These

proportions in xd sum to 1.

Now, let Θ be a matrix of size D×K where each row represents the vector θd of the quota

of the K latent predicted by the model for the document d.

To determine whether latent topic k should be associated with real topic h, let’s keep the

k-th coloumn of Θ, that is a D-dimensional vectors θk =
(
θ k

1 ,θ
k
2 , . . . ,θ

k
D
)⊺, that is the vector of

D-values predicted by the model for the k-th latent topic (one for each of the D documents).

At this stage, a linear regression model has been used, treating θk as the dependent variable
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and using X as the set of independent variables with corresponding values. Since this type of

regressor does not have a specific range over the response variables whereas our data does (i.e.

[0,1]) it has been decided expand 6 the range of each response variable from [0,1] to (−∞,+∞)

as explained in chapter 2.4.1 and so to work on Rk. Let’s call the transformed variable θ̄k. In

matrix form, the following model is defined:

θ̄k = Xβk + ε. (3.5)

Where βk is the H-dimensional vector (β k
1 ,β

k
2 , ...,β

k
H) to be estimated by the linear regression

for each k, k = 1, . . . ,K. Once obtained the estimated values β̂k each latent topic LTk can be

written as linear combination of the H real topic RTh:

LT1 = β̂
1
1 RT1 + β̂

1
2 RT2 + ...+ β̂

1
HRTH

LT2 = β̂
2
1 RT1 + β̂

2
2 RT2 + ...+ β̂

2
HRTH

...

LTK = β̂
K
1 RT1 + β̂

K
2 RT2 + ...+ β̂

K
H RTH

(3.6)

Real topics
Latent topics Health Fashion Celebrities Animals
1 2.9 0.5 0.1 1.2
2 0.1 0.8 0.2 0.9

Table 3.5: Toy example for regression based method - Baptism of latent topics 1 e 2 with
threshold tr = 0.2. Each cell value is the coefficient of the real topic of its column in the linear
combination for the latent topic on its raw. The latent topic 1 is baptized as ”health” because it
has the greater coefficient (2.9) and the difference with the second (Animals=1.2) is grater then
the threshold (2.9− 1.2 = 1.7 > 0.2). Instead the latent topic 2 is baptized as ”pseudo-topic”
because the difference between the greater coefficient (0.9 for Animals) and the second (0.8 for
Fashion) is lower than the threshold (0.9−0.8 = 0.1 < 0.2).

To perform the baptism of the k-th latent topic, the vector βk from the k-th regression model

is used. Specifically, the two highest values are taken into account: β k
h1

(the highest) and β k
h2

(the second highest). Our decision is based on the difference between these two values. If the

6As the focus is on the relations between real and latent topics, it is not necessary to re-transform variables to
the original range subsequently.
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difference is equal to or greater than a given threshold tr (that is an hyperparameter), then latent

topic k is baptized as ’real topic’ h1, corresponding to the highest probability. Otherwise, it is

considered a pseudo-topic and discarded.

Correlation-Based

The second new proposed method is based on correlation.

The Pearson correlation is preferred to the appreciated Spearman one for two reasons. First

of all our data has linear dependencies 7 and in this situation Pearson is surely a good choice

(see for example [4]). Secondly a preliminary test is performed comparing the two approaches

and it confirmed that Pearson correlation give far better performances.

For each of the KxH couples (LTk,RTh) of latent topic and real topic there are D couples of

values (θ̃k,d ,xk,d), one for each of the D documents. Using this D-couples the Pearson coeffi-

cients ρk
h between each couple (LTk,RTh) is computed and two topics are considered strongly

correlated if the value is greater than a value tc (that is an hyperparameter) 8.

i f ρ
k
h > tc → LTk is baptised as RTh (3.7)

Real topics
Latent topics Health Fashion Celebrities Animals
1 0.82 0.20 0.75 0.07
2 0.27 0.80 0.35 0.11

Table 3.6: Toy example for correlation based method - Baptism of latent topics 1 e 2 with
threshold tc = 0.6.. Each cell value is the Pearson correlation coefficient between the real topic
of its column and the latent topic on its raw. The latent topic 1 is ignored because it is strongly
correlated to two real topic (Health and Celebrities has correlation coefficient equal to 0.82 and
0.75 respectively, both higher than the threshold, so this latent topic is a supertopic of Health
and Celebrities), the latent topic 2 is baptized as ”fashion”, because the only coefficient that
overcomes the threshold is the one for ”fashion” (0.80).

If a latent topic results to be strongly correlated only to one real topic the latent topic in exam

is baptized with this real topic, if instead it is strongly correlated with no real topic or more than

one real topic, it is ignored as it is a pseudotopic because it is a trasversal topic or a supertopic

7Even though we are dealing with proportions, it is reasonable to think that in the case in which a latent topic
is a particular real topic, if its proportion is double even the proportion of the correspondent real topic is double

8The threshold is a positive value so negative values of the correlation coefficient are always below the threshold
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respectively.

3.2.3 Combination of methods

All the baptism methods can be even combined and use together. Each method Mm assign to

every latent topic LTh (h ∈ {1, ...,H}) a real topic RTkm (km ∈ {1, ...,K}) and let’s indicate as

assigned to RT0 a pseudotopic. Taken two mehtods M1 and M2 we can define two new methods.

M1∨M2: this new method puts the two original ones, M1 and M2, in ”OR”, so the new

method assigns RTk to LTh if and only if they agree or one of them make this assignment and the

other is unsure and take it as a pseudotopic. In case of disagreement it baptise the latent topic

LT m
h as pseudotopic. Formally given ∀h = 1, ..,H

M1 : LTh→ RTk1

M2 : LTh→ RTk2

(3.8)

The final baptism of LT m
h is:

i f k1 = k2 = k⇒ LTh→ RTk

i f ki = 0⇒ LTh→ RTk j where i ̸= j and i, j ∈ {1,2}

i f ki ̸= 0 ∀i ∈ {1,2} and k1 ̸= k2⇒ LTh→ RT0

In other word this method try to find a real topic even for the latent topic in which a methods is

not certain using the other methods and to clean assignment where they do not agree.

M1∧M2: this new method puts the two original ones, M1 and M2, in ”AND”, so the new

method assigns RTk to LTh if and only if they agree. In case of disagreement it baptise the latent

topic LT m
h as pseudotopic. Formally given equation 3.8 we have:

i f k1 = k2 = k⇒ LTh→ RTk

i f k1 ̸= k2⇒ LTh→ RT0

In other word this methods accepts the baptism if and only if the two methods agree.
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Both these combinations will be tested in the chapter 4 with Distribution and Top Words

methods, and then, in the chapter 5 all test are performed using even the combination of these

two with the ”OR” logic, as it proved itself to give better results.

3.2.4 Threshold selection

As explained in chapters 3.2.1 and 3.2.2 all baptism methods depends on a threshold that is an

hyperparameter. These thresholds impact on the decision to assign a latent topic to a real topic9

or to consider it as pseudo-topic.

1. For distribution-based method it is the threshold of the difference between the score of the

first latent topic (the candidate) and the second one, listed in order of score. It is a number

in range [0;1].

2. For top words-based method it is the threshold of the difference between the words count

of the first latent topic (the candidate) and the second one listed in order of words count.

It is an integer number.

3. For regression-based method it is again the threshold of the difference between the coef-

ficient of the first latent topic (the candidate) and the second one listed in order of coeffi-

cients. It is a number in range [0;+∞).

4. For correlation-based method it the threshold that the coefficient has to overcome. It is a

number in range [0;1].

In Experiments of paper 1, chapter 4, where just Distribution Based and Top Words methods

(and their combination) are used, the thresholds are studied showing performances with different

values of that thresholds.

In Experiments of paper 2, chapter 5, an automatic threshold selection method has been

developed that runs automatically with the model in use. At the beginning the train set is divided

randomly in 5 subset with identical number of observations, so each subset is 20% of the train

set. Then recursively for five times one of the subset is selected and called ”subtest” and the

remaining 4 are collapsped in a new set called ”subtrain”. Then the baptism method is trained
9If the measured variable is above the threshold.
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on the subtrain and the performance of different metrics are tested on the subtest. This is done

for different values of the thresholds and the value with the best performance is selected. The

performance is calculated with these metrics 10 in order (these metrics will be explained later in

chapter 3.3.2):

1. SAD

2. CWQ

3. Accuracy

4. Precision

5. Recall

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.2

0.4

0.6

0.8

Thresholds correlationpearson method (bag4)
SAD
CWQ

Figure 3.2: The performances with the SAD (for which lower is better) and CWQ (for which
higher is better) of different values of the threshold dc of the correlation methods are shown for
the 4-th run of the cross validation. In this case the value 0.15 should be selected. The final
value will be the mean of values of each run.

The threshold with best value for the first metric (SAD) is selected. If there is an ex-equo

for one metric, the algorithm passes to evaluate the following one. In the (never happened) case

where there is an ex-equo for all the metrics the engine selects the lower one. After running this

10Among new metrics that is introduced in chapter 3.3.2 the two that doesn’t need the definition of hyperpara-
mters to be used are selected
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five times, the mean and the standard deviation of the thresholds is calculated and the model in

use will adopt the mean as threshold to give results on the test set.

In this way the evaluation of the threshold is calculated by cross validation. However looking

at the results quite always the thresholds have the same values in the different runs in the different

folds and when there is a difference it is just in one fold and it is modest. This confirms the

robustness of the approach.

3.2.5 Assignment of real topics to a document

Once a baptism method is defined, the procedure to assign real topics to unseen documents is

the following. Let’s consider a new document, its estimated vector θ̂new, and the vector B ob-

tained by one of the baptizing methods. For ease of explanation, let’s consider a toy example

considering a latent topic engine fitted considering K = 8 latent topics. A baptizing method pro-

duced the vector B = (“Health”, “pseudo-topic”, “Health”, “Fashion”, “Celebrities”, “pseudo-

topic”, “Fashion”, “Animals”), whereas the predicted vector of topic proportion resulted equal

to θ̂new = (0.2,0.05,0.15,0.02,0.12,0.18,0.1,0.18)⊺.

bk Health pseudo Health Fashion Celebr. pseudo Fashion Animals

θ̂new,k 0.2 0.05 0.15 0.02 0.12 0.18 0.1 0.18

Table 3.7: Toy example - Classification of a new document having its predicted vector of topic
proportions θ̂new and the vector of baptized topics B.

Classification is performed by summing the elements in θ̂new having with the same label in

B. Thus, the topic-label “Health” leads to a total proportion equal to θ̂new,1 + θ̂new,3 = 0.2+

0.15 = 0.35, whereas the other labels lead to θ̂new,4 + θ̂new,7 = 0.12 (“Fashion”), θ̂new,5 = 0.12

(“Celebrities”), θ̂new,8 = 0.18 (“Animals”), and θ̂new,2 + θ̂new,6 = 0.23 (“pseudo-topic”). Since

pseudo-topics must be ignored, the corresponding value must be removed and value normalized

so that they sum to 1. Thus obtaining: Health = 0.45, Fashion = 0.16, Celebrities = 0.16,

Animals = 0.23. Given these totals, if a new document has to be classified to a unique real topic,

the topic with the largest total proportion will be chosen for the final classification. In the above

example, the new document is going to be classified as a “Health”-related document. This rule
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can be extended to consider the case in which a “mix” (i.e., a document characterized by more

than one real topic) has to be classified. Let us assume that the mix is composed by two real

topics, then the two topics with the largest total proportion will be selected. In the toy example

proposed in Table 3.7, the second largest total proportion is associated with the “pseudo-topic”

label. When such a situation occurs, the topic with the largest total proportion among those

remaining is selected as the second real topic. In our case, the new document is going to be

classified with the mix (“Health”, “Animals”).

3.3 Metrics

3.3.1 Adaptation of classical classifiers’ indicators to predictions of mix

In the first paper classical indicators of classification (accuracy, precision, recall, F1) are adapted

to work in a situation in which the prediction is not a class but a vector of quotes, one for each

real topic. The prevision is considered correct if the topic with the higher predicted probability

is exactly the real topic of the document.

3.3.2 Evaluation metrics on topics mix prediction

Evaluating mix predictions is a tricky task first of all it requires to define what is the meaning of

”correctly identified”. In a single topic scenario it’s trivial: if the prediction matches that topic,

it’s correct; Whereas, now that a more rich corpus with a deterministic quantified mix of real

topics is considered, some new metrics are needed to measure the ability of models to correctly

identify topics. In a mix scenario, it could be defined in many different ways, such as:

1. the predicted topic with the greatest probability is one (or the highest) of the real ones

2. real topics are the same/or a subset of the predicted ones (despite the associated weight)

3. predicted topics are the same/or a subset of the real ones (despite the associated weight)

4. predicted topics are the same/or a subset of the real ones and the related probabilities are

similar to the real ones
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5. probabilities of each predicted topics are similar to the ones of real topics

In order to account all these types of evaluation, different metrics will be introduced. Before

doing so, it is necessary to define two thresholds (which take value between 0 and 1): one for

real topics (treal) and one for predicted ones (tpred). Once set these thresholds only topics with

percentage greater or equal to these thresholds will be considered and for the remaining ones

the score is re-normalized to 1. These thresholds are needed to define which real and predicted

topics to consider to compute the metrics. The predicted threshold is necessary in particular in

the count metrics (the first four below) because generative topic models assign values (even if

very low) to all topics and thus it is necessary to exclude the tail of topic with ”insignificant”

score when a simple count is performed. The real threshold it is not strictly necessary, but

since data are never perfect, it is useful even here to delete noise removing the topics with low

percentages.

WTN (Wrong Topics Number) and MTN (Missed Topics Number)

Two metrics to measure how much the model ”invents topics” and how much it ”misses topics”

will be now introduced. These metrics are suitable in particular in context where one is interested

in the identification of which topic has a document regardless of the scores.

Let’s define:

• Ri is the set of real topics for document i

• Pi is the set of predicted topics for document i

• Wi is the cardinality of (Pi−Ri), i.e. the number of elements of Pi not in Ri for document i

• Mi is the cardinality of (Ri−Pi) i.e. the number of elements of Ri not in Pi for document i

• D is the total number of documents presents in the corpus

The Wrong Topics Number (WTN) defines how many predicted topics are not between real

ones, on average for each document, in essence how many topics the algorithm invents.

WT N =
∑

D
i=1Wi

D
(3.9)
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Whereas the Missed Topics Number (MTN) defines how many real topics are not in predicted

ones, on average for each document; in essence how many topics our algorithm misses.

MT N =
∑

D
i=1 Mi

D
(3.10)

Scores
Topics Real Predicted
Animals 0.5 0.65
Sport 0.4 0.2
Fashion 0.1 0
Food 0 0.15

Sum 1 1

Table 3.8: Data used for next toy examples with 4 topics

We introduce even an unique synthetic indicator Wrong-Missed Topics Number (WMTN) as

the mean the two values:

WMT N =
WT N +MT N

2
(3.11)

WTQ (Wrong Topics Quota) and MTQ (Missed Topics Quota)

The previous metrics define how many topics are wrong or missed, but it does not take into

account how much is wrong. It is different to miss a real topic that is 20% in the document and

miss a real topic that is 80%, or to invent a topic with a score of 10% and with a score of 90%;

so this second set of metrics has been developed to cover this aspect.

Let’s define:

Topic no thresholds
Topics Real Predicted
Animals YES YES
Sport YES YES
Fashion YES NO
Food NO YES

Invented Number 1
Missed Number 1

Topic with thresholds
Topics Real Predicted
Animals YES YES
Sport YES NO
Fashion NO NO
Food NO NO

Invented Number 0
Missed Number 1

Table 3.9: Toy example to understand WTN and MTN, using data of table 3.8. The left table
shows what happens if no thresholds are applied: WTN for this document in this case is 1,
because Food is not in real topics, and MTN is 1 because Fashion have been missed. If instead
real threshold = 0.15 and predicted threshold = 0.25 (right table), the real topics above this
threshold are Animals and Sport, and the predicted one is only Animals, thus WTN becomes 0
and MTN remains 1.
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• Wi is still the cardinality of (Pi−Ri) for document i, i.e. the number of predicted topics

that are not in the set of real ones

• Mi is still the cardinality of (Ri−Pi) for document i, i.e. the number of real topics that are

not in the set of predicted ones

• pi j is the predicted quota of the jth element of the set |Pi−Ri|, for document i

• ri j is the real percentage of the jth element of the set |Ri−Pi|, for document i

• D is the total number of documents presents in the corpus

Thus, to compute Wrong Topics Quota, after having identified the wrong topics as before, instead

of counting the wrong predicted topics in each document and make the mean, the sum of the

quotas of the wrong predicted topics in each document is computed and then the mean over

all documents is performed, leading to a metric which indicates the quota of wrong topics on

average.

WT Q =
∑

D
i=1 ∑

Wi
j=1 pi j

D
, pi j ∈ (Pi−Ri) (3.12)

Similarly Missed Topics Quota is computed summing together the quotas of the missed real

topics, and averaging the values on all documents.

MT Q =
∑

D
i=1 ∑

Mi
j=1 ri j

D
, ri j ∈ (Ri−Pi) (3.13)

We introduce even an unique synthetic indicator Wrong-Missed Topics Number (WMTQ) as

the mean the two values:

WMT Q =
WT Q+MT Q

2
(3.14)

Also in this case two thresholds must be set. In this case another operation is needed: after

having applied the thresholds, the values must be normalized, so that they sum to 1 (dividing

each element by the sum of all elements).
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Scores no thresholds
Topics Real Predicted
Animals 0.5 0.65
Sport 0.4 0.2
Fashion 0.1 0
Food 0 0.15

Invented Quota 0.15
Missed Quota 0.1

Scores with thresholds
Topics Real Predicted
Animals 0.56 1
Sport 0.44 0
Fashion 0 0
Food 0 0

Invented Quota 0
Missed Quota 0.44

Table 3.10: Toy example to understand WTQ and MTQ, using data of table 3.8. The left table
shows what happens if no thresholds are applied: WTQ = 0.15 (value corresponding to Food),
and MTQ = 0.1 (value corresponding to Fashion). If instead real threshold = 0.15 and predicted
threshold = 0.25 (right table), after normalization the values shown in table are obtained and
thus for this document and this pair of thresholds: WTQ = 0 because no topic has been invented,
whereas MTQ = 0.44, because the only topic that the method has missed is Sports, and its real
value is 0.44.

CWQ (Correct Weighted Quota)

The previous two metrics define how much a method is wrong in different ways, but in order to

give an idea of how much it is right, another metric has been developed.

It takes into account, for each document, the intersection between predicted and real topic,

in essence the subset of right predicted topics, and then sums together the percentage (as real

topic) of each of these topics weighted by (1- the delta between the real vale and the predicted

one). In this way similar values are more weighted than far values. After that the mean of these

values for all document is computed and it is called CWQ. This metric wraps together the right

topics and the related values, giving an estimate of how much the method predicts correct topics.

CWQ =
∑

D
i=1 ∑

RTi
j=1(ri j ∗ (1−|ri j− pi j|))

D
, pi j,ri j ∈ (Ri∩Pi) (3.15)

where:

• RTi is the cardinality of Ri∩Pi for document i, i.e. the number of right predicted topics

• pi j is the predicted quota of the jth element of the set Ri∩Pi, for document i

• ri j is the real percentage of the jth element of the set Ri∩Pi, for document i

• D is the total number of documents presents in the corpus
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Topics Real Predicted Delta Weigthed
Animals 0.5 0.65 0.15 0.425
Sport 0.4 0.2 0.2 0.32
Fashion 0.1 0 N/A N/A
Food 0 0.15 N/A N/A

CWQ 0.745

Table 3.11: Toy example to better understand CWQ, using the data of 3.8. The intersection
between the real topics set and the predicted one is Animals and Sports. In this case this metric
does not need thresholds, so CWQ can be directly computed. The delta has to be computed and
then each real values has to be weighted for 1-delta, thus for this document CWQ = 0.5 ∗ (1−
|0.65−0.5|)+0.4∗ (1−|0.4−0.2|) = 0.745, meaning it is 74.5% right.

SAD (Scaled angular distance)

As we said in chapter 2.4.1 the kind of data we are dealing with are compositional data, which

are represented as points on a simplex. So the idea is to use a metric on a simplex in order to

add another valuable evaluation criterion.

Figure 3.3: The geodesic distance of the projection of points on the slice of the sphere with
radius 2/π . Here, it is shown the case of three real topics.

Let’s consider the following two points: p and r. p is the vector of percentages related to the

predicted topics and r is the vector of percentages related to the known topics of a document.

We introduce a new metrics as follow:

dSA(p,r) =
2
π
∗arccos

(
H

∑
h=1

√
p2

h

∑
H
j=1 p2

j

√
r2

h

∑
H
j=1 r2

j

)
(3.16)

where H is the length of r and p, in our case 39, the number of real topics.

dSA ranges from 0 to 1, with 0 meaning it is 0% wrong, 0.5 meaning it is 50% wrong, and

1 meaning it is 100% wrong. See Table 3.12 for an example. This distance can be seen as a

re-scaled angular distance.

The final value of a metrics (called for this reason SAD = Scaled Angular Distance) will be

the mean of these distances between real and predicted topics within each document over all

51



documents.

SAD =
∑

D
i=1 dSA(pi,ri)

D
(3.17)

Topics Real values Predicted values
r1 0.5 1
r2 0 0
r3 0.5 0

Total 1 1

Table 3.12: Toy example of SAD metric. In this simple case, real and predicted top-
ics half disagreeing. If a method correctly identifies half of the topics, then: dSA(r, p) =
2
π
∗arccos(

√
0.52/(0.52 +0.52)∗1+0+

√
0.52/(0.52 +0.52)∗0) = 2

π
∗arccos(

√
1
2) =

2
π
∗ π

4 =

0.5.

3.3.3 Topic score thresholds

As the prediction gives not null scores quite always to all the latent topics, the metrics which

analyse the ”missed” and ”invented” topics (MTN, WTN, MTQ and WTQ) cannot work without

filters: we would have no ”missed” topics and a lot of ”invented” ones. So it is mandatory

to define a threshold tpred (∈ [0,1]) for predicted topics and consider, in the prediction, only

predicted topics with a score equal or above this threshold renormalizing to 1 these scores and

putting all the scores of other topics to zero. In other words we consider valid predicted topics

just the ones that the model consider ”important”. Consequently in this case it has been decided

to use a similar approach even for real topics, defining a threshold treal (∈ [0,1]) for real topics,

so in the same way we consider just topics with a percentage equal or above this threshold.

For treal all thresholds from 0 to 0.2 with step 0.01 have been analysed on the overall dataset

of 6 million documents for higher robustness and it has been counted how many documents have

the maximum score below the threshold. With 0.18 we have about 36’000 documents, with 0.17

we have only about 3700 documents (meaning about the 0.05% of all documents), as it can

be seen in Figure 3.4. In the subset of 200’000 documents used for experiments, the number

of documents below 0.18 is about 500, whereas there are none below 0.17. So we select treal

according to these results:

treal = 0.17 (3.18)
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Figure 3.4: Distribution of documents with maximum score below each threshold

To find the best value of tpred we define the optimus value for each couple (MTN-WTN and

MTQ-WTQ) so that it balances the two values. In fact low values of the threshold favor the

first metrics (MTN and MTQ), on the other side high values of the threshold favor the last ones

(WTN and WTQ). So we are looking for the value that makes the two metrics as low as possible

together. In practice for each method and for each pair of metrics, a threshold has been chosen

with this criterion: the value which minimize the maximum between the two metrics. Thus, in

the end two thresholds for each method have been identified (one for MTN-WTN and one for

MTQ-WTQ). In other words, called WT N(tpred) and MT N(tpred) the values of the two metrics

with the threshold equal to tpred , the selected value of this threshold t̂pred is:

t̂pred = argmin
tpred∈[0,1]

[max(WT N(tpred),MT N(tpred))] (3.19)

3.4 Dataset preparations

3.4.1 Noise removal

To perform our methodology a dataset composed by a list of documents (i.e. texts) is needed,

each with a list of topics, each with a proportion (to sum 1 in each document). Some preprocess

procedures are needed to proceed.
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Cleaning texts

First of all texts have been processed so that html tags, wikimedia markup language parts and

stopwords have been removed.

Mono-topic and mixed-topic dataset

The dataset is divided in:

• mono-topic subset (i.e. the list of text where there is just one topic associated, in cases in

which one topic had percentage greater or equal to 90% this document is considered as

monotopic with this topic as the only topic. This subset contains ∼ 1 Million of articles.)

• mixed-topic subset (all other texts).

The reason why a mono-topic subset has been created is that it is useful for three purposes:

1. to measure classical indicators (accuracy, precision and recall)

2. to use ”Top words” and ”Distribution” baptism methods

3. to perform the following ”Filter of Words” 3.4.1 simplification of text

Filtering of words

The amount of articles is huge and this would lead to high computational load. The key idea is

to keep only relevant words assuming that they are sufficient to capture topics of texts. So, using

the subset of mono-topic texts of the train set, a frequency analysis of the words for each topic

has been performed, creating for each topic the list of words ordered by their numerousness in

that topic. Defining a threshold N, only the N top words of each topic have been selected and all

texts have been purged from words that don’t belong to the first N words of any topic. Called th

the H topics (h=,1...,H) and called wh,i the i-th word of the topic th after ordering the word on the

basis of their presence in that topic, the dictionary DICT is composed just the subset of words

made by:

DICT = (w1,1, ...,w1,N ,w2,1, ...,w2,N , .......,wH,1, ...,wH,N)

54



that is composed by (HxN) words or less (if there are words that belongs to more than one

topic). In all document just words that belongs to DICT are kept.

In this research it is selected N=30.

3.4.2 TF-IDF

While Topic Model can be feeded by simple texts, to use regressors, a transformation of text

data in numeric vector has been necessary, so TF-IDF has been applied because it reflects the

importance of each word for each document inside a corpus of documents giving much weight

to words that are frequent in the document but with a low presence in all other documents (in

order to avoid giving importance to words frequent in all texts, and thus not discriminatory). It

is defined as

t f id fi j = t fi j ∗ id fi (3.20)

t fi j =
ni j

|d j|
(3.21)

id fi = log(
D

d fi
) (3.22)

where:

• ni j is the frequency of term i in document j

• |d j| is the total number of terms in document j

• D is the total number of documents presents in the corpus

• d fi is the document frequency of term i (i.e. the number of documents in which this term

is present)

There are some variations of the id f formula. The one used by the library that has been

utilized, is the following:

id fi = log(
1+D

1+d fi
)+1. (3.23)

The effect of adding 1 to the end of the equation above is that terms with zero id f , i.e., terms

that occur in all documents in a training set, will not be entirely ignored. The addition of 1 to

the numerator and denominator of the id f is done to prevents zero divisions.
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Chapter 4

Experiments of Paper 1

This chapter presents experiments described in the first paper and it focuses on two popular TM

methods, namely latent Dirichlet allocation (LDA, [6]) and correlated topic model (CTM, [5]).

Both methods assume that documents are probability distributions over the topics, whereas top-

ics are probability distributions over the set of words composing the corpus. The main difference

between the two methods lies in the prior distribution that is assumed for the probability vector

of the topic distributions, which results in greater computational tractability as well as ease of

interpretation for LDA vs. a more flexible correlation structure between topics for CTM.

The two TM methods are comparatively studied with a threefold objective. First, they are

deployed in a big data scenario with the aim of comparing their performance by means of several

widespread indicators. Second, supposing that each document of a corpus is characterized by

a single real topic, two new methods have been proposed in order to automatically classify

documents with respect to their real topic. In particular, LDA and CTM have been chosen as

(latent) topic model engines, and then the two newly proposed methods for topic labelling have

been applied, that is to baptize one of the latent topics with a single real topic name. Third, the

proposed methods have been tested as multi-class classification tools under the more realistic

assumption that a document is characterized by more than one real topic.
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4.1 Data collection and dataset creation

In this work a crawler on monotematic websites is used, identifying sub-homepages to get article

with a mix of two topics as explained in chapter 3.1.1 It has been considered a situation with

H = 4 real topics (i.e., specialized websites) and two mixed real topics (specialized websites

with subsections), as shown in Table 4.1. See Appendix C for a complete list of the websites.

(Mixed) Real Topics N. of docs
Health 6.868

Animals 3.914

Celebrities 14.095

Fashion 14.064

Health - Animals 279

Celebrities - Fashion 227

Table 4.1: Dataset structure. Real topics and mixed real topics (column 1). Number of down-
loaded documents for each (mixed) real topic (column 2).

The set of downloaded documents (i.e., the final corpus C ) has dimension ≈ 39.500. All

texts are in Italian. A common pre-processing phase has been performed on the corpus. Firstly,

all texts with languages other than Italian, repeated texts, and texts with less than 200 characters

have been neglected. Secondly, a set of trivial strings have been removed on each text. Thirdly,

Italian stopwords, punctuation, and double spaces have been removed. In addition, words that

are shared by two or more real topics are not considered in the analysis. Figure 4.1 shows the

texts’ length before and after the pre-processing phase for each (mixed) real topic.

4.2 Experimental setting and results

In this Section, the results of three experiments on the dataset described in the previous section

are presented. In particular, the corpus C is used for accomplishing the three main objectives

of the present work. In the first instance (Section 4.2.1), the whole corpus C (all six rows of

Table 4.1) is used to test LDA and CTM in a big data scenario. Secondly, the texts labeled with

a unique real topic (first four rows of Table 4.1) are used for testing the distribution-based and

top words-based methods as classifiers with LDA and CTM being used as latent topic engines

(Section 4.2.2). Lastly, the texts associated with mixed real topics (last two rows of Table 4.1)
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Figure 4.1: Box plot representation of the length of texts before (blue) and after (orange) the
pre-processing activity.

are used to conduct a preliminary study with the aim of understanding the ability of the two

novel classification methods as multi-classifiers, still with LDA and CTM being used as latent

topic engines (Section 4.2.3).

In all experiments, the corpus C is divided into two disjoint parts, namely a training set

(composed of 80% of documents), and a test set (the remaining 20% of documents). The random

splitting is performed by stratifying over real topics.

All experiments are performed in Python, by using the tomotopy1 library to estimate both

LDA and CTM models. All elaborations have been carried out with an Intel Core i7 with RAM

16 Gb.

4.2.1 LDA and CTM in a big data scenario

The performance of LDA and CTM in our big data scenario are evaluated resorting to the per-

plexity and coherence metrics presented in Section 2.3. A number K of latent topics ranging

from 2 to 16 has been considered, thus including also the “true” number of topics considered in

generating the corpus, i.e., the value 4.

To select the best value of K from a predictive perspective, the perplexity measure computed

1https://bab2min.github.io/tomotopy/
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on the unseen corpus, that is our test set, has been taken into account. Figure 4.2 shows the

perplexity of the two models for several values of K. The perplexity decreases as the number

of topics increases, thus suggesting to prefer the value K = 16 both for LDA and CTM models.

Though, from Figure 4.2 it clearly emerges that LDA performs far better than CTM for any

value of K.
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Figure 4.2: Big data scenario. Perplexity of LDA and CTM as K increases.

The quality of the recovered topics can be inspected by looking at the most probable words

for each model (e.g., inspecting the word clouds as in Figure 4.3), and accordingly assigning

a label to each latent topic in the light of these words. Table D.1 in Appendix D reports the

20 most probable words for the LDA model. It emerges that LDA identifies distinct topics that

human judgment can hardly categorize in the four considered real topics “Health”, “Animals”,

“Celebrities”, and “Fashion”. In particular, LDA recognizes some new topics (e.g., topic 2 is

related to “Music”, topics 3 and 6 deal with different aspects of “Beauty” routines) and splits

some real topics into subtopics (e.g., topics 4, 15, and 16 split the Animal category into “Dogs”,

“Non-pets”, and “Cats”, respectively).

Contrarily, by inspecting the most probable words for the CTM model with K = 16 latent

topics (Table D.2 in Appendix D), it is evident that there is no such clear semantic homogeneity

in the recovered topics.

Interestingly, a value of K = 16 much larger than 4 (i.e., our ground truth) seems to perform

better with both the LDA and the CTM models. Indeed, this result is coherent with the conclu-
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Figure 4.3: Word clouds representing four LDA latent topics. Detected latent topics refer to
“Music” (topic 2), “Health” (topic 7), and different aspects of “Beauty” (topics 3 and 6).

sion of some authors affirming that the perplexity measure often selects a number of topics that

is too large [16, 28]. For this reason, also the coherence results for four values of K has been

inspected. For each K ∈ {4,8,12,16}, the coherence measures (applying averages and standard

deviations over topics of Equations (2.11), (2.12), and (2.13)) of the two models on the training

corpus have been computed, by considering the M = 10 most probable words within each topic.

Table 4.2 summarizes the coherence results by model and number of topics K. By inspecting

Table 4.2, one can note that topics generated by the LDA model with K = 4 are considered the

most coherent by all the coherence measures, since they are characterized by the largest mean

and smallest standard deviation. Contrarily, the number of topics maximizing the coherence

measures in the CTM varies between 12 and 16.

In conclusion, the LDA model seems to reliably identify topics both with K = 4 and K = 16,

with a different granularity level (e.g., with more latent topics, it can discover “new” relevant

topics in the corpus), whereas the CTM points to a larger number of topics that are not semantic-

ally homogeneous.

4.2.2 Automatic identification of unique real topics

The distribution-based method (hereafter, D) and the top words-based method (T ) described in

Sections 3.2.1 and 3.2.1 are tested as automatic classification techniques for the identification

of real topics. In this context, LDA and CTM are used as latent topic engines for both methods.
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Model K CUCI CNMPI CUMass
4 0.76 (0.36) 0.11 (0.03) -1.41 (0.4)

LDA 8 0.45 (1.13) 0.1 (0.05) -1.99 (1.12)
12 0.68 (1.01) 0.11 (0.05) -1.99 (0.89)
16 0.29 (1.62) 0.1 (0.09) -2.29 (1.27)
4 -3.54 (1.86) -0.17 (0.07) -4.4 (1.79)

CTM 8 -1.07 (2.14) -0.01 (0.12) -2.85 (1.56)
12 -0.49 (1.78) 0.03 (0.11) -2.17 (0.85)
16 -0.69 (1.81) 0.03 (0.1) -2.39 (0.99)

Table 4.2: Big data scenario. Mean and standard deviation (in parenthesis) of coherence meas-
ures stratified by model and number of topics. Best values are reported in bold.

Furthermore, in order to label a text, also two different combinations of the two methods have

been tested. More precisely, if the two methods strictly agree on the topic identification, then

that topic is assigned to the text, otherwise no topic is assigned (i.e., the topic is labelled as

pseudo-topic). From now on, this combination is called D
∧

T approach. A further combination

is also considered, which assigns a topic whenever the two methods agree on the topic (as in the

D
∧

T approach), but also when one method identifies a topic while the other method detects a

pseudo-topic. In all other cases (i.e., the two methods disagree on the topic or they both identify

a pseudo-topic), the topic is labeled as pseudo-topic. This approach is denoted by D
∨

T .

The performance of the D and T methods depends on different parameter choices. Among

these choices, one of the most relevant is the selection of the thresholds for defining whether

a text is associated with a real topic or a pseudo-topic. For this reason, a sensitivity study has

been performed to ascertain the influence of parameters td and ttw defined in Algorithms 1 and

2. More precisely, the classification performances considering td ∈ {0,0.1,0.2,0.3} for the D

method, ttw ∈ {1,2,3} for the T method, and K ∈ {4,8,12,16} have been compared.

Table 4.3 shows the global accuracy of D and T methods. It emerges that considering the

LDA as latent topic engine helps the whole set of methods to get larger (i.e., better) values with

respect to the use of the CTM model for any values of td and ttw. The performance of the D

method together with LDA seems to be independent with respect to either K and td , with the

only exception K = 4. When considering the T method combined with LDA, a careful selection

of ttw should be done: a larger value of ttw leads to smaller values of global accuracy. This is

even more evident if we also consider a larger value of K. More generally, the farther K from
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Distribution Top-words
td ttw

K 0 0.1 0.2 0.3 1 2 3
4 0.72 0.77 0.77 0.77 0.77 0.77 0.77

LDA 8 0.85 0.85 0.84 0.78 0.76 0.73 0.73
12 0.82 0.85 0.85 0.85 0.77 0.73 0.49
16 0.84 0.84 0.85 0.85 0.79 0.76 0.46
4 0.43 0.00 0.00 0.00 0.10 0.10 0.00

CTM 8 0.46 0.36 0.00 0.00 0.37 0.48 0.36
12 0.49 0.40 0.54 0.00 0.45 0.44 0.44
16 0.58 0.59 0.60 0.58 0.62 0.45 0.37

Table 4.3: Global accuracy for D and T methods. Best values are reported in bold.

the ground truth, the more strict the threshold ttw should be.

Distribution Top-words
td ttw

K 0 0.10 0.20 0.30 1 2 3
4 0.57 0.58 0.58 0.58 0.75 0.75 0.75

LDA 8 0.84 0.84 0.81 0.75 0.75 0.73 0.73
12 0.79 0.83 0.82 0.83 0.76 0.76 0.50
16 0.83 0.83 0.84 0.84 0.78 0.76 0.47
4 0.25 0.00 0.00 0.00 0.08 0.05 0.00

CTM 8 0.32 0.13 0.00 0.00 0.38 0.40 0.13
12 0.40 0.29 0.31 0.00 0.45 0.28 0.28
16 0.43 0.47 0.48 0.34 0.66 0.43 0.36

Table 4.4: Macro F1-score for D and T methods. Best values are reported in bold.

The values of macro F1-score are also reported in Table 4.4. Focusing on the LDA model

as latent topic engine, it can be noticed that the D method gets larger values of macro F1-score

with K = 8 and K = 16. If we focus on the T method, the situation is slightly different. In fact,

larger values are reached only if K = 16 is considered. Globally, the D method obtains higher

values of macro F1-score with respect to the T method.

Given these results, the focus has been fallen on the comparison of D
∨

T and D
∧

T only

considering LDA as latent topics engine. From the results in Table 4.5, the combination of the

D and T methods does not lead to better performance. D
∨

T reaches the same results as the

D method, therefore there is no any advantage in using the two methods together. Moreover,

the results lead us to assume that the D is the method ruling the final decision of the
∨

logical
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D
∨

T D
∧

T
td td

K ttw 0 0.1 0.2 0.3 0 0.1 0.2 0.3
1 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77

4 2 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
3 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
1 0.85 0.85 0.84 0.78 0.76 0.76 0.76 0.76

8 2 0.85 0.85 0.84 0.78 0.73 0.73 0.73 0.73
3 0.85 0.85 0.84 0.78 0.73 0.73 0.73 0.73
1 0.85 0.84 0.83 0.73 0.77 0.80 0.80 0.80

12 2 0.82 0.85 0.85 0.85 0.83 0.73 0.73 0.73
3 0.82 0.85 0.85 0.85 0.49 0.49 0.49 0.49
1 0.84 0.84 0.85 0.85 0.79 0.79 0.79 0.79

16 2 0.84 0.84 0.85 0.85 0.76 0.76 0.76 0.76
3 0.84 0.84 0.85 0.85 0.46 0.46 0.46 0.46

Table 4.5: Global accuracy for D
∨

T and D
∧

T methods for the LDA model. Best values are
reported in bold.

operator.

4.2.3 Test on the identification of mixed real topics

Since a document may be described by more than one topic, there is an urgent need to develop

suitable approaches that recognize mixed real topics. For this purpose, distribution-based and T

methods are tested as multi-class classification tools. Similarly to Section 4.2.2, also here LDA

and CTM are used as latent topic engines in both methods. D
∧

T and D
∨

T are also tested.

Again, all the combinations between K ∈ {4,8,12,16}, td ∈ {0,0.1,0.2,0.3}, and ttw ∈ {1,2,3}

are tested. As reported in Table 4.1, two mixed topics have been considered, that are “Health” -

“Animals” and “Celebrities” - “Fashion”.

Table 4.6 summarizes the main results in terms of global accuracy. Similar to the previous

case, the performance of the D method with LDA as the topic engine is independent of K and td ,

except for K = 4. This confirm the idea that K has to be greater than the number of real topics

(at least double as it is shown here). For the T methods the behaviour is different: increasing the

number K of latent topics affects the performance of the T method (with LDA). When a value

of K higher than 4 is set, results start to deteriorate, because of the limits of T which counts the

words and falls into difficulties when latent topic number increases in presence of mix of topics.

63



Distribution Top-words
td ttw

K 0 0.1 0.2 0.3 1 2 3
4 0.44 0.44 0.44 0.44 0.80 0.80 0.80

LDA 8 0.95 0.95 0.96 0.64 0.60 0.61 0.61
12 0.92 0.97 0.98 0.95 0.55 0.61 0.17
16 0.91 0.91 0.92 0.92 0.52 0.54 0.13
4 0.45 0.00 0.00 0.00 0.55 0.00 0.00

CTM 8 0.45 0.00 0.00 0.00 0.70 0.41 0.00
12 0.45 0.45 0.45 0.00 0.48 0.00 0.00
16 0.45 0.45 0.45 0.45 0.94 0.36 0.47

Table 4.6: Global accuracy for D and T methods. In this case, two mixed topics are considered.
Best values are reported in bold.

D
∨

T D
∧

T
td td

K ttw 0 0.1 0.2 0.3 0 0.1 0.2 0.3
1 0.44 0.80 0.80 0.80 0.44 0.44 0.44 0.44

4 2 0.44 0.80 0.80 0.80 0.44 0.44 0.44 0.44
3 0.44 0.80 0.80 0.80 0.44 0.44 0.44 0.44
1 0.95 0.95 0.96 0.64 0.60 0.60 0.60 0.60

8 2 0.95 0.95 0.96 0.64 0.61 0.61 0.61 0.61
3 0.95 0.95 0.96 0.64 0.61 0.61 0.61 0.61
1 0.97 0.93 0.93 0.89 0.61 0.61 0.61 0.61

12 2 0.92 0.97 0.98 0.95 0.61 0.61 0.61 0.61
3 0.92 0.97 0.98 0.95 0.17 0.17 0.17 0.17
1 0.91 0.91 0.92 0.92 0.52 0.52 0.52 0.52

16 2 0.91 0.91 0.92 0.92 0.54 0.54 0.54 0.54
3 0.91 0.91 0.92 0.92 0.13 0.13 0.13 0.13

Table 4.7: Global accuracy for D
∨

T and D
∧

T methods for the LDA model. In this case, two
mixed topics are considered. Best values are reported in bold.

Also in this case, the use of CTM as the topic engine is not advisable.

As in Section 4.2.2, the two approaches D
∨

T and D
∧

T have been considered only with

LDA as latent topic engine. Table 4.7 reports the values of global accuracy. Differently from

the previous case, the combination of the D and T methods leads to slightly better performance

with respect to using only one of the two methods. In conclusion, it seems that D
∨

T clearly

outperforms D
∧

T , and a larger value of K is preferable for classifying documents characterized

by a mix of real topics.
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Chapter 5

Experiments of Paper 2

This chapter presents experiments described in the second paper and it concludes the research.

All the elements to perform comparisons between different TMs are available: a very rich

dataset made of documents with known mix of topics and new metrics suitable to evaluate

performances on such a dataset.

For computational reason the first three experiments are performed on a random subset of

200’000 documents selected from the 6 millions of documents of the original dataset.

In the first experiment, before making the final comparison, it has been measured if the new

automatic supervised labelling methods proposed in this research work correctly or not. There-

fore, in the first experiment, it has been tested if and how much they are distinct from a random

selection and even from a ”cheated” random selection where for each document one of the real

topic is ”suggested” to the random model (called from now on ”doped random model”). As

a further insight an analogue evaluation of a range of SLMs is performed (including linear re-

gression, AdaBoost regression, bagging regression, gradient boosting regression, random forest

regression, and K-nearest neighbor regression). This test can carry two important achievements:

validation of all new metrics and satisfy the curiosity to see of how much these specialized

method are better then the proposed automatic labelling methods (with the hope to find that they

are in the same order of magnitude).

In the second experiment, it has been applied the complete methodology to compare the four

latent topic models presented in chapter 2.2.1 using all labelling engines introduced in chapter

3.2. The ultimate goal is to use for the first time our new comparative framework for generative
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topic models.

In the third experiment a tuning of the hyperparameters of the best model identified in the

second experiment, is performed.

In the fourth experiment, the selected method with the best hyperparameters found in the

third experiment is tested over all the dataset of 6 millions of documents.

Both classification metrics (just on monotopic test set) and new metrics (on all test set) are

used to evaluate results.

All experiments have been carried out with an AMD Ryzen 5 1500X Quad-Core Processor

with 8 logical units, and RAM 64GB.

5.1 Datasets

The dataset has been created downloading text from English wikipedia dump (see section 3.1.2

for more details) and assigning to each article a mixture of the 39 main topics (see section 3.1.2).

The overall amount of texts is about 6 million, about 1 million of which are mono-topic and the

remaining about 5 million are mixed-topic. Then the mono-topic dataset has been extracted to

find the top words for each topic. Then each text has been processed with the method described

in section 3.4.1, keeping only the words in the dataset built with the 30 top words of each topics.

Meaning that a maximum of 30x39 = 1’170 words are considered. In particular, the total number

of unique top words used has been 649.

The focus of this research is on the process and algorithms, therefore for the first three ex-

periments a subset of 200’000 articles have been used1. Since the number of monotopic texts is

about 15% of the overall it has been decided to compose this subset with 85% of texts with topic

mix and 15% of monotopic texts (stratifying by topic) to reflect reality. In cases in which the

number of texts for a topic was not sufficient, all the texts of that topic have been considered, and

the remaining number of texts needed has been spread over other topics. When only mono-topic

texts need to be considered (for example for distribution and topwords baptism or to measure

accuracy, precision and recall), only the mono-topic part of this subset is considered. In essence

about 30’000 texts.

1The fourth experiments has tested the complete procedure on the full dataset.
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To perform the tests dataset has been divided in train e test with proportion respectively of

80% and 20% with a random selection stratified by mixed-topic set and each monotopic set.

5.2 Experimental approach: cross validation

All experiments are performed using a k-fold cross validation. The corpus is divided in 5 subset

(20% each) and then evaluated five times, each time using one of the 5 subset as test set and the

other 4 as training set. So for each metrics there are 5 values and it is calculated the mean and

the standard deviation and box plot graphics are produced.

To evaluate if a value is significantly better than another one taken as benchmark, the dis-

tance between the two means in terms of standard deviation of the latter is measured, calling

it ”distance in standard deviations” (DSTD). We have to consider that usually two standard de-

viations is considered enough to state that the two values are statistically different and that in

CERN the Higgs Boson discovery has been validated with 5 standard deviations (see [9]).

All models are employed with default parameters, and detailed parameters are available in

Appendix B.

5.3 Experiment 1: New methodologies using LDA

In the first experiment, tests to validate the proposed baptism methods (regression-based, correlation-

based, distribution-based, top words-based, and D
∨

T methods) as valid real topic identification

methodologies have been performed. It is used LDA as the latent topic engine. The selection

of LDA as the latent topic engine is based on results obtained in chapter 4. The number of

iterations is set to 1000.

The main idea is to compare the results of our methods both with the Random, to see if

they are far from casual topic selection, and with Doped Random to see if they are better even

compared with a random model helped by a suggestion. If both statements are true the new

methods can be considered valid methods to identify real topic and can be used to compare

different topic models in their ability to identify real topics in texts (that will be done in the

second experiment in section 5.4).

67



Furthermore, it has been decided to verify even correspondent performances of SLMs to see

how much they are better than our methods and if values of the new metrics are coherent with

the classical classification metrics as an additional validation of the new metrics them self.

All methods used (random models, the new methods proposed and the SLMs) have the same

output: the distribution of predicted real topics over each document.

5.3.1 Models

As the focus of this research is not to find the best model but to test the methodological frame-

work, all models are implemented with the default parameters except for few parameters which

enables probability estimation or reduce computational load to acceptable values (the parameters

are described in Appendix B, the ones different from defaults are highlighted with the symbol

”*”).

Random Models

As said at the beginning of this chapter, two different random models are used as ”validator”

benchmarks for proposed labelling methods.

Pure random: This first method takes, for each document, an integer N randomly between

1 and 39 (which will be the ”predicted” number of topic) and then it takes randomly N topics

and assign to each of them a random value between 0 and 1 so that the sum of the N values will

be 12. It will be called just ”Random” from now on.

Doped random: In the second random method a cheating is performed by giving it the one

of the knows real topic of each document. So for each document the model take randomly one

of the known real topics of the document, then choose randomly an integer M between 0 and

38 and than choose randomly M topics between remaining ones adding them the known topic

given at the beginning. Therefore having a the list of M+1 topics, it assigns to them numbers

between 0 and 1 (so that they sum to 1) as the Pure Random.

2It is better not to let just assign a random values to all 39 topics because it would carry too diluted values for
all topics.
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Topic Model

The focus of this work is not to find the best topic model in the world so it is not so important

what topic model is selected for this comparison. LDA (Tomotopy Python library 3 with default

parameters as shown in Appendix B) is selected because it has a significantly lower computa-

tional load and it demonstrated to be better in the first paper (see chapters 4.2.2 and 4.2.3). It is

used with 1’000 iterations. It is configured with the number k of topics equal to four times the

number of real topics (there are 39 real topics) following the idea of the first paper (see chapter

4.2). So k = 4x39 = 156.

For LDA, bag-of-words vectors are given as input, so words’ weights only depend on the

frequency of each word inside each document. Details of the steps are given below:

1. LDA has been trained with k = 156 topics over the mixed training set with default para-

meters and 1000 iterations.

2. Based on the five aforementioned methods, still working on training set (just mono-topic

for methods 1, 2 and 3 and all the training set for methods 4 and 5), each latent topic has

been baptized as a specific real topic or as pseudo topic.

3. Model has been applied on a test set (with also mixed texts) to predict latent topics for

each unseen document. In this way a vector of probabilities assigned to each latent topic

has been obtained.

4. For each unseen document all latent topic baptised with the same real topic have been

summed together and all the pseudotopics have been removed. So a distribution of real

topic for each document has been obtained. As far as the pseudotopics have been removed,

the sum was not 1 anymore, so a simple renormalization to 1 (dividing each element by

the sum of all elements) has been performed. In this way for each baptism method a vector

of probabilities assigned to each real topic has been obtained. See chapter 3.2.5 for more

details.

Notice that even if distribution and topwords baptisms is based on the mono-topic subset,

the LDA has been trained on all the mixed train set.
3https://bab2min.github.io/tomotopy/
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Baptism methods

All 4 baptism methods have been compared, together with the mixed method D
∨

T 4 (chapter

3.2.3). In details here the list of baptism methods used:

1. Topwords-based (T )

2. Distribution-based (D)

3. Distribution OR Topwords (D
∨

T )

4. Regression-based (R)

5. Correlation-based (C)

The selection of the threshold of each method is calculated dynamically as part of the method

as explained in chapter 3.2.4.

Regressors

To perform a test using well known statistical learning models a subset of regressors has been

selected. In detail, below there is the list of the used one. Between brackets the Python library

used is given while the details about hyperparameters can be found in Appendix B).

• Linear Regression (Scikit-learn)

• Ada Boosting (Scikit-learn)

• Bagging Regressor (Scikit-learn)

• Gradient Boosting Regressor (Scikit-learn)

• Random Forest Regressor (Scikit-learn)

• KNN Regressor (Scikit-learn)

4It has been proved to give good results in the first paper (in chapters 4.2.2 and 4.2.3)
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For supervised methods, text data is transformed into a common document-term matrix with

tf-idf weights (refer to Section 3.4.2 for specifics). In each supervised regression model, an

ensemble is employed. For example, in the case of gradient boosting regression, the ensemble

size is set to 39, corresponding to the number of real topics. Each member of the ensemble

receives the document-term matrix and the proportion of each real topic (dependent variable).

Essentially, a model is estimated for each real topic. The ensemble is subsequently used for

prediction. As a result, predictions are normalized to the range [0, 1], yielding a vector of

proportions with a size of 39.

Then for each document of the train set the tf-idf vectors are given as input to regressors

models (independent variables) together with the vector of quotas of real topics (dependent

variables). After the training, the model will produce for each document of the test set a vector

of predicted quotas of real topics to be compared with the vector of actual quotas of real topics.

5.3.2 Results with classification metrics

Firstly, the automatic topic models are compared with the two random models using all classi-

fication metrics, keeping in mind that for global accuracy, precision, and recall just monotopic

documents are used as test set. To correctly use these performance metrics, in all cases, the real

topic with the highest value in the predicted vector of proportion is assigned as the unique topic

that describes the unseen document.

0.0 0.1 0.2 0.3 0.4

Random

Doped Random

Topwords

Distribution

D v T

Correlation (Pearson)

Regression (Logit)

Global Accuracy (on monotopic texts)

Worse Better

Figure 5.1: Global accuracy (computed on monotopic texts) boxplots
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0.0 0.1 0.2 0.3 0.4 0.5

Random

Doped Random

Topwords

Distribution

D v T

Correlation (Pearson)

Regression (Logit)

Average Precision (on monotopic texts)

Worse Better

Figure 5.2: Average precision (computed on monotopic texts) boxplots

0.0 0.1 0.2 0.3 0.4

Random

Doped Random

Topwords

Distribution

D v T

Correlation (Pearson)

Regression (Logit)

Average Recall (on monotopic texts)

Worse Better

Figure 5.3: Average recall (computed on monotopic texts) boxplots

The Figures 5.1, 5.2, 5.3 summarize the results showing a huge difference, not only with the

pure random model (i.e. the model don’t make random choices) but even with the doped random

model, in which one topic is passed directly to the results. So the proposed approach shows to

be very powerful to identify topics.

To measure the gap the standard deviations ais used s a unit of measure.

Results are very strong. The distance from the pure Random model is more than one hun-

dred of standard deviations. Furthermore, even the distance from doped Random is remarkable,

always more than forty standard deviations.
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Global Accuracy Average Precision Average Recall
Method Mean Std Mean Std Mean Std
Regression 0,44 0,004 0,44 0,0126 0,43 0,0066
Correlation 0,38 0,0153 0,43 0,0153 0,36 0,0219
D
∨

T 0,44 0,0044 0,44 0,0077 0,42 0,0069
Distribution 0,47 0,0061 0,47 0,019 0,45 0,0087
Topwords 0,36 0,0066 0,4 0,0136 0,35 0,0044
Doped Random 0,112 0,0052 0,112 0,0051 0,113 0,0054
Random 0,025 0,0026 0,025 0,0027 0,025 0,0026

Table 5.1: Global Accuracy, Average Precision and Average Recall - mean and standard devi-
ation of baptism methods and random models

DSTD
Global Accuracy Average Precision Average Recall

Method Random Doped Random Random Doped Random Random Doped Random
Regression 163,25 63,13 153,12 63,38 156,77 59,65
Correlation 139,03 51,29 151,99 62,79 129,35 46,36
D
∨

T 161,51 62,28 155,37 64,56 153,06 57,86
Distribution 174,57 68,67 165,65 69,96 164,43 63,37
Topwords 132,06 47,8 138,52 55,7 126,28 44,8

Table 5.2: Global Accuracy, Average Precision and Average Recall - distance between the mean
of baptism method and the mean of random (or doped random), in terms of random (or doped
random) standard deviations

5.3.3 Results with the new metrics

Now the same analysis can be preformed with the metrics introduced in this work which allow

to deal with documents with mix of topics too.

As we can see in Figures from 5.4 to 5.11, even with the new metrics the distance remains

very wide.

1.2 1.4 1.6 1.8
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Doped Random

Topwords

Distribution

D v T
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Regression (Logit)

WTN

Better Worse

Figure 5.4: WTN boxplots
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Figure 5.5: MTN boxplots
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Figure 5.6: WMTN boxplots
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Figure 5.7: WTQ boxplots
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Figure 5.8: MTQ boxplots
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Figure 5.9: WMTQ boxplots
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Figure 5.10: CWQ boxplots
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Figure 5.11: SAD boxplots
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Even the quantification of the distance in standard deviations shows the efficiency of the

models. We can notice looking at tables 5.4, 5.6, 5.8 that with the first metrics (WTN, MTN and

WMTN) that just count the topics the difference is smaller because it doesn’t take into account

the score assigned.

WTN MTN WMTN
Method Mean Std Mean Std Mean Std
Regression 1,19 0,0099 1,24 0,0164 1,22 0,0108
Correlation 1,26 0,0978 1,36 0,0435 1,31 0,0597
D
∨

T 1,3 0,0283 1,34 0,0257 1,32 0,0249
Distribution 1,23 0,0408 1,28 0,0233 1,25 0,0306
Topwords 1,41 0,0548 1,45 0,0491 1,43 0,0494
Doped Random 1,776 0,0445 1,826 0,005 1,801 0,0234
Random 1,896 0,0422 1,976 0,004 1,936 0,0215

Table 5.3: WTN, MTN and WMTN - mean and standard deviation of baptism methods and
random models. Low values indicate better performances.

DSTD
WTN MTN WMTN

Method Random Doped Random Random Doped Random Random Doped Random
Regression 16,65 13,07 183,0 117,02 33,39 24,9
Correlation 15,06 11,56 153,8 93,56 29,11 20,96
D
∨

T 14,19 10,74 159,16 97,87 28,76 20,64
Distribution 15,85 12,32 173,84 109,66 31,76 23,4
Topwords 11,49 8,1 131,79 75,8 23,55 15,8

Table 5.4: WTN, MTN and WMTN - distance between the mean of baptism method and the
mean of random (or doped random), in terms of random (or doped random) standard deviations

WTQ MTQ WMTQ
Method Mean Std Mean Std Mean Std
Regression 0,5 0,0063 0,49 0,007 0,49 0,0055
Correlation 0,54 0,024 0,51 0,0292 0,52 0,0234
D
∨

T 0,55 0,0136 0,53 0,0204 0,54 0,0156
Distribution 0,52 0,0152 0,51 0,0123 0,51 0,0135
Topwords 0,61 0,0282 0,59 0,0288 0,6 0,0257
Doped Random 0,737 0,0073 0,76 0,0053 0,748 0,0013
Random 0,834 0,0057 0,861 0,0034 0,847 0,0012

Table 5.5: WTQ, MTQ and WMTQ - mean and standard deviation of baptism methods and
random models. Low values indicate better performances.
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DSTD
WTQ MTQ WMTQ

Method Random Doped Random Random Doped Random Random Doped Random
Regression 58,86 32,47 108,62 51,94 293,65 201,2
Correlation 51,24 26,54 102,63 48,02 267,14 175,97
D
∨

T 49,68 25,33 94,86 42,93 252,39 161,93
Distribution 56,0 30,24 102,34 47,83 277,94 186,26
Topwords 38,75 16,8 79,66 32,9 204,92 116,7

Table 5.6: WTQ, MTQ and WMTQ - distance between the mean of baptism method and the
mean of random (or doped random), in terms of random (or doped random) standard deviations

CWQ SAD
Method Mean Std Mean Std
Regression 0,64 0,0028 0,62 0,0045
Correlation 0,56 0,0095 0,65 0,0169
D
∨

T 0,62 0,0145 0,65 0,0093
Distribution 0,64 0,0066 0,63 0,0105
Topwords 0,58 0,0172 0,7 0,0175
Doped Random 0,361 0,0011 0,849 0,0012
Random 0,281 0,0007 0,905 0,0004

Table 5.7: CWQ and SAD - mean and standard deviation of baptism methods and random
models. In CWQ, better performances are indicated by high values, whereas, in SAD low values
indicate better performances.

DSTD
CWQ SAD

Method Random Doped Random Random Doped Random
Regression 552,38 260,95 658,92 198,04
Correlation 417,0 179,01 579,28 168,23
D
∨

T 515,75 238,78 580,2 168,58
Distribution 542,9 255,21 632,7 188,23
Topwords 452,17 200,2 470,54 127,5

Table 5.8: CWQ and SAD - distance between the mean of baptism method and the mean of
random (or doped random), in terms of random (or doped random) standard deviations
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5.3.4 Performances of supervised Statistical Learning Models

To verify how much SLMs are better than our approach (that is designed allow to compare

performances of topic models) they are evaluated in the same context. As a matter of fact it is

suprising to see that the results (Tables from 5.9 to 5.16) are of the same order of magnitude of

our approach both with classification metrics and with our new metrics. This indirectly further

confirms the validity of the new metrics.

Global Accuracy Average Precision Average Recall
Method Mean Std Mean Std Mean Std
Linear Regression 0,52 0,0104 0,59 0,0077 0,51 0,01
Linear Regression (Logit) 0,53 0,0079 0,58 0,0076 0,52 0,0066
Ada Boost 0,4 0,0086 0,54 0,0079 0,39 0,0074
Ada Boost (Logit) 0,42 0,018 0,55 0,0169 0,41 0,0208
Gradient Boosting 0,56 0,0061 0,64 0,006 0,55 0,0057
Gradient Boosting (Logit) 0,56 0,0069 0,62 0,0088 0,55 0,0067
Random Forest 0,47 0,006 0,61 0,0067 0,46 0,0064
Random Forest (Logit) 0,46 0,0044 0,57 0,0033 0,45 0,005
KNN 0,55 0,0066 0,57 0,006 0,54 0,0056
KNN (Logit) 0,55 0,0075 0,57 0,0058 0,54 0,0063
Bagging Regressor 0,56 0,0094 0,58 0,0104 0,55 0,0101
Bagging Regressor (Logit) 0,56 0,0063 0,58 0,0061 0,55 0,0073
Doped Random 0,112 0,0052 0,112 0,0051 0,113 0,0054
Random 0,025 0,0026 0,025 0,0027 0,025 0,0026

Table 5.9: Global Accuracy, Average Precision and Average Recall - mean and standard devi-
ation of regressors and random models

DSTD
Global Accuracy Average Precision Average Recall

Method Random Doped Random Random Doped Random Random Doped Random
Linear Regression 193,67 78,0 209,89 93,18 185,65 73,65
Linear Regression (Logit) 198,9 80,56 207,67 92,02 190,31 75,91
Ada Boost 148,11 55,73 191,11 83,32 140,82 51,92
Ada Boost (Logit) 153,4 58,31 194,34 85,02 146,09 54,48
Gradient Boosting 207,53 84,78 227,66 102,51 199,98 80,6
Gradient Boosting (Logit) 208,14 85,08 222,16 99,62 200,69 80,94
Random Forest 175,06 68,91 219,19 98,06 167,9 65,05
Random Forest (Logit) 169,84 66,35 203,32 89,74 162,86 62,6
KNN 204,92 83,5 203,8 89,99 198,74 80,0
KNN (Logit) 205,64 83,86 202,15 89,12 199,08 80,16
Bagging Regressor 208,58 85,3 208,3 92,35 201,76 81,46
Bagging Regressor (Logit) 208,18 85,1 207,58 91,97 200,98 81,08

Table 5.10: Global Accuracy, Average Precision and Average Recall - distance between the
mean of regressors and the mean of random (or doped random), in terms of random (or doped
random) standard deviations
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WTN MTN WMTN
Method Mean Std Mean Std Mean Std
Linear Regression 0,81 0,0038 0,84 0,0048 0,82 0,0018
Linear Regression (Logit) 0,8 0,0048 0,87 0,0036 0,84 0,0039
Ada Boost 0,94 0,2009 1,25 0,0445 1,09 0,0876
Ada Boost (Logit) 1,13 0,0535 1,19 0,039 1,16 0,0433
Gradient Boosting 0,84 0,0042 0,81 0,003 0,83 0,0034
Gradient Boosting (Logit) 0,76 0,0031 0,85 0,004 0,81 0,0027
Random Forest 0,89 0,0061 0,96 0,0039 0,92 0,0042
Random Forest (Logit) 0,82 0,0948 0,98 0,022 0,9 0,0366
KNN 0,86 0,0064 0,85 0,004 0,86 0,0037
KNN (Logit) 0,88 0,0051 0,89 0,0042 0,88 0,0036
Bagging Regressor 0,78 0,0034 0,79 0,0041 0,78 0,0029
Bagging Regressor (Logit) 0,76 0,006 0,82 0,0047 0,79 0,0048
Doped Random 1,776 0,0445 1,826 0,005 1,801 0,0234
Random 1,896 0,0422 1,976 0,004 1,936 0,0215

Table 5.11: WTN, MTN and WMTN - mean and standard deviation of regressors and random
models. Low values indicate better performances

DSTD
WTN MTN WMTN

Method Random Doped Random Random Doped Random Random Doped Random
Linear Regression 25,85 21,79 282,55 196,97 51,7 41,72
Linear Regression (Logit) 25,96 21,9 275,56 191,36 51,15 41,22
Ada Boost 22,66 18,77 181,82 116,07 39,18 30,22
Ada Boost (Logit) 18,23 14,57 196,16 127,59 36,17 27,45
Gradient Boosting 25,05 21,03 289,52 202,58 51,57 41,6
Gradient Boosting (Logit) 26,88 22,77 280,36 195,22 52,5 42,46
Random Forest 23,83 19,88 254,19 174,2 47,07 37,47
Random Forest (Logit) 25,43 21,39 247,81 169,07 48,04 38,36
KNN 24,51 20,52 280,16 195,05 50,16 40,31
KNN (Logit) 24,18 20,21 271,01 187,7 48,99 39,23
Bagging Regressor 26,49 22,4 295,92 207,71 53,58 43,44
Bagging Regressor (Logit) 27,0 22,88 287,74 201,14 53,31 43,2

Table 5.12: WTN, MTN and WMTN - distance between the mean of regressors and the mean
of random (or doped random), in terms of random (or doped random) standard deviations

WTQ MTQ WMTQ
Method Mean Std Mean Std Mean Std
Linear Regression 0,32 0,0015 0,31 0,0017 0,32 0,0013
Linear Regression (Logit) 0,3 0,0052 0,28 0,0136 0,29 0,0044
Ada Boost 0,44 0,0759 0,5 0,0305 0,47 0,0267
Ada Boost (Logit) 0,47 0,0198 0,47 0,0182 0,47 0,0184
Gradient Boosting 0,31 0,0082 0,31 0,0084 0,31 0,0007
Gradient Boosting (Logit) 0,29 0,0011 0,27 0,0014 0,28 0,0011
Random Forest 0,38 0,0012 0,36 0,0021 0,37 0,0016
Random Forest (Logit) 0,35 0,0065 0,35 0,0197 0,35 0,0068
KNN 0,35 0,0013 0,33 0,0075 0,34 0,0033
KNN (Logit) 0,34 0,0046 0,31 0,0179 0,32 0,0068
Bagging Regressor 0,3 0,0053 0,29 0,0048 0,3 0,0008
Bagging Regressor (Logit) 0,28 0,0063 0,27 0,0198 0,28 0,007
Doped Random 0,737 0,0073 0,76 0,0053 0,748 0,0013
Random 0,834 0,0057 0,861 0,0034 0,847 0,0012

Table 5.13: WTQ, MTQ and WMTQ - mean and standard deviation of regressors and random
models. Low values indicate better performances
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DSTD
WTQ MTQ WMTQ

Method Random Doped Random Random Doped Random Random Doped Random
Linear Regression 89,42 56,26 159,35 85,18 438,02 338,63
Linear Regression (Logit) 92,91 58,98 169,38 91,75 460,56 360,08
Ada Boost 69,13 40,46 103,53 48,61 310,61 217,36
Ada Boost (Logit) 63,1 35,77 114,03 55,49 311,34 218,05
Gradient Boosting 92,13 58,37 160,58 85,98 446,16 346,37
Gradient Boosting (Logit) 95,18 60,75 172,74 93,95 470,69 369,73
Random Forest 79,41 48,47 146,3 76,63 395,81 298,45
Random Forest (Logit) 84,63 52,54 149,78 78,91 413,09 314,9
KNN 84,65 52,55 155,18 82,45 420,83 322,27
KNN (Logit) 86,97 54,36 161,16 86,36 434,83 335,59
Bagging Regressor 92,92 58,99 165,46 89,18 454,98 354,77
Bagging Regressor (Logit) 96,64 61,89 171,4 93,07 472,23 371,19

Table 5.14: WTQ, MTQ and WMTQ - distance between the mean of regressors and the mean
of random (or doped random), in terms of random (or doped random) standard deviations

CWQ SAD
Method Mean Std Mean Std
Linear Regression 0,69 0,001 0,45 0,0011
Linear Regression (Logit) 0,7 0,0009 0,47 0,0012
Ada Boost 0,58 0,0027 0,66 0,01
Ada Boost (Logit) 0,67 0,0044 0,58 0,0124
Gradient Boosting 0,72 0,0007 0,43 0,0012
Gradient Boosting (Logit) 0,7 0,0011 0,45 0,0009
Random Forest 0,68 0,0007 0,48 0,0011
Random Forest (Logit) 0,68 0,0016 0,5 0,0017
KNN 0,67 0,0014 0,44 0,0014
KNN (Logit) 0,71 0,0014 0,47 0,0016
Bagging Regressor 0,71 0,0014 0,41 0,0015
Bagging Regressor (Logit) 0,73 0,0016 0,43 0,0023
Doped Random 0,361 0,0011 0,849 0,0012
Random 0,281 0,0007 0,905 0,0004

Table 5.15: CWQ and SAD - mean and standard deviation of regressors and random models. In
CWQ, better performances are indicated by high values, whereas, in SAD low values indicate
better performances.

DSTD
CWQ SAD

Method Random Doped Random Random Doped Random
Linear Regression 617,06 300,09 1048,07 343,68
Linear Regression (Logit) 630,92 308,48 1014,03 330,94
Ada Boost 453,6 201,16 559,34 160,77
Ada Boost (Logit) 583,56 279,82 762,2 236,69
Gradient Boosting 659,73 325,92 1093,53 360,7
Gradient Boosting (Logit) 640,46 314,26 1041,31 341,16
Random Forest 613,07 297,68 973,74 315,87
Random Forest (Logit) 609,18 295,33 934,52 301,19
KNN 588,88 283,04 1066,29 350,5
KNN (Logit) 658,67 325,28 996,54 324,4
Bagging Regressor 649,4 319,67 1141,49 378,65
Bagging Regressor (Logit) 678,51 337,29 1094,22 360,96

Table 5.16: CWQ and SAD - distance between the mean of regressors and the mean of random
(or doped random), in terms of random (or doped random) standard deviations
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5.3.5 Computational load

One significant advantage of LDA is the minimal computational load required for training and

predicting mixed topics for unseen documents. Figure 5.12 illustrates the computational load,

measured in minutes, for our methods as well as for SLMs for each of the five run of the cross

validation.
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Figure 5.12: Graphic representation of computational time efforts.

5.4 Experiment 2: Comparison of four topic models

Having the new rich corpus of documents with known mix of topics and validated the new

methods to identify real topic using topic models and verified the reliability of new metrics

everything is ready to use the new methodological framework to compare topic models in their

ability to identify real topic.

5.4.1 Models

In this experiment, the four selected latent topic models (LDA, CTM, HDP, PAM) with all the

baptism methods are compared. The overarching objective is to evaluate these topic models

within the proposed comparative framework.
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All the considerations and hypotheses made in the first experiment remain applicable here as

well. The only difference is that, due to the heavy computational requests of CTM and PAM,the

iterations of models are reduced from the 1.000 of the first experiment to 100.

Let’s remember that the known number H of real topic is 39. Again for LDA and CTM k

(the number of latent topic to find) is set equal to 156 (=39x4). For HDP the library asks a value

of topics from which the algorithm starts to evaluate the final number. In the experiment this

value is set to 39. PAM instead asks for the number of super topic and the number of subtopic,

for coherence the choice has been 39 for the first and 156 for the second.

5.4.2 Results with classification metrics

As we can see in Figures 5.13,5.14 and 5.15 and Table 5.17, 5.18 and 5.19 using classification

metrics LDA and HDP seems to be clearly better than the others.
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Figure 5.13: Global accuracy (computed on monotopic texts) boxplots
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Figure 5.14: Average precision (computed on monotopic texts) boxplots
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Figure 5.15: Average recall (computed on monotopic texts) boxplots

Global Accuracy
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,43 0,36 0,44 0,38 0,0056 0,0083 0,0061 0,0136
Correlation 0,36 0,32 0,35 0,32 0,0106 0,0125 0,0193 0,0393
D
∨

T 0,43 0,38 0,39 0,39 0,0054 0,0104 0,0359 0,0175
Distribution 0,46 0,39 0,46 0,4 0,0031 0,0118 0,0098 0,0184
Topwords 0,35 0,32 0,35 0,33 0,0184 0,0135 0,0122 0,011

Table 5.17: Global accuracy - mean and standard deviation of each baptism method made on
LDA, CTM, HDP and PAM.
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Average Precision
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,42 0,35 0,44 0,43 0,0099 0,0191 0,0081 0,0233
Correlation 0,41 0,38 0,47 0,45 0,02 0,0194 0,0236 0,0215
D
∨

T 0,44 0,39 0,44 0,46 0,0135 0,0257 0,0367 0,0248
Distribution 0,46 0,42 0,47 0,47 0,0076 0,0109 0,0212 0,0228
Topwords 0,37 0,33 0,4 0,42 0,019 0,0178 0,0193 0,0332

Table 5.18: Average Precision - mean and standard deviation of each baptism method made on
LDA, CTM, HDP and PAM.

Average Recall
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,42 0,35 0,42 0,37 0,0061 0,0078 0,0056 0,0139
Correlation 0,34 0,3 0,34 0,3 0,009 0,0127 0,0177 0,0376
D
∨

T 0,42 0,36 0,37 0,37 0,0064 0,0098 0,0338 0,0173
Distribution 0,44 0,37 0,44 0,38 0,0035 0,0111 0,0088 0,0188
Topwords 0,34 0,31 0,34 0,32 0,0165 0,0131 0,0145 0,012

Table 5.19: Average Recall - mean and standard deviation of each baptism method made on
LDA, CTM, HDP and PAM.
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5.4.3 Results with new metrics

Using this metrics results are more uncertain, even if skipping for a while the first 6 metrics

that are less sophisticated (as they counts the wrong topics) and that depends on the choice of a

threshold and using CWQ and SAD LDA seems to be the best both as value and as variability.

So LDA coupled with the regression based baptism method is the winner.
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Figure 5.16: WTN boxplots
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Figure 5.17: MTN boxplots
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Figure 5.18: WMTN boxplots
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Figure 5.19: WTQ boxplots
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Figure 5.20: MTQ boxplots
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Figure 5.21: WMTQ boxplots
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Figure 5.22: CWQ boxplots
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Figure 5.23: SAD boxplots
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WTN
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 1,23 1,25 1,28 1,0 0,0206 0,0758 0,0374 0,2135
Correlation 1,3 1,32 1,24 1,19 0,0825 0,079 0,1735 0,2063
D
∨

T 1,27 1,23 1,26 1,15 0,0181 0,1043 0,2126 0,152
Distribution 1,23 1,24 1,31 1,12 0,0502 0,065 0,0569 0,1044
Topwords 1,37 1,34 1,39 1,14 0,0459 0,0605 0,0662 0,1206

Table 5.20: WTN - mean and standard deviation of each baptism method made on LDA, CTM,
HDP and PAM. In WTN, better performances are indicated by low values

MTN
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 1,26 1,37 1,35 1,32 0,018 0,036 0,0082 0,0702
Correlation 1,38 1,39 1,53 1,44 0,0205 0,075 0,0321 0,06
D
∨

T 1,31 1,4 1,48 1,35 0,032 0,0506 0,0793 0,018
Distribution 1,28 1,42 1,38 1,42 0,0461 0,0234 0,0229 0,055
Topwords 1,42 1,43 1,52 1,43 0,037 0,0569 0,0403 0,0939

Table 5.21: MTN - mean and standard deviation of each baptism method made on LDA, CTM,
HDP and PAM. In MTN, better performances are indicated by low values

WMTN
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 1,25 1,31 1,32 1,16 0,0185 0,0541 0,0213 0,094
Correlation 1,34 1,36 1,38 1,32 0,0459 0,0544 0,0789 0,1228
D
∨

T 1,29 1,31 1,37 1,25 0,0197 0,0492 0,0992 0,071
Distribution 1,25 1,33 1,35 1,27 0,0459 0,0303 0,03 0,0576
Topwords 1,39 1,39 1,45 1,28 0,0395 0,0525 0,0275 0,0552

Table 5.22: WMTN - mean and standard deviation of each baptism method made on LDA,
CTM, HDP and PAM. In WMTN, better performances are indicated by low values
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WTQ
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,51 0,58 0,48 0,53 0,007 0,0175 0,0032 0,0578
Correlation 0,55 0,59 0,58 0,6 0,013 0,0322 0,0184 0,0385
D
∨

T 0,53 0,59 0,56 0,53 0,0148 0,024 0,0351 0,0247
Distribution 0,52 0,6 0,5 0,58 0,0233 0,0087 0,013 0,0585
Topwords 0,6 0,62 0,6 0,61 0,0223 0,0223 0,022 0,0458

Table 5.23: WTQ - mean and standard deviation of each baptism method made on LDA, CTM,
HDP and PAM. In WTQ, better performances are indicated by low values

MTQ
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,5 0,58 0,1 0,54 0,0124 0,0268 0,0072 0,0416
Correlation 0,53 0,58 0,36 0,6 0,0202 0,0332 0,192 0,0403
D
∨

T 0,53 0,58 0,18 0,57 0,017 0,0271 0,0395 0,0266
Distribution 0,51 0,59 0,11 0,6 0,024 0,0155 0,0129 0,0248
Topwords 0,58 0,61 0,19 0,59 0,034 0,0355 0,052 0,0553

Table 5.24: MTQ - mean and standard deviation of each baptism method made on LDA, CTM,
HDP and PAM. In MTQ, better performances are indicated by low values

WMTQ
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,51 0,58 0,29 0,53 0,0092 0,0213 0,0033 0,0435
Correlation 0,54 0,58 0,47 0,6 0,0115 0,0325 0,098 0,0389
D
∨

T 0,53 0,59 0,37 0,55 0,0151 0,0246 0,0355 0,0137
Distribution 0,51 0,6 0,31 0,59 0,0234 0,0111 0,0103 0,0347
Topwords 0,59 0,62 0,39 0,6 0,0275 0,0287 0,0316 0,0461

Table 5.25: WMTQ - mean and standard deviation of each baptism method made on LDA,
CTM, HDP and PAM. In WMTQ, better performances are indicated by low values

CWQ
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,64 0,57 0,54 0,57 0,0038 0,0151 0,0037 0,0123
Correlation 0,55 0,52 0,44 0,52 0,0128 0,0182 0,0133 0,0231
D
∨

T 0,63 0,58 0,48 0,57 0,0095 0,0242 0,0323 0,0123
Distribution 0,64 0,57 0,53 0,56 0,0122 0,0128 0,0081 0,0124
Topwords 0,59 0,57 0,47 0,56 0,012 0,034 0,03 0,0225

Table 5.26: CWQ - mean and standard deviation of each baptism method made on LDA, CTM,
HDP and PAM. In CWQ, better performances are indicated by high values

SAD
Mean Std

Method LDA CTM HDP PAM LDA CTM HDP PAM
Regression 0,63 0,68 0,65 0,68 0,0066 0,0163 0,003 0,012
Correlation 0,66 0,68 0,71 0,69 0,0073 0,0218 0,011 0,0121
D
∨

T 0,65 0,68 0,7 0,68 0,0123 0,0177 0,0248 0,0093
Distribution 0,63 0,69 0,66 0,7 0,0191 0,0082 0,0071 0,0106
Topwords 0,69 0,7 0,72 0,7 0,0153 0,0198 0,0102 0,0173

Table 5.27: SAD - mean and standard deviation of each baptism method made on LDA, CTM,
HDP and PAM. In SAD, better performances are indicated by low values

92



5.4.4 Computational Load

As explained in chapter 2.2.1 CTM and PAM models needs more computational load than LDA.

And the experiment confirms this. Taking into consideration just the training time (with 100

iterations on the 200’000 documents subset), as the baptism is the same for all models, here are

there is the list in order of speed:

• LDA: about 2 minutes

• HDP: about 4 minutes

• PAM: about 3.5 hours

• CTM: about 14.5 hours

5.5 Experiments 3: Hyperparameters tuning

With Experiments 2 the aims of this research can be considered successfully achieved as a

new methodological framework has been well tested and it is ready to be used to compare

performances of Topic Models in their ability to identify real topics.

Nevertheless at this point it worth to go further and try to test the new methodology on all

the bigdata dataset of 6 millions of documents using the best model according to the chapter 5.4:

LDA+regression.

Before doing this (it will be done in the next chapter (5.6) it could be a good idea to tune

the hyperparameters of that model. In particular a test on the combination of these three hyper-

parameters is performed, always using cross validation approach described in 5.2 and with 100

iteration:

1. Term Weighting. This define the approach used to weight the words inside a document

according to [30]. Possible values are:

• ONE: Consider every term equal (it is the default value)

• PMI: Use Pointwise Mutual Information term weighting, introduced in [8]. It com-

pares the probability of two events occurring together to what this probability would

be if the events were independent.
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• IDF: Use Inverse Document Frequency term weighting (3.4.2). Thus, a term occur-

ring at almost every document has very low weighting and a term occurring at a few

document has high weighting.

2. Alpha. It is described in chapter 2.2.1. The default value is 0.1. In several papers (as

[11]) it is suggested to put this equal to 50/k (where k is the number of latent topic, as

everywhere in this thesis). Therefore three values are tested:

• alpha=0.1 (the default value)

• alpha=0.32 (∼50/H, that is more than three time the default value 0.1)

• alpha=0.02 (that is 1/5 of the default value 0.1)

3. Eta. It is described in chapter 2.2.1 calling it Beta according to in the original LDA paper.

The default value is 0.1 so one half and two times this values are taken as other value to

compare:

• eta=0.01 (the default value)

• eta=0.02 (two times the default value)

• eta=0.005 (half the default value)

5.5.1 Used metrics

Results are shown with the three classification metrics (accuracy, precision and recall) and the

two new metrics that doesn’t need a threshold to be defined (CWQ and SAD).

5.5.2 Results

In figures 5.28, 5.27, 5.24, 5.25 and 5.26 there are results of different metrics giving the mean

of the cross validation values and the standard deviation. For the mean better values are in green

and worse in orange passing through yellow, the best value is put in bold to find it easily. For

the standard deviation darker pink means worse values.
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Figure 5.24: Matrix of performances of different values of the hyperparameters using accuracy.

Figure 5.25: Matrix of performances of different values of the hyperparameters using precision.

Figure 5.26: Matrix of performances of different values of the hyperparameters using recall.
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Figure 5.27: Matrix of performances of different values of the hyperparameters using CWQ
metric.

Figure 5.28: Matrix of performances of different values of the hyperparameters using SAD
metric.
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Looking at the results emerges that differences are not big. The best values are:

• TW = ONE. This is probably because text are already prepared as explained in chapter

3.4.1, so further elaborations introduce more noise.

• Alpha = 0.32. This confirms that the suggestion of [11] seems to works well.

• Eta = 0.005. This can be due again to the preparation of text that create more sparisty of

words among topics (lower values of Eta).

5.6 Experiments 4: Best model on the complete dataset

Finally all is ready to run a text on the complete dataset of 6 millions of documents using what

has demonstrated to perform better (LDA in combination of regression-based baptism method)

with the optimal hyperparameters identified in chapter 5.5 (TW=TermWeight.ONE, Alpha=0.32

and Eta = 0.005). This test is performed using 100 iterations to maintain coherence with the last

two experiments. The test has been performed on the same hardware to prove the feasibility of

the proposed methodology even in an extremely big corpus of documents without the need of

super cluster of powerful servers.

5.6.1 Results

As we can see results are in line with the results of the previous chapters.

Metric Mean Std
Global accuracy 0.42 0.0289
Average Precision 0.35 0.0074
Average Recall 0.36 0.0049

Table 5.28: Global accuracy, average precision and average recall results based on baptism re-
gression method made on optimized LDA model on the complete set of 6 millions of documents

Metric Mean Std
CWQ 0.59 0.0119
SAD 0.70 0.0124

Table 5.29: CWQ and SAD results based on baptism regression method made on optimized
LDA model on the complete set of on 6 millions of documents
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5.6.2 Computational load

To perform this test a PC with 8 cores, RAM of 64GB, works for 20 hours proving the compu-

tational efficiency of LDA models.
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Chapter 6

Conclusions

In the field of Natural Language Processing (NLP), the development of automatic topic iden-

tification is vital. With the exponential growth of textual data, there is an urgent need for a

common methodology to develop and compare models that predicts real topics. This neces-

sity arises due to the overwhelming volume of text data generated daily and its applications in

content recommendation, sentiment analysis, information retrieval, and more.

On the other hand a rapid growth of topic models which identify latent topics in document

has led to great results. But there is no direct connection between the discovered latent topic

and the real topics of documents. Moreover different models aren’t easily comparable and there

is the need for methodology of standardization. Establishing such a methodology is essential

for collaborative research, benchmarking, and the advancement of accurate and adaptable topic

modeling techniques in NLP.

To address the challenges outlined in the previous paragraph, the key solution is to estab-

lish a dedicated methodology for the development and, critically, the comparative evaluation

of topic modeling methods. This methodology should incorporate three essential components.

First, it requires a sizable, diverse corpora of text data that reflects the complexity of real-world

textual information, encompassing a broad spectrum of topics and subjects present even in mix

on the single document. These corpora will serve as the foundation for testing the generative

models. Second, a collection of automatic real topic identification algorithms based on latent

topic engines. Finally, an array of comprehensive performance metrics is indispensable to assess

the effectiveness, efficiency, and interpretability of these models. By integrating these elements
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into a unified methodology, researchers and practitioners can systematically develop, test, and

compare automatic topic modeling techniques, fostering progress in the field and ensuring their

applicability in diverse domains.

To achieve the previous objective, I have made several significant contributions to my re-

search endeavor.

First and foremost, it is developed a methodology to dynamically create an up-to-date big

data corpora in all the most common languages, ready to be used as a supervised dataset for real

topic identification engines. These corpora are notable for their unique characteristics, as it can

be labelled using different taxonomies and the each document belongs to more than one topic

with known proportions. With this methodology a corpus of 6 million texts in English language

is created. This diverse collection of texts serves as the foundation for our research, enabling us

to explore the complexities of mixed-topic textual data.

In addition, four innovative automatic real topic identification engines has been introduced,

that use the capabilities of topic models and work with any topic model. These novel engines

exploit the unique nature of our corpus, providing a robust framework for topic extraction and

analysis.

Furthermore, the need for specialized performance metrics in scenarios involving mixed

topics has been tackled. To address this, a set of novel performance metrics have been designed

to evaluate the effectiveness and accuracy of real topic identification engines in the presence of

documents with known mix of topics. These metrics are instrumental in quantifying the quality

of results and can be utilized to fine-tune and improve the performance of models.

As a byproduct the real topics identification engines developed on top of topic models in this

research candidate them self as alternatives to consolidated machine learning techniques as they

proved to have results beyond expectations:

1. the approach demonstrates to be robust and to compete well with SLMs. So it can be used

not just to compare topic models, but even as a supervised engine itself as an alternative.

2. it shows to be very efficient allowing analysis in less time and computational resources

than the many other methodologies.

100



6.1 Operative applications

As it is stressed several times, the methodology proposed in this work is focused on the creation

of a valid tool to compare generative topic models. Nevertheless, there are many immediate

applications in real situations.

6.1.1 Selection of the best-unsupervised document classification model

It is common to use generative topic models to categorize document corpora into homogeneous

classes. Till now the choice was based on their capacity to remain stable in their choices (coher-

ence [23]) and/or their capacity to face new documents (perplexity [15]). But if someone wants

to categorize documents, they will be most likely interested in the capacity to identify real topics

so that the categorization has a sense in the real world. And this is what the new methodologies

do.

6.1.2 Mix of real topic identification in big data with low computational

request

New methods have proven to give good results even when used as a topic identification tool.

Moreover, if we exclude the Linear Regression (which could be cornered by increasing the

number of features) it has a much lower computational load than SLMs, which is very important

in a big data environment.

6.1.3 Evaluation of the correctness of the used taxonomy

When we use SLMs we are prone to the limits of the taxonomy selected. Instead using the

proposed methodology, that intercepts the hidden and intrinsic structure of topics before trying

to map them on the taxonomy, anomalies in the taxonomy itself could emerge:

1. The need to introduce a further segmentation of topics that are too general (relevant sub-

topics)
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2. The need to unify two or more topics because boundaries are not so definable (relevant

supertopics)

3. The need to use different taxonomies (relevant pseudotopics)

6.1.4 Outlier identification in corpora of documents

Always because the proposed methodology operates at the beginning in an agnostic way looking

for latent topics in documents, it can be used to find ”anomalies”, i.e. document that should

belongs to a particular real topic but have a very different pattern of latent topics than the other

of that real topic.

6.2 Next steps

Certainly, there are numerous possibilities for further improvement and investigation in our

work. These directions encompass a wide array of possibilities aimed at enhancing the robust-

ness and applicability of these results. For instance diversifying our testing to include different

languages beyond English can help us understand the universality of our models. Exploring

alternative taxonomies could shed light on more domain-specific applications. Comparing more

topic models, even tuning hyperparameters of all of them, could lead to a lot of interesting

insights on these models. Lastly, further refining our topic modeling methods, including the

exploration of different latent topic engines, can push the boundaries of what we can achieve

in this domain. These potential improvements promise to make our research more versatile and

impactful.

In conclusion, our contributions in the form of a diverse big data corpus, innovative real topic

identification engines, and specialized performance metrics represent significant steps forward

in the realm of topic modeling and textual data analysis. These advancements not only advance

our understanding of mixed-topic textual data but also provide valuable tools and insights for

researchers and practitioners in various domains.
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Appendix A

Terminology

Real topic is what we refer to when we read a document and say it speaks about this or that.

The ”semantic” topic of a text. Real topics could be general as ”sport” or ”finance” but even

specific as ”badminton” or ”public investments”

Taxonomy it is a hierarchical structured tree of topics. In a taxonomy we have a first level of

topics that covers all the human knowledge. Each topics of the first level could have subtopics.

Each subtopics could have sub-subtopics and so on. In this way each topic node of the taxonomy

is related just to one first level topic.

Monotopic and mix of topics With monotopic document we refer to a document that speaks

about just one topic. In general this event is rare and usually documents are about a mix of topics

in different proportions (to sum to 1).

Latent topic is one of the topics identified by generative topic models, starting from a corpus

of texts. They are created not referring to a real topic but based on the frequency of words.

Subtopic is a topic that is a part of another topic more ”general” that is higher in the tax-

onomy. In the examples before ”badminton” and ”public investments” are subtopic of ”sport”

and ”finance” respectively.

Supertopic is a latent topic which is strongly related to more than one real topic. For ex-

ample we can have a latent topic strongly related to the real topics ’Mathematics’ and ’Physics’.

This latent topic is a supertopic of those real topics and could be something like ”Science”.

Transversal topic is a latent topic not related to any real topic of the actual taxonomy. In

fact generative topic models (that uses the distribution of word to identify latent topic) could
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intercept other possible text classifications related to word distribution (such as sentiments, or

cultural levels).

Pseudotopic is every latent topic that is not related to one specific real topic, is called

pseudotopic. Supertopic and Transversal topic are example of pseudotopics.

Baptism is process of labeling a latent topic with the related real topic, in essence the process

of assigning a real topic to a latent topic. When more than one latent topic are related to a real

topic it means that the models separated this real topic in different subtopics. If we would like

to separate them in different real topic we should use a lower level in the taxonomy increasing

the granularity of the set of real topics used.

It is also possible that the model identifies ”latent topic” that cannot be related to a singular

particular real topic. In this case we speak about ”pseudo-topic”. We are not interested in this

pseudo-topic so we remove this latent topics from the analysis. In Figure A.1 an example is

shown.

Latent topics Real topics
0
1 Health
2
3
4
5 Animals
6
7
8
9 Celebrities

10
11
12
13 Fashion
14
15

Pseudo
topics

Figure A.1: Example of baptism of latent topics as real topics or pseudo-topics.
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Appendix B

Hyperparameters

B.1 LDA, CTM, HDP, PAM and Baptism methods

• LDA:

– term weighting (tw) = TermWeight.ONE (all words have the same weight)

– number of topics =39*4

– number of top words removed = 0

– minimum document frequency of words = 0

– minimum collection frequency of words = 0

– hyperparameter of Dirichlet distribution for document-topic alpha = 0.1

– hyperparameter of Dirichlet distribution for topic-word eta = 0.01

• CTM:

– term weighting = TermWeight.ONE (all words have the same weight)

– number of topics =39*4

– number of top words removed = 0

– minimum document frequency of words = 0

– minimum collection frequency of words = 0
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– small smoothing value for preventing topic counts to be zero = 0.1

– hyperparameter of Dirichlet distribution for topic-word = 0.01

• HDP:

– term weighting = TermWeight.ONE (all words have the same weight)

– initial number of topics = 39

– number of top words removed = 0

– minimum document frequency of words = 0

– minimum collection frequency of words = 0

– concentration coeficient of Dirichlet Process for document-table alpha = 0.1

– hyperparameter of Dirichlet distribution for topic-word eta = 0.01

– concentration coeficient of Dirichlet Process for table-topic gamma = 0.1

• PAM:

– term weighting = TermWeight.ONE (all words have the same weight)

– the number of super topics between = 39

– the number of sub topics between = 39*4

– number of top words removed = 0

– minimum document frequency of words = 0

– minimum collection frequency of words = 0

– initial hyperparameter of Dirichlet distribution for document-super topic alpha = 0.1

– initial hyperparameter of Dirichlet distribution for super-sub topic alpha = 0.1

– hyperparameter of Dirichlet distribution for sub topic-word eta = 0.01

• Topwords based Baptism:

– number of unique top words selected from each real topic = 5

– number of top words considered in each latent topic = 10

106



B.2 Regressors

• Linear Regression (Scikit-learn)

– fit intercept = True

– force coefficients to be positive = False

• Ada Boosting (Scikit-learn)

– base estimator from which the boosted ensemble is built = None

– maximum number of estimators at which boosting is terminated = 50

– weight applied to each classifier at each boosting iteration = 1.0

– algorithm to use = ’SAMME.R’

• Bagging Regressor (Scikit-learn)

– base estimator to fit on random subsets of the dataset. If None, then the base estim-

ator is a DecisionTreeRegressor = None

– number of base estimators in the ensemble = 10

– number of samples to draw from X to train each base estimator = 1.0

– number of features to draw from X to train each base estimator = 1

– whether samples are drawn with replacement = True

– whether features are drawn with replacement = False

– whether to use out-of-bag samples to estimate the generalization error. Only avail-

able if bootstrap=True. = False

– warm start (reuse the solution of the previous call to fit as initialization)=False

• Gradient Boosting Regressor (Scikit-learn)

– loss function to be optimized = ’log loss’

– learning rate = 0.1

– number of estimators = 100
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– fraction of samples to be used for fitting the individual base learners = 1

– function to measure the quality of a split = ’friedman mse’

– minimum number of samples required to split an internal node = 2

– minimum number of samples required to be at a leaf node = 1

– minimum weighted fraction of the sum total of weights required to be at a leaf node

= 0

– maximum depth of the individual regression estimators = 3

– decrease of the impurity required to split = 0

– object used to compute the initial predictions = None

– number of features to consider when looking for the best split = None

– alpha-quantile of the huber loss function and the quantile loss function = 0.9

– maximum of leaf nodes = None

– warm start (reuse the solution of the previous call to fit as initialization) =False

– proportion of training data to set aside as validation set for early stopping = 0.1

– whether to use early stopping to terminate training when validation score is not im-

proving = None

– tolerance for the early stopping = 0.0001

– complexity parameter used for Minimal Cost-Complexity Pruning = 0.0

• Random Forest Regressor (Scikit-learn)

– number of estimators = 100

– criterion to measure the quality of a split = ’squared error’

– maximum depth of the tree = 5 (*)

– minimum number of samples required to split an internal node = 2

– minimum number of samples required to be at a leaf node = 1

– minimum weighted fraction of the sum total of weights required to be at a leaf node

= 0
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– number of features to consider when looking for the best split = 1

– maximum number of leaf nodes = None

– decrease of the impurity required to split = 0

– whether bootstrap samples must be used when building trees = True

– whether to use out-of-bag samples to estimate the generalization score = False

– warm start (reuse the solution of the previous call to fit as initialization)=False

– complexity parameter used for Minimal Cost-Complexity Pruning = 0

– number of samples to draw from X to train each base estimator if boostrap is True=

None

• KNN regressor (Scikit-learn)

– number of neighbors to use by default for kneighbors queries = 5

– weight function used in prediction = ’uniform’

– algorithm used to compute the nearest neighbors = ’auto’ (it attempts to decide the

most appropriate algorithm based on the values passed to fit method)

– leaf size passed to BallTree or KDTree = 30

– power parameter for the Minkowski metric = 2

– metric to use for distance computation = ’minkowski’

109



Appendix C

Websites crawled in the first project

Health

• http://www.benessere-news.it/

• https://notiziebenessere.it/

• https://www.corriere.it/salute/

• https://www.silhouettedonna.it/

Celebrities

• https://www.biccy.it/

• https://www.gossip.it/

• https://www.ilgossip.net/

Fashion

• https://www.corriere.it/moda/

• https://www.elle.com/it/moda/

• https://www.iodonna.it/moda/

• https://www.marieclaire.com/it/moda
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• https://www.vogue.it/

Animals

• https://imieianimali.it/

• https://www.amoreaquattrozampe.it/

• https://www.animalipucciosi.com/

• https://www.animalpedia.it/

• https://www.corriere.it/animali/

• https://www.notizieanimali.com/

• https://www.passione-animali.it/

Animals and Health

• https://www.amoreaquattrozampe.it/cani/salute/

• https://www.amoreaquattrozampe.it/gatti/salute-gatti/

• https://www.amoreaquattrozampe.it/cavalli/salute-cavalli/

Celebrities and Fashion

• https://www.elle.com/it/moda/street-style/
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Appendix D

Tables for the first project

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
me and products dog cases hair ciprofloxacin project
said to water dogs swab legs kids fashion
says is oil animals diet makeup vardenafil vogue
friends music face pedigree deaths color vaccine brand
say for ingredients cats food feet covid job
have that products puppy virus lips tumor milan
want on hair pedigrees foods yoga cancer design
father album cream need none exercises disease accross
maybe with properties owner eat towards tumors city
that you natural rabbit phase arms virus designer
singer festival naturals names meat face patients fashion
instagram it minutes animal protein up test future
love students oils size positives nail patient research
social we help nature fats makeup data new
mother my hamster company quantity position study culture
written this seeds shepherd number leg national director
person video shampoo play region haircut doctors beauty
story musical sugar kids beginning eyes alprazolam space
no trump water fear deaths movement vaccines exhibition
you are sun hello check back therapies projects

Real Topic Celebrities — — Animals Health — Health Fashion
Label Social Media Music Beauty (Products) Dogs COVID Beauty (Body) Diseases Fashion

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16
star fashion photo vip patients sleep species cat
cinema look daughter natalia mg lansoprazole animals dog
red portfolio rome episode treatment blood fishes cats
carpet style kaia mastrota must pain insects vet
series clothes lex big brother dose stress males fur
main character jeans enne brother paragraph disease specimen horse
kate fashion mum giulia effects oxygen birds kitty
harry spring social men data cells females might
queen clothes sanremo photo administration symptom animal animal
jennifer winter cindy rodriguez reaction issue turtle food
meghan pants milan d’urso drug capable female teeth
oscar brand birthday share renal factor male symptoms
new shoes couple belen therapy brain big dogs
venice runway beautiful tempation risk level turtles feline
hollywood summer tv island drugs activity live paw
york maison chiara francesco supervisory report physical mammal animal
director chanael francesco balivo concomitant cause little diseases
prince wear laura caterina adverse system hunt puppies
lady jacket son famous side disease size issues
plot accessories marco read use wealth bees animal

Real Topic Celebrities Fashion Celebrities Celebrities Health Health Animals Animals
Label Gossip Fashion show VIP Reality Adverse Events Health Animals (non-pet) Cats

Table D.1: Section 4.2.1: big data scenario. 20 most probable words for each of the K = 16
latent topics detected by the LDA model. Please note that words are translated from the Italian
language.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8
fashion story cat kaia audience dog patients equal
fashion francesco dogs cindy must hair treatment dog
brand that cats know species dogs mg share
designer ilary dogs news degree cat data clarithromycin
project says animals both meat hair paragraph system
vogue mara symptoms friend check vet drug nifedipine
style emma species smartphone products animals drugs report
costanza francesca swab gregoraci none vitamin reaction general
hair hand food free can diet therapy information
caracciolo book must crawford reported animal dose effects
collection millions species hours effects quantity administration animals
designer blasi renal gossip ramipril foods effects doctor
gucci hourses cases work effect benefits cases grater
vieri travel puppies app size fruit side kids
boots marrone diseases that is sustainable product infections must
new all pet some safety ears adverse specialist
model little animal reality oil paw concomitant check
loves past kitty android prescription fish ciprofloxacin study
couture told animal download oil diabete eo data
haircut big test best massage protein doctor use

Real Topic Fashion VIP Animali domestici Drugs/Desease
Label Beauty Gossip Salute Animale

Topic 9 Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 Topic 15 Topic 16

tail temptation natalia men look vip photo evening
virus colors mastrota belen collection enne video heart
horse and issues rodriguez fashion son instagram back
disease legs article marco clothes lex marriage daughter
nails to BigBrother stefano jeans social york christmas
vaccine fabric episode d’urso suit couple cinema week
fundamental effect tells andrea spring wife birthday friends
respect euro giorgio luca black mum star milan
birds position read me pants husband september alessanfra
towards island caterina brother accessories show main character seems
eyes high balivo name style fan alessia photo
age yoga giulia said red children Sunday few
need michael face michelle clothes maria daughter job
death leg sky also shoes elisabetta tv evaluation
risk neck repeated gemma white rome beautiful sara
lips point birth federica models fabrizio evening girlfriends
cells oxygen seventh say colors corona model have
animal shirt immediately crisis pair new super come
come suit accepts throne pink red milan arrived
covid simple navigation given color actress party known

Real Topic
Label Clothes VIP

Table D.2: Section 4.2.1: big data scenario. 20 most probable words for each of the K = 16
latent topics detected by the CTM model. Please note that words are translated from the Italian
language.
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