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INTRODUCTION 
Interindividual clinical variability in the course of SARS-

CoV-2 infection is vast, ranging from silent infection to lethal 
disease (1). The greatest risk factor for life-threatening 
COVID-19 pneumonia is age, with a doubling in risk every 
five years from the age of five years onward, and a sharp rise 
after the age of 65 years (2, 3). Other epidemiological risk fac-
tors, including common genetic variants, have only modest 
effects, with odds ratios (ORs) < 2 and typically < 1.5 (2). One 

intriguing observation is the approximately 1.5 times higher 
risk in men, which seems to be age-independent (2–4). The 
COVID Human Genetic Effort consortium 
(www.covidhge.com) has enrolled an international cohort of 
patients, with the aim of investigating genetic and immuno-
logical causes of life-threatening COVID-19 pneumonia. We 
previously tested the hypothesis that critical influenza and 
critical COVID-19 can be allelic (5–7), and showed that life-
threatening COVID-19 pneumonia can be caused by rare 
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Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at 
least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked 
TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 
male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None 
of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) 
tested carry such TLR7 variants (p = 3.5 × 10−5). The phenotypes of five hemizygous relatives of index cases 
infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 
5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from 
a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a 
deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general 
population is < 6.5x10−4. We also show that blood B cell lines and myeloid cell subsets from the patients do 
not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7. The patients’ blood plasmacytoid 
dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked 
recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 
1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I 
IFN immunity against SARS-CoV-2 in the respiratory tract. 
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inborn errors of autosomal genes controlling TLR3- and 
IRF7-dependent type I interferon (IFN) immunity (8). These 
disorders were found in 23 men and women aged 17 to 77 
years (mean: 48 years). Remarkably, four unrelated patients 
aged 25 to 50 years had autosomal recessive IFNAR1 (n=2) or 
IRF7 (n=2) deficiency. These patients had no previous history 
of severe viral illness, including influenza pneumonia, imply-
ing that these genetic disorders unexpectedly show incom-
plete penetrance for critical influenza. These findings 
revealed that TLR3- and IRF7-dependent type I IFN immun-
ity is essential for host defense against SARS-CoV-2 infection 
in the respiratory tract. 

We also found pre-existing neutralizing auto-Abs against 
type I IFN in at least 10% of the patients from this cohort (9). 
These auto-Abs were found in 101 patients, mostly men (95%), 
and older members of the cohort, which included patients 
with inborn errors, as they were aged 25 to 87 years (mean: 
65 years). These findings have been replicated in five other 
cohorts (10–15). These auto-Abs predated SARS-CoV-2 infec-
tion and were highly likely to be causal for critical COVID-19 
pneumonia, because (i) they were found in samples drawn 
before infection in some patients (9), (ii) they were found in 
about 0.3% of the general population before the age of 65 
years (9), (iii) they were absent from patients with asympto-
matic or paucisymptomatic (mild) SARS-CoV-2 infection (9), 
(iv) they were of childhood onset in patients with various dis-
orders — including autoimmune polyendocrinopathy type I 
(APS-1) — known to be at very high risk of life-threatening 
COVID-19 (16), and (v) they have been shown to underlie a 
third of adverse reactions to the live attenuated viral vaccine 
for yellow fever (17). Collectively, these studies showed that 
type I IFNs are essential for protective immunity to SARS-
CoV-2 in the respiratory tract, but are otherwise surprisingly 
redundant. Auto-Abs against type I IFNs also provide a first 
explanation for both the biased sex ratio and the higher risk 
of critical COVID-19 in patients over the age of 65 years. Here, 
we tested the hypothesis that critical and unexplained 
COVID-19 pneumonia in men may be due to rare variants on 
the X- chromosome. 

RESULTS 
Enrichment for very rare TLR7 non-synonymous 

variants in male patients 
We tested the hypothesis of genetic homogeneity for X-

linked recessive disorders in male individuals with critical 
COVID-19 pneumonia (hereafter referred to as “patients”, see 
Materials and Methods). We analyzed an international cohort 
of 1,202 unrelated male patients aged 6 months to 99 years 
(mean: 52.9 years) that possessed no known inborn errors of 
TLR3- and IRF7-dependent type I IFN immunity (8) and 
without neutralizing auto-Abs against type I IFNs (9) (re-
ported in an accompanying paper (79)) (Table S1). We also 
analyzed 331 asymptomatic or paucisymptomatic infected 

male subjects aged 1.3 to 102 years (mean: 38.7 years), with 
positive results for PCR and/or serological screening for 
SARS-CoV-2 infection (hereafter referred to as “controls”) 
(Table S1). We sequenced the exomes (n=1,035) or genomes 
(n=498) of these patients and controls. We selected in-frame 
and out-of-frame non-synonymous variants of protein-coding 
exons that are very rare, that is, with a minor allele frequency 
(MAF) below 10−4 in the full gnomAD database (v2.1.1) con-
taining sequences from both male and female individuals. We 
compared the proportions of patients and controls carrying 
at least one qualifying variant, by Firth bias-corrected logistic 
regression adjusted for age and ethnicity (18) (Fig. S1A). We 
found non-synonymous variants in at least five patients for 
226 of 731 genes on the X chromosome, resulting in a Bonfer-
roni-corrected significance threshold of 2.2x10−4 (Data file 
S1). TLR7 was the highest ranked of these genes (uncorrected 
P-value = 3.5×10−5) and the only gene that remained signifi-
cant after correction for multiple testing (corrected P-value 
=7.8×10−3), with 21 unrelated patients carrying one very rare 
(n=4 patients), two very rare (n=1 patient), or one private 
(n=16 patients) non-synonymous variant (Fig. 1A, Table S2). 
One variant (L988S) was recurrent, found in three patients, 
including a patient carrying two very rare variants 
(M854I;L988S). No such variants were found in the controls. 
The same analysis performed on very rare (MAF<10−4) synon-
ymous TLR7 variants showed no enrichment in patients (one 
carrier) relative to controls (three carriers). 

Human TLR7 is an endosomal receptor of ribonucleic ac-
ids expressed by B cells and myeloid subsets (19–23), the stim-
ulation of which in plasmacytoid dendritic cells (pDCs) 
results in the production of large amounts of type I IFN (24–
26). We observed no significant enrichment for coding non-
synonymous variants of the X-linked gene TLR8 (P-value = 
0.68, Table S2), the product of which, TLR8, is endosomal and 
can be stimulated by some synthetic TLR7 agonists, with an 
expression pattern and signaling pathway overlapping those 
of TLR7 (27, 28). Unlike TLR7, TLR8 is expressed on granulo-
cytes but not on pDCs, possibly accounting for its gain-of-
function mutations underlying a phenotype different from 
type I interferonopathies (29–31). Overall, we found an en-
richment in very rare or private non-synonymous TLR7 vari-
ants among the male patients with critical COVID-19 
pneumonia (n=21, 1.7%) of our cohort (n=1,202), including 
one man over the age of 60 years. 

The TLR7 mutant alleles of 16 of the 21 unrelated pa-
tients with critical COVID-19 pneumonia are biochemi-
cally deleterious 

The 21 unrelated patients carried 20 different TLR7 al-
leles. We expressed the 20 TLR7 mutant proteins in human 
embryonic kidney (HEK) 293T cells, which have no endoge-
nous TLR7 and TLR8 expression (32), by transient transfec-
tion with the corresponding cDNAs. Immunoblotting of 
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protein extracts with a TLR7-specific mAb showed an absence 
of TLR7 protein for p.N158Tfs*11 and p.L227fs* and the pres-
ence of truncated proteins for K684* and F670Lfs*8 (Fig. 1B). 
The other mutant TLR7 proteins were produced in normal 
amounts (Fig. 1B). We tested their function by cotransfection 
with an NF-κB-specific luciferase reporter. We measured lu-
ciferase activity upon stimulation with R848, an agonist of 
both TLR7 and TLR8 (Fig. 1C). Twelve of the 20 alleles were 
loss-of-function (LOF) (including L988S in two patients, and 
M854I;L988S in another), three (p.L372M, p.I657T and 
p.P715S) were hypomorphic (activity < 25%), and the remain-
ing five were neutral (Fig. 1C, Data file S2). Similar results 
were obtained with imiquimod and CL264, two TLR7-specific 
agonists (Fig. S1B, S1C). We also tested eight other private 
(p.S301P, p.Q710Rfs*18, p.V795F), very rare (MAF <10−4; 
p.A288V) or rare (MAF between 10−4 and 10−2; p.V219I, 
p.A448V, p.R920K, p.A1032T) TLR7 variants previously re-
ported in patients with critical COVID-19 (33, 34). These var-
iants were expressed as truncated or full-length proteins (Fig. 
S1D). The proteins encoded by the three private variants were 
found to be LOF, that encoded by the very rare variant 
(p.A288V) was hypomorphic, and those encoded by the four 
rare variants were neutral (Fig. 1C, Fig. S1B). Collectively, 
these findings suggest that 16 of the 21 patients in our cohort 
(Table 1), as well as only 6 of the previously reported 12 pa-
tients carry deleterious TLR7 variants. 

The cumulative MAF of deleterious TLR7 alleles is < 
6.5x10−4 

We also investigated the production and function of all 
100 remaining non-synonymous TLR7 variants identified in 
the general population (141,456 individuals in gnomAD v2.1) 
that had been reported in men or had a general MAF > 10−5 
(Fig. 1D and Fig. S1E, Data file S2). In total, 96 of these vari-
ants were missense and three were in-frame small deletions; 
10 were weakly expressed, whereas the others had normal lev-
els of expression (Fig. S1F, Data file S2). One variant was a 
small deletion creating a frameshift found in one man and 
resulting in an absence of protein production (Fig. S1F, Data 
file S2). Seven of the 100 variants were LOF and 15 were hy-
pomorphic (< 25% activity) (Data file S2). There were, thus, 
24 deleterious TLR7 variants, including the L988S and A288V 
variants found in four patients with critical COVID-19 pneu-
monia. Each of these 24 deleterious variants had an individ-
ual MAF < 1.3x10−4 in men and their cumulative MAF in men 
was 6.5 x10−4 (Data file S2, Table S3). The cumulative MAF of 
strictly LOF TLR7 alleles (excluding hypomorphic alleles) in 
men is about 2.2 x10−4 (Data file S2). Overall, we found 12 LOF 
and three hypomorphic TLR7 alleles in 16 unrelated men with 
critical COVID-19 pneumonia, whereas deleterious alleles 
were not found in men with asymptomatic or paucisympto-
matic infection. Moreover, deleterious TLR7 alleles in the 
general population had individual and cumulative MAF 

values in men of < 1.3x10−4 and < 6.5x10−4, respectively (Fig. 
1E, Data file S2). The rarity of TLR7 deficiency in the general 
population is consistent with TLR7 deficiency underlying 
critical COVID-19. Collectively, these findings suggest that X-
linked recessive (XR) TLR7 deficiency is a genetic etiology of 
life-threatening COVID-19 pneumonia in men. 

High clinical penetrance of inherited TLR7 defi-
ciency in the patients’ families 

The 16 patients were of three major ethnic origins, as con-
firmed by principal component analysis (PCA) of their exo-
mes or genomes (35), and they were resident in seven 
countries (France n=2, Spain n=3, Italy n=3, Turkey n=2, 
Sweden n=1, Iran n=4, Colombia n=1) (Fig. 2A, Fig. 2C, Fig. 
S1, Table 1, Data file S3). The patients were hospitalized for 
critical COVID-19 between March 2020 and June 2021. Blood 
samples (diluted 1/10) from these 16 patients contained no 
auto-Abs neutralizing 10 ng/mL IFN-α2 and/or -ω (9) (79). 
The patients were aged 7 to 71 years and their mean age was 
lower than that of the total cohort (mean age of 34.4 years, 
versus 52.9 years for the total cohort, in which age ranged 
from 0.5 to 99 years). TLR7-deficient patients accounted for 
about 1.8% of the patients below the age of 60 years (15 pa-
tients) and 1.3% of the entire cohort (16 patients). Two pa-
tients died and 14 survived (Fig. 2A, Table 1). Sanger 
sequencing of the TLR7 locus in the relatives of these patients 
identified the deleterious alleles in 16 heterozygous women 
from eleven families and seven hemizygous men from seven 
families (Fig. 2A). Based on the ten DNA samples available 
from the patients’ mothers, only one of the TLR7 variants 
(L372M) was de novo in the index case. Five of the seven hem-
izygous relatives of the index cases had antibodies against 
SARS-CoV-2 (Fig. 2A, Data file S3). One 29-year-old adult 
(Kindred J, P11) was hospitalized for critical pneumonia, and 
another 27-year-old adult (L.II.3) was hospitalized for severe 
pneumonia (with low-flow oxygen (<6L/min)). The remain-
ing three were two five-year-old boys, one of whom had been 
hospitalized for moderate COVID-19 pneumonia (without ox-
ygen therapy) (D.II.2), the other having no relevant clinical 
history (M.II.2), and one 38-year-old adult with no relevant 
clinical history (E.II.4) (Data file S3). The other two male car-
riers did not report SARS-CoV-2 infection and had negative 
serological results for antibodies against the SARS-CoV-2 S 
and N proteins. 

Inherited TLR7 deficiency in patients with severe 
COVID-19 pneumonia 

Given these results, we also analyzed 262 other, unrelated 
male patients with severe (but not critical) COVID-19 pneu-
monia (mean age: 51.0 years). We identified a new private 
LOF variant (p.N75H) in two male patients from two Turkish 
families (P18 and P19), aged 12 and 7 years, respectively, who 
were subsequently found to be fourth-degree relatives (Fig. 
1B, 1C, 1D, Fig. 2B, Fig. S1B, Data file S2, Data file S3). Their 
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mothers are heterozygous for this variant. The clinical pene-
trance of critical COVID-19 in men is therefore high, but not 
complete, and TLR7 deficiency can also underlie severe 
COVID-19. The absence of biochemically deleterious TLR8 
variants in our cohort of patients with critical COVID-19 (Fig. 
S2) and its lack of expression on pDCs suggest that TLR8 is 
not a modifier of the SARS-CoV-2-related clinical phenotype 
of TLR7 deficiency, although it is adjacent to TLR7 on the X 
chromosome and can be stimulated by overlapping mole-
cules. Perhaps more relevant to the understanding of the in-
complete penetrance is the age of the patients. Of the 23 male 
patients carrying deleterious alleles of TLR7 infected with 
SARS-CoV-2, the 20 patients who developed severe (n=3) or 
critical (n=17) COVID-19 were aged 7-71 years (mean: 32.4 
years) whereas the three patients who developed asympto-
matic, mild, or moderate infection were younger: 5, 5, and 38 
years (mean: 16 years). Blood pDC counts decrease with age 
(36–38), and this may contribute to the apparent increase in 
penetrance with age. In addition, a VirScan study of the se-
rum samples of five index cases and three TLR7 hemizygous 
relatives revealed prior infection with diverse viruses (Fig. 
S3). None had previously been hospitalized for a severe viral 
illness, including influenza pneumonia. This cohort of pa-
tients thus suggests that TLR7 deficiency does not underlie 
severe disease caused by common viral infections other than 
SARS-CoV-2, or if so, with lower penetrance. 

Deleterious TLR7 alleles abolish B cell responses to 
TLR7 agonists 

As a first approach to testing the impact of deleterious 
TLR7 alleles in the patients’ cells, we tested Epstein-Barr vi-
rus-transformed B cell lines (EBV-B cells) from healthy con-
trols and patients carrying the hemizygous p.K684* (P12) or 
p.H781L (P14) variants. The endogenous expression of the 
p.H781L TLR7 protein was normal, whereas p.K684* gener-
ated a truncated protein (Fig. 2D). In response to agonists of 
TLR7 (imiquimod) or TLR7 plus TLR8 (R848), the EBV-B cell 
lines carrying these two mutations failed to produce TNF 
(Fig. 2E, Fig. S4A, S4B). The lentiviral transduction of these 
TLR7-deficient EBV-B cells (from P12 and P14) with a WT 
TLR7 cDNA was unsuccessful, despite numerous attempts, 
and this was also the case for control EBV-B cells, perhaps 
because the overproduction of TLR7 is toxic in B cells (39). 
Consistent with this view, we were able to express this cDNA 
in IRAK4- or MyD88-deficient EBV-B cells. We therefore in-
vestigated whether the addition of an IRAK4 inhibitor 
(PF06650833) would permit the expression of WT TLR7 in 
control and TLR7-mutated EBV-B cells. This approach was 
successful, and WT TLR7 expression restored responses to 
TLR7 agonists (after removal of the inhibitor) (Fig. 2F, Fig. 
S4C). Hemizygosity for LOF TLR7 alleles thus abolished re-
sponses to TLR7 stimulation in EBV-B cells, a phenotype that 
was rescued by WT TLR7 expression. Collectively, these 

findings further suggest that XR TLR7 deficiency is a genetic 
etiology of severe/critical COVID-19 pneumonia. 

The TLR7-mutated patients’ myeloid cells, including 
pDCs, do not respond to TLR7 agonists 

Human TLR7 is known to be expressed and functional 
only in leukocyte subsets: plasmacytoid and classical den-
dritic cells (pDCs and mDCs), monocytes (classical, interme-
diate, and non-classical), and B cells (27, 32, 40). TLR8 is 
expressed in mDCs but not pDCs, monocytes but not B cells, 
and neutrophils (unlike TLR7) (27, 32, 40). Neither TLR7 nor 
TLR8 mRNAs have been detected in the lung or pulmonary 
epithelial cells (41). Deep immunophenotyping by CyTOF in 
seven patients with TLR7 deficiency revealed no major abnor-
malities in 18 peripheral blood leukocyte subsets, including 
pDCs, mDCs, monocytes, and B cells (Fig. 3A, Fig. S5A). We 
previously reported inherited IRF7 deficiency in a child with 
critical influenza pneumonia (5) and two unrelated adults 
with critical COVID-19 pneumonia (8). This defect disrupts 
the amplification of type I IFNs in all cell types, including 
pDCs, which are normally the main producers of type I IFN 
upon blood cell stimulation with TLR7 agonists or viruses, 
due to their constitutive expression of IRF7 (27, 42–44). We 
hypothesized that TLR7 deficiency in pDCs impairs the pro-
duction of type I IFN by these cells in response to ssRNA. We 
confirmed that TLR7 was expressed on pDCs, and that TLR8 
was not (Fig. 3B, S5B, S5C). We measured the production of 
type I IFNs by purified leukocyte subsets (pDCs, mDCs, mon-
ocytes, B cells, T cells), in response to TLR7, TLR8 and TLR9 
agonists (Fig. 3C, Fig. S5D). We confirmed that pDCs pro-
duced 100-1,000 times more type I IFN per cell than other 
leukocyte subsets upon TLR7 stimulation (Fig. 3C, Fig. S5D). 
We purified pDCs from P8 and P14 and analyzed their pro-
duction of type I IFNs in response to CL264 and class C CpG 
oligonucleotide (CpG-c), relative to that of pDCs from healthy 
relatives, using a cytometric bead array (CBA) (Fig. 3D). pDCs 
from P8 and P14 did not produce type I IFNs (or IL-6) upon 
stimulation with a TLR7 agonist, whereas they responded to 
a TLR9 agonist (Fig. 3D). Moreover, agonist-induced up-reg-
ulation of PD-L1 and CD80 defines the maturation of pDCs 
into the S1 (PD-L1high/CD80low), S2 (PD-L1high/CD80high), and S3 
(PD-L1low/CD80high) subsets (45). This maturation was not ob-
served in the pDCs of P8 and P14, but was detected in the 
pDCs of healthy relatives and controls (Fig. 3E, Fig. S5E). 
Thus, pDCs from patients with TLR7 mutations do not re-
spond to TLR7 agonists in terms of maturation into special-
ized subsets and type I IFN production. 

The TLR7-deficient patients’ pDCs respond poorly to 
SARS-CoV-2 

A plausible mechanism accounting for the severity of 
COVID-19 in TLR7-deficient patients is the impairment of 
type I IFN production by pDCs upon stimulation with SARS-
CoV-2, which can enter these cells, but cannot replicate 
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productively within them (45, 46). Indeed, we previously 
showed that the activation of human pDCs by SARS-CoV-2 
depends on IRAK4 and UNC-93B, but not TLR3 (45). We 
tested the hypothesis that TLR7 is an essential pDC sensor of 
SARS-CoV-2, upstream from IRAK4 and UNC-93B, by infect-
ing pDCs and pDC-depleted leukocytes from healthy controls 
and TLR7-deficient patients with SARS-CoV-2 for 24 hours. 
Control pDC-depleted leukocytes infected with SARS-CoV-2 
displayed no significant up- or down-regulation of gene ex-
pression (Fig. S6A). By contrast, transcriptomic analysis 
showed a strong up-regulation of the type I IFN transcrip-
tional module in pDCs from healthy controls, which was 
greatly reduced in pDCs from TLR7-deficient patients (Fig. 
4A). Induction of the 17 type I IFN genes in pDCs from TLR7-
deficient patients was 10 to 100 times weaker than that in 
pDCs from healthy individuals (Fig. 4B, S6B). We also ana-
lyzed the functional specialization of pDC subsets (S1-, S2-, 
and S3-pDC subsets) in response to SARS-CoV-2 activation 
(45, 47). pDCs from P14 cultured with SARS-CoV-2 for 24 
hours displayed abnormally low levels of maturation into the 
S1-subset —the pDC subset principally responsible for IFN-α 
production upon SARS-CoV-2 infection (Fig. S6C). Finally, we 
evaluated the amount of type I IFNs secreted by SARS-CoV-
2-infected pDCs. All 13 individual IFN-α forms were produced 
in significantly smaller amounts by TLR7-deficient pDCs than 
by control pDCs (Fig. 4C, S6D). However, IFN-α production 
by TLR7-deficient pDCs upon SARS-CoV-2 infection was im-
paired, but not entirely abolished, as in UNC-93B- or IRF7-
deficient pDCs (8, 45), implying that there are also TLR7-
independent sensors of SARS-CoV-2 in pDCs and suggesting 
that TLR9 is involved. The TLR7-deficient pDCs’ normal re-
sponse to TLR9 agonists (Fig. 3D, 4A, 4B, S6D) is consistent 
with this hypothesis, while also suggesting that genetic or ep-
igenetic variations of TLR9 responses may contribute to the 
apparently age-dependent penetrance of TLR7 deficiency. 
Thus, SARS-CoV-2 triggers type I IFN induction in pDCs in a 
manner that is dependent on TLR7, but not exclusively so. As 
pDCs are normally the main leukocytes producing type I IFN 
in such conditions, and type I IFN is essential for protective 
immunity to SARS-CoV-2 (8, 9), these findings suggest that 
XR TLR7 deficiency underlies critical or severe COVID-19 
pneumonia by disrupting TLR7-and pDC-dependent type I 
IFN production. 

DISCUSSION 
We report XR TLR7 deficiency as a genetic etiology of se-

vere/critical COVID-19 pneumonia in 20 unrelated male pa-
tients, aged 7 to 71 years, from seven countries. Only one of 
these 20 patients (5%) was older than 60 years, consistent 
with our previous observation that only five of 23 patients 
(21.7%) with inborn errors of TLR3-dependent type I IFN im-
munity were older than 60 years (8). This suggests that these 
genetic defects are mostly found in the youngest patients. 

This contrasts with the situation for auto-Abs against type I 
IFNs, which are found mostly in patients over the age of 60 
years (8, 9) (79). Importantly, patients with these auto-Abs do 
not overlap with those bearing inborn errors of TLR3- or 
TLR7-dependent type I IFNs. TLR7-deficient patients ac-
counted for about 1.8% of the unrelated male patients with 
critical COVID-19 pneumonia below the age of 60 years in our 
cohort and accounted for 1.3% of the total cohort. This pro-
portion remained around the same when severe COVID-19 
pneumonia was also taken into account (1.7% males below 60 
years; 1.2% of all the male patients in the total cohort). We 
also found that six of the 12 previously reported patients with 
a TLR7 variant had TLR7 deficiency (33, 34). It would be in-
teresting to test experimentally the undisclosed TLR7 vari-
ants reported to be enriched in another study (48). Our 
discovery provides an explanation for the higher risk of se-
vere and critical disease in men than in women under the age 
of 60 years, complementing our previous observation of a 
much higher frequency of neutralizing auto-Abs against type 
I IFNs in men than in women with critical COVID-19 pneu-
monia for patients over the age of 60 years (9). 

Previous reports of patients with critical COVID-19 pneu-
monia due to inborn errors of TLR3-dependent type I IFN 
immunity (8), including autosomal recessive IRF7 or IFNAR1 
deficiency (5, 6), or due to auto-Abs neutralizing type I IFNs 
(9, 11–14, 16, 17), strongly suggest that critical disease in TLR7-
deficient patients is a consequence of impaired type I IFN 
production upon SARS-CoV-2 infection. The absence of bio-
chemically deleterious X-linked TLR8 variants in our cohort 
of patients suggests that TLR8 is not essential for host de-
fense against SARS-CoV-2. This is consistent with the modest 
capacity of TLR8 to induce type I IFN and its lack of expres-
sion on pDCs (27), and with the inflammatory phenotype of 
TLR8 gain-of-function mutations, which do not underlie a 
type I interferonopathy (29–31). Patients with inherited 
IRAK4 or MyD88 deficiency, whose cells do not respond to 
the stimulation of IL-1Rs and TLRs other than TLR3, includ-
ing TLR7, have not been reported to display any severe viral 
illness over the almost 20 years since the discovery of IRAK-
4 deficiency (49–52). Moreover, UNC-93B-deficient pDCs pro-
duced normal amounts of type I IFN in response to seasonal 
influenza virus (5). This was intriguing, as strong negative se-
lection operates at the human TLR7, TLR8, and TLR9 loci (49, 
53). Our study provides an answer to this riddle, by establish-
ing that TLR7 is essential for protective immunity to SARS-
CoV-2. Patients with IRAK4, MyD88, or UNC93B deficiency 
are now predicted to be vulnerable to SARS-CoV-2 (54–56). 
Critical COVID-19 and seasonal influenza can be caused by 
inborn errors of TLR3-dependent type I IFN immunity (5–8), 
but susceptibility to these infections is not allelic at the TLR7 
locus. It is, nevertheless, tempting to speculate that TLR7 
might also be essential for host defense against more virulent, 
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pandemic viruses, including both coronaviruses and influ-
enza viruses. 

Through the discovery of the essential nature of TLR7 for 
the induction of type I IFN in response to SARS-CoV-2, our 
study also reveals the essential function of human pDCs in 
host defense. The constitutively high levels of IRF7 in these 
cells make them the most potent producers of type I IFN in 
the blood, and perhaps in the entire human body, and this 
has long suggested a possible key role in antiviral immunity 
(25). However, the essential and redundant roles of this leu-
kocyte subset have yet to be determined, in the absence of 
human pDC-specific deficiencies causally underlying a clini-
cal phenotype. It has long been suspected, but never proved, 
that pDCs are essential for host defense in natural conditions 
(26, 57–59). Inherited IRF7 deficiency, which underlies criti-
cal influenza or COVID-19 pneumonia, disrupts the produc-
tion of type I IFNs not only by pDCs (5, 8), but also by all 
other cell types, including pulmonary epithelial cells (5). Like-
wise, patients with GATA2 deficiency, who are prone to criti-
cal influenza (60), lack pDCs, but these patients also lack 
many other blood cell subsets (61–64). Inherited IFNAR1 de-
ficiency underlies critical COVID-19 probably due to its broad 
cellular impact (5, 6, 8). By contrast, inborn errors of the 
TLR3 pathway underlie critical influenza or COVID-19 pneu-
monia by impairing the production of type I IFNs by cells 
other than pDCs, such as pulmonary epithelial cells (5–8, 65). 
Our study indicates that pulmonary epithelial cells are not 
sufficient for host defense against SARS-CoV-2, as these cells 
do not express TLR7. Inborn errors of TLR7 are pathogenic 
by impairing the production of type I IFNs by blood pDCs, 
which are unique in their production of large amounts of 
both TLR7 and IRF7 (66, 67). pDCs express other viral sen-
sors, including TLR9 (for DNA), MDA5 and RIG-I (for 
dsRNA) (68), but TLR7 deficiency impairs their capacity to 
produce large enough amounts of type I IFN in response to 
SARS-CoV-2 in the respiratory tract. Overall, by disrupting 
pDC-dependent type I IFN production, XR TLR7 deficiency 
accounts for at least 1% of cases of life-threatening COVID-19 
pneumonia in men under 60 years. 

MATERIALS AND METHODS 
Study design 
We searched for X-linked inborn errors of immunity in 

male patients with critical SARS-CoV-2 pneumonia. We 
screened our WES database of 1,202 male patients with criti-
cal SARS-CoV-2 pneumonia (‘patients’) and 331 male subjects 
with asymptomatic or paucisymptomatic infection (‘con-
trols’). We tested the association of X-linked genes with criti-
cal SARS-CoV-2 pneumonia using a Firth bias-corrected 
logistic regression model including the first five principal 
components of the PCA to account for the ethnic heterogene-
ity of the cohorts and age in years. We then tested the activity 
of TLR7 variants in transduced cell lines and of TLR7 

genotypes in hemizygous patients’ cell lines. Lastly, we tested 
the patients’ pDCs for their response to both TLR7 agonists 
and SARS-CoV-2. 

Cohort recruitment and consent 
This study included 1,202 male patients with life-threat-

ening COVID-19 pneumonia, defined as patients with pneu-
monia who developed critical disease, whether pulmonary 
with high-flow oxygen (> 6L/min) or mechanical ventilation 
(CPAP, BIPAP, intubation), septic shock, or any other type of 
organ damage requiring ICU admission. This study also in-
cluded patients with severe COVID-19 pneumonia, defined as 
hospitalized patients with pneumonia that required low-flow 
oxygen (<6L/min); moderate COVID-19 pneumonia, defined 
as patients with pneumonia but did not require oxygen ther-
apy; and mild COVID-19, defined as patients with mild upper 
respiratory symptoms but without pneumonia. Patients who 
developed Kawasaki-like syndrome were excluded. The age of 
the patients ranged from 0.5-99 years, with a mean age of 
52.9 years (SD 16.4 years). Asymptomatic or paucisympto-
matic individuals (n= 331) were recruited on the basis of pos-
itive PCR or serological tests for SARS-CoV-2 in the absence 
of symptoms. These individuals were close contacts of pa-
tients or were recruited after clinical screening. The age of 
the asymptomatic or paucisymptomatic individuals ranged 
from 1.3-102 years, with a mean age of 38.7 years (SD: 17.2 
years). 

All the enrolled subjects provided written informed con-
sent and were collected through protocols conforming to lo-
cal ethics requirements. For patients enrolled in the French 
COVID cohort (clinicaltrials.gov NCT04262921), ethics ap-
proval was obtained from the CPP IDF VI (ID RCB: 2020-
A00256-33) or the Ethics Committee of Erasme Hospital 
(P2020/203). For subjects enrolled in the COV-Contact study 
(clinicaltrials.gov NCT04259892), ethics approval was ob-
tained from the CPP IDF VI (ID RCB: 2020-A00280-39). For 
patients enrolled in the Italian cohort, ethics approval was 
obtained from the University of Milano-Bicocca School of 
Medicine, San Gerardo Hospital, Monza – Ethics Committee 
of the National Institute of Infectious Diseases Lazzaro Spal-
lanzani (84/2020) (Italy), and the Comitato Etico Provinciale 
(NP 4000 – Studio CORONAlab). STORM-Health care work-
ers were enrolled in the STudio OsseRvazionale sullo screen-
ing dei lavoratori ospedalieri per COVID-19 (STORM-HCW) 
study, with approval from the local IRB obtained on June 18, 
2020. Patients and relatives from San Raffaele Hospital (Mi-
lan) were enrolled in protocols COVID-BioB/Gene-COVID 
and, for additional studies, TIGET-06, which were approved 
by local ethical committee. For patients enrolled in Spain, the 
study was approved by the Committee for Ethical Research 
of the Infanta Leonor University Hospital, code 008-20, Com-
mittee for Ethical Research of the University Hospital 12 de 
Octubre, code 16/368 and the Bellvitge University Hospital 
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code PR127/20, the University Hospital of Gran Canaria Dr. 
Negrín code 2020-200-1 COVID-19 and the Vall d’Hebron 
University Hospital, code PR(AMI)388/2016. Anonymized 
samples were sequenced at the NIAID through 
USUHS/TAGC under non-human subject research condi-
tions; no additional IRB consent was required at the NIH. For 
patients enrolled in the Swedish COVID cohort, ethics ap-
proval was obtained from the Swedish Ethical Review Agency 
(2020-01911 05). 

Next-generation sequencing 
Genomic DNA was extracted from whole blood. For the 

1,533 patients included, the whole exome (n=1035) or whole 
genome (n=498) was sequenced at several sequencing cen-
ters, including the Genomics Core Facility of the Imagine In-
stitute (Paris, France), the Yale Center for Genome Analysis 
(USA), the New-York Genome Center (NY, USA), and the 
American Genome Center (TAGC, USUHS, Bethesda, USA), 
and the Genomics Division-ITER of the Canarian Health Sys-
tem sequencing hub (Canary Islands, Spain). 

For WES, libraries were generated with the Twist Biosci-
ence kit (Twist Human Core Exome Kit), the xGen Exome Re-
search Panel from Integrated DNA Technologies (IDT xGen), 
the Agilent SureSelect V7 kit or the SeqCap EZ MedExome kit 
from Roche, and the Nextera Flex for Enrichment-Exome kit 
(Illumina). Massively parallel sequencing was performed on 
a HiSeq4000 or NovaSeq6000 system (Illumina). For WES 
analysis performed at CNAG Barcelona, Spain, capture was 
performed with the SeqCap EZ Human Exome Kit v3.0 
(Roche Nimblegen, USA) and 100-bp paired-end read se-
quences were obtained on a HiSeq 2000-4000 platform (Illu-
mina, Inc. USA). For the OSR Italian cohort, WES was 
performed with the Agilent SureSelect V7 kit on a No-
vaSeq6000 system (Illumina). 

For WGS on patients of the Italian cohort (TAGC), ge-
nomic DNA samples were dispensed into the wells of a Co-
varis 96 microTUBE plate (1,000 ng per well) and sheared 
with the Covaris LE220 Focused-ultrasonicator, at settings 
targeting a peak size of 410 bp (t:78; Duty:18; PIP:450; 200 
cycles). Sequencing libraries were generated from frag-
mented DNA with the Illumina TruSeq DNA PCR-Free HT 
Library Preparation Kit, with minor modifications for auto-
mation (Hamilton STAR Liquid Handling System), with IDT 
for Illumina TruSeq DNA UD Index (96 indices, 96 samples) 
adapters. Library size distribution was assessed and the ab-
sence of free adapters or adapter dimers was checked by au-
tomated capillary gel electrophoresis (Advanced Analytical 
Fragment Analyzer). Library concentration was determined 
by qPCR with the KAPA qPCR Quantification Kit (Roche 
Light Cycler 480 Instrument II). Sequencing libraries were 
normalized and combined as 24-plex pools and quantified as 
above, before dilution to 2.9 nM and sequencing on an Illu-
mina NovaSeq 6000 with the S4 Reagent Kit (300 cycles) and 

151+8+8+151 cycle run parameters. Primary sequencing data 
were demultiplexed with the Illumina HAS2.2 pipeline and 
sample-level quality control was performed for base quality, 
coverage, duplicates and contamination (FREEMIX < 0.05 by 
VerifyBamID). For patients enrolled in the Swedish COVID 
cohort, sequencing was performed at the Clinical Genomics 
Stockholm unit of the SciLifeLab (Stockholm, Sweden). 

We used the Genome Analysis Software Kit (GATK) (ver-
sion 3.4-46 or 4) best-practice pipeline to analyze our WES 
data (69). We aligned the reads obtained with the human ref-
erence genome (hg19), using the maximum exact matches al-
gorithm in the Burrows–Wheeler Aligner (BWA) (70). PCR 
duplicates were removed with Picard tools 
(picard.sourceforge.net). The GATK base quality score recali-
brator was applied to correct sequencing artifacts. Genotyp-
ing was performed with GATK GenotypeGVCFs in the 
interval intersecting all the capture kits ± 50 bp. Sample gen-
otypes with a coverage < 8X, a genotype quality (GQ) < 20, or 
a ratio of reads for the less covered allele (reference or variant 
allele) over the total number of reads covering the position 
(minor read ratio, MRR) < 20% were filtered out. We filtered 
out variant sites (i) with a call rate <50% in gnomAD genomes 
and exomes, (ii) a non-PASS filter in the gnomAD database, 
(iii) falling in low-complexity or decoy regions, (iv) that were 
multi-allelic with more than four alleles, (v) with more than 
20% missing genotypes in our cohort, and (vi) spanning more 
than 20 nucleotides. Variant effects were predicted with the 
Ensembl Variant Effect Predictor (VEP) (71) and the Ensembl 
GRCh37.75 reference database, retaining the most deleterious 
annotation obtained from Ensembl canonical transcripts 
overlapping with RefSeq transcripts. 

Statistical analysis 
We performed an enrichment analysis focusing on X chro-

mosome genes on our cohort of 1,202 male patients with life-
threatening COVID-19 pneumonia without known inborn er-
rors of TLR3- and IRF7-dependent type I IFN immunity (8) 
and without neutralizing auto-Abs against type I IFNs (9), 
and 331 male individuals with asymptomatic or paucisymp-
tomatic infection (Table S1). We considered variants that 
were predicted to be loss-of-function or missense, with a MAF 
below 0.0001 (gnomAD v2.1.1). We compared the proportion 
of patients and controls carrying at least one non-synony-
mous using the Firth bias-corrected logistic likelihood ratio 
test implemented in EPACTS 
(https://genome.sph.umich.edu/wiki/EPACTS) extended to 
gene based enrichment analysis. In Firth’s regression, a pen-
alty term is placed on the standard maximum likelihood func-
tion used to estimate parameters of a logistic regression 
model (18). Firth’s can handle genes with no carriers among 
cases or controls. With no covariates, this corresponds to add-
ing 0.5 in every cell of a 2x2 table of allele counts versus case-
control status. We accounted for the ethnic heterogeneity of 
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the cohorts by including the first five principal components 
of the PCA in the Firth’s logistic regression model. Analyses 
were also adjusted for age in years. We checked that our ad-
justed burden test was well-calibrated by also performing an 
analysis of enrichment in rare (MAF < 0.0001) synonymous 
variants. PCA was performed with Plink v1.9 software on 
whole-exome and whole-genome sequencing data, with the 
1000 Genomes (1kG) Project phase 3 public database as a ref-
erence, using 18,917 exonic variants with a minor allele fre-
quency > 0.01 and a call rate > 0.99. 

Cell culture 
EBV-B cell lines derived from the patients were grown in 

complete RPMI 1640 (Life Technologies) supplemented with 
10% heat-inactivated fetal bovine serum (FBS). HEK293T 
cells, derived from the human embryonic kidney 293 cell line, 
which expresses a mutant version of the SV40 large T anti-
gen, were grown in complete DMEM (Life Technologies) sup-
plemented with 10% FBS. Cells were incubated at 37°C in the 
presence of 5% CO2. 

Expression vectors and transfection experiments 
All the TLR7 variants in our analysis were generated by 

site-directed mutagenesis (Data file S4). The WT or variant 
alleles were re-introduced into a Myc-DDK-pCMV6 vector 
(Origene). HEK293T cells, which have no endogenous TLR7 
or TLR8 expression, were transfected with the Myc-DDK-
pCMV6 vector, empty or containing the WT or a variant al-
lele, in the presence of X-tremeGENE 9 DNA Transfection Re-
agent (Sigma-Aldrich), according to the manufacturer’s 
instructions. 

Western blotting 
For whole-cell extracts, the cells were lysed by incubation 

in the following buffer (50 mM Tris-HCl, pH 8.0, 150 mM 
NaCl, 1% NP40), supplemented with a mixture of protease in-
hibitors (Sigma-Aldrich), for 30 min at 4°C. The lysates were 
then centrifuged at 21,000 x g for 20 min at 4°C. The super-
natants were processed directly for Western blotting. West-
ern blotting was performed on 10 μg of total extract from 
transfected HEK293T cells, with monoclonal antibodies spe-
cific for the leucine-rich repeats to the N terminus within the 
human TLR7 protein (Cell Signaling Technology; clone, D7), 
or for amino-acid 1,000 to the C terminus with the human 
TLR7 protein (Abcam; clone, EPR2088(2)). 

Luciferase reporter assay 
HEK293T cells, which have no endogenous TLR7 expres-

sion, were transfected with the pCMV6 vector bearing wild-
type or variant TLR7 (50 ng), the reporter construct pGL4.32 
(100 ng), and an expression vector for Renilla luciferase (10 
ng), with the X-tremeGENE 9 DNA Transfection Reagent kit 
(Sigma-Aldrich). The pGL4.32 [luc2P/NF-κB-RE/Hygo] 
(Promega) reporter vector contains five copies of the NF-κB-
responsive element (NF-κB-RE) linked to the luciferase re-
porter gene luc2P. After 24 hours, the transfected cells were 

left unstimulated or were stimulated with 1 μg/mL R848 
(Resquimod), for activation via TLR7/8 (Invivogen), or 5 
μg/mL R837 (Imiquimod) (Invivogen), or 5 μg/mL CL264 
(Invivogen), human TLR7-specific agonists, for 24 hours. Rel-
ative luciferase activity was then determined by normalizing 
the values against the firefly:Renilla luciferase signal ratio. 

RNA extraction and reverse transcription-quantita-
tive PCR (RT-qPCR) 

Total RNA was extracted with the RNeasy Mini Kit (Qi-
agen), according to the manufacturer’s instructions. Reverse 
transcription was performed on 1 μg of RNA with random 
primers and the SuperScript® III reverse transcriptase (Invi-
trogen), according to the manufacturer’s protocol. Quantita-
tive PCR was then performed with the TaqMan Fast 
Universal PCR Master Mix (2X) and the FAM-MGB TaqMan 
TNF exons 1-2 (Hs99999-43_m1) probes. The VIC-TAMRA 
probe for GUSB (Applied Biosystems, Cat: 4310888E) was 
used as an endogenous control. Real-time PCR amplification 
was monitored with the 7500 Fast Real-Time PCR System 
(Applied Biosystems). Relative expression levels were deter-
mined according to the ΔCt method. 

ELISA analysis of TNF production in EBV-B cells 
ELISA was performed as previously described (50). We 

suspended 1x106 EBV-B cells per well in RPMI 1640 supple-
mented with 10% FBS. The cells were activated by incubation 
with 1 μg/mL R848, and 5 μg/mL imiquimod for 24 hours. 
The supernatants were harvested after 24 hours of activation. 
ELISA determinations of TNF in cell culture supernatants 
were performed with a kit (Thermo Fisher Scientific), accord-
ing to the manufacturer’s instructions. 

Stable transduction 
The WT coding sequence of TLR7 was inserted into 

pTRIP-CMV-puro-2A. For lentivirus production, HEK293T 
cells were transfected with 1.6 μg pTRIP-CMV-puro-2A-TLR7-
WT (or Mutant: K684*), 0.2 μg pCMV-VSV-G (Addgene), 0.2 
μg pHXB2 (NIH-AIDS Reagent 22 Program) and 1 μg psPAX2 
(Addgene), with X-treme gene 9 (Roche), according to the 
manufacturer's instructions. Supernatants were harvested af-
ter 24 hours and 8 μg/mL protamine sulfate was added. The 
lentiviral suspension obtained was used to transduce 2x105 
EBV-B cells by spinoculation at 1,200 x g for 2 hours. The 
transduced cells were selected by incubation on medium con-
taining 1 μg/mL puromycin for two days. The cells were then 
selected by incubation for a further two days on medium con-
taining 2 μg/mL puromycin. During viral transduction, the 
cells were cultured with 5 μM IRAK4 inhibitor (PF06650833) 
(Bio-techne) to prevent cell death due to the overproduction 
of TLR7. Selected transduced cells were then stimulated with 
1 μg/mL R848 or 5 μg/mL imiquimod for 24 hours without 
IRAK4 inhibitor. The supernatants were harvested after 24 
hours of activation. ELISA determinations of TNF in cell cul-
ture supernatants were performed with a kit (Thermo Fisher 
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Scientific), according to the manufacturer’s instructions. 
VirScan analysis 
Patient serum was analyzed by VirScan in two independ-

ent experiments as previously described (78). Briefly, an oli-
gonucleotide library encoding 56 amino acid peptides tiling 
across the genomes of 206 viral species was synthesized on a 
releasable DNA microarray and cloned into T7 phage. Patient 
serum containing 2 μg of IgG was added to the phage library, 
and immunoprecipitation was performed with Protein A and 
G beads. Enriched peptides were identified by PCR and Illu-
mina sequencing of the peptide cassette from the immuno-
precipitated phage. 

Deep immunophenotyping by mass cytometry (Cy-
TOF) 

CyTOF was performed on whole blood with the Maxpar 
Direct Immune Profiling Assay (Fluidigm), according to the 
manufacturer’s instructions. Cells were frozen at -80°C after 
overnight staining to eliminate dead cells, and acquisition 
was performed on a Helios machine (Fluidigm). All the sam-
ples were processed within 24 hours of sampling. Data anal-
ysis was performed with OMIQ software. Antibody 
information is listed in supplemental material (Data file S5). 

PBMC enrichment using MACS system 
Blood were collected from two healthy individuals and 

separated by the concentration gradient method with Ficoll® 
Paque Plus (Cytiva). After isolations of PBMCs, leucocyte sub-
set (T cell, B cell, monocyte, pDC, and mDC) were purified by 
negative selection using MACS beads system (Milteni Biotec). 
Cells were plated into a U-bottomed 96-well plate at a density 
of 2×104 cells/well for T cells, B cells, monocytes, pDCs, or 
mDCs in 200 μL/well RPMI-1640 with GlutaMAX supple-
mented with 10% FBS or 10×104 cells/well for whole blood 
and PBMCs. Cells were left unstimulated or stimulated with 
1μg/mL CL264, 100ng/ml TL8-506 (Invivogen), 1μg/mL R848, 
2μM CpG-c (Invivogen), or 12.5ng/ml PMA and 0.125μM iono-
mycin for 24 hours. The supernatants were harvested after 24 
hours of activation. Cytokines production were determined 
by ELISA (IFN-α - PBL Assay Science, IFN-β- PBL Assay Sci-
ence, IFN- λ1 (IL-29) - Invivogen, IFN-ω- Invitrogen or IL-8 - 
R&D SYSTEMS); according to the manufacturer’s instruc-
tions. 

Analysis for TLR7 and TLR8 expression pattern in 
peripheral blood mononuclear cells (PBMCs) by flow cy-
tometry 

Freshly thawed PBMCs from healthy donors were dis-
pensed into a V-bottomed 96-well plate at a density of 1×106 
cells/well, in 200 μL PBS/well. In brief, cells were stained by 
incubation with the LIVE/DEAD fixable blue dead-cell stain-
ing kit (Thermo Fisher Scientific, 1:800) and FcR blocking re-
agent (Miltenyi Biotec, 1:25) on ice for 15 min. For surface 
staining, cells were incubated with anti-γδTCR-BUV611 (BD 
Biosciences, 1:50), anti-CD183-BV750 (BD Biosciences, 1:20), 

and anti-CD194-BUV615 (BD Biosciences, 1:20) antibodies on 
ice for 30 min in 0.1% BSA and 0.01% sodium azide in PBS. 
They were then incubated with anti-CD141-BB515 (BD Biosci-
ences, 1:40), anti-CD57-FITC (Biolegend, 1:83), anti-TCR Vδ2-
PerCP (Biolegend, 1:166), anti-TCR Vα7.2-PerCP/Cyanine5.5 
(Biolegend, 1:40), anti-TCR Vδ1-PerCP-Vio 700 (Miltenyi Bio-
tec, 1:100), anti-CD14-Spark Blue 550 (Biolegend, 1:40), anti-
CD1c-Alexa Fluor 647 (Biolegend, 1:50), anti-CD38-APC/Fire 
810 (Biolegend, 1:30), anti-CD27-APC-H7 (BD Biosciences, 
1:50), anti-CD127-APC-R700 (BD Biosciences, 1:50), anti-
CD19-Spark NIR 685 (Biolegend, 1:83), anti-CD45RA-BUV395 
(BD Biosciences, 1:83), anti-CD16-BUV496 (BD Biosciences, 
1:166), anti-CD11b-BUV563 (BD Biosciences, 1:100), anti-
CD56-BUV737 (BD Biosciences, 1:83), anti-CD8-BUV805 (BD 
Biosciences, 1:83), anti-hMR1-BV421 (NIH tetramer facility, 
1:100), anti-CD11c-BV480 (BD Biosciences, 1:40), anti-CD45-
BV510 (Biolegend, 1:83), anti-CD33-BV570 (Biolegend, 1:83), 
anti-iNKT-BV605 (Biolegend, 1:25), anti-CD161-BV650 (BD 
Biosciences, 1:25), anti-CCR6-BV711 (Biolegend, 1:83), anti-
CCR7- BV785 (Biolegend, 1:40), anti-CD3-Pacific Blue (Bio-
legend, 1:83), anti-CD20-Pacific Orange (Life Technologies, 
1:50), anti-CD123-Super Bright 436 (Invitrogen, 1:40), anti-
CD24-PE-Alexa Fluor 610 (Life Technologies, 1:25), anti-
CD25-PE-Alexa Fluor 700 (Life Technologies, 1:25), anti-
CD294-Biotin (Invitrogen, 1:50), anti-CD209-PE/Cyanine7 
(Biolegend, 1:25), anti-CD117-PE/Dazzle 594 (Biolegend, 1:83), 
anti-HLA-DR-PE/Fire 810 (Biolegend, 1:50), and anti-CD4-
cFluorTM YG584 (Cytek, 1:83) antibodies on ice for at least 30 
min. The cells were then washed and stained by incubation 
with streptavidin-PE/Cy5 (Biolegend, 1:3000) on ice for 30 
min. The cells were then fixed and permeabilized for intra-
cellular staining with anti-TLR7-PE (Invitrogen) and anti-
TLR8-APC (Biolegend) antibodies, with the eBioscience 
Foxp3/Transcription Factor Staining Buffer Set (Invitrogen), 
according to the manufacturer’s instructions. The cells were 
then washed and acquired with a five-laser Cytek Aurora 
(Cytek) flow cytometer. Antibody clone information is added 
in a supplemental material (Data file S6). 

pDC activation 
Freshly purified pDCs were cultured in 96-well plates at a 

concentration of 5 × 105 cells per mL in the presence of me-
dium alone (RPMI 1640 Medium with GlutaMAX, 10% FBS, 
1% MEM NEAA, 1% sodium pyruvate, and 1% penicillin/strep-
tomycin), CL264 (Invivogen, 1 μg/mL), or the SARS-CoV-2 
primary strain 220_95 (45) at a multiplicity of infection 
(MOI) of 1. After 24 hours of culture, the pDC supernatant 
was collected for cytokine quantification, and the PDCs were 
collected for diversification assessment by flow cytometry. In 
some experiments, RNA was purified from the pDCs were an-
alyzed by RNA-seq (see below). 

Flow cytometry analysis for human pDCs 
For assessments of pDC diversification, cells were stained 
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with Zombie Violet fixable viability dye (Biolegend), BV711 
anti-CD123 (Biolegend, clone 6H6), PE anti-CD80 (BD, clone 
L307.4), and PerCP-efluor 710 anti-PD-L1 (eBioscience, clone 
MIH1) antibodies. Data were acquired with an LSR Fortessa 
(BD Biosciences) flow cytometer and analyzed with FlowJo 
software (Tree Star). Flow cytometry analyses were per-
formed at the flow cytometry core facility of IRSL (Paris, 
France). 

RNA-Sequencing 
We collected cells from five individuals in two families: 

one patient (P8) and two healthy controls (H.II.2, H.II.3) from 
family H, and one patient (P14) and one healthy control 
(M.I.1)) from family M. These cells were stimulated with three 
conditions: non-stimulation, SARS CoV-2, and CpG-c. Total 
RNA was extracted from pDC cells with RNeasy Micro kits 
(QIAGEN). RNA-Seq libraries were prepared with the Illu-
mina SMART-Seq® v4 PLUS Kit (TaKaRa) and sequenced on 
the Illumina NextSeq 4000 platform with single-end 75 bp 
configuration. The RNA-Seq fastq raw data were inspected 
with multiQC v1.10 (72) to ensure the high quality of data. 
The sequencing reads were mapped onto the human refer-
ence genome GRCh38 with STAR aligner v2.7 (73), and the 
mapped reads were then quantified to determine the gene-
level read counts with featureCounts V2.0.2 (74) and 
GENCODE human gene annotation GRCh38.p13 (75). The 
gene-level read counts were normalized and log2-trans-
formed by DESeq2 (76), to obtain the gene expression profile 
of all samples for differential expression analysis. The differ-
ential gene expression was analyzed by applying TMM nor-
malization and gene-wise generalized linear model 
regression with edgeR (77). The genes displaying significant 
differential expression were selected on the basis of |log2-
FoldChange| ≥ 2 and FDR ≤ 0.05. The gene-level read counts 
of IFN genes were transformed to RPKM (Reads Per Kilobase 
of transcript, per Million mapped reads) by our own scripts, 
to compare the IFN gene expression of different samples un-
der different stimulations. 

Determination of secreted inflammatory cytokines 
We measured the production, by pDCs, of IFN-α2, IL-8, 

IL-6, and IP-10, by determining the levels of these cytokines 
in culture supernatants with the BD cytometric bead array 
(CBA), according to the manufacturer’s protocol, with a limit 
of detection of 20 pg/mL. Acquisitions were performed on an 
LSR Fortessa (BD Biosciences) flow cytometer, and cytokine 
concentrations were determined with FCAP Array Software 
(BD Biosciences). 

SUPPLEMENTARY MATERIALS 
immunology.sciencemag.org/cgi/content/full/6/62/eabl4348/DC1 
- Figure S1; Ethnicity information and TLR7 allele activity 
- Figure S2; Allele activity for the TLR8 variants found in our cohort 
- Figure S3; VirScan analysis of specific anti-viral antibodies detected in patient sera 
- Figure S4; Levels of TNF induction in EBV-B cells derived from two patients with XR 

TLR7 deficiency 

- Figure S5; Analysis of peripheral blood mononuclear cells from TLR7-deficient men 
- Figure S6; Functional analysis in pDCs infected with SARS-CoV-2 
- Table S1; Characteristics of the cohort of patients with life-threatening COVID-19 

pneumonia and the control cohort of asymptomatic or paucisymptomatic 
individuals 

- Table S2; Statistical analysis of non-synonymous rare variants of TLR7 and TLR8 in 
our cohorts 

- Table S3; Summary of TLR7 variants 
- Data file S1; Selection of genes on chromosome X with 5 or more hemizygous carriers 

(Excel file). 
- Data file S2; TLR7 variant activity reported in this study, in previous studies and in 

gnomAD (Excel file). 
- Data file S3; TLR7-deficient patients with severe/critical COVID-19 in our cohort 

(clinical information, laboratory findings, and immunological findings) (Excel file). 
- Data file S4; Primer sequences for mutagenesis (Excel file). 
- Data file S5; Antibody information for CyTOF (Excel file). 
- Data file S6; Gating strategy and antibody clone information for 40 color 

immunophenotyping (Excel file). 
- Data file S7; Raw data files (Excel file). 
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Fig. 1. Enrichment in rare TLR7 deleterious alleles among men with critical COVID-19 pneumonia. (A) 
Manhattan plot showing the results of the variant enrichment test for the 190 genes of the X chromosome with at 
least 5 patients carrying non-synonymous variants. The gray line indicates the corresponding Bonferroni-
corrected significance threshold. (B) Western blot of extracts from non-transfected HEK293T cells (mock), 
HEK293T cells transfected with pCMV6 empty vector (EV), the wild-type (WT) TLR7 allele, or one of the TLR7 
variant alleles of interest. All extracts were probed with monoclonal antibodies specific for the leucine-rich repeats 
to the N terminus (N-ter) or amino-acid 1,000 to the C terminus (C-ter) within the human TLR7 protein. (C) (D) 
Luciferase assay on HEK293T cells transfected with the pGL4.32 luciferase reporter construct and an expression 
vector for Renilla luciferase together with no vector (mock), EV, WT, or TLR7 variants: (C) 21 variants found in our 
cohort and eight previously reported variants, (D) 109 variants found in male individuals from the gnomAD 
database. After 24 hours, transfected cells were left untreated or were treated by incubation with 1 μg/mL R848 
for 24 hours. These data were established from two independent experiments. The y-axis represents NF-κB 
transcriptional activity as a percentage of the WT. The x-axis indicates the alleles used for transfection. (E) 
Diagram showing the correlation between allele frequency and NF-κB activity (% of WT). The 20 variants from 21 
patients with critical SARS-CoV-2 from our cohort are shown in red, one variant from 2 patients with severe SARS-
CoV-2 from our cohort are shown in green, the eight previously reported variants are shown in blue and the 109 
variants found in the general population (allele frequency above 10−5 in men) are shown in gray. Activity of all 
LOF/hypomorphic alleles compared to WT allele were statistically significance (one-way ANOVA with Dunnett’s 
post hoc test, P < 0.01). 
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Fig. 2. X-linked recessive TLR7 deficiency in 16 kindreds. (A) Pedigrees of the 16 kindreds containing 17 
patients with life-threatening COVID-19 pneumonia (P1-17) bearing deleterious TLR7 alleles. The mutations 
are indicated above each pedigree. Solid black symbols indicate patients with critical COVID-19, and solid 
dark gray symbols indicate severe cases and solid light gray symbols indicate mild/moderate cases. The 
genotype is indicated under each symbol, with M corresponding to the mutation found in each kindred. ‘+’ 
and ‘-’ indicate the presence and absence, respectively, of antibodies against SARS-CoV-2 in the serum of 
the individual. Asymptomatic or paucisymptomatic family members hemizygous for the mutation are 
indicated by bold vertical lines. (B) Pedigree of one kindred containing two patients with severe COVID-19. 
(C) Schematic representation of TLR7. The upper part represents the genomic organization of the TLR7 
locus, with rectangles for the various exons of the gene, and exon numbers indicated within the rectangle. 
The bottom part shows the primary structure of TLR7. The N-terminal portion and the leucine-rich repeat 
containing 26 leucine residues are located in the lumen of the endosome, and TM indicates the 
transmembrane domain. The Toll/interleukin-1 (IL-1) receptor (TIR) domain is cytoplasmic. The deleterious 
mutations reported in this study are indicated. (D) TLR7 expression in unstimulated EBV-B cells from two 
patients with XR TLR7 deficiency (P12 and P14), the fathers of P12 and P14, and the mother of P12, and three 
healthy donors (Control 1 to 3), determined by Western blotting with detection with a specific TLR7 antibody. 
(E) TNF production by XR TLR7-deficient EBV-B cells from two independent experiments. Cells were either 
left untreated or were stimulated with 5 μg/mL imiquimod (gray), or 25 ng/mL PMA and 0.25 μM ionomycin 
(black) for 24 hours and TNF production were measured by ELISA. (F) TNF production in XR TLR7-deficient 
EBV-B cells re-expressing WT TLR7 from three independent experiments. EBV-B cells from a control, P12, 
P14, or an UNC-93B-deficient patient, cultured in the presence of IRAK4 inhibitor (PF06650833- 5 μM) were 
transduced with lentiviral particles that were empty or contained the WT TLR7 or mutant TLR7 cDNA. The 
cells were incubated for 24 hours without IRAK4 inhibitor and were then left untreated or were stimulated 
with 5 μg/mL imiquimod (light gray), 1 μg/mL R848 (dark gray), or 25 ng/mL PMA and 0.25 μM ionomycin 
(black) for 24 hours, and TNF production were measured by ELISA. Statistical tests were performed using 
one-way ANOVA with Dunnett’s post hoc test (*: P < 0.05, ns: not significant). 
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Fig. 3. Type I IFN responses to TLR7 agonist in TLR7-deficient pDCs and leukocytes. (A) 
Frequencies of five leukocyte subsets in whole blood, determined by CyTOF. Healthy donors (black 
rectangles), relatives not carrying deleterious TLR7 alleles (blue rectangles) and hemizygous TLR7 
variant carriers (red rectangles) are depicted. (B) TLR7 and TLR8 expression in different leukocyte 
subsets, determined by flow cytometry for the healthy control (C1). The result for another healthy 
control (C2) is shown in Figure S5C. Gating strategy for the classification in each cell subset is shown 
in Data file S6. (C) IFN-α production in purified leukocyte subsets from two healthy donors (blue or 
yellow dot) with and without stimulation with various TLR7, 8, or 9 agonists (1 μg/mL CL264, 100 
ng/mL TL8-506, 1 μg/mL R848, or 2 μM CpG-c) for 24 hours. The y-axis shows IFN-α production on a 
logarithmic scale. The red bar corresponds to pDCs. (D) pDCs isolated from healthy donors and TLR7-
deficient patients (P8, P14) were either left untreated (medium) or were stimulated with CL264 or 
CpG-c, and the production of IFN-α2 and IL-6 was assessed with CBAs on the supernatant. (E) Dotplot 
showing pDC diversification into subsets S1, S2, and S3 from magnetically sorted blood. pDCs from a 
TLR7-deficient patient (P14) and a healthy relative (M.I.1) were cultured for 24 hours with medium 
alone or with 1 μg/mL CL264 or 2 μM CpG-c. Statistical tests were performed using unpaired two-
sample t test (*: P < 0.05). 
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Fig. 4. Type I IFN responses to SARS-CoV-2 infection in TLR7-deficient pDCs. (A) pDCs isolated 
from healthy relatives and TLR7-deficient patients (P8, P14) were either left untreated or were 
infected with SARS-CoV-2 for 24 hours. RNA profiles were then determined by RNA-seq. Genes with 
expression >2.0-fold higher or lower in controls after stimulation or infection are plotted as the fold-
change in expression. (B) Induction of the type I and III IFN genes from (A) infected with SARS-CoV-
2 for 24 hours (top) or stimulated with CpG-c (bottom). (C) pDCs isolated from healthy relatives and 
TLR7-deficient patients (P8, P14) were either left untreated or were infected with SARS-CoV-2 for 24 
hours and the production of IFN-α2, IP-10, IL-6 and IL-8 was measured with CBAs on the supernatant. 
Statistical tests were performed using unpaired two-sample t test (*: P < 0.05, ****: P < 0.0001, ns: 
not significant). 
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Table 1. X-linked TLR7 deleterious variants in 16 unrelated male patients with life-threatening COVID-19  
pneumonia.  

Patient Genotype Age [years] Ethnicity Ancestry/residence Outcome 

P1 L134P/Y 45 Admixed American Paraguay/Spain Survived 

P2 N158Tfs11*/Y 60 European France Deceased 

P3 L227fs*/Y 34 Middle East Iran Survived 

P4 D244Y/Y 13 Middle East Turkey Survived 

P5 F310L/Y 39 Middle East Iran Survived 

P6 L372M 7 
Caucasian (Central 
Asia based on GME 

Variome) 
Iran Survived 

P7 I505T/Y 55 European Italy Survived 

P8 H630Y/Y 50 European Spain Survived 

P9 I657T/Y 18 European Italy Survived 

P10 F670Lfs*8 31 European Sweden Survived 

P11* F670Lfs*8 29 European Sweden Survived 

P12 K684*/Y 30 European Spain Survived 

P13 P715S/Y 40 Latino Colombia Survived 

P14 H781L/Y 13 Middle East Russia/France Survived 

P15 L988S/Y 26 Middle East Iran Deceased 

P16 L988S/Y 20 Middle East Turkey Survived 

P17 M854I;L988S/Y 71 European Italy Survived 

* P10’s brother (not included in the cohort of 1,202 critical patients with critical COVID-19 pneumonia). 
GME Variome, Greater Middle Eastern Variome Project 
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