The 2021 EULAR/American College of Rheumatology points to consider for diagnosis, management and monitoring of the interleukin-1 mediated autoinflammatory diseases: cryopyrin-associated periodic syndromes, tumour necrosis factor receptorassociated periodic syndrome, mevalonate kinase deficiency, and deficiency of the interleukin-1 receptor antagonist

Micol Romano,¹ Z Serap Arici,² David Piskin,³ Sara Alehashemi ^(a),⁴ Daniel Aletaha ^(b), ⁵ Karyl S Barron,⁶ Susanne Benseler,⁷ Roberta Berard,⁸ Lori Broderick,⁹ Fatma Dedeoglu,¹⁰ Michelle Diebold,¹¹ Karen L Durrant,¹² Polly Ferguson,¹³ Dirk Foell ^(b),¹⁴ Jonathan Hausmann ^(b),¹⁵ Olcay Y Jones,¹⁶ Daniel L Kastner,⁶ Helen J Lachmann,¹⁷ Ronald M Laxer,¹⁸ Dorelia Rivera,¹² Nicolino Ruperto ^(b),¹⁹ Anna Simon,²⁰ Marinka Twilt,⁷ Joost Frenkel,²¹ Hal Hoffman,²² Adriana A de Jesus,²³ Jasmin Beate Kuemmerle-Deschner ^(b),²⁴ Seza Ozen ^(b),²⁵ Marco Gattorno ^(b),^{26,27} Raphaela Goldbach-Mansky ^(b),²⁸ Erkan Demirkaya ^(b),²⁹

Handling editor Désirée van der Heijde

► Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi. org/10.1136/annrheumdis-2021-221801).

ABSTRACT

patient outcomes.

management.

Background The interleukin-1 (IL-1) mediated systemic

associated periodic syndromes (CAPS), tumour necrosis

factor receptor-associated periodic syndrome (TRAPS),

mevalonate kinase deficiency (MKD) and deficiency of

the IL-1 receptor antagonist (DIRA), belong to a group of

rare immunodysregulatory diseases that primarily present

in early childhood with variable multiorgan involvement.

When untreated, patients with severe clinical phenotypes

have a poor prognosis, and diagnosis and management

of these patients can be challenging. However, approved

treatments targeting the proinflammatory cytokine IL-1

have been life changing and have significantly improved

Objective To establish evidence-based

recommendations for diagnosis, treatment

and monitoring of patients with IL-1 mediated

autoinflammatory diseases to standardise their

Methods A multinational, multidisciplinary task

rheumatologists, patients or caregivers and allied

healthcare professionals, was established. Evidence

synthesis, including systematic literature review and

expert consensus (Delphi) via surveys, was conducted.

Consensus methodology was used to formulate and vote

force consisting of physician experts, including

on statements to guide optimal patient care.

Results The task force devised five overarching

principles, 14 statements related to diagnosis, 10 on

therapy, and nine focused on long-term monitoring that

were evidence and/or consensus-based for patients with

IL-1 mediated diseases. An outline was developed for

autoinflammatory diseases, including the cryopyrin-

For numbered affiliations see end of article.

Correspondence to

Professor Erkan Demirkaya, Department of Paediatrics, University of Western Ontario, London, ON N6A 3K7, Canada; Erkan.Demirkaya@lhsc.on.ca

MR, ZSA and DP contributed equally.

This article is published simultaneously in Arthritis & Rheumatology.

Received 5 November 2021 Accepted 2 March 2022 Published Online First 24 May 2022

© Author(s) (or their employer(s)) 2022. No commercial re-use. See rights and permissions. Published by BMJ.

To cite: Romano M,	
Arici ZS, Piskin D,	
et al. Ann Rheum Dis	
<i>et al. Ann Rheum Dis</i> 2022; 81 :907–921.	

Romano M, et al. Ann Rheum Dis 2022;81:907–921. doi:10.1136/annrheumdis-2021-221801

disease-specific monitoring of inflammation-induced organ damage progression and reported treatments of CAPS, TRAPS, MKD and DIRA.

Conclusion The 2021 EULAR/American College of Rheumatology points to consider represent state-ofthe-art knowledge based on published data and expert opinion to guide diagnostic evaluation, treatment and monitoring of patients with CAPS, TRAPS, MKD and DIRA, and to standardise and improve care, quality of life and disease outcomes.

INTRODUCTION

Systemic autoinflammatory diseases (SAIDs) are a group of multisystem immunodysregulatory disorders caused primarily by the dysfunction of the innate immune system.¹ Currently, SAIDs comprise a wide range of disorders with systemic and organ-specific inflammation in the absence of infections or autoimmunity.^{2–6} In a subset of genetically defined SAIDs, the pathogenesis is driven by increased release or signaling of the proinflammatory cytokine interleukin-1 (IL-1).²⁷⁸

The conditions addressed by this task force include the IL-1 mediated SAIDs (monogenic forms) that are most frequently evaluated by rheumatologists, and which have US Food and Drug Administration/European Medicines Agency (FDA/EMA) approval for IL-1 targeted therapies. Cryopyrin-associated periodic syndromes (CAPS)^{9 10} or NLRP3-associated autoinflammatory diseases (NLRP3-AIDs)¹¹ are the spectrum of rare

autosomal dominant autoinflammatory diseases caused by gainof-function mutations in NLRP3,9 12-16 ranging from familial cold autoinflammatory syndrome (FCAS; mild NLRP3-AID Muckle-Wells syndrome (MWS; moderate phenotype), NLRP3-AID phenotype) to neonatal onset multisystem inflammatory disease /chronic infantile neurological cutaneous and articular (NOMID/CINCA; severe NLRP3-AID phenotype). The other IL-1 mediated SAIDs included are, tumour necrosis factor receptor-associated periodic syndrome (TRAPS), an autosomal dominant disease caused by mutations in TNFRSF1A^{17 18} encoding the tumour necrosis factor receptor type 1, and mevalonate kinase deficiency (MKD) caused by autosomal recessive loss-of-function mutations in the mevalonate kinase gene (MVK), resulting in a deficiency of mevalonate kinase enzyme.¹⁹⁻²² Lastly, deficiency of IL-1 receptor antagonist (DIRA) caused by biallelic deleterious loss-of-function mutations in the IL1RN gene encoding the IL-1 receptor antagonist was addressed by the task force.² The most common IL-1 mediated autoinflammatory disease, familial Mediterranean fever, is not addressed, as EULAR-endorsed recommendations were published for this disease in 2016.²³

IL-1 mediated SAIDs are caused by chronic systemic and organ-specific inflammation, leading to progressive organ damage and dysfunction.^{24–27} Acute disease flares can be life-threatening and contribute to the high morbidity and mortality in untreated patients.^{17 28 29} In this rapidly evolving group of rare diseases, there is a need to harmonise care that reflects our current knowledge of genetics, diagnosis, treatment and monitoring for all patients globally.

The natural history of untreated patients with pathogenic mutations causing CAPS,^{10 30 31} TRAPS,¹⁸ MKD³² and DIRA² has been characterised in the literature and forms the basis for the guidance on monitoring disease progression and organ damage. Disease severity is dependent on the level of systemic and organ-specific inflammation. Risk factors associated with adverse outcomes include specific mutations, clinically severe phenotypes, frequent and severe inflammatory episodes and organ damage at the time of initial presentation.^{17 33–36} The life-changing positive impact of treatments targeting IL-1 has been documented in patients with CAPS, TRAPS, MKD and DIRA. There is also mounting evidence for the benefits of maintenance treatment to prevent the progression of organ damage, thus pointing to the importance of early diagnosis and initiating treatment early in life.^{33 34 37 38}

An early and accurate genetic diagnosis allows for referral for genetic counselling, directs appropriate screening for potential complications, informs prognosis and improves our ability to define individual treatment goals and to tailor treatment decisions.^{33–37} Most patients with CAPS, TRAPS, MKD and DIRA are managed by paediatricians and paediatric specialists, and with effective treatments, adolescents and young adults are now reaching adulthood with expectations of a normal life span. They now face new challenges with transitioning care to adult rheumatologists comfortable with the management of these patients. Furthermore, pregnancy and other subspecialty needs (ie, surgery) are often not addressed adequately in the context of IL-1 mediated SAIDs. For some patients, the diagnosis may be delayed for decades, resulting in inadequate treatment and the development of permanent disabilities that may translate into special care needs.

The above considerations led to the convening of a task force that was charged with developing standardised guidance for diagnosis, treatment and long-term monitoring of patients with CAPS, TRAPS, MKD and DIRA that target paediatricians, internists and subspecialists (particularly rheumatologists). The statements were developed as a resource for physicians to facilitate management, for policy makers who have a role in authorising patients' access to diagnostic tools and treatment options, as well as for patients and caregivers to provide knowledge and allow for setting appropriate expectations. Finally, these guidelines aim to standardise the level of care with a goal of improving quality of life and disease outcomes worldwide.

METHODS

With approval granted by the EULAR and the American College of Rheumatology (ACR) executive committees, the IL-1 mediated autoinflammatory diseases task force was convened to develop guidance on diagnosis, treatment and monitoring of four different IL-1 mediated SAIDs, including CAPS, TRAPS, MKD and DIRA. The task force was led by two conveners (ED and RG-M) and consisted of 19 paediatric and four adult rheumatologists, who were selected based on their expertise in the treatment and care of these patients. In addition, the task force included two healthcare professionals, three fellows, one patient representative from the Autoinflammatory Alliance and two methodologists. The 31 task force members were from 17 centres in seven different countries from across Europe, the United States and Canada. EULAR³⁹ and the (ACR) standardised operating procedures were followed during the project (see online supplemental methods). The first meeting was convened in August 2019 in Bethesda, Maryland, USA, to define the focus of the task force, which identified four IL-1 mediated SAIDs to be included in this points to consider project. In line with the EULAR standardised operating procedures, the target audience was defined as healthcare professionals, policy makers, health insurance companies, patients and their caregivers. The group worked to determine the PICO (Population, Intervention, Comparison, Outcome) questions related to diagnosis, monitoring and management of these diseases. Using the PICO questions defined during the first meeting, a systematic literature review was performed by three research fellows (MR, ZSA, DP) with support from a librarian (DH) and the senior methodologists (ED, DA) to identify relevant publications using PubMed, Embase and the Cochrane Library through August 2020.

Before the first consensus meeting, two surveys that included statements or items pertaining to diagnosis, treatment and longterm monitoring were distributed to all task force members via RedCap. The task force members were asked to indicate their agreement with each statement or item with yes or no. A freetext option was provided to capture every member's comments or suggestions for modification; and a request was made to add items to be addressed, edited or altered. Consensus was achieved using the Delphi technique. Draft statements with 80% or higher agreement were retained. Comments and suggestions provided in the questionnaires were used to modify the draft statements and to add additional items. The revised and amended statements were then sent through a second round of questionnaires. After the two rounds, the draft statements were revised to incorporate all suggestions and reviewed by the steering committee members. These draft statements were then included for discussion at the consensus meetings.

Owing to the COVID-19 pandemic, three consensus meetings were held online between September and November 2020. At the consensus meetings, statements that did not reach a greater than 80% consensus were discussed in a round robin discussion, reworded, amended and refined and were then voted on again. If a statement did not achieve \geq 80% agreement after discussion,

refinement and revoting, the statement was excluded. All statements that achieved \geq 80% agreement were considered a final statement for inclusion in the final version of the points to consider. For each statement, the Oxford levels of evidence (LoE) and the grade of the recommendation (GoR) were assigned based on the systematic literature review by the fellows under the supervision of the methodologist.⁴⁰ The final statements annotated with the LoE and GoR were sent through an online survey to all task force members again; and each member was asked to provide their level of agreement (LoA) on a scale of 0 (absolutely disagree) to 10 (absolutely agree). The mean and SD of the LoA with each statement were calculated. The manuscript was reviewed and approved by all task force members and the EULAR/ACR executive committees before submission to the journal.

RESULTS

Systematic literature review

The details for the literature search strategy and summary of results are described in the online supplemental material. Briefly, randomised controlled trials (RCTs), cohort studies, cross-sectional studies, case–control studies and case reports including more than three cases were included. Review articles, conference abstracts, book chapters, single case reports and articles written in a language other than English were excluded. For CAPS, of 2041 references identified, 72 studies were selected for inclusion. For TRAPS, of 1161 references identified, 47 studies were selected for inclusion. For MKD, of 1806 references identified, 51 studies were selected for inclusion. For DIRA, of 557 references identified, two studies were selected for inclusion. In total, from the 5565 references identified, 172 were included. After a group discussion that included the results of the systematic literature review, the consensus process was initiated.

Overarching principles

During the consensus meeting, seven overarching principles and 55 candidate statements were discussed and voted on. The task force decided to merge two overarching principles. Owing to lack of agreement, the task force eliminated 26 statements (12 referring to CAPS, 6 to TRAPS, 2 to MKD and 6 to DIRA). The task force agreed on a final set of five overarching principles (table 1) and 33 points to consider (tables 2–4).

CAPS, TRAPS, MKD and DIRA typically present with complex clinical features and phenotypes in the neonatal or early childhood period; these include features of systemic and organ-specific inflammation² ¹⁷ ²⁸ ²⁹ ³⁶ presenting with early onset of fever, abdominal pain, rash, musculoskeletal symptoms, neurologic manifestations and elevated biomarkers of systemic inflammation.^{17 35 41-45} The specific biomarkers of systemic inflammation included in this document are referred to as acute phase reactants and include: C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), serum amyloid A protein (SAA)⁴⁶ and \$100 proteins, which in most patients correlate with disease activity.^{41 47 48} The first goal (overarching principle A) is to recognise patients with potential monogenic IL-1 mediated SAIDs and to establish a multidisciplinary team for diagnosis, treatment and long-term management. Delay in treatment initiation can result in rapidly progressive organ damage,²⁴⁻²⁷ morbidity and increased mortality.^{34 49 50} Overarching principle B outlines the need to initiate a clinical workup that assesses the extent of the inflammatory organ involvement and screens for treatmentrelated comorbidities, a process that often requires a multidisciplinary team of subspecialists.^{24 25 47} The third goal (overarching
 Table 1
 Overarching principles for the diagnosis, treatment and monitoring of CAPS, TRAPS, MKD and DIRA

	<u> </u>			
	Overarching principles	LoE	GoR	LoA (0–10) mean±SD
A	Patients with the IL-1 mediated diseases CAPS, TRAPS, MKD and DIRA present with chronic or intermittent flares of systemic and organ inflammation that, if untreated, result in progressive organ damage, morbidity and increased mortality. A multidisciplinary team is required to diagnostically evaluate and manage patients with CAPS, TRAPS, MKD and DIRA, which includes evaluation of systemic inflammation, disease-associated complications and long-term treatment and management.	5	D	9.5±0.7
В	 Patients presenting with chronic or episodic flares of unexplained systemic inflammation (including elevations of CRP and ESR) and clinical features suggestive of CAP5, TRAP5, MKD and DIRA should receive a prompt diagnostic workup comprising: genetic testing clinical workup focusing on the extent of inflammatory organ involvement screening for disease and treatment-related comorbidities 	5	D	9.8±0.6
C	A genetic diagnosis for CAPS, TRAPS, MKD and DIRA is required which facilitates initiation of targeted treatments, genetic counselling, and informs prognosis. Genetic testing using a next-generation sequencing (NGS) platform should be used to diagnose CAPS, TRAPS, MKD and DIRA.	4	C	8.9±1.6
D	The goal of treatment is to control clinical signs and symptoms and normalise laboratory biomarkers of systemic inflammation using a treat-to-target approach.	5	D	9.6±0.8
Ε	 Long-term monitoring goals should focus on: adequate treatment adjusted to the needs of the growing child and prevention of systemic and organ-specific inflammatory manifestations fostering of self-management skills and medical decision-making initiating a transition programme to adult specialist care in adolescent patients 	5	D	9.6±0.9
1b: ind (includi case–co expert	f evidence (LoE): 1a: systematic review of ran ividual RCT; 2a: systematic review of cohort s ing low-quality RCT); 3a: systematic review of ontrol study; 4: case-series (and poor-quality opinion without explicit critical appraisal, or b inciples'; Grade of recommendation (GoR): A:	tudies; 2b: ind f case–contro cohort and ca based on phys : based on col	dividual coh l studies; 3b se–control s siology, ben nsistent leve	ort study : individual studies); 5: ch research or el 1 studies; B:

based on consistent level 2 or 3 studies or extrapolations from level 1 studies; C: based on level 4 studies or extrapolations from level 2 or 3 studies; D: based on level 5 studies or on troublingly inconsistent or inconclusive studies of any level. CAPS, cryopyrin-associated periodic syndromes; CRP, C-reactive protein; DIRA, deficiency of the interleukin-1 receptor antagonist; ESR, erythrocyte sedimentation rate; LoA, level of agreement; MKD, mevalonate kinase deficiency; TRAPS, tumour necrosis factor receptor-associated periodic syndrome.

principle C) highlights the need for an accurate genetic diagnosis, which in many countries may be required to access the IL-1 blocking biological agents that prevent life-threatening complications, ^{47 51 52} and facilitate access to supportive care.^{24 25 47}

The goals of treatment (overarching principle D) are to rapidly control disease activity by suppressing systemic and organ inflammation. IL-1 blockade has been FDA⁵³⁻⁵⁵ and EMA^{56 57} approved for CAPS, TRAPS, MKD and DIRA.^{49 58} Rapid disease

Table 2 Points to consider for the diagnosis of CAPS, TRAPS, MKD and DIRA

		LoE	GoR	LoA (0–10) mean±SD
1	Patients with clinical symptoms of CAPS, TRAPS, MKD and DIRA who do not carry any of the disease-causing mutations described here should be referred to specially/research centres to guide further workup and treatment.	5	D	9.4±1
Genetic	workup			
2	Genetic testing using an NGS platform, if available, should be used to make a genetic diagnosis. ► Sanger sequencing of targeted genes known to cause CAPS (<i>VLRP3</i>), TRAPS (<i>TNRRSFIA</i>), MKD (<i>MVK</i>) and DIRA (<i>ULTRN</i>) can be used if the clinical suspicion is strong or to validate NGS.	4	D	9.4±1.1
3	Deep sequencing in patients with CAPS and TRAPS may be needed to detect some somatic mutations that may not be identified by standard NGS or Sanger sequencing.	5	D	9.5±1.1
CAPS spe	ecific			
4	Patients with low penetrance variants in NLRP3 may present with clinical manifestations different from CAPS; their treatment response and prognosis may differ from 'canonical' CAPS.	2	В	9.4±1.2
TRAPS sp	pecific			
5 DIRA spe	Patients with low penetrance variants in TNFRSF1A (ie, R121Q (previously referred to: R92Q) may present with clinical manifestations different from TRAPS and their treatment response and prognosis may differ from 'canonical' TRAPS.	2	В	9.5±1.2
6	In patients with DIRA, Sanger sequencing, WES	3	B	9.3±1.2
Clinical	 or WGS may not detect large deletions in <i>IL1RN</i>, thus complicating a genetic diagnosis. In cases with a high clinical suspicion of DIRA and negative Sanger sequencing or WES/WGS, chromosomal microarray analysis (CMA) is recommended to detect large deletions. The use of deletion-specific primers, in countries with founder variants that include large deletions, is recommended. 			
	•	_		
7 CAPS spe	The clinical workup of systemic inflammation should include CRP, ESR and CBC with differential; if available SAA and S100 proteins may be assessed. ► Patients with longstanding untreated systemic inflammation need to be screened for the presence of amyloidosis.	5	D	9.7±0.6
		2	D	0.0.05
8	The following clinical features in the presence or absence of autosomal dominant inheritance should prompt consideration of a diagnostic workup of CAPS: urticaria-like rash cold/stress-triggered episodes sensorineural hearing loss chronic aseptic meningitis skeletal abnormalities	2	В	9.8±0.5
9	The initial diagnostic workup should include an audiogram and an ophthalmologic examination. Lumbar puncture and a head MRI should be performed if clinically indicated.	5	D	9.8±0.5
TRAPS sp	pecific			
10	The following clinical features should prompt consideration of a diagnostic workup of TRAPS: long-tasting fever episodes migratory rash periorbital oedema myadja a positive family history	2	В	9.8±0.5
MKD spe	cific			
11	The following clinical features should prompt consideration of a diagnostic workup of MKD: age at onset <1 year gastrointestinal symptoms painful lymph nodes aphthous stomatitis a history of triggers of the periodic fever attack (ie, postvaccination) a maculopapular rash	2	В	9.8±0.5
			С	9.5±0.7

Table 2 Continued

TUDIC	2 Continued			
		LoE	GoR	LoA (0–10) mean±SD
DIRA speci	fic			
13	The following clinical features particularly if occurring sporadically, should prompt consideration of a diagnostic workup of DIRA: pustular psoriasis-like rashes osteomyelitis (ie, CRMO-like disease, rib flaring and cloaking of the femoral head, odontoid lesions/osteomyelitis) absence of bacterial osteomyelitis nail changes (ie, onychomadesis)	5	D	9.6±0.8
14	For patients with suspected DIRA, X-ray examinations of the chest and upper and lower limbs and/or MRUCT to assess the spine, including odontoid, should be included in the diagnostic workup to assess the extent of the inflammatory bone involvement. A dermatology consultation and skin biopsy should be considered as the presence of neutrophilic dermatosis with exocytosis of neutrophilis and subcorneal pustules is highly suggestive of DIRA.	5	D	9.7±0.8
cohort studie casecontro	lence (LoE): 1a: systematic review of randomised controlled to es; 2b: individual cohort study (including low-quality RCT); 3a of study; 4: case-series (and poor-quality cohort and case-coord) have do a bivelocu. New force and the force of the distribution of the series of the seri	: systematic reviev ntrol studies); 5: ex	v of case-control stu pert opinion withou	ıdies; 3b: individual t explicit critical

cohort studies; 2b: individual cohort study (including low-quality RCT); 3a: systematic review of case-control studies; 3b: individual case-control study; 4: case-series (and poor-quality cohort and case-control studies); 5: expert opinion without explicit critical appriasi, or based on physiology, bench research or 'first principle'; Grade of recommendation (GoR); A: based on consistent level 1 studies; B: based on consistent level 2 or 3 studies or extrapolations from level 1 studies; C: based on level 4 studies or extrapolations from level 2 or 3 studies; D: based on level 5 studies or on troubinghy inconsistent or inconclusive studies of any level. CAPS; cryopyrin-associated periodic syndromes; CBC; complete blood count; CBMO, chronic recurrent multifical oterweiltis; CRP, C-reactive protein; CT, computed tomography; DIRA, deficiency of the interleukin-1 receptor antagonist; ESR, erythocyte sedimentation rate; LoA, level of agreement; MKO, mevalonate kinase deficiency; MRI, magnetic resonance imaging; NGS, nextgeneration sequencing; SAA, serun amyloid A; TRAPS, tumour necrosis factor receptor associated periodic syndrome; WES, whole exone sequencing; WGS, whole genome sequencing.

control using these agents is critical in preventing the development of irreversible early inflammation-related organ damage, and minimising side effects from the use of other drugs that are ineffective and/or carry substantial toxicities.

There are currently no cures for these lifelong diseases. Overarching principle E outlines long-term monitoring goals that focus on evaluating disease activity, assessing and monitoring signs and symptoms of disease-specific organ inflammation, growth and development, and adjusting therapeutic doses according to growth, or control of symptoms and inflammation. Monitoring should be developmentally appropriate, include adjustments for adolescence,⁵⁹ be tailored to accommodate cognitive (ie, learning and behavioural disorders) and physical disabilities (ie, bone deformities, hearing and vision loss)^{29 60} and prepare patients for transitioning to adult specialists. This transition can be challenging and lengthy and may put patients at risk of unfavourable outcomes. Therefore, the task force emphasised the need to include goals that foster self-management skills and medical decision-making (ie, including reproductive health) throughout the life of the patient.^{59 61}

Focus on the diagnosis of IL-1 mediated SAIDs, including recognising clinical diagnostic and damage-related features of the respective diseases, genetic testing, disease-specific clinical and laboratory workup and initiation of early treatment; points to consider 1–14 Disease-specific clinical features of untreated CAPS, TRAPS, MKD and DIRA and the resulting organ damage have been characterised in clinical descriptions of patient cohorts before anti-IL-1 treatment was used.²^{17 36 62} These signs and symptoms form the basis of evidence-based classification criteria for CAPS,⁴⁸ TRAPS and MKD⁴¹ and are listed in table 2—recommendations 8 (CAPS), 10 (TRAPS), 11 (MKD) and 13 (DIRA), respectively. In combination with the molecular analyses, these features help physicians to recognise disease-specific characteristics and differentiate these conditions from clinically complex diseases that can present with overlapping inflammatory manifestations, including systemic juvenile idiopathic arthritis, adult-onset Still's disease, neoplasms, infections and autoimmune disorders.^{63 64}

Table 3 P	oints to consider for the treatment of CAPS, TRAPS, MKD and DIRA			
		LoE	GoR	LoA (0–10) mean±SD
15	IL-1 blocking therapy has become the preferred treatment and a therapeutic trial with IL-1 blocking treatment may be started when a strong clinical suspicion of a diagnosis of CAPS, TRAPS, MKD or DIRA is entertained.	4	С	9.5±0.9
16	In the context of viral infections, including COVID-19, IL-1 blocking therapy should not be altered, as stopping treatment may lead to rebound inflammation.	4	С	9.5±0.8
CAPS specific				
17	Treatment with IL-1 blockers is recommended standard of care and currently includes anakinra, ¹ canakinumab ² and rilonacept. ³	¹ 2 ² 1 ³ 1	A B B	9.9±0.3
18	Anakinra may be the most effective anti-IL-1 treatment for CNS disease.	2	В	9.6±0.8
19	Higher and more frequent dosing with IL-1 blockers may be required to control disease activity in more severe cases and/ or younger children to prevent complications. Less frequent dosing may be appropriate for patients with milder disease.	1	В	9.8±0.5
TRAPS specific	¢			
20	Anti-IL-1 drugs are more effective than traditional disease-modifying antirheumatic drugs (DMARDS) and other biologic DMARDS in achieving disease remission and preventing long-term complications.	4	С	9.6±0.9
MKD specific				
21	In children with MKD, IL-1 blocking therapy is generally required. In patients without chronic systemic inflammation, on-demand IL-1 blockade should be attempted at the onset of flares.	4	С	9.4±1.0
22	If anti-IL-1 is not effective or available, then anti-TNF agents should be considered.	3	В	9.3±0.9
23	Glucocorticoids on demand may be effective in treating acute flares; however, frequent or long-term use is limited by side effects.	2	В	9.3±1.0
DIRA specific				
24	In patients with DIRA, treatment with agents that block both IL-1α and IL-1β is recommended and includes anakinra and rilonacept. Both have shown benefit in controlling disease flares and in preventing long-term complications.	4	С	9.6±0.8

Level of evidence (LoE): 1a: systematic review of randomised controlled trials (RCTs); 1b: individual RCT; 2a: systematic review of cohort studies; 2b: individual cohort study (including low-quality RCT); 3a: systematic review of case—control studies; 3b: individual case—control study; 4: case-series (and poor-quality cohort and case—control studies); 5: expert opinion without explicit critical appraisal, or based on physiology, bench research or 'first principles'; Grade of recommendation (GoR): A: based on consistent level 1 studies; B: based on consistent level 2 or 3 studies or extrapolations from level 2 or 3 studies; D: based on level 5 studies or on troublingly inconsistent or inconclusive studies of any level.

CAPS, cryopyrin-associated periodic syndromes; CNS, central nervous system; COVID-19, coronavirus disease 2019; DIRA, deficiency of the interleukin-1 receptor antagonist; IL-1, interleukin-1; LoA, level of agreement; MKD, mevalonate kinase deficiency; TNF, tumour necrosis factor; TRAPS, tumour necrosis factor receptor associated periodic syndrome.

Genetic workup: points to consider 2-6

Suggestive clinical features should trigger a genetic investigation, as genetic testing is a crucial component of an accurate diagnosis of CAPS, TRAPS, MKD and DIRA.^{41 65} Next-generation sequencing (NGS) platforms are now widely used and are replacing the Sanger sequencing "gene by gene" approach.^{51 52 66-68} NGS is therefore generally recommended.^{52 63 66 69 70} In certain conditions, Sanger sequencing of a single gene may be cost-effective, such as in patients with a known familial disease or classic disease features. In some countries, Sanger sequencing may be the only modality of genetic testing available.^{52 71-73}

CAPS and TRAPS are autosomal dominant diseases caused by gain-of-function mutations in NLRP3 and TNFRSF1A¹⁸ genes, respectively, and can be familial^{63 74} or caused by de novo mutations. In CAPS, de novo mutations are most frequently found in patients with severe phenotypes.⁷ Somatic mutations in these patients may be undetected by standard coverage of NGS and may require deep sequencing, though this analysis may not be available to all providers.^{5174–77} In contrast, MKD and DIRA are caused by recessive loss-of-function mutations in MVK^{78 79} and IL1RN² genes, respectively. In patients with clinical symptoms suggestive of MKD or DIRA, Sanger sequencing, whole exome sequencing and whole genome sequencing may not detect large deletions.² If appropriate, chromosomal microarray analysis by comparative genomic hybridization array or by single nucleotide polymorphism array should be performed.² For the genetic diagnosis of DIRA, PCR and sequencing using specific deletion breakpoint primers to screen reported IL1RN large deletions may aid the genetic evaluation in selected ethnic backgrounds (ie, Puerto Rico, Brazil, India).^{2 80 81} If a genetic diagnosis cannot be made following routine genetic workup, patients should be

referred to a research centre of excellence with expertise in the molecular diagnosis of SAIDs.

One significant challenge is the interpretation of genetic results that have not been classified or validated as pathogenic mutations, including variants of uncertain significance, that is, variants that have not been described previously or studied functionally, or likely benign variants that may be present in the general population at a relatively high frequency and could be low-penetrance mutations with inconsistent clinical significance. Patients with these genetic findings may display distinct clinical and biologic phenotypes, and can include IL-1 β and non-IL-1 β -mediated inflammatory pathway activation, which may have implications for their management, further emphasising the need for specialty care.

Clinical workup: points to consider 7-14

In IL-1-mediated SAIDs patients, systemic inflammation typically accompanies clinical signs and symptoms, which can be episodic/periodic or chronic/persisting.^{36 82} MKD, TRAPS and the mildest form of CAPS, known as FCAS, may in rare cases, present with intermittent episodes (flares of symptoms) separated by periods of perceived improvement.^{17 41 65 83-85} However, most patients except for patients with milder disease (ie, some patients with FCAS and TRAPS) have evidence of chronic subclinical inflammation between episodes. Patients with more severe forms of CAPS such as MWS or NOMID/CINCA, or those with severe MKD with almost complete absence of the enzymatic activity of mevalonate kinase, or with DIRA, all present with chronic systemic inflammation that rarely spontaneously remits. In general, markers of systemic inflammation correlate with disease symptoms and risk of organ damage.^{75 86-88} Historically, CRP,

	oints to consider for the monitoring of CAPS, TRAPS, MKD and DIRA			104 (0, 10)
		LoE	GoR	LoA (0–10) mean±SD
25	 Disease activity and burden of disease should be monitored regularly depending on disease activity and severity, often requiring a multidisciplinary team. Symptom control can be monitored with validated tools that assess disease-specific symptoms, with patient-reported outcome and quality of life assessments and by recording missing school or work days. The frequency of the follow-up evaluations should be tailored to disease severity and clinical needs. 	5	D	9.7±0.6
26	Growth and development of children should be monitored at each visit.	5	D	9.9±0.3
27	Systemic inflammation should be monitored by following up inflammatory markers, including peripheral neutrophilia, CRP and ESR. SAA and S100 protein may be used as inflammatory markers where available.	5	D	9.8±0.5
28	Systemic inflammation may predispose to the development of amyloidosis, and patients should be monitored for the development of amyloidosis by monitoring proteinuria and microalbuminuria.	5	D	9.8±0.5
29	Physicians should be aware of the increased risk of infections in patients with IL-1 targeted therapy, including respiratory tract infections with <i>Streptococcus pneumoniae</i> and skin infections due to <i>Staphylococci</i> .	1	В	9.8±0.4
30	Patients should receive immunisations, in particular live-attenuated vaccines, in accordance with their regional policy, before beginning anti-IL-1 targeted therapy when possible.	5	D	9.2±1.4
CAPS specific				
31	Monitoring of organ damage should be established based on disease manifestations and can include monitoring of hearing loss, eye disease, aseptic meningitis, CNS disease and bone disease.	5	D	9.7±0.6
32	Patients with CNS and/or bone involvement should be assessed for developmental delay, the development of bone deformities and limb-length discrepancies	5	D	9.7±0.6
DIRA specific				
33	Normalisation of acute phase reactants and absence of inflammatory skin and bone findings is required to determine the adequate dose of IL-1 blocking treatment, and to monitor disease activity long term.	5	D	9.5±0.8

Level of evidence (LoE): 1a: systematic review of randomised controlled trials (RCTs); 1b: individual RCT; 2 a: systematic review of cohort studies; 2b: individual cohort study (including low-quality RCT); 3a: systematic review of case—control studies; 3b: individual case—control study; 4: case-series (and poor-quality cohort and case—control studies); 5: expert opinion without explicit critical appraisal, or based on physiology, bench research or 'first principles'; grade of recommendation (GoR): A: based on consistent level 1 studies; B: based on consistent level 2 or 3 studies or extrapolations from level 1 studies; C: based on level 4 studies or extrapolations from level 2 or 3 studies; D: based on level 5 studies or on troublingly inconsistent or inconclusive studies of any level.

CAPS, cryopyrin-associated periodic syndromes; CNS, central nervous system; CRP, C-reactive protein; DIRA, deficiency of the IL-1 receptor antagonist; ESR, erythrocyte sedimentation rate; IL-1, interleukin-1; LoA, level of agreement; MKD, mevalonate kinase deficiency; SAA, serum amyloid A; TRAPS, tumour necrosis factor receptor associated periodic syndrome.

ESR and, if available, SAA⁴⁶ have been used to assess systemic inflammation. Additionally, S100 proteins⁸⁹ have been used by some investigators as sensitive markers in research settings. How to best use S100 protein markers for patient care, given increased clinical availability, remains under investigation. The diagnostic workup across all four diseases is broadly similar and can be synchronised. Typical signs and symptoms of active disease (ie, hepatosplenomegaly), organ inflammation and damage should prompt a diagnostic workup (tables 2 and 5).

The clinical presentation of the CAPS disease spectrum includes systemic inflammation and an urticaria-like rash with histologic features of a neutrophilic dermatosis involving eccrine glands, which is present in almost all patients.^{24 43 75 86 88 90-92} Cold-induced flares often last less than 24 hours and are most often observed in patients at the mild end of the disease spectrum (FCAS).^{14 42} A negative localised cold challenge (ice cube test) differentiates FCAS from patients with cold urticaria.42 Progressive sensorineural hearing loss is often seen in moderately (MWS) and severely (NOMID/CINCA) affected patients, 24 29 60 7 while neurologic findings (chronic aseptic meningitis, increased intracranial pressure, cognitive impairment)87 93 and skeletal abnormalities (distal femur overgrowth, frontal bossing) are typically seen in NOMID/CINCA.75 86 Ophthalmologic involvement can vary and most typically includes conjunctivitis, but keratitis, episcleritis and anterior and/or posterior uveitis have also been described. Increased intracranial pressure may cause papilloedema and subsequent optic disc atrophy. Therefore, a slit lamp examination and retinal evaluation should be performed in all patients with CAPS at baseline.^{25 43 88} In patients

with suspected neurologic involvement, brain imaging²⁸ ⁹⁴ ⁹⁵ and lumbar puncture may be needed to evaluate for elevated intracranial pressure or aseptic meningitis, while a specialised brain MRI scan can detect cochlear enhancement, cerebral atrophy and ventriculomegaly.^{87 96} Epiphysial bony overgrowth, commonly found around the knees, may be assessed by bone MRI or radiograph.^{25 26 92}

TRAPS is characterised by episodes of fever lasting more than 7 days, abdominal pain that can mimic an acute abdomen, variable chest pain and, rarely, testicular pain.^{17 41 70} Especially in adults, a subchronic disease course might be observed, with fatigue, diffuse limb pain and persistent elevation of acute phase reactants.¹⁷ Periorbital oedema and myalgias might herald the onset of an attack. Typical findings of a flare include painful, migratory skin plaques with hazy edges that are erythematous, swollen and warm³ and predominantly affect the limbs. Suspected fasciitis may be imaged by MRI.⁹⁷ There is now consensus that population frequent variants of uncertain significance, such as R121Q (previously referred to as R92Q) should not be considered as pathogenic.^{17 45 98-103} Therefore, the interpretation of these variants should occur in the context of the inflammatory phenotype by an expert in the field if available.

Patients with MKD usually present in the first year of life⁵¹⁰⁴ with recurrent episodes of fever lasting 4 to 6 days¹⁰⁴, gastrointestinal symptoms (severe abdominal pain with vomiting and diarrhoea), cervical lymphadenopathy, aphthous stomatitis and/or skin rash (urticarial or maculopapular).³²⁶⁴ ⁸⁴ ^{105–110} The most severe form of MKD namely mevalonic aciduria, presents with severe cognitive impairment, and patients can

Table 5 Disease specific monitoring of CAPS, TRAPS, MKD and DIRA*

DIKA		
For all diseases,	systemic inflammation needs to be monitored	
A. Monitoring	of systemic inflammation in all diseases	Frequency
	ESR, CRP, CBC+differential (granulocytosis), S100 proteins and SAA where available, hepatosplenomegaly, lymphadenopathy, fatigue	Each visit
	Urinalysis to monitor proteinuria (AA amyloidosis)	Every 6–12 months
	Monitor growth, BMD, sexual development	Each visit as indicated
B. Monitoring	of disease-specific symptoms* and patient-related outcomes	
CAPS	Fever, rash (urticaria-like), progressive hearing loss, headaches, early morning nausea and vomiting, musculoskeletal symptoms, conjunctivitis, cognitive development (severe disease)	Each visit
TRAPS	Fever, rash (migratory), periorbital oedema, pain (abdomen, chest, testicular), myalgia	Each visit
MKD	Periodic fever attacks (including triggered sequencing), rash (urticarial or maculopapular), gastrointestinal symptoms (abdominal pain, diarrhoea, vomiting), ceivical lymphadenopathy, aphthous stomatitis, cognitive impairment in severe cases	Each visit
DIRA	Pustular psoriasis-like rashes (pathergy), musculoskeletal (bone) pain (caused by osteomyelitis), nail changes	Each visit
Patient-related outcomes for all four diseases	QoL, PGA, PPGA, missing school/work days	Each visit
C. Monitoring	of organ manifestations/damage†	
CAPS		
Amyloidosis	Urinalysis	Each visit
Hearing loss (S)	Audiogram	3–6 months until stable then every 6–12 months
Eye disease (S)	Ophthalmologic examination (vision, retina evaluation and slit lamp examination)	6-12 months
CNS disease (S)	Lumbar puncture, head MRI (with special evaluation of cochlea, cerebral atrophy and ventriculomegaly)	12–36 months depending on symptoms
Bone deformity (S)	Bone MRI, scanogram to monitor limb length, epiphysial overgrowth	12–36 months depending on symptoms
TRAPS		
Amyloidosis	Urinalysis	Each visit
Bone deformity (S)	Bone MRI, X-ray examination	12–36 months depending on symptoms
MKD		
Amyloidosis	Urinalysis	Each visit
Eye disease (S)	Ophthalmologic examination	As needed
Neurologic involvement (S)	Neuropsychological testing	As needed
DIRA		
Spinal and bone deformities (S)	Neck, spine MRI (vertebral osteomyelitis), bone X-ray/MRI, corrective surgery or spinal fusion	As needed
D. Monitoring treatments)	of treatment-related complications (interleukin-1 blocking	
Infections	Clinical history, skin infections, other infections	Each visit
Laboratory work	CBC+differential, LFTs, urinalysis, renal function, lipid profile	Each visit
for damage asses global assessmen †The following in: for damage asses global assessmen ‡S) denotes may	struments can be used for symptom monitoring: autoinflammatory diseases sment the Autoinflammatory Disease Damage Index (ADDI), for quality of lit t (PGA), patient's/parent's global assessment (PPGA) (S) may require subspe struments can be used for symptom monitoring: autoinflammatory diseases sment the Autoinflammatory Disease Damage Index (ADDI), for quality of lit t (PGA), patient's/parent's global assessment (PPGA). require subspecialty care. al density: CAPS, cryopyrin-associated periodic syndromes; CBC, complete bl	ie (QoL), physician icialty care. activity index (AIDAI), ie (QoL), physician
central nervous sy DIRA, deficiency of	strent COVID-19, coronavirus disease 2019; CRP, C-reactive protein; CRP, C-r of the interleukin-1 receptor antagonist; ESR, erythrocyte sedimentation rate e; LFT, liver function test; MKD, mevalonate kinase deficiency; MRI, magneti	eactive protein; ; ESR, erythrocyte

sedimentation rate; LFT, liver function test; MKO, mevalonate kinase deficiency; MRI, magnetic resonance imaging; SAA, serum amyloid A; TRAPS, tumour necrosis factor receptor-associated periodic syndrome.

present with hyperinflammation leading to macrophage activation syndrome³⁶ along with the clinical features described above.^{84 110 111} Febrile attacks triggered by vaccinations suggest a diagnosis of MKD.^{36 85 112-115}

High levels of circulating immunoglobulin D that were described formerly and led to the name hyper IgD syndrome have low diagnostic sensitivity and specificity.^{82 105 116 117} However, elevated urine mevalonate levels during disease flares, due to reduced MVK enzyme activity and accumulation of mevalonic acid, are more specific for MKD^{118 119} and can be used to aid in diagnosis.

Patients with DIRA present with early-onset pustular rashes that can be triggered by mechanical stress (pathergy), with sterile osteomyelitis, and nail changes (onychomadesis).²¹²⁰ Although the inflammatory markers are typically highly elevated, fever may be absent. Vertebral involvement can include odontoid osteomyelitis, resulting in destruction and neck instability, vertebral block formation and gibbus-like spinal changes that need to be screened for by MRI or CT.^{2 120} In contrast to patients with CAPS, TRAPS and MKD, patients with DIRA rarely present with flare-associated fever. In patients with presumed DIRA, a diagnostic workup includes assessing peripheral neutrophilia and elevated inflammatory markers, determining bone involvement (ie, X-ray or bone MRI) and genetic testing.²¹²⁰ The differential diagnosis for DIRA includes chronic recurrent multifocal osteomyelitis (CRMO),^{121 122} synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO)¹²³ syndrome and pustular psoriasis.¹²⁴ Genetic testing for monogenic defects with overlapping clinical features should include LPIN2, FGR, FBLIM1 for CRMO, 125 126 CARD14 for CARD14-mediated psoriasis (CAMPS),¹²⁷ ¹²⁸ *IL36RN* for deficiency of IL-36 receptor antagonist,¹²⁷ ¹²⁸ *AP1S3*¹²⁸ for other pustular psoriasis and MEFV for pyrin-associated autoinflammation with neutrophilic dermatosis.¹²⁹

Focus on the treatment of IL-1 mediated diseases: points to consider $15\mathchar`-24$

Disease management involves a shared decision-making approach and a combination of pharmacologic and non-pharmacologic interventions. The current standard of care for patients with CAPS, TRAPS, MKD and DIRA is subcutaneous IL-1 targeted biologic therapy when available.^{28 49 130-132} While the specific pharmacologic mechanisms, pharmacokinetics, disease indications and costs differ for each of the three available drugs, anakinra (Kineret), rilonacept (Arcalyst) and canakinumab (Ilaris), each blocks the effect of IL-1 β on the IL-1 receptor and downstream signaling, resulting in improved symptom control, as well as reduced systemic and tissue/organ inflammation. Anakinra is a recombinant IL-1 receptor antagonist with a short half-life that binds to the IL-1 receptor and blocks both IL-1 α and IL-1 β signaling.^{95 133-135} Rilonacept is a recombinant fusion protein with a relatively longer half-life that binds to both IL-1 α and IL-1B.¹³⁰¹³⁶¹³⁷ Canakinumab is a human monoclonal antibody to IL-1 β with a long half-life.⁴⁹ ¹³¹ ¹³⁸ ¹³⁹ As expected for treatment of rare disorders, case reports and small patient series have demonstrated the success of IL-1 blockade across the spectrum of disease. The highest level of evidence, however, stems from pivotal studies including randomised studies in CAPS¹³⁷ ¹⁴⁰ ¹⁴¹ (MWS and FCAS), in TRAPS and MKD,¹⁴² which have confirmed that rilonacept was effective in CAPS,¹³⁷ and that canakinumab was efficacious in controlling and preventing flares in patients with CAPS¹⁴⁰ and with MKD and TRAPS,¹⁴² respectively (table 3). The availability of these drugs varies significantly in different countries.

Aims of treatment are early control of disease activity, prevention of disease and treatment-related damage and optimal health-related quality of life.⁵⁸¹⁴² The ultimate goal of a treatto-target approach is complete remission.³⁷ In the absence of a

consensus definition of remission or minimal disease activity for these diseases, remission has been defined for clinical studies and clinical monitoring as an absence of clinical symptoms and normal inflammatory markers. The instruments used to measure disease activity include daily symptom diary scores^{28 95} or Autoinflammatory Diseases Activity Index (AIDAI),¹⁴³ and a physician global assessment (PGA) and patient–parent global assessment (PPGA). The most commonly used inflammatory marker is CRP (also known as high sensitivity or cardio CRP in some countries), with levels of less than 5 mg/L or 10 mg/L indicating adequate control of inflammation.^{95 120 142} Minimal disease activity has been suggested as an alternative target if remission cannot be achieved. Definitions of remission and minimal disease activity and their validations are on the research agenda for autoinflammatory diseases.^{142 143}

Treat-to-target strategies aiming for low disease activity assessed by clinical symptoms and normalisation of serum markers of systemic inflammation are effective and used in the treatment of patients with IL-1 mediated SAIDs to find individualised and optimal dosing regimens for each patient and disease.³⁷ IL-1 blocking therapies control inflammation in the absence of glucocorticoids.¹³⁴ ¹⁴² ¹⁴⁴ Treatment can delay or prevent development or progression of organ damage in patients with moderate or even severe disease activity.^{60 95} ¹⁴⁵ Management by a multidisciplinary team that includes subspecialists results in better disease control in patients with CAPS.³⁷ To achieve and maintain optimal disease control, IL-1 targeted therapies need to be administered continuously in most patients, and the dose and/or frequency of administration should be adjusted for control of disease activity, normalisation of markers of systemic inflammation and for weight gain and appropriate development in the growing patient.

Medication dose adjustments for weight gain and growth and higher mg/kg doses to optimise treatment responses should be individualised for each patient.^{37 95} Some patients with CAPS may require more frequent or higher doses of these medicines than that approved by FDA or EMA (table 6), such as dosing of canakinumab more often than the approved frequency of every 8 weeks, if patients have not achieved remission.^{34 37 141} On-demand regimens may be used in selected patients with MKD, TRAPS and FCAS who have very mild disease and/ or episodic disease manifestations and who maintain normal inflammatory markers in between episodes.¹⁴⁶ ¹⁴⁷ Patients with severe disease manifestations, such as those with NOMID/ CINCA, may require frequent adjustments and higher doses than patients with less severe diseases (table 6).^{37 95 141} There is a potential clinical advantage of using anakinra for patients with severe CAPS, especially for those with neurologic disease.¹⁴⁸ ¹⁴⁹ Patients with NLRP3 variants that have not been validated as pathogenic (ie, V198M, R488K, Q703K) may respond to IL-1 blockade, and specific recommendations have previously been published.¹⁵⁰ ¹⁵¹ To improve symptom control, non-steroidal anti-inflammatory drugs may be efficacious when used together with IL-1 targeted therapy. Ongoing efficacy and a beneficial long-term safety profile have been demonstrated for the longterm use of all three IL-1 blockers (anakinra, rilonacept and canakinumab) in CAPS, although direct comparative studies are lacking. 44 49 130 134 136-139 152-157

A large body of evidence suggests that IL-1 inhibitors should be considered as the preferred treatment for TRAPS.¹⁰⁰ Although

Disease	Treatment	Recommended dosing based on FDA, EMA or task force consensus	FDA	EMA	LoE
CAPS (NLRP3-AID)					
FCAS	Canakinumab	PD: 2–8 mg/kg/q8w AD: >40 kg, 150–600 mg/q8w	+	+	<u>1B</u>
	Rilonacept	PD: LD 4.4 mg/kg/q1w and MD 2.2 mg/kg/q1w AD: LD 320 mg/q1w and MD 160 mg/q1w	+	-	<u>1B</u>
	Anakinra	1–2 mg/kg/day	-	+	<u>4C</u>
MWS	Canakinumab†	PD: 2–8 mg/kg/q8w† AD: >40 kg, 150–600 mg/q8w	+	+	<u>1B</u>
	Rilonacept	PD: LD 4.4 mg/kg/q1w and MD 2.2 mg/kg/q1w AD: LD 320 mg/q1w and MD 160 mg/q1w	+	-	<u>1B</u>
	Anakinra	1–8 mg/kg/day	-	+	<u>2B</u>
NOMID/CINCA	Anakinra	1–8 mg/kg/day	+	+	<u>2A</u>
	Canakinumab‡	PD: 2–8 mg/kg/q4w‡ AD: >40 kg, 150–600 mg/q4w	-	+	<u>4C</u>
TRAPS	Canakinumab	PD: 2–4 mg/kg/q4w AD: >40 kg, 150–300 mg/q4w	+	+	<u>1B</u>
MKD	Canakinumab	PD: 2–4 mg/kg/q4w AD: >40 kg, 150–300 mg/q4w	+	+	<u>1B</u>
DIRA	Anakinra	1—8 mg/kg/day	+	-	<u>4C</u>
	Rilonacept	PD: 4.4 mg/kg/q1w AD: LD 320 mg/q1w and MD 320 mg/q1w	+	_	<u>4C</u>

Level of evidence (LoE): 1a: systematic review of randomised controlled trials (RCTs); 1b: individual RCT; 2a: systematic review of cohort studies; 2b: individual cohort study (including low-quality RCT); 3a: systematic review of case—control studies; 3b: individual case—control study; 4: case series (and poor-quality cohort and case—control studies); 5: expert opinion without explicit critical appraisal, or based on physiology, bench research or 'first principles'.

*Drug approvals, dosages may vary between different countries and local regulations should be followed in the respective countries.53-57

+Canakinumab is approved by the FDA and EMA for the treatment of CAPS at the same dosing regimens for FCAS and MWS; however, some patients with MWS may require more frequent dosing according to the expert panel.

*Although canakinumab was approved by the EMA for the treatment of CAPS at the same dosing regimens for all three disease severity phenotypes (which also includes patients with NOMID/ CINCA), the study submitted for approval only included five patients with NOMID/CINCA and a subanalysis in patients with NOMID/CINCA was not performed. The dosing frequency required for patients with NOMID is typically every 4 weeks. We therefore added the panel's recommendation as 4C in the dosing table.^{149 153 174}

AD, adult dosage; CAPS, cryopyrin-associated periodic syndromes; CINCA, chronic infantile neurologic cutaneous articular syndrome; DIRA, deficiency of the interleukin-1 receptor antagonist; EMA, European Medicines Agency; FCAS, familial cold autoinflammatory syndrome; FDA, US Food and Drug Administration; LD, loading dose; MD, maintenance dose; MKD, mevalonate kinase deficiency; MWS, Muckle-Wells syndrome; NOMID, neonatal onset multisystem inflammatory disease; PD, paediatric dosage; TRAPS, tumour necrosis factor receptor associated periodic syndrome. anakinra was the first IL-1 blocker successfully used in patients with TRAPS in small series and observational registries, ¹⁰⁰ ¹³¹¹⁴⁵¹⁵⁸ the long-acting anti-IL-1 β monoclonal antibody, canakinumab is currently the only IL-1 blocker that the FDA and EMA have approved for the treatment of patients with TRAPS^{54 57} (table 6). Individual patients with TRAPS may respond to treatment with short-term glucocorticoids or etanercept; however, responses often wane and patients should be monitored for increased disease activity.⁴⁵ ¹⁰⁰ ¹⁵⁹ Patients with *TNFRSF1A* variants that are not classified as pathogenic (ie, D41E, I57S, P75L, R121Q, N145S (previously referred to as: D12E, I28E, P46L, R92Q, N116S, respectively)) do not have TRAPS; however, they may still have signs of clinical autoinflammation requiring treatment with colchicine or biologic therapies.¹⁰⁰

Anakinra and canakinumab have been used in children with MKD with success, but only canakinumab has been evaluated in a randomised study and approved by the FDA and EMA.^{54 57 142 146} Some patients with MKD with milder disease phenotypes, characterised by occasional attacks separated by symptom-free periods, can be managed with on-demand treatment.¹⁴⁶ Gluco-corticoids may also be beneficial during flares, but their extended use is limited by adverse effects.¹⁴⁶ The panel suggested the use of IL-1 blockade, but noted that treatment could be switched to anti-tumour necrosis factor (anti-TNF) agents, if IL-1 blockade is not available or is ineffective.¹⁴⁶

Anakinra and rilonacept both block IL-1 α and IL-1 β and should be used for patients with DIRA.^{2 80 81 120} The FDA recently approved both anakinra and rilonacept for treatment of DIRA.^{53 55} Blocking IL-1 α may be necessary to completely block bone inflammation, as observed in a patient who developed osteitis during treatment with canakinumab, which only blocks IL-1 β .¹²¹ While anakinra has been used initially in all patients with DIRA to achieve disease control, rilonacept can be used to maintain remission.¹²⁰ Doses of IL-1 blocking therapies required for disease control in patients with DIRA have typically been lower than those required in patients with severe CAPS-NOMID/CINCA. Long-term sustained and complete remission is an achievable goal of treatment for patients with DIRA.

For all IL-1 mediated SAIDs, individualised dose adjustments of IL-1 blocking agents may be necessary in young patients or in those with severe disease. In infants and preschool-aged children, twice daily dosing of anakinra may be required for control of disease activity. This is probably due to the higher liver blood flow, which increases the hepatic clearance of drugs owing to the larger ratio of liver to total body mass in children than in adults.¹⁶⁰ Some older patients with severe and difficult to control disease, including central nervous system disease, may also achieve improved disease control with twice daily dosing. While canakinumab is approved by the EMA for CAPS-NOMID/ CINCA at a frequency of every 8 weeks, supporting evidence suggests that this may be inadequate, so the consensus of experts recommends more frequent dosing up to every 4 weeks for these severely affected patients based on clinical experience and numerous reports.^{34 37 141} This is consistent with dose frequency for other SAIDs, and with EMA-provided consumer medical information for patients with inadequate responses.⁵⁷

Focus on monitoring of IL-1 mediated SAIDs: CAPS, TRAPS, MKD and DIRA: points to consider 25–33

Ongoing management includes adjustment of pharmacologic therapy, monitoring of disease activity, development of diseaserelated complications and recognition of drug toxicity. Additionally, individual focus on the needs of the growing child, adolescent, adult or even elderly should include age-appropriate and developmentally appropriate measures that foster selfmanagement skills, encourage shared medical decision-making, address reproductive health issues, and facilitate timely and effective transition to adult medical care^{47 161 162} (table 4).

Appropriate management of patients with IL-1 mediated SAIDs necessitates a multidisciplinary team of local primary care givers working together with experienced physicians, rheumatologists and other specialists on a case-by-case basis that can include, but is not limited to, immunologists, ophthalmologists, otolaryngologists, nephrologists, neurologists and genetic counsellors, as well as physiotherapists, occupational therapists and psychosocial specialists.^{47 161 163} The management of patients, particularly those with cognitive (ie, learning and behavioural disorders) and those with physical disabilities (ie, bone deformities, hearing and vision loss),^{29 60} is complex. The physical, mental, psychosocial health and social functioning of entire families should be considered. Individualised support services, including, but not limited to, psychosocial support, genetic counselling, cognitive and learning support, school accommodations and occupational therapy and physiotherapy, may be needed to manage these challenges.¹¹⁰ ¹⁶¹ ¹⁶³ ¹⁶⁴ Some adult patients may have increased difficulties due to their disease and chronic organ involvement that may require accommodations for work, or other aspects of their daily life.

Long-term monitoring requires age-appropriate dose adjustment of IL-1 blocking treatment to maintain control of systemic and organ-specific inflammatory manifestations, and of laboratory markers.^{49 130 134 135 139 157} Systemic inflammation should be monitored by following up inflammatory markers, which include peripheral neutrophilia,¹⁶⁵ CRP and ESR. SAA and S100 protein may be used as inflammatory markers where available.^{45 131}

Chronic systemic inflammation can have significant effects on growth and development, and ongoing inflammation may predispose to AA amyloidosis.²⁷ Patients with IL-1 mediated SAIDs need continuous and developmentally appropriate care during and beyond adolescence. However, up to half of adolescent patients are not appropriately transferred to adult specialist care owing to general lack of transition readiness, inadequately robust quality indicators and insufficient understanding of the needs of adolescents. This population is therefore at particular risk of unfavourable outcomes.^{59 61} Relevant for this group are complications related to amyloidosis, hearing loss and vision loss. Although AA amyloidosis has become less common with the early initiation of anti-IL-1 targeted treatment, adults who have had longstanding uncontrolled disease should be closely monitored.^{49 100 140} The task force recommended that proteinuria should be evaluated every 6 months in all patients with IL-1 mediated SAIDs, particularly in patients with a positive family history of amyloidosis as they may have other factors, including genetic variants contributing to the development of amyloidosis (ie, SAA1 variants).

Disease-specific monitoring plans that take into account the different disease manifestations in CAPS, TRAPS, MKD and DIRA are outlined in table 4. Hearing loss, central nervous system disease, bone deformities, renal failure due to amyloidosis and visual loss are the most severe organ manifestations in patients with CAPS.⁶² In patients with TRAPS the disease may progress from longer-lasting episodes of fever, migratory and painful rash, to a more chronic disease course with persistent inflammation in the absence of the typical fever episodes, which may still represent an important risk factor for the development of AA amyloidosis,²⁷ and are an indication for long-term treatment with biological disease-modifying

antirheumatic drugs.^{131 145} Rare MKD-associated manifestations include retinitis pigmentosa and hearing loss. Therefore, ophthalmologic evaluations and audiograms should be included as clinically indicated.^{32 35 36 118} Secondary hemophagocytosis in the context of infections has been reported and should be considered in the situation of severe disease flares in MKD.^{35 36 82} For all IL-1-mediated SAIDs, appropriate monitoring aims to limit or prevent complications of inflammation and disease-associated damage through ongoing individualised treatment, while encouraging the best possible quality of life for patients and families.¹⁶¹

Beyond objective laboratory measurements, patientreported outcomes and disease assessment tools can be helpful in the monitoring of disease symptoms. Patient- or physician-reported outcomes¹¹⁰ ¹⁶⁶ ¹⁶⁷ can include measures of health-related quality of life,⁴⁷ ¹⁶⁸ ¹⁶⁹ disease activity¹⁴³ (ie, Auto-inflammatory Diseases Activity Index (AIDAI) for CAPS, TRAPS and MKD),¹⁰⁰ ¹⁴³ ¹⁵⁴ ¹⁶⁶ ¹⁶⁹ ¹⁷⁰ global assessment scales for physicians and patients/parents¹⁴² (PGA, PPGA) and assessment of disease-related organ damage¹⁶⁷ (ie, Autoinflammatory Diseases Damage Index (ADDI)) that are listed in table 5. Questions about performance at school and work place and recording missing school/work days help assess the burden of disease and guide revisions to the treatment plan.¹⁶³

The safety profile for IL-1 blocking treatment has generally been favourable. However, monitoring for infection, particularly respiratory tract infections with Streptococcus pneumoniae and skin infections due to Staphylococcus, is recommended.¹⁴² Even though in some conditions, such as MKD, vaccination may lead to a disease flare, patients should be vaccinated in accordance with regional recommendations.¹⁷¹ This includes pneumococcal vaccines, including the polysaccharide vaccine (Pneumovax) in patients with CAPS, as benefits generally outweigh the potential risks of local and systemic reactions.^{49 172} Patients who are receiving, or planning to initiate, anti-IL-1 targeted therapy should receive pneumococcal vaccinations. While it is preferable to administer vaccines before starting treatment, it is also acceptable to do so during treatment.49 Preliminary data suggest that an adequate antibody response to vaccines occurs in patients receiving canakinumab.⁴⁹ Whether vaccines against COVID-19 have the potential to provoke disease flares is unknown; theoretical concerns about disease flare in IL-1 mediated SAIDs caused by RNA vaccines exist. However, there are currently insufficient data to make recommendations regarding COVID-19 vaccines.

Data on IL-1 treatment in pregnancy is limited.^{100 162 173} In women with IL-1 mediated SAIDs who require biological treatment and are considering pregnancy, a benefit-risk discussion should be held before conception, including the risk of untreated disease to mother and fetus compared with the risk of continuing biologic agents. At present, regulatory advice and clinical case series reports support the use of anakinra rather than any other anti-IL-1 agent in pregnancy.¹⁰⁰

CONCLUSION

In recent years, we have learnt more about the phenotypic breadth and pathogenesis of IL-1 mediated SAIDs, which has led to a more efficient diagnosis and better treatment and monitoring of these diseases. An improved understanding of the pathogenesis and presentation of patients with IL-1 mediated SAIDs, along with the development of effective treatments, has dramatically improved our ability to diagnose

Box 1 Research agenda

- ⇒ To create transition clinics for patients with these rare disorders and optimise treatment during this vulnerable period
- ⇒ To evaluate best treatment options during pregnancy and their effect on the fetus and newborn
- ⇒ To establish biobanks for biomarker studies to validate the markers that best correlate with disease activity and severity
- ⇒ To evaluate the effect of vaccination in triggering or exacerbating disease activity in patients with interleukin 1 (IL-1) mediated systemic autoinflammatory diseases while receiving or not receiving treatment with biologic diseasemodifying antirheumatic drugs and/or glucocorticoids
- \Rightarrow To identify novel therapeutic targets and treatments
- ⇒ To establish multicentre collaborative efforts to address:
 ⇒ Development of prospectively enrolling registries
 - \Rightarrow Better characterisation of phenotype-genotype correlations
 - ⇒Pathophysiology of organ damage in IL-1 mediated disorders
 - ⇒Validation of remission criteria for each disease, including patient-reported outcome measures
 - ⇒Development of minimal disease activity criteria, response criteria
 - ⇒ Understanding of additional factors (epigenetics, environment) defining the disease course
- ⇒ Continuation of defining long-term outcomes, assessing longterm safety of biological agents in IL-1 mediated disorders, updating and refining disease-specific outcome instruments for measuring disease activity and severity

and treat patients. As formalised training in the diagnosis and management of IL-1 mediated SAIDs is variable, many physicians, including rheumatologists, lack the knowledge to optimally manage these patients. The task force aims to raise awareness and assist both specialists and primary healthcare providers in managing patients with IL-1 mediated SAIDs. The panel has also highlighted the distinguishing clinical features of CAPS, TRAPS, MKD and DIRA in the suggested recommendations. These points for consideration attempt to address the unmet needs for guidance based on a EULAR and ACR consensus process for diagnosing, managing and treating CAPS, TRAPS, MKD and DIRA.

The task force included specialists with broad expertise in managing patients with IL-1 mediated autoinflammatory diseases, representing different countries, disease interests and practice environments. Owing to the rarity of these disorders, statements have been developed based on low level of evidence and on expert opinion, which will probably require revisions as new knowledge is generated. Multicentre collaborative efforts, prospective registries and randomised trials will help to define optimal treatment strategies to relieve patient symptoms and to further improve long-term clinical outcomes. The panel also suggests areas for future research (box 1).

Author affiliations

¹Department of Pediatrics, Division of Pediatric Rheumatology, Behcet and Autoinflammatory Disease Center, Western University, London, Ontario, Canada ²Department of Pediatric Rheumatology, Sanliurfa Mehmet Akif Inan Training and Research Hospital, Sanliurfa, Sanliurfa, Turkey ³Lawson Health Research Institute and Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada ⁴Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, Maryland, USA ⁵Division of Rheumatology, Medical University of Vienna, Wien, Austria ⁶Division of Intramural Research, National Institute of Allergy and Immunology, NIH, Bethesda, Maryland, USA

⁷Division of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada ⁸Division of Pediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine&Dentistry, Western University, London, Ontario, Canada

⁹Division of Pediatric Allergy, Immunology, and Rheumatology, University of California and Rady Children's Hospital, San Diego, California, USA

¹⁰Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA

¹¹Division of Pediatric Rheumatology, Department of Paediatrics, LHSC Children's Hospital, London, Ontario, Canada

¹²Autoinflammatory Alliance, San Francisco, California, USA

¹³Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA ¹⁴Department of Pediatric Rheumatology and Immunology, University of Muenster, Muenster, Germany

¹⁵Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA ¹⁶Department of Pediatrics, Walter Reed National Military Medical Center

(WRNMMC), Bethesda, Maryland, USA

¹⁷Department of Medicine, University College London, London, UK ¹⁸Division of Rhoumatology, University of Taracta Taracta Octavia, Caract

¹⁸Division of Rheumatology, University of Toronto, Toronto, Ontario, Canada
¹⁹IRCCS Istituto Giannina Gaslini, UOSID Centro Trial, Genova, Italy

²⁰Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands

²¹Department of Pediatrics, Wilhelmina Kinderziekenhuis Polikliniek Algemene Kindergeneeskunde, Utrecht, Utrecht, The Netherlands

²²Division of Pediatric Allergy, Immunology, and Rheumatology, University of California at San Diego, San Diego, California, USA

²³Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA

²⁴Division of Pediatric Rheumatology, Department of Pediatrics, University Hospital Tuebingen, Tübingen, Germany

²⁵Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey ²⁶UOSD Centro Malattie Autoinfiammatorie e Immunodeficienze, IRCCS Istituto Giannina Gaslini, Genoa, Italy

²⁷Clinica Pediatrica e Reumatologia, IRCCS Istituto Giannina Gaslini

²⁸Translational Autoinflammatory Diseases Section (TADS), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA

²⁹Division of Paediatric Rheumatology, Department of Paediatrics, Behcet and Autoinflammatory Disease Center and Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada

Correction notice This article has been corrected since it published Online First. A new paragraph was added to disclose Dr Kuemmerle-Deschner's work as a member of ERN-RITA.

Twitter Jonathan Hausmann @hausmannmd and Seza Ozen @drsezaozen

Acknowledgements The task force gratefully thanks the librarian Darren Hamilton (London Health Sciences Centre, London, Ontario, Canada) for his contribution to the systematic literature search, Brian Feldman, Hayyah Clairman and Natasha Naraidoo for their support in conducting the Delphi process using questionnaires on the Redcap platform and EULAR, and EULAR and the American College of Rheumatology for financial and logistical support. This project is part of a series of "points to consider" consensus efforts to standardise the diagnosis and care of patients with the three major groups of known autoinflammatory diseases including 1. The IL-1 mediated diseases CAPS, TRAPS, MKD and DIRA; 2. The autoinflammatory interferonopathies chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE), STING-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutieres syndrome (AGS) and 3. The early diagnosis and management of inflammatory conditions with the potential progression to hemophagocytic lymphohistiocytosis/macrophage activation syndrome (HLH/MAS). This research was supported in part by the intramural research programme of the NIH institutes, NIAID, NHGRI and NIAMS. We would like to acknowledge, and are grateful for, the generous and invaluable financial and organisational support from the Autoinflammatory Alliance and the systemic JIA foundation. The Autoinflammatory Alliance substantially contributed to an international meeting and workgroup organisation in August 2019 that developed the outline of the points to consider project. The funds for this project came largely from patient fundraisers, online fundraising and the work of countless volunteers who made this project possible.

Contributors All authors contributed to the formulation of the points to consider. In detail: the steering committee of the task force (ED, RG-M, MG, JBK-D, HH, SO, JF, AAd-J) defined the research questions for the systematic literature review (SLR). The SLR was conducted by MR, ZSA, DP with support from a librarian (DH) under supervision of a senior methodologist (ED). MR, ZSA, DP extracted the data. ED, RG-M, MG, JBK-D, HH, SO, JF and AAd-J synthesised the results from SLR and the Delphi questionnaires and generated draft statements. The manuscript was drafted by MR, ZSA and DP and revised in detail by the steering group members and received a final review by the convenors. DA oversaw the proceedings and provided advice of this points to consider project as EULAR methodologist. All other authors participated in the task force meetings, in two pre-meeting Delphi questionnaires, and suggested and agreed upon the research questions. All members read the final statements prior to the drafting of the manuscript, discussed results and made contributions to the text. All authors approved the final version of the manuscript.

Funding This work was funded by EULAR/American College of Rheumatology.

Competing interests DA: received grants from AbbVie, Amgen, Lilly, Novartis, Roche, Sooi and Sanofi; received consulting fees from Abbvie, Amgen, Lilly, Merck, Novartis, Pfizer, Roche, Sandoz; received lecture fees from Lilly, Merck, Pfizer, Roche and Sandoz. RB: received consultation fees from Sandoz and Roche. LB: received grants from Novartis and Regeneron FD: received consulting fees from Novartis. KLD: is the president of the Autoinflammatory Alliance. PF: received grants from NIH, CARRA, Inc: consulting fees from Novartis, DF: received grants from Novartis and Sobi; received consultation fees from Boehringer Ingelheim, Chugai-Roche, Merck, Novartis and Sobi; received lecture fees from Novartis, Peer Voice and Sobi. JH: received grants from CARRA and Sobi; consultation fees from Novartis, Biogen and Pfizer. RML: received consultation fees from Novartis and he is participating on a Data Safety Monitoring/advisory Board of Sobi, Novartis, Sanofi. NR: received consulting fees from Ablynx, Amgen, AstraZeneca-Medimmune, Aurinia, Bayer, Bristol Myers and Squib, Cambridge Healthcare Research, Celgene, Domain Therapeutic, Eli Lilly, EMD Serono, GSK, Idorsia, Janssen, Novartis, Sobi, Pfizer and UCB; received lecture fees from Eli Lilly, GSK, Pfizer, Sobi and UCB; he is member of advisory boards of Pfizer and Eli Lilly. HH: received grants from Bristol Meyer Squib, Jecure, Takeda and Zomagen; received consulting fees from Novartis, Regeneron, Sobi and Aclaris, received advisory board fees from Novartis and IFM. JBK-D: received grants from Novartis and Sobi; received consulting fees from Novartis; received payment for lectures from Novartis and Sobi; received advisory board fees from Novartis. SO: lectures fees from Novartis and Sobi; meeting support from Sobi, AbbVie and Pfizer; advisory board payment from Novartis. MG: received grants from Novartis; received consultation and lecture fees from Novartis and Sobi. RG-M: received study support under government CRADAs from Eli Lilly, IFM and Sobi. ED: received grants from Sobi.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Author note Dr Kuemmerle-Deschner's work was done in cooperation with ERN-RITA.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

ORCID iDs

Sara Alehashemi http://orcid.org/0000-0002-6531-6108 Daniel Aletaha http://orcid.org/0000-0003-2108-0030 Dirk Foell http://orcid.org/0000-0003-1946-3916 Jonathan Hausmann http://orcid.org/0000-0003-0786-8788 Nicolino Ruperto http://orcid.org/0000-0001-8407-7782 Jasmin Beate Kuemmerle-Deschner http://orcid.org/0000-0002-6365-6598 Seza Ozen http://orcid.org/0000-0003-2883-7868 Marco Gattorno http://orcid.org/0000-0003-0704-1916 Raphaela Goldbach-Mansky http://orcid.org/0000-0003-4525-1789

REFERENCES

- Masters SL, Simon A, Aksentijevich I, et al. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 2009;27:621–68.
- 2 Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 2009;360:2426–37.
- 3 Toro JR, Aksentijevich I, Hull K, et al. Tumor necrosis factor receptor-associated periodic syndrome: a novel syndrome with cutaneous manifestations. Arch Dermatol 2000;136:1487–94.

- 4 van der Meer JW, Vossen JM, Radl J, Meyer CL, et al. Hyperimmunoglobulinaemia D and periodic fever: a new syndrome. Lancet 1984;1:1087–90.
- 5 Drenth JP, Haagsma CJ, van der Meer JW. Hyperimmunoglobulinemia D and periodic fever syndrome. The clinical spectrum in a series of 50 patients. International hyper-IgD Study Group. *Medicine* 1994;73:133–44.
- 6 Aksentijevich I, Putnam CD, Remmers EF, et al. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum 2007;56:1273–85.
- 7 Aksentijevich I, Nowak M, Mallah M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. *Arthritis Rheum* 2002;46:3340–8.
- 8 Drenth JP, Göertz J, Daha MR, et al. Immunoglobulin D enhances the release of tumor necrosis factor-alpha, and interleukin-1 beta as well as interleukin-1 receptor antagonist from human mononuclear cells. *Immunology* 1996;88:355–62.
- 9 Feldmann J, Prieur A-M, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 2002;71:198–203.
- Kile RL, Rusk HA. A case of cold urticaria with an unusual family history. J Am Med Assoc 1940;114:1067–8.
- 11 Ben-Chetrit E, Gattorno M, Gul A, et al. Consensus proposal for taxonomy and definition of the autoinflammatory diseases (AIDS): a Delphi study. Ann Rheum Dis 2018;77:1558–65.
- 12 Agostini L, Martinon F, Burns K, et al. Nalp3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. *Immunity* 2004;20:319–25.
- 13 Awad F, Assravi E, Jumeau C, et al. The NLRP3 p.A441V mutation in NLRP3-AID pathogenesis: functional consequences, phenotype-genotype correlations and evidence for a recurrent mutational event. ACR Open Rheumatol 2019;1:267–76.
- 14 Johnstone RF, Dolen WK, Hoffman HM. A large kindred with familial cold autoinflammatory syndrome. Ann Allergy Asthma Immunol 2003;90:233–7.
- 15 Wang L, Manji GA, Grenier JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem 2002;277:29874–80.
- 16 Neven B, Callebaut I, Prieur A-M, et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and fcu. Blood 2004;103:2809–15.
- 17 Lachmann HJ, Papa R, Gerhold K, et al. The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis 2014;73:2160–7.
- 18 McDermott MF, Aksentijevich I, Galon J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999;97:133–44.
- 19 D'Osualdo A, Picco P, Caroli F, et al. MVK mutations and associated clinical features in Italian patients affected with autoinflammatory disorders and recurrent fever. Eur J Hum Genet 2005;13:314–20.
- 20 Drenth JP, Mariman EC, Van der Velde-Visser SD, et al. Location of the gene causing hyperimmunoglobulinemia D and periodic fever syndrome differs from that for familial Mediterranean fever. International Hyper-IgD Study Group. *Hum Genet* 1994;94:616–20.
- 21 Lainka E, Neudorf U, Lohse P, et al. Incidence and clinical features of hyperimmunoglobulinemia D and periodic fever syndrome (HIDS) and spectrum of mevalonate kinase (MVK) mutations in German children. *Rheumatol Int* 2012;32:3253–60.
- 22 Simon A, Cuisset L, Vincent MF, et al. Molecular analysis of the mevalonate kinase gene in a cohort of patients with the hyper-IgD and periodic fever syndrome: its application as a diagnostic tool. Ann Intern Med 2001;135:338–43.
- 23 Ozen S, Demirkaya E, Erer B, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis 2016;75:644–51.
- 24 Ahmadi N, Brewer CC, Zalewski C, et al. Cryopyrin-associated periodic syndromes: otolaryngologic and audiologic manifestations. Otolaryngol Head Neck Surg 2011;145:295–302.
- 25 Dollfus H, Häfner R, Hofmann HM, et al. Chronic infantile neurological cutaneous and articular/neonatal onset multisystem inflammatory disease syndrome: ocular manifestations in a recently recognized chronic inflammatory disease of childhood. Arch Ophthalmol 2000;118:1386–92.
- 26 Hill SC, Namde M, Dwyer A, et al. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). *Pediatr Radiol* 2007;37:145–52.
- 27 Lane T, Loeffler JM, Rowczenio DM, et al. Aa amyloidosis complicating the hereditary periodic fever syndromes. Arthritis Rheum 2013;65:1116–21.
- 28 Goldbach-Mansky R, Dailey NJ, Canna SW, et al. Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 2006;355:581–92.
- 29 Koitschev A, Gramlich K, Hansmann S, et al. Progressive familial hearing loss in Muckle-Wells syndrome. Acta Otolaryngol 2012;132:756–62.
- 30 Prieur AM, Griscelli C, Lampert F, et al. A chronic, infantile, neurological, cutaneous and articular (CINCA) syndrome. A specific entity analysed in 30 patients. Scand J Rheumatol Suppl 1987;66:57–68.

- 31 Muckle TJ. Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome. Q J Med 1962;31:235–48.
- 32 Simon A, Kremer HPH, Wevers RA, et al. Mevalonate kinase deficiency: evidence for a phenotypic continuum. *Neurology* 2004;62:994–7.
- 33 Kümmerle-Deschner JB, Tyrrell PN, Reess F, et al. Risk factors for severe Muckle-Wells syndrome. Arthritis Rheum 2010;62:3783–91.
- 34 Caorsi R, Lepore L, Zulian F, et al. The schedule of administration of canakinumab in cryopyrin associated periodic syndrome is driven by the phenotype severity rather than the age. Arthritis Res Ther 2013;15:R33.
- 35 Papa R, Doglio M, Lachmann HJ, et al. A web-based collection of genotypephenotype associations in hereditary recurrent fevers from the Eurofever Registry. Orphanet J Rare Dis 2017;12:167.
- 36 Ter Haar NM, Jeyaratnam J, Lachmann HJ, et al. The phenotype and genotype of mevalonate kinase deficiency: a series of 114 cases from the Eurofever Registry. Arthritis Rheumatol 2016;68:2795–805.
- 37 Kuemmerle-Deschner JB, Hofer F, Endres T, et al. Real-life effectiveness of canakinumab in cryopyrin-associated periodic syndrome. *Rheumatology* 2016;55:689–96.
- 38 Kuemmerle-Deschner JB, Koitschev A, Tyrrell PN, et al. Early detection of sensorineural hearing loss in Muckle-Wells-syndrome. *Pediatr Rheumatol Online J* 2015;13:43.
- 39 van der Heijde D, Aletaha D, Carmona L, *et al.* 2014 update of the EULAR standardised operating procedures for EULAR-endorsed recommendations. *Ann Rheum Dis* 2015;74:8–13.
- 40 OCEBM Levels of Evidence Working Group. Oxford centre for evidence-based medicine – levels of evidence (March 2009). Available: https://www.cebm.net/2009/ 06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/ [Accessed 18 Mar 2021].
- 41 Gattorno M, Hofer M, Federici S. Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis 2019;78:1025–32.
- 42 Haas N, Kuster W, Zuberbier T, et al. Muckle-Wells syndrome: clinical and histological skin findings compatible with cold air urticaria in a large kindred. Br J Dermatol 2004;151:99–104.
- 43 Kuemmerle-Deschner JB, Lohse P, Koetter I, et al. NLRP3 E311K mutation in a large family with Muckle-Wells syndrome - description of a heterogeneous phenotype and response to treatment. Arthritis Res Ther 2011;13:R196.
- 44 Kuemmerle-Deschner JB, Wittkowski H, Tyrrell PN, et al. Treatment of Muckle-Wells syndrome: analysis of two IL-1-blocking regimens. Arthritis Res Ther 2013;15:R64.
- 45 Ozen S, Kuemmerle-Deschner JB, Cimaz R, et al. International retrospective chart review of treatment patterns in severe familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, and mevalonate kinase deficiency/ hyperimmunoglobulinemia D syndrome. Arthritis Care Res 2017;69:578–86.
- 46 Pastore S, Paloni G, Caorsi R, et al. Serum amyloid protein A concentration in cryopyrin-associated periodic syndromes patients treated with interleukin-1 beta antagonist. Clin Exp Rheumatol 2014;32:S63–6.
- 47 Chuamanochan M, Weller K, Feist E, et al. State of care for patients with systemic autoinflammatory diseases - results of a tertiary care survey. World Allergy Organ J 2019;12:100019.
- 48 Kuemmerle-Deschner JB, Ozen S, Tyrrell PN, et al. Diagnostic criteria for cryopyrinassociated periodic syndrome (CAPS). Ann Rheum Dis 2017;76:942–7.
- 49 Brogan PA, Hofer M, Kuemmerle-Deschner JB, et al. Rapid and sustained long-term efficacy and safety of canakinumab in patients with cryopyrin-associated periodic syndrome ages five years and younger. Arthritis Rheumatol 2019;71:1955–63.
- 50 Rodrigues F, Philit J-B, Giurgea I, et al. Aa amyloidosis revealing mevalonate kinase deficiency: a report of 20 cases including two new French cases and a comprehensive review of literature. Semin Arthritis Rheum 2020;50:1370-1373.
- 51 Dingulu G, Georgin-Lavialle S, Koné-Paut I, et al. Validation of the new classification criteria for hereditary recurrent fever in an independent cohort: experience from the JIR cohort database. *Rheumatology* 2020;59:2947–52.
- 52 Shinar Y, Ceccherini I, Rowczenio D, et al. ISSAID/EMQN best practice guidelines for the genetic diagnosis of monogenic autoinflammatory diseases in the nextgeneration sequencing era. *Clin Chem* 2020;66:525–36.
- 53 FDA. U.S.. Food and Drug Administration Kineret, 2020. Available: https://www. accessdata.fda.gov/drugsatfda_docs/label/2020/103950s5189lbl.pdf [Accessed 6 Jul 2021].
- 54 FDA. U.S. Food and Drug Administration Ilaris, 2020. Available: https://www. accessdata.fda.gov/drugsatfda_docs/label/2020/125319s097lbl.pdf [Accessed 6 Jul 2021].
- 55 FDA. U.S. Food and Drug Administration Arcalyst, 2021. Available: https://www. accessdata.fda.gov/drugsatfda_docs/label/2021/125249s049lbl.pdf [Accessed 6 Jul 2021].
- 56 EMA. European Medicines Agency Kineret, 2020. Available: https://www.ema. europa.eu/en/medicines/human/EPAR/kineret [Accessed 6 Jul 2021].
- 57 EMA. European Medicines Agency Ilaris, 2021. Available: https://www.ema.europa. eu/en/medicines/human/EPAR/ilaris [Accessed 6 Jul 2021].
- 58 Gattorno M, Obici L, Cattalini M, et al. Canakinumab treatment for patients with active recurrent or chronic TNF receptor-associated periodic syndrome (TRAPS): an open-label, phase II study. Ann Rheum Dis 2017;76:173–8.

- 59 Hausmann JS, O'Hare K. Improving the transition from pediatric to adult care for adolescents and young adults with autoinflammatory diseases. Auto-Inflammatory Syndromes: Springer, 2019: 249–59.
- 60 Kuemmerle-Deschner JB, Koitschev A, Ummenhofer K, et al. Hearing loss in Muckle-Wells syndrome. Arthritis Rheum 2013;65:824–31.
- 61 Foster HE, Minden K, Clemente D, et al. EULAR/PReS standards and recommendations for the transitional care of young people with juvenile-onset rheumatic diseases. Ann Rheum Dis 2017;76:639–46.
- 62 Levy R, Gérard L, Kuemmerle-Deschner J, et al. Phenotypic and genotypic characteristics of cryopyrin-associated periodic syndrome: a series of 136 patients from the Eurofever Registry. Ann Rheum Dis 2015;74:2043–9.
- 63 Fingerhutová Šárka, Fráňová J, Hlaváčková E, et al. Muckle-Wells syndrome across four generations in one Czech family: natural course of the disease. Front Immunol 2019;10:802.
- 64 Gattorno M, Caorsi R, Meini A, et al. Differentiating PFAPA syndrome from monogenic periodic fevers. *Pediatrics* 2009;124:e721–8.
- 65 Federici S, Sormani MP, Ozen S, *et al*. Evidence-Based provisional clinical classification criteria for autoinflammatory periodic fevers. *Ann Rheum Dis* 2015;74:799–805.
- 66 Hua Y, Wu D, Shen M, et al. Phenotypes and genotypes of Chinese adult patients with systemic autoinflammatory diseases. Semin Arthritis Rheum 2019;49:446–52.
- 67 Lasigliè D, Mensa-Vilaro A, Ferrera D, et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J Rheumatol 2017;44:1667–73.
- 68 Nakagawa K, Gonzalez-Roca E, Souto A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrinassociated periodic syndromes. Ann Rheum Dis 2015;74:603–10.
- 69 Tanaka N, Izawa K, Saito MK, et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an international multicenter collaborative study. Arthritis Rheum 2011;63:3625–32.
- 70 Ueda N, Ida H, Washio M, *et al.* Clinical and genetic features of patients with TNFRSF1A variants in Japan: findings of a nationwide survey. *Arthritis Rheumatol* 2016;68:2760–71.
- 71 Jesus AA, Fujihira E, Watase M, et al. Hereditary autoinflammatory syndromes: a Brazilian multicenter study. J Clin Immunol 2012;32:922–32.
- 72 Karagianni P, Nezos A, Ioakeim F, et al. Analysis of NLRP3, MVK and TNFRSF1A variants in adult Greek patients with autoinflammatory symptoms. *Clin Exp Rheumatol* 2018;36:86–9.
- 73 Vergara C, Borzutzky A, Gutierrez MA, et al. Clinical and genetic features of hereditary periodic fever syndromes in Hispanic patients: the Chilean experience. Clin Rheumatol 2012;31:829–34.
- 74 Dodé C, Le Dû N, Cuisset L, *et al*. New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. *Am J Hum Genet* 2002;70:1498–506.
- 75 Caroli F, Pontillo A, D'Osualdo A, et al. Clinical and genetic characterization of Italian patients affected by CINCA syndrome. *Rheumatology* 2007;46:473–8.
- 76 Mehr S, Allen R, Boros C, et al. Cryopyrin-associated periodic syndrome in Australian children and adults: epidemiological, clinical and treatment characteristics. J Paediatr Child Health 2016;52:889–95.
- 77 Rowczenio DM, Gomes SM, Aróstegui JI, et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front Immunol 2017;8:1410.
- 78 Federici L, Rittore-Domingo C, Koné-Paut I, et al. A decision tree for genetic diagnosis of hereditary periodic fever in unselected patients. Ann Rheum Dis 2006;65:1427–32.
- 79 Munoz MA, Jurczyluk J, Simon A, et al. Defective protein prenylation in a spectrum of patients with mevalonate kinase deficiency. Front Immunol 2019;10:1900.
- 80 Jesus AA, Osman M, Silva CA, et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum 2011;63:4007–17.
- 81 Mendonca LO, Malle L, Donovan FX, et al. Deficiency of interleukin-1 receptor antagonist (DIRA): report of the first Indian patient and a novel deletion affecting IL1RN. J Clin Immunol 2017;37:445–51.
- 82 Tanaka T, Yoshioka K, Nishikomori R, et al. National survey of Japanese patients with mevalonate kinase deficiency reveals distinctive genetic and clinical characteristics. *Mod Rheumatol* 2019;29:181–7.
- 83 Al-Mayouf SM, Almutairi A, Albrawi S, et al. Pattern and diagnostic evaluation of systemic autoinflammatory diseases other than familial Mediterranean fever among Arab children: a multicenter study from the Pediatric Rheumatology Arab Group (PRAG). Rheumatol Int 2020;40:49–56.
- 84 Bader-Meunier B, Florkin B, Sibilia J, et al. Mevalonate kinase deficiency: a survey of 50 patients. Pediatrics 2011;128:e152–9.
- 85 Berody S, Galeotti C, Koné-Paut I, et al. A restrospective survey of patients's journey before the diagnosis of mevalonate kinase deficiency. Joint Bone Spine 2015;82:240–4.
- 86 Houx L, Hachulla E, Kone-Paut I, et al. Musculoskeletal symptoms in patients with cryopyrin-associated periodic syndromes: a large database study. Arthritis Rheumatol 2015;67:3027–36.

- 87 Kilic H, Sahin S, Duman C, et al. Spectrum of the neurologic manifestations in childhood-onset cryopyrin-associated periodic syndrome. Eur J Paediatr Neurol 2019;23:466–72.
- 88 Sobolewska B, Angermair E, Deuter C, et al. NLRP3 A439V mutation in a large family with cryopyrin-associated periodic syndrome: description of ophthalmologic symptoms in correlation with other organ symptoms. J Rheumatol 2016;43:1101–6.
- 89 Wittkowski H, Kuemmerle-Deschner JB, Austermann J, et al. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann Rheum Dis 2011;70:2075–81.
- 90 Cuisset L, Jeru I, Dumont B, et al. Mutations in the autoinflammatory cryopyrinassociated periodic syndrome gene: epidemiological study and lessons from eight years of genetic analysis in France. Ann Rheum Dis 2011;70:495–9.
- 91 Kuemmerle-Deschner JB, Dembi Samba S, Tyrrell PN, et al. Challenges in diagnosing Muckle-Wells syndrome: identifying two distinct phenotypes. Arthritis Care Res 2014;66:765–72.
- 92 Li C, Tan X, Zhang J, et al. Gene mutations and clinical phenotypes in 15 Chinese children with cryopyrin-associated periodic syndrome (CAPS). Sci China Life Sci 2017;60:1436–44.
- 93 Kitley JL, Lachmann HJ, Pinto A, et al. Neurologic manifestations of the cryopyrinassociated periodic syndrome. *Neurology* 2010;74:1267–70.
- 94 Eroglu FK, Kasapcopur O, Beşbaş N. Genetic and clinical features of cryopyrinassociated periodic syndromes in Turkish children. *Clin Exp Rheumatol* 2016;34:S115–20.
- 95 Sibley CH, Plass N, Snow J, et al. Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum 2012;64:2375–86.
- 96 Lauro CF, Goldbach-Mansky R, Schmidt M, et al. The anesthetic management of children with neonatal-onset multi-system inflammatory disease. Anesth Analg 2007;105:351–7.
- 97 Quillinan N, Mohammad A, Mannion G, et al. Imaging evidence for persistent subclinical fasciitis and arthritis in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) between febrile attacks. Ann Rheum Dis 2010;69:1408–9.
- 98 Lainka E, Neudorf U, Lohse P, et al. Incidence of TNFRSF1A mutations in German children: epidemiological, clinical and genetic characteristics. *Rheumatology* 2009;48:987–91.
- 99 D'Osualdo A, Ferlito F, Prigione I, et al. Neutrophils from patients with TNFRSF1A mutations display resistance to tumor necrosis factor-induced apoptosis: pathogenetic and clinical implications. Arthritis Rheum 2006;54:998–1008.
- 100 Papa R, Lane T, Minden K, et al. INSAID variant classification and Eurofever criteria guide optimal treatment strategy in patients with traps: data from the Eurofever Registry. J Allergy Clin Immunol Pract 2021;9:783–91.
- 101 Pelagatti MA, Meini A, Caorsi R, *et al*. Long-term clinical profile of children with the low-penetrance R92Q mutation of the TNFRSF1A gene. *Arthritis Rheum* 2011;63:1141–50.
- 102 Ravet N, Rouaghe S, Dodé C, *et al*. Clinical significance of P46L and R92Q substitutions in the tumour necrosis factor superfamily 1A gene. *Ann Rheum Dis* 2006;65:1158–62.
- 103 Ruiz-Ortiz E, Iglesias E, Soriano A, et al. Disease phenotype and outcome depending on the age at disease onset in patients carrying the R92Q low-penetrance variant in *TNFRSF1A* gene. Front Immunol 2017;8:299.
- 104 Livneh A, Drenth JP, Klasen IS, et al. Familial Mediterranean fever and hyperimmunoglobulinemia D syndrome: two diseases with distinct clinical, serologic, and genetic features. J Rheumatol 1997;24:1558–63.
- 105 Ammouri W, Cuisset L, Rouaghe S, et al. Diagnostic value of serum immunoglobulinaemia D level in patients with a clinical suspicion of hyper IgD syndrome. *Rheumatology* 2007;46:1597–600.
- 106 Drenth JP, Boom BW, Toonstra J, et al. Cutaneous manifestations and histologic findings in the hyperimmunoglobulinemia D syndrome. International Hyper IgD Study Group. Arch Dermatol 1994;130:59–65.
- 107 Loeliger AE, Kruize AA, Bijilsma JW, et al. Arthritis in hyperimmunoglobulinaemia D. Ann Rheum Dis 1993;52:81.
- 108 Oretti C, Barbi E, Marchetti F, et al. Diagnostic challenge of hyper-IgD syndrome in four children with inflammatory gastrointestinal complaints. Scand J Gastroenterol 2006;41:430–6.
- 109 Stojanov S, Lohse P, Lohse P, et al. Molecular analysis of the MVK and TNFRSF1A genes in patients with a clinical presentation typical of the hyperimmunoglobulinemia D with periodic fever syndrome: a low-penetrance TNFRSF1A variant in a heterozygous MVK carrier possibly influences the phenotype of hyperimmunoglobulinemia D with periodic fever syndrome or vice versa. Arthritis Rheum 2004;50:1951–8.
- 110 van der Hilst JCH, Bodar EJ, Barron KS, et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. *Medicine* 2008;87:301–10.
- 111 De Pieri C, Taddio A, Insalaco A, et al. Different presentations of mevalonate kinase deficiency: a case series. Clin Exp Rheumatol 2015;33:437–42.

- 112 Durel C-A, Aouba A, Bienvenu B, *et al*. Observational study of a French and Belgian multicenter cohort of 23 patients diagnosed in adulthood with mevalonate kinase deficiency. *Medicine* 2016;95:e3027.
- 113 Frenkel J, Houten SM, Waterham HR, et al. Clinical and molecular variability in childhood periodic fever with hyperimmunoglobulinaemia D. *Rheumatology* 2001;40:579–84.
- 114 Haraldsson A, Weemaes CM, De Boer AW, et al. Immunological studies in the hyperimmunoglobulin D syndrome. J Clin Immunol 1992;12:424–8.
- 115 Tas DA, Dinkci S, Erken E. Different clinical presentation of the hyperimmunoglobulin D syndrome (HIDS) (four cases from Turkey). *Clin Rheumatol* 2012;31:889–93.
- 116 de Dios García-Díaz J, Alvarez-Blanco MJ. High IgD could be a nonpathogenetic diagnostic marker of the hyper-IgD and periodic fever syndrome. *Ann Allergy Asthma Immunol* 2001;86:587.
- 117 Stabile A, Compagnone A, Napodano S, *et al.* Mevalonate kinase genotype in children with recurrent fevers and high serum IgD level. *Rheumatol Int* 2013;33:3039–42.
- 118 Jeyaratnam J, Ter Haar NM, de Sain-van der Velden MGM, et al. Diagnostic value of urinary mevalonic acid excretion in patients with a clinical suspicion of mevalonate kinase deficiency (MKD). JIMD Rep 2016;27:33–8.
- 119 Poll-The BT, Frenkel J, Houten SM, *et al*. Mevalonic aciduria in 12 unrelated patients with hyperimmunoglobulinaemia D and periodic fever syndrome. *J Inherit Metab Dis* 2000;23:363–6.
- 120 Garg M, de Jesus AA, Chapelle D, *et al.* Rilonacept maintains long-term inflammatory remission in patients with deficiency of the IL-1 receptor antagonist. *JCI Insight* 2017;2. doi:10.1172/jci.insight.94838. [Epub ahead of print: 17 Aug 2017].
- 121 Kuemmerle-Deschner JB, Welzel T, Hoertnagel K, et al. New variant in the IL1RNgene (DIRA) associated with late-onset, CRMO-like presentation. *Rheumatology* 2020;59:3259–63.
- 122 Beck C, Girschick HJ, Morbach H, et al. Mutation screening of the IL-1 receptor antagonist gene in chronic non-bacterial osteomyelitis of childhood and adolescence. *Clin Exp Rheumatol* 2011;29:1040–3.
- 123 Thacker PG, Binkovitz LA, Thomas KB. Deficiency of interleukin-1-receptor antagonist syndrome: a rare auto-inflammatory condition that mimics multiple classic radiographic findings. *Pediatr Radiol* 2012;42:495–8.
- 124 Minkis K, Aksentijevich I, Goldbach-Mansky R, et al. Interleukin 1 receptor antagonist deficiency presenting as infantile pustulosis mimicking infantile pustular psoriasis. Arch Dermatol 2012;148:747–52.
- 125 Cox AJ, Zhao Y, Ferguson PJ. Chronic recurrent multifocal osteomyelitis and related siseases-update on pathogenesis. *Curr Rheumatol Rep* 2017;19:18.
- 126 Abe K, Cox A, Takamatsu N, *et al.* Gain-of-function mutations in a member of the Src family kinases cause autoinflammatory bone disease in mice and humans. *Proc Natl Acad Sci U S A* 2019;116:11872–7.
- 127 Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. *Clin Immunol* 2013;147:155–74.
- 128 Takeichi T, Akiyama M. Generalized pustular psoriasis: clinical management and update on autoinflammatory aspects. *Am J Clin Dermatol* 2020;21:227–36.
- 129 Van Nieuwenhove E, De Langhe E, Dooley J, *et al*. Phenotypic analysis of pyrinassociated autoinflammation with neutrophilic dermatosis patients during treatment. *Rheumatology* 2021;60:5436-5446.
- 130 Hoffman HM, Throne ML, Amar NJ, et al. Long-term efficacy and safety profile of rilonacept in the treatment of cryopryin-associated periodic syndromes: results of a 72-week open-label extension study. Clin Ther 2012;34:2091–103.
- 131 Obici L, Meini A, Cattalini M, et al. Favourable and sustained response to anakinra in tumour necrosis factor receptor-associated periodic syndrome (TRAPS) with or without AA amyloidosis. Ann Rheum Dis 2011;70:1511–2.
- 132 Rossi-Semerano L, Fautrel B, Wendling D, *et al.* Tolerance and efficacy of off-label anti-interleukin-1 treatments in France: a nationwide survey. *Orphanet J Rare Dis* 2015;10:19.
- 133 Kuemmerle-Deschner JB, Tyrrell PN, Koetter I, et al. Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome. Arthritis Rheum 2011;63:840–9.
- 134 Kullenberg T, Löfqvist M, Leinonen M, et al. Long-term safety profile of anakinra in patients with severe cryopyrin-associated periodic syndromes. *Rheumatology* 2016;55:1499–506.
- 135 Neven B, Marvillet I, Terrada C, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 2010;62:258–67.
- 136 Goldbach-Mansky R, Shroff SD, Wilson M, et al. A pilot study to evaluate the safety and efficacy of the long-acting interleukin-1 inhibitor rilonacept (interleukin-1 trap) in patients with familial cold autoinflammatory syndrome. Arthritis Rheum 2008;58:2432–42.
- 137 Hoffman HM, Throne ML, Amar NJ, *et al.* Efficacy and safety of rilonacept (interleukin-1 trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. *Arthritis Rheum* 2008;58:2443-52.

- 138 Kuemmerle-Deschner JB, Ramos E, Blank N, *et al.* Canakinumab (ACZ885, a fully human IgG1 anti-IL-1β mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS). *Arthritis Res Ther* 2011;13:R34.
- 139 Yokota S, Imagawa T, Nishikomori R, *et al*. Long-term safety and efficacy of canakinumab in cryopyrin-associated periodic syndrome: results from an open-label, phase III pivotal study in Japanese patients. *Clin Exp Rheumatol* 2017;35 Suppl 108:S19–26.
- 140 Lachmann HJ, Kone-Paut I, Kuemmerle-Deschner JB, et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 2009;360:2416–25.
- 141 Kuemmerle-Deschner JB, Hachulla E, Cartwright R, et al. Two-year results from an open-label, multicentre, phase III study evaluating the safety and efficacy of canakinumab in patients with cryopyrin-associated periodic syndrome across different severity phenotypes. Ann Rheum Dis 2011;70:2095–102.
- 142 De Benedetti F, Gattorno M, Anton J, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med 2018;378:1908–19.
- 143 Piram M, Koné-Paut I, Lachmann HJ, et al. Validation of the auto-inflammatory diseases activity index (AIDAI) for hereditary recurrent fever syndromes. Ann Rheum Dis 2014;73:2168–73.
- 144 Koné-Paut I, Galeotti C. Current treatment recommendations and considerations for cryopyrin-associated periodic syndrome. *Expert Rev Clin Immunol* 2015;11:1083–92.
- 145 Ter Haar N, Lachmann H, Özen S, *et al*. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. *Ann Rheum Dis* 2013;72:678–85.
- 146 Bodar EJ, Kuijk LM, Drenth JPH, et al. On-demand anakinra treatment is effective in mevalonate kinase deficiency. Ann Rheum Dis 2011;70:2155–8.
- 147 Grimwood C, Despert V, Jeru I, et al. On-demand treatment with anakinra: a treatment option for selected TRAPS patients. *Rheumatology* 2015;54:1749–51.
- 148 Fox E, Jayaprakash N, Pham T-H, et al. The serum and cerebrospinal fluid pharmacokinetics of anakinra after intravenous administration to non-human primates. J Neuroimmunol 2010;223:138–40.
- 149 Rodriguez-Smith J, Lin Y-C, Tsai WL, et al. Cerebrospinal fluid cytokines correlate with aseptic meningitis and blood-brain barrier function in neonatal-onset multisystem inflammatory disease: central nervous system biomarkers in neonatalonset multisystem inflammatory disease correlate with central nervous system inflammation. Arthritis Rheumatol 2017;69:1325–36.
- 150 Kuemmerle-Deschner JB, Verma D, Endres T, et al. Clinical and molecular phenotypes of low-penetrance variants of NLRP3: diagnostic and therapeutic challenges. Arthritis Rheumatol 2017;69:2233–40.
- 151 Schuh E, Lohse P, Ertl-Wagner B, et al. Expanding spectrum of neurologic manifestations in patients with NLRP3 low-penetrance mutations. *Neurol Neuroimmunol Neuroinflamm* 2015;2:e109.
- 152 Elmi AA, Wynne K, Cheng IL, *et al*. Retrospective case series describing the efficacy, safety and cost-effectiveness of a vial-sharing programme for canakinumab treatment for paediatric patients with cryopyrin-associated periodic syndrome. *Pediatr Rheumatol Online J* 2019;17:36.
- 153 Imagawa T, Nishikomori R, Takada H, et al. Safety and efficacy of canakinumab in Japanese patients with phenotypes of cryopyrin-associated periodic syndrome as established in the first open-label, phase-3 pivotal study (24-week results). Clin Exp Rheumatol 2013;31:302–9.
- 154 Kone-Paut I, Quartier P, Fain O, et al. Real-world experience and impact of canakinumab in cryopyrin-associated periodic syndrome: results from a French observational study. Arthritis Care Res 2017;69:903–11.
- 155 Lepore L, Paloni G, Caorsi R, et al. Follow-up and quality of life of patients with cryopyrin-associated periodic syndromes treated with anakinra. J Pediatr 2010;157:310–5.
- 156 Russo RAG, Melo-Gomes S, Lachmann HJ, *et al*. Efficacy and safety of canakinumab therapy in paediatric patients with cryopyrin-associated periodic syndrome: a single-centre, real-world experience. *Rheumatology* 2014;53:665–70.
- 157 Wikén M, Hallén B, Kullenberg T, et al. Development and effect of antibodies to anakinra during treatment of severe CAPS: sub-analysis of a long-term safety and efficacy study. Clin Rheumatol 2018;37:3381–6.
- 158 Gattorno M, Pelagatti MA, Meini A, *et al*. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. *Arthritis Rheum* 2008;58:1516–20.
- 159 Bulua AC, Mogul DB, Aksentijevich I, *et al*. Efficacy of etanercept in the tumor necrosis factor receptor-associated periodic syndrome: a prospective, open-label, dose-escalation study. *Arthritis Rheum* 2012;64:908–13.
- 160 Batchelor HK, Marriott JF. Paediatric pharmacokinetics: key considerations. Br J Clin Pharmacol 2015;79:395–404.
- 161 Erbis G, Schmidt K, Hansmann S, et al. Living with autoinflammatory diseases: identifying unmet needs of children, adolescents and adults. *Pediatr Rheumatol Online J* 2018;16:81.
- 162 Youngstein T, Hoffmann P, Gül A, et al. International multi-centre study of pregnancy outcomes with interleukin-1 inhibitors. *Rheumatology* 2017;56:2102–8.
- 163 Mamoudjy N, Maurey H, Marie I, et al. Neurological outcome of patients with cryopyrin-associated periodic syndrome (CAPS). Orphanet J Rare Dis 2017;12:33.

- 164 Kuemmerle-Deschner JB, Quartier P, Kone-Paut I, *et al*. Burden of illness in hereditary periodic fevers: a multinational observational patient diary study. *Clin Exp Rheumatol* 2020;38 Suppl 127:26–34.
- 165 Torene R, Nirmala N, Obici L, *et al.* Canakinumab reverses overexpression of inflammatory response genes in tumour necrosis factor receptor-associated periodic syndrome. *Ann Rheum Dis* 2017;76:303–9.
- 166 Koné-Paut I, Lachmann HJ, Kuemmerle-Deschner JB, *et al.* Sustained remission of symptoms and improved health-related quality of life in patients with cryopyrin-associated periodic syndrome treated with canakinumab: results of a double-blind placebo-controlled randomized withdrawal study. *Arthritis Res Ther* 2011;13:R202.
- 167 Ter Haar NM, Annink KV, Al-Mayouf SM, et al. Development of the autoinflammatory disease damage index (ADDI). Ann Rheum Dis 2017;76:821–30.
- 168 Hoffman HM, Wolfe F, Belomestnov P, et al. Cryopyrin-associated periodic syndromes: development of a patient-reported outcomes instrument to assess the pattern and severity of clinical disease activity. Curr Med Res Opin 2008;24:2531–43.

- 169 Mulders-Manders CM, Kanters TA, van Daele PLA, et al. Decreased quality of life and societal impact of cryopyrin-associated periodic syndrome treated with canakinumab: a questionnaire based cohort study. Orphanet J Rare Dis 2018;13:59.
- 170 Piram M, Frenkel J, Gattorno M, *et al.* A preliminary score for the assessment of disease activity in hereditary recurrent fevers: results from the AIDAI (Auto-Inflammatory Diseases Activity Index) consensus conference. *Ann Rheum Dis* 2011;70:309–14.
- 171 Jeyaratnam J, Ter Haar NM, Lachmann HJ, et al. The safety of live-attenuated vaccines in patients using IL-1 or IL-6 blockade: an international survey. Pediatr Rheumatol Online J 2018;16:19.
- 172 Jaeger VK, Hoffman HM, van der Poll T, *et al.* Safety of vaccinations in patients with cryopyrin-associated periodic syndromes: a prospective registry based study. *Rheumatology* 2017;56:1484–91.
- 173 Chang Z, Spong CY, Jesus AA, *et al*. Anakinra use during pregnancy in patients with cryopyrin-associated periodic syndromes (CAPS). *Arthritis Rheumatol* 2014;66:3227–32.
- 174 Sibley CH, Chioato A, Felix S, *et al*. A 24-month open-label study of canakinumab in neonatal-onset multisystem inflammatory disease. *Ann Rheum Dis* 2015;74:1714–9.