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S U M M A R Y 

Distributed acoustic sensing (DAS) technology enables the detection of waves generated 

b y seismic e vents, generall y as uniaxial strain/strain rate time-series observed for dense, 
subsequent, portions of a Fibre Optic Cable (FOC). Despite the advantages in measurement 
density, data quality is often affected by uniaxial signal polarization, site effects and cable 
coupling, beyond the physical energy decay with distance. To better understand the relative 
importance of these factors for data inversion, we attempt a first modelling of noise patterns 
af fecting DAS arri v al times for a set of seismic e vents. The focus is on assessing the impact of 
noise statistics, together with the geometry of the problem, on epicentral location uncertainties. 
For this goal, we consider 15 ‘real-world’ cases of DAS arrays with different geometry, each 

associated with a seismic event of known location. We compute synthetic P -wave arrival 
times and contaminate them with four statistical distributions of the noise. We also estimate 
P -w ave arri v al times on real w aveforms using a standard seismolo gical picker. Eventuall y, 
these five data sets are inverted using a Markov chain Monte Carlo method, which offers the 
e v aluation of the relati ve e vent location dif ferences in terms of posterior probability density 

(PPD). Results highlight how cable geometry influences the shape, extent and directionality 

of the PPDs. Ho wever , synthetic tests demonstrate how noise assumptions on arrival times 
often have important effects on location uncertainties. Moreover, for half of the analysed case 
studies, the observed and synthetic locations are more similar when considering noise sources 
that are independent of the geometrical characteristics of the arrays. Thus, the results indicate 
that axial polarization, site conditions and cable coupling, beyond other intrinsic features (e.g. 
optical noise), are likely responsible for the complex distribution of DAS arrival times. Overall, 
the noise sensitivity of DAS suggests caution when appl ying geometry-onl y-based approaches 
for the a priori e v aluation of novel monitoring systems. 

Key wor ds: Bay esian inference; Monte Carlo methods; Distributed acoustic sensing. 
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1  I N T RO D U C T I O N  

Understanding the origins of uncertainty in observational data is a 
crucial aspect of seismology. Such uncertainty is potentially gen- 
erated b y dif ferent sources, which can influence our ability to use 
geophysical data for making inferences about the Earth’s interior. 
This knowledge is especially critical for the evaluation of new geo- 
physical instruments and methodologies. Among novel methods, 
distributed acoustic sensing (D AS), follo wing pioneering industry 
tests in the early 2010s (Mestayer et al. 2011 ; Molenaar et al. 2011 ; 
Parker et al. 2014 ; Hill 2015 ) is now often used as a monitor- 
ing apparatus by the seismological community (Zhan 2020 ). DAS 

exploits laser interrogation of FOCs to obtain a very-dense array 
of axial strain/strain-rate sensors. Such high-sampling capability is 
unreachable with a standard array of sensors (Bakulin et al. 2020 ). 
Accordingly, DAS provides a full picture of the seismic wavefield 
(Paitz et al. 2021 ), for a variety of sources (such as earthquakes) 
(Lindsey & Martin 2021 ). Both novel installations (Fichtner et al. 
2022 ; Klaasen et al. 2021 ; Walter et al. 2020 ) and/or commercial 
telecommunication FOCs (Biondi et al. 2021 ) can be equally used. 
Hence, DAS can be exploited to monitor both natural (Biondi et al. 
2017 ; Lindsey et al. 2017 ; Lellouch et al. 2019 ; Hudson et al. 2021 ; 
Nayak & Ajo-Franklin 2021 ; Ugalde et al. 2022 ) and induced (Li 
& Zhan 2018 ; Karrenbach et al. 2019 ; Obermann et al. 2022 ) seis- 
micity. 

Despite the advantages posed by measurement density and appli- 
cation in poorly monitored en vironments, D AS is usually affected 
by lower signal-to-noise ratios (SNRs) compared to standard seis- 
mic sensors (Li & Zhan 2018 ; Walter et al. 2020 ) and could show 

coherence loss even for short interchannel distances (van den Ende 
& Ampuero 2021 ). Indeed, DAS suffers from signal directivity, that 
is the strain/strain rate is measured uniaxially for their longitudinal 
components along the fibre direction; strong amplitude variations 
related to FOC’s coupling with the ground, and higher susceptibility 
to local changes in rock properties (Ajo-Franklin et al. 2019 ; van den 
Ende & Ampuero 2021 ; Trabattoni et al. 2022 ; Yang et al. 2022 ). 
These issues are even more crucial for superficial FOCs, due to 
marked variability of elastic parameters in shallow sediments. Fur- 
thermore, as with most modern seismic data sets, manual analysis 
of the abundant DAS channels (typically > 1000) is usually unfeasi- 
ble. Hence, automatic techniques are required to exploit DAS data 
for common seismological tasks, such as picking of arrival times 
for event location. 

Arri v al times at multiple seismological sensors are traditionally 
exploited for the estimation of the event locations (Lay & Wallace 
1995 ). This procedure can also be extended to the numerous DAS 

channels, providing densely spaced information. Ho wever , the es- 
timates of arri v al times, especiall y when using automatic methods 
relying on amplitude ratio between background noise and the in- 
coming signal, are significantly affected by the local SNR therefore, 
by the above-mentioned DAS features. Hence, the cable geome- 
try, local geological conditions, and the pool of natural and an- 
thropogenic noise sources, provide diversified noise environments 
throughout the FOC. Although the DAS data redundancy may help 
in the detection stage (Hudson et al . 2024 , Li et al. 2021 , Porras et 
al. 2024 ), the inversion of DAS arri v al times for event locations may 
be adversely influenced from the aforementioned elements. Never- 
theless, various successful case studies have already demonstrated 
DAS capability in detecting and/or locating seismic events (Lindsey 
et al. 2017 ; Jousset et al. 2018 ; Lellouch et al. 2020 ; Walter et al. 
2020 ; Nishimura et al. 2021 ; van den Ende & Ampuero 2021 ; Zhu 
et al. 2021 ; Klaasen et al. 2021 ; Fichtner et al. 2022 ; Fl óvenz et al. 
2022 ; Trabattoni et al. 2022 ; Currenti et al. 2023 ; Klaasen et al. 
2023 ; Biagioli et al. 2024 ). Ho wever , a study assessing the influ- 
ence of specific noise sources on epicentral parameter uncertainties 
and covering diversified DAS deployments is still lacking. 

The present study focuses on the quantitative evaluation of four 
potential noise distributions in the estimated arri v al times for a seis- 
mic wave impinging at a FOC. We consider 15 real-world cases of 
DAS deployments, to have a better coverage of the possible inter- 
actions between geometries and noise sources. For each DAS array, 
we use earthquake recordings in which independent locations were 
already available. Four synthetic P -wave arrival-times data sets, 
contaminated following four noise assumptions, and one observed 
data set, estimated using a standard automatic picking procedure, 
are prepared and then inverted using a probabilistic approach that 
permits the estimate of the a posteriori probability density func- 
tion for source location. Synthetic and experimental locations are 
then mutually compared to evaluate the similarity of both shape and 
location. 

Our results indicate that modelling noise sources strictly depen- 
dent on the geometrical features of the DAS array fails in fully 
reproducing the experimental location uncertainties. Thus, more 
complex and difficult-to-model a priori features, such as signal di- 
recti vity, site ef fects or cable coupling, are likely key contributors. 
These complexities must be properly considered when designing 
the optimal geometry and extent of DAS projects for earthquake 
monitoring at the local and regional scales. 

2  DATA  A N D  M E T H O D S  

2.1 DAS arrays: 15 real word cases 

This study considers data from 15 DAS installations (refer- 
ences in the following paragraphs as RHONEGLETSCHER, 
MOUNT MEA GER, POR O T OMO , GR ́IMSV ̈OTN, STANFORD- 
1, STANFORD-2, FORESEE, AZUMA VOLCANO, HENGILL- 
NORSAR, HENGILL-GFZ, HCMR, MONTEREY, NESTOR, 
MEUST and CANARY), obtained either from open-access reposi- 
tories (Feigl et al. 2016 ; Lindsey et al. 2020 ; Lior 2020 ; Villasenor 
et al. 2020 ; Zhu et al. 2021 ; Klaasen 2021 ; Spica et al. 2023 ) or re-
stricted databases. Three main categories are identified to describe 
the installation contexts of each experiment, that is (1) scientific 
‘fit-for -purpose’ cab les (F ig. 2 ), (2) superficial telecommunication 
cab les (F ig. 3 ) and (3) submarine telecommunication cables (Fig. 4 ). 
‘F it-for -pur pose’ DAS ar rays refer to installations designed from 

scratch for research purposes, without utilizing pre viousl y existing 
cables. Typically such arrays exhibit good azimuthal coverage of 
the retrieved source regions (e.g. POR O T OMO and GR ́IMSV ̈OTN 

deployments). Superficial telecommunication arrays are generally 
constrained by the urban street network, on which all the main in- 
frastructures are installed (e.g. ST ANFORD-1, ST ANFORD-2 and 
FORESEE). Submarine telecommunication arrays have less artic- 
ulated geometries (e.g. MONTEREY and NESTOR deployments), 
due to the lower number of infrastructural obstacles. Hence, among 
the collected data sets they have lower azimuthal coverage. 

For each DAS arra y, w e select recordings from local events 
(purely tectonic, volcano-tectonic and ice quakes) located within 
a distance of less than 100 km from the DAS channel closest to 
the interrogator. The known location is obtained either from official 
seismolo gical catalo gues or from the institution responsible for the 
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Figure 2. Upper row: ‘fit-for-purpose’ DAS array geometries (red triangle showing the location of the DAS interrogator and colours representing the 
number of channels). Bottom row: geometrical relations between the array and the known event location (red star). (a) RHONEGLETSCHER data set, (b) 
MOUNT-MEAGER data set, (c) POROTOMO data set and (d) GR ́IMSV ̈OTN data set. 

Figure 3. Upper row: ‘superficial telecommunication’ DAS array geometries. Bottom row: geometrical relations between the array and the known event 
location. The meanings of the symbols are the same as in (Fig 2). (a) STANFORD-1 data set, (b) STANFORD-2 data set, (c) FORESEE data set, (d) 
AZUMA-VOLCANO data set, (e) HENGILL-NORSAR data set and (f) HENGILL-GFZ data set. 

s  

t  

t  

(  

o  

G  

u

2

T  

a  

f  

r  

s  

u  

n  

a  

a  

t  

(  

w  

c  

A  

i  

S  

d  

P  

e  

m  

f  

m  

a  

i  

i

pecific data acquisition (see Data Availability statement). Alterna-
i vel y, where an a priori location was not available, this informa-
ion is estimated from the inversion of selected arri v al time data
manually checked and picked) on available colocated geophones
r DAS channels (MOUNT MEAGER, RHONEGLETSCHER and
R ́IMSV ̈OTN). Table 1 summarizes the major features of the FOCs
sed in the study and the selected events. 

.2 Automated picking of P -w av e arri v al times 

he recorded events are pre-processed using de-trending (linear
nd constant trends removal) and bandpass filtering. The corner
requencies are chosen specifically for each event, inspecting the
atio of the frequency spectra before and during the event. Spatial
ubsampling (sum of neighbouring DAS channels) is performed
nder the condition that the gauge length is at least twice the chan-
el spacing. This method is useful in reducing incoherent noise and
llows for an improvement of the SNR, especially in poorly coupled
rray portions (Piana Agostinetti et al. 2022 ). While more sophis-
icated processing techniques for DAS data have been suggested
Isken et al. 2022 ), they were not tested in this study. The emphasis
as placed on maintaining a straightforward data preparation pro-

edure and focusing on subsequent modelling of the noise sources.
 standard automatic picking procedure (Baer & Kradolfer 1987 )

s adopted to measure the first onsets of each pre-processed event.
 -waves are voluntarily not picked since the noise modelling proce-
ure (see Section 1.3.3) considers mis-picks of S waves classified as
 arri v als. Table 2 summarizes these pre-processing steps for each
vent-DAS array pair alongside the parameters used for the auto-
atic picker. Untriggered DAS channels are not included as data

or the successive in version. Notew orthy, other automatic pickers
ight perform better for DAS data (e.g. Zhu et al. 2023 ). Ho wever ,
 comprehensive assessment of the performances of different pick-
ng algorithms for DAS data is beyond the scope of this work, and
t is left for future studies. 
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Figure 4. Upper row: ‘Submarine telecommunication’ DAS array geometries. Bottom row: geometrical relations between the array and the known event 
location. The meanings of the symbols are the same as in (Fig 2). (a) HCMR data set, (b) MONTEREY data set, (c) NESTOR data set, (d) MEUST data set 
and (e) CANARY data set. 

Figure 1. Geographical distribution of the data sets collected for this study. Three categories are identified: (1) ‘F it-for -purpose’ fiber optic cab les (green), 
which represent FOCs installed for scientific studies (MOUNT-MEAGER, RHONEGLETSCHER, POROTOMO and GR ́IMSV ̈OTN), (2) ‘superficial’ telecom- 
munication fibre optic cables (orange), which represent FOCs installed in superficial environments ( S T AN F O RD − 1 , S T AN F O RD − 2 , FORESEE, 
AZU M A − V O LC AN O , H E N G I L L − N O R S AR and H E N G I L L − G F Z ), (3) ‘Oceanic telecommunication’ fibre optic cables (blue), which repre- 
sent FOCs installed in continental shelf or continental shelf-oceanic floor transition environments (HCMR, MONTEREY, NESTOR, MEUST and CANARY). 

Table 1. Data sets collected in this study. 

Context DAS ID Location Length [km] N 

◦ channels (gauge length, channel spacing [m]) Event dist. [km] 

F it-for -purpose RHONEGLETSCHER Switzerland 1.7 422 (8,4) 0.8 
F it-for -purpose MOUNT-MEAGER Canada 3 380 (8,8) 2.8 
F it-for -purpose POR O T OMO Ne v ada [USA] 8.6 8620 (10,1) 0.3 
F it-for -purpose GR ́IMSV ̈OTN Iceland 14.1 1728 (8.16,8.16) 1.8 
superficial telecom STANFORD-1 California [USA] 2.6 626 (8.16,4.08) 3.9 
superficial telecom STANFORD-2 California [USA] 2.8 353 (16,8) 10.4 
superficial telecom FORESEE Pennsylvania [USA] 4.9 2432 (10,2) 20.7 
superficial telecom AZUMA VOLCANO Japan 14.3 1404 (40.8,10.2) 6.0 
superficial telecom HENGILL NORSAR Iceland 34.8 1742 (20,10) 9.3 
superficial telecom HENGILL GFZ Iceland 14.6 3648 (6,3) 5.6 
Submarine telecom HCMR Greece 13.2 688 (19.2,19.2) 99.7 
Submarine telecom MONTEREY California [USA] 19.9 9993 (10,2) 34.5 
Submarine telecom NESTOR Greece 26.2 1365 (19.2,19.2) 29.6 
Submarine telecom MEUST France 44.8 4480 (19.2,19.2) 88.8 
Submarine telecom CANARY Canary islands [SP] 59.8 5983 (10,10) 44.2 

Note : The epicentral distance is computed from the DAS channel closest to the interrogator. 

art/ggae364_f4_New.eps
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Table 2. Pre-processing and picker parameters. 

DAS ID Bandpass corners [Hz] Stacking [N 

◦of stacks] N 

◦ of resulting channels Automatic picker main parameters 

RHONEGLETSCHER [10–80] yes [2] 211 [15,30,20,60,100,100] 
MOUNT-MEAGER [10–100] no 380 [10,20,20,60,100,100] 
POR O T OMO [1–20] yes [10] 860 [10,20,20,60,100,100] 
GR ́IMSV ̈OTN [1–50] no 1728 [20,40,20,60,100,100] 
STANFORD-1 [1–20] yes [2] 313 [10,20,20,60,100,100] 
STANFORD-2 [1–25] yes [2] 176 [10,20,20,60,100,100] 
FORESEE [1–20] yes [5] 486 [30,60,20,60,100,100] 
AZUMA VOLCANO [1–50] yes [4] 351 [20,40,20,60,100,100] 
HENGILL NORSAR [1–20] yes [2] 579 [10,20,20,60,100,100] 
HENGILL GFZ [1–20] yes [2] 1824 [20,40,20,60,100,100] 
HCMR [5–20] no 688 [30,60,20,60,100,100] 
MONTEREY [1–25] yes [5] 1998 [30,60,20,60,100,100] 
NESTOR [5–25] no 1365 [20,40,20,60,100,100] 
MEUST [5–25] no 4480 [20,40,20,60,100,100] 
CANARY [5–15] no 5983 [30,60,20,60,100,100] 

Note : The automatic picker parameters (Baer & Kradolfer 1987 ) (thr1, thr2, tupevent, tdownmax, present-len, p-dur) are provided as described in 
the documentation of the implemented python package (Beyreuther et al. 2010 ). 
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.3 Noise models 

our synthetic tests (i.e. SYNTH-01, SYNTH-02, SYNTH-03 and
YNTH-04) are implemented to model specific perturbations of
 -wa ve tra veltimes along the FOCs. Synthetic traveltimes are com-
uted on a homogenous model from the known locations. While
his could seem, at first glance, a coarse approximation, our goal
s not to retrieve accurate source locations; rather, we aim to in-
estigate the effects of different noise models on the pattern of
ocation uncertainties. Therefore, we do not make any attempt to
se more accurate, site-specific velocity models, since this would
dd additional comple xities. Moreov er, although ev ery installation
ontext might have specific noise patterns for the estimated arri v al
imes, this study focuses on simulating simpler noise distributions,
ommon to all the analysed data sets. Nevertheless, for the FORE-
EE deployment, we conducted a multi-event analysis (Figs S7-1,
7-2 and S7-3 of the supplementary material). Modelling these dis-

ributions is based on features that ar often observed in estimated
rri v al times, such as: (a) an increase in the dispersion of arri v al
imes for increasing epicentral distance, (b) irregular grouping of
rri v al times in ‘standard’ and ‘time-delayed’ ensembles and (c)
omplex delayed arri v al times depending on SNR (i.e. positi ve out-
iers). While the first noise assumption is related to the geometric
elationships between the event and the array, the remaining distri-
utions are independent of geometry. Fig. 5 provides an overview
f the modelling procedure for an analysed case study (AZUMA
OLCANO). 
We quantitati vel y describe the computation of noise-

ontaminated synthetic P traveltimes st P , i for the i th DAS channel,
tarting from noise-free traveltimes t t P , i in the following subsec-
ions. 

.3.1 SYNTH-01: white Gaussian noise with constant variance 
long the DAS array 

n this test Gaussian noise with zero mean, μ = 0 , and constant
ariance σ1 for all the DAS channels is modelled (eq. 1 ). This
est reproduces an idealized DAS array characterized by identical
rri v al time uncertainties along its entire length. This assumption
roves useful in e v aluating the inherent uncertainty arising from the
roblem’s geometry; 
t P,i = t t P,i + N ( μ, σ1 ) . (1) n  
.3.2 SYNTH-02: distance-dependent white Gaussian noise 

n this test Gaussian noise with variance linearly dependent on
he distance ( d i ) from the event ( μ = 0 and σ2 ) is modelled (eq. 2 ).
his approach aims at reproducing the increase of the uncertainty in
rri v al times estimates for increasing epicentral distance, following
he decrease of signal amplitude due to anelastic attenuation and
eometrical spreading (Klein 2002 ): 

t P,i = t t P,i + N ( μ, σ2 ) , (2) 

here 

σ2 = σ1 

(
α + β

(
d i − d min 

d max − d min 

))

α = 0 . 5 

β = 2 

 max = maximum distance from the known event location 

d min = minimum distance from the known event location 

.3.3 SYNTH-03: mis-picked P wave 

his test builds upon the statistical assumptions used in SYNTH-
1 and extends its application to a time-delayed seismic phase,
pecifically the ‘S’ phase. SYNTH-03 seeks to simulate a specific
oise pattern observed in arri v al times estimated on DAS data,
hat is a ‘mis-pick’ between the first onset and a delayed stronger
eismic phase. Since both local directivity and cable coupling in-
omogeneities can explain this error source, an arbitrary threshold
 α) is set to establish the ratio between simulated P (70 per cent)
nd S phases (30 per cent, eq. 3 ). The validity of this test is limited
o events close to the DAS array, since an ambiguity between P and
 phases might exist only for ver y-shor t moveout; 

t P,i = 

{
t t P,i + N ( μ, σ1 ) if α < 0 . 7 , 
t t S,i + N ( μ, σ1 ) if α ≥ 0 . 7 

α ∼ U (0 , 1) . (3) 

.3.4 SYNTH-04: time-delayed P-wave picking 

n this test the median SNR ( ̃ x ) is considered as the threshold for
ategorizing channels into two groups: (1) channels to be contami-
ated with SYNTH-01-like (Gaussian) noise statistics (mean = μ,
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Figure 5. Observed arri v al times (grey stars), synthetic traveltimes (solid lines, blue and red for P and S w aves, respecti vel y) and noise-contaminated 
arri v al times (dif ferent colors depending on the synthetic test). (a) SYNTH-01 test, (b) SYNTH-02 test, (c) SYNTH-03 test and (d) SYNTH-04 test for the 
AZUMA-VOLCANO data set. Observed arri v al times and SYNTH- data are then inverted for estimating hypocentral location parameters. 

n . 

(4) 
variance = σ1 ), (2) channels to be contaminated with the absolute 
value of a broader Gaussian noise source (mean = μ, variance = 

4 ∗ σ1 , eq. 4 ). This test is considered the first tentative to examine a 
frequent observation in automatically retrieved DAS arrival times, 
that is: delayed arri v al times whose distribution does not exhibit any 
e vident pattern. Se veral mechanisms may concur in generating this 
phenomenon, for instance local site conditions or signal-generated 
noise. Although this noise model is similar to what has been mod- 
elled already by SYNTH-03, in this case, the error source is not 
derived from a specific phase mis-pick, but more generally related 
to the SNR. 

s t P,i = 

{
t t P,i + N ( μ, σ1 ) if S N Ri ≥ ˜ x , 
t t P,i + | N ( μ, 4 σ1 ) | if S N Ri ≤ ˜ x 

˜ x = SNR media

2.4 McMC location of seismic events 

Data uncertainties affect model parameter estimation in geophys- 
ical inverse problems, especially when non-linearity and non- 
uniqueness e xist (Mose gaard & Tarantola 2002 ). The earthquake 
location problem displays these characteristics. Casting a geophysi- 
cal inverse problem in a Bayesian framework (Bayes & Price 1763 ) 
means working with probability distributions on model parameters, 
based on: (i) prior information, (i) updated information coming from 

data and (ii) combined posterior information (Posterior Probability 
Density, PPD). This method is fundamental to assess how the data 
uncertainty affects the reliability of the estimated subsurface param- 
eters. Here, P -w ave arri v al times, both synthetic and observed, are 
exploited for the estimation of the hypocentral parameters. A Hierar- 
chical Markov chain Monte Carlo (McMC) approach is adopted for 
Bayesian inference of the event and elastic model parameters (lon- 
gitude, latitude, depth, origin time, Vp ). Details about the specific 
McMC algorithm can be found in (Ri v a et al. 2024 ). In particular, 
we focus on the PPDs expressing longitude and latitude uncertain- 
ties, derived from the inversion of P -w ave arri v als onl y. For both 
observed and synthetic data, the solutions are represented as a set of 
samples from the PPD, coloured according to their spatial density. 
The results from SYNTH-01 inversions are exploited for assessing 
a ‘geometrical uncertainty’ of the problem (see Section 2.5.1 ), that 
is the PPDs for longitude and latitude estimated with SYNTH-01 
trav eltimes are e xamined with four geometrical descriptors, to look 
for their possible correlations with such parameters. More generally, 
comparing the results from the synthetic data sets and the observed 
one, the focus is on the relative change of the epicentral location 
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PDs (sample clouds) as a result of the adoption of different noise
odels (see Section 2.5.2 ). 

.5 Description of the epicentral location PPDs 

.5.1 Geometrical descriptors 

ue to the uniaxial sensitivity of the FOC, DAS geometry is gener-
lly assumed to be one of the most critical parameters for detecting
eismic phases. Its influence is therefore investigated here in detail,
sing results from the inversion of SYNTH-01 data sets. The aver-
ge standard deviations for the hypocentre solutions of SYNTH-01
est are scaled to the area encompassed by the array, to account for
heir relative dimensions. The geometrical constrain of the prob-
em is e v aluated b y associating specific descriptors to the computed
tandard de viations. Specificall y, four geometrical parameters are
 v aluated in this work to describe the relations between the known
vent and the DAS arrays (i.e. AREA-P AR-1, AREA-P AR-2, aspect
atio, and azimuthal gap). Among these, two are explicitly designed
or DAS applications, AREA-PAR-1 and AREA-PAR-2, while the
est are conventional geometric descriptors in seismology (Fig. 6 ): 

(i) AREA-PAR-1: the ratio between the distance between the
vent and the closest channel. 

(ii) AREA-PAR-2: the ratio between the area covered by the
rray and the area defined by the vectors connecting event and DAS
hannels. 

(iii) Aspect ratio: the ratio between the differences in latitude and
ongitude extension of the DAS array. 

(iv) Azimuthal gap: the largest angle between two vectors con-
ecting DAS channels and the event. 

.5.2 Location uncertainties comparison 

oth synthetic and observ ed trav eltimes are inverted, and the PPDs
or the epicentral location are compared considering their shape
nd spatial location. We make some assumptions about the four
oise models that could influence the retrieved PPDs from synthetic
ests. For example, the noise variance, denoted as σ1 , assumed for
odelling the synthetic traveltimes, controls the dispersion of the

olution samples (i.e. the size of the cloud of samples). Nevertheless,
ere the primary focus is on the distribution of the solutions, that
s the shape and location of the PPDs. The ultimate goal of this
rocedure is to compare the PPDs derived from the inversion of
bserved and synthetic traveltimes and to e v aluate the performance
f the noise models in (partially) reproducing the experimental
ocation uncertainties. For this goal, we (a) cross-correlated the
ormalized PPDs, thus considering the shape similarity and (b)
alculated the Cartesian distances of the PPD maximum values,
hus accounting for the differences in their spatial location. As a
esult, two scores (Score 1 and Score 2), one for shape similarity and
ne for spatial separation, are defined. Operationally, we compute
-D grids (here we consider a dimension of 200 × 200) out of
cMC samples, for the computation of Score 1 and Score 2. After

ormalization of the scores on their maximum values, an average
 alue is e ventuall y obtained for each synthetic test (Total Score,
ig. 7 ). The Total Score identifies a representative synthetic test for
ach case study, thus the one that ‘mimics at best’ the observed
PDs (Fig. 8 ). 
 R E S U LT S  

ig. 8 illustrates an example of location PPDs derived by inverting
bserved and synthetic arri v al times contaminated with four noise
istributions. In general, we note that both the shape and location of
he PPDs depend markedly on the assumptions made to contaminate
he noise-free traveltimes. For a general overview, we collected
he results of all the synthetic tests in the supplementary material
Figs S1–S15). 

Following the procedure introduced in Section 2.5.2 , we e v alu-
ted the similarity in shape (Score 1) and spatial location (Score
) of the experimental and synthetic PPDs and e ventuall y identi-
ed, for each case study, the test mimicking at best the observed

ocation uncertainties (Total Score, Fig. 9 ). Figs S16 and S17 in the
uppor ting infor mation collect Score 1, Score 2 and the Total Score
or each case study. The statistics of Score 1 and Score 2 indicate
YNTH-02 and SYNTH-04 as the noise models ‘best mimicking’

he shape (Fig. 9 a) and location (Fig. 9 b) of observed PPDs, respec-
i vel y. Thus, a not-purel y Gaussian noise source (SYNTH-04) helps
eproduce the misplacement of the observed locations compared to
he known locations. Overall, the Total Score shows similar results,
ith two relative maxima: SYNTH-02 and SYNTH-04 (Fig. 9 c).
herefore, synthetic (a) noise sources related to the geometry and

b) independent, more comple x distributions, hav e similar perfor-
ance in mimicking the observed location uncertainties. 
We now proceed to a more careful examination of the different

ase studies: 

(i) SYNTH-01 shows the most similar PPDs compared to the ex-
erimental ones (Score 1) for POR O T OMO , HENGILL-GFZ and
EUST case studies, while the closest (Score 2) for MOUNT-
EAGER, HENGILL-GFZ, MEUST and CANARY. Overall (Total

core), SYNTH-01 is the ‘best mimicking’ PPD for POR O T OMO ,
ENGILL-GFZ (Fig. 11 a), NESTOR (Fig. 11 b) and MEUST.
YNTH-01 is correlated with three of the analysed geometrical
escriptors (see Section 2.5.1 ). To highlight this, we adopted a log-
rithmic scale for the normalized standard deviation of SYNTH-01
olutions (normalization based on the area spanned by the array),
hus mitigating the significant influence of low v alues. Specificall y,
 positive correlation is observed for AREA-P AR-1, AREA-P AR-2,
nd the azimuthal gap. Noteworthy the azimuthal gap values are gen-
rally high, with approximately 70 per cent of arrays falling within
he range of 300 ◦ to 350 ◦. Notable exceptions are POR O T OMO ,
R ́IMSV ̈OTN, AZUMA VOLCANO and HENGILL-NORSAR
eployments, in the range of 140 ◦ to 250 ◦. The aspect ratio does
ot show an evident correlation (Fig. 10 ). Moreover, clustering de-
ending on the installation context is not evident. 
(ii) SYNTH-02 has the highest Score 1 for MOUNT-MEAGER,

TANFORD-2, HCMR, NESTOR and CANARY, and the high-
st Score 2 for POR O T OMO , FORESEE and HCMR. Overall,
YNTH-02 has the highest Total Score for MOUNT-MEAGER
Fig. 11 c), STANFORD-2, FORESEE and HCMR (Fig. 11 d). 

(iii) SYNTH-03 has the highest Score 1 for GR ́IMSV ̈OTN,
ZUMA-VOLCANO and HENGILL-NORSAR and the highest
core 2 for AZUMA-VOLCANO and HENGILL-NORSAR. Over-
ll, it shows the highest Total Score for GR ́IMSV ̈OTN, AZUMA-
OLCANO (Fig. 12 a) and HENGILL-NORSAR (F ig. 12 b). Inter -
stingly, for the AZUMA-VOLCANO case study, if compared to the
utcomes from SYNTH-01, SYNTH-02 and SYNTH-04 (Fig. S8),
YNTH-03 PPD is shifted toward the nor th–nor theast, coherently

o the observed location. 
(iv) SYNTH-04 has the highest Score 1 for RHONE-

LETSCHER, STANFORD-1, FORESEE and MONTEREY and
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Figure 6. Geometrical parameters to describe the relations between the DAS arrays and the recorded event. Simple sketches describing the geometrical 
parameters: AREA-PAR-1, AREA-PAR-2, ASPECT RATIO and AZIMUTHAL GAP. 

Figure 7. The adopted methodology to compare observed and synthetic PPDs based on ‘Scores’. The top section of the figure shows 2-D grids representing 
observed and synthetic PPDs for a case study (RHONEGLETSCHER). The bottom section describes how Score 1 and Score 2 are computed: Score 1 is 
derived from the 2D cross-correlation of the PPDs, and Score 2 is based on the distance between the highest PPD values. An average and normalized (0–1) 
value (Total Score) is obtained for each synthetic test. The highest value among the synthetic tests identifies the one ‘mimicking at best’ the observed PPDs in 
terms of both shape and location. (a) 2-D grid representing the observed PPD, where the black star marks the highest PPD value. (b) 2-D grid representing the 
synthetic PPD, with the green star indicating the highest PPD value, and the thick black line showing the distance between the observed and synthetic highest 
PPD values (Score 2). 
the highest Score 2 for RHONEGLETSCHER, GR ́IMSV ̈OTN, 
STANFORD-1, MONTEREY and NESTOR. Overall, it has 
the highest Total Score for RHONEGLETSCHER (Fig. 12 c), 
GR ́IMSV ̈OTN, STANFORD-1, MONTEREY (Fig. 12 d) and CA- 
NARY. Noteworthy, SYNTH-03 and SYNTH-04 have ex-aequo the 
highest Total Score for GR ́IMSV ̈OTN. Moreover, for RHONE- 
GLETSCHER, GR ́IMSV ̈OTN and MONTEREY case studies, 
SYNTH-04 reproduces the directionality shift of the possible solu- 
tions toward the observed location. 

Although the adopted ‘Score’ method, for how it is conceptual- 
ized, al wa ys provides a ‘best mimicking’ synthetic test, few case 
studies visually exhibit poor similarity to the experimental PPDs 
(POR O T OMO , STANFORD-2, HENGILL-GFZ and MEUST). 
Figs S3, S6, S10 and S14 provide a full coverage of them. Either a 
strong influence of the cable geometry or peculiar disturbances in 
the observed data, not accounted in the synthetic tests, are possible 
explanations for these observations. Moreover, the modelled noise 
sources might interact collecti vel y, rather than indi viduall y. 

4  D I S C U S S I O N  

The noise models we defined to contaminate noise-free P -wave 
DAS travel times, helped better understand the complexity of the 
observed location uncertainties (Figs 11 and 12 ). In fact, synthetic 
tests indicate how altering noise assumptions on arri v al times sig- 
nificantl y af fects the shape and azimuth of the cloud of possible 
event locations (Fig. 8 ). Ho wever , the noise models we consider in 
this analysis account only for a limited set of possible disturbances 
that affect D AS traveltimes. Indeed, other , here not explored, noise 
models might e xist. Moreov er, besides une xplored noise sources, 
discrepancies between the known and observed locations may arise 
due to 3-D heterogeneities along the paths from the known event 
to DAS channels, which are not considered in the forward model. 

art/ggae364_f6.eps
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Figure 8. A complete example for the RHONEGLETSCHER DAS array, from location uncertainties with the four synthetic tests to the ones obtained with the 
observed data. The location uncertainty is illustrated by a set of samples approximating the PPDs (orange points coloured by density). The known location is 
marked as a red star. The DAS geometry is provided as grey triangles, while the triggered channels and the corresponding locations with colours depend on the 
relati ve P-w ave arri v al time. The green rectangle identifies the synthetic test (SYNTH-04) with the highest Total Score. (a) Event location uncertainties with 
inverted SYNTH-01 synthetic arri v al times, (b) event location uncertainties with inverted SYNTH-02 synthetic arri v al times, (c) event location uncertainties 
with inverted SYNTH-03 synthetic arri v al times, (d) event location uncertainties with inverted SYNTH-04 synthetic arri v al times and (e) event location 
uncertainties with inverted observed arri v al times. 

Figure 9. Statistics on the synthetic tests mimicking the observed PPDs. Green areas identify SYNTH-01 and SYNTH-02, which are based on noise sources 
related to the geometry of the problem (array + event). Red areas identify SYNTH-03 and SYNTH-04, which are based on noise sources unrelated to the 
geometry of the problem. (a) Score 1 histograms represent the similarity of synthetic PPDs to observed PPDs. (b) Score 2 histograms represent the distance 
between the highest values of synthetic and observed PPDs. (c) The total Score is the average of the normalized (0–1) Score 1 and Score 2. 
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ncertainties in the known location cannot be excluded a priori ,
otentially accounting for the unresolved case studies. 

Geometrical parameters, such as large azimuthal gap values in
he analysed case studies, might partially explain the observed sen-
itivity to noise: when the azimuthal gap is lower (i.e. the geometry
rovides a higher constraint on the event location), PPDs vary less
arkedly (Figs S4 and S9). Results show how traditional geomet-

ical indices or specially designed parameters, like AREA-PAR-1
nd AREA-PAR-2, are correlated with the location uncertainties
SYNTH-01). Therefore, if a coherent ideal Gaussian noise is as-
umed as the only noise source in the DAS data, thus avoiding
urther complexities, the geometry of the problem remains a funda-
ental constraint that drives the distribution of possible solutions.

Fig. 10 ). This observation suggests continuing to evaluate (as in

art/ggae364_f8.eps
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Figure 10. The geometrical parameters for each DAS array are compared with the normalized standard deviation from SYNTH-01. Colours and markers 
meanings (triangles, squares, etc.) are the same of Fig. 1 . Positive correlations are present for AREA-PAR-1, AREA-PAR-2 and the azimuthal gap. 
traditional networks) the geometry of the array before data acquisi- 
tion, w hen possib le, by considering the target source regions to be 
monitored (Toledo et al. 2020 ). 

Although geometry matters, especially when arri v al times can 
be assumed Gaussian-distributed, synthetic tests show that in real 
DAS systems, the uncertainty in the location process is strongly 
influenced by more complex traveltime statistics. Possible sources 
of noise, not directly correlated to the local geometry of the cable, 
are (i) axial directi vity (K ennett 2022 ), (ii) site effects (Trabattoni 
et al. 2022 ) and (iii) cable coupling (Celli et al. 2024 ). Even though 
directivity is related to the angle of incidence of the wave front, near- 
surface distortions make its modelling extremely difficult, and not 
strictly related to cable azimuth (Bozzi et al. 2024 ). In fact, results 
here sho w ho w SYNTH-01 and SYNTH-02, thus the synthetic tests 
reproducing noise sources directly related to the geometry of the 
problem, are far from being the overall best-performing synthetic 
tests. Therefore, the error statistics associated with the automatic 
arri v al times estimated in this work are often not adequately re- 
produced by assuming standard energy decay with distance and/or 
Gaussian-distributed noise with similar properties throughout the 
cable. Instead, SYNTH-03 and SYNTH-04, which model distur- 
bances not strictly related to geometry, are able to reproduce ob- 
served location uncertainties in a significant number of case studies 
(Fig. 9 ). Specifically, the performance of SYNTH-03 suggests how 

phase mis-pick for the onset waveforms can be relevant in DAS real 
data, while SYNTH-04 suggests that the noise in P-wave arrival 
times is not purely Gaussian-distributed. Apart from the physical 
mechanisms related to the intrinsic DAS features (directivity, site 
effects, and cable coupling), additional processes may explain the 
origin of SYNTH-04 noise distribution; optical noise (Zhong et al. 
2021 ) or converted and guided waves (Lellouch et al. 2022 ) in 
near -cab le structures can indeed be possible sources. 

5  C O N C LU S I O N S  

In this study, we model four noise sources on P -wave arri v al times 
in DAS data using recordings from 15 different deployments and 
assess their influence on source location for events at local/regional 
distances. We show how, similar to traditional observational seis- 
mology, location uncertainties are influenced by the deployment’s 
geometry and its position relative to the source region. Indeed, 
larger azimuthal gaps result in less constrained solutions. Ho wever , 
our results suggest the presence of other effects, more complex 
and not strictly dependent on the geometry of the problem (energy 
decay along the cable), affecting the noise statistics of the P-wave 
arri v al times. We indeed show a significant impact of synthetic 
noise sources, especially the one mimicking phase mis-picks and 
not-purely Gaussian positive residuals, on event locations. 

Synthetic tests suggest an a priori e v aluation of noise statistics, 
together with the problem’s geometry, for the quantification of pre- 
cision/resolution of a novel DAS monitoring system. Typically, the 
design of earthquake monitoring infrastructures is based on the a 
priori e v aluation of the geometry that minimizes the localization 
error for a given focal volume. In this process, when no experi- 
mental observations are available, noise is usually modelled using 
simplified assumptions. Our work demonstrates how applying a 

art/ggae364_f10.eps
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Figure 11. SYNTH-01 and SYNTH-02 (upper rows) are the synthetic tests that best mimic (highest Total Score) the ones retrieved from observed arri v al 
times (bottom rows). (a) HENGILL-GFZ, (b) NESTOR, (c) MOUNT-MEAGER and (d) HCMR case studies. 

s  I  
imilar e v aluation to a DAS installation oversimplifies the problem.

t  

t

ndeed, much more sophisticated noise models, accounting for in-
rinsic and peculiar elements of the DAS arrays not strictly related
o geometrical factors, are required: 

art/ggae364_f11.eps
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Figure 12. SYNTH-03 and SYNTH-04 (upper row) as the synthetic test mimicking at best (highest Total Score) the one retrieved from observed arri v al times 
(bottom row). (a) AZUMA VOLCANO, (b) HENGILL-NORSAR, (c) RHONEGLETSCHER and (d) MONTEREY case studies. 
(i) The first factor is the directional DAS sensitivity, for which the 
cable is only sensitive to the component of the ground motion po- 
larized along the cable. Although this effect is theoretically related 
to geometry, surface geology introduces additional complications, 
limiting the capacity to model at the local scale the geometry of the 
wave front. 

art/ggae364_f12.eps
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(ii) The second element is the marked sensitivity of the DAS
easurements to the shallow geology. In fact, the amplitude of the

train rate scales with the slowness of the propagation medium, so
he SNR of DAS recordings can vary significantly ev en ov er short
istances. 

(iii) Finally, the coupling of the FOC to the ground is a factor
laying a primary role in controlling the quality of the recordings. 

Such three attributes (and optical noise or guided waves along
he cable) can indi viduall y or collecti vel y lead to local changes in
ignal amplitudes, and, thus, impact measured phase arri v al times,
eading to complex noise statistics. 

Overall, we sho w ho w event location based on P-w ave arri v al
imes estimated with DAS is affected by complex sources of uncer-
ainty, not strictly related to geometry. These elements indicate the
ntrinsic difficulty of an a priori optimization of the geometry of
 AS netw orks for earthquake monitoring and suggest an integrated

tudy on noise statistics. 

ATA  AVA I L A B I L I T Y  S TAT E M E N T  

he following public repositories and a specific Zenodo repository
tore the analysed seismic events and/or associated metadata (last
ccess 10-08-2023): 

Link to the Zenodo repository: https://doi.org/10.5281/zenodo.
177033 

(i) RHONEGLETSCHER 

he event and geometry are provided in the Zenodo repository. The
nown location is obtained from manual picking of P -wave onsets
t local seismometers, close to the DAS array. 

(ii) MOUNT-MEAGER 

he link to the repository is https://doi.org/10.5281/zenodo.
728303 and specifically navigate to stack 20191001 090012.h5
or the event. The geometry is provided in the Zenodo repository. 
he known location is obtained from manually selected DAS chan-
els. 

(iii) POR O T OMO 

or the specific event navigate to DASH data, then 20160314 and :
oroTomo iDAS16043 160314104148.h5 , 
oroTomo iDAS16043 160314104218.h5 , 
oroTomo iDAS16043 160314104248.h5 ) 
 https://gdr.openei.org/submissions/980 . The geometry
s available at https://gdr.openei.org/submissions/980 .
he known location is reported in (Li & Zhan
018 ), specifically in the supporting material: that is
 ∼ -0.074 catalog earthquake (event ID: 2201050) . 
(iv) GR ́IMSV ̈OTN 

he event and geometry are provided in the Zenodo repository. The
nown location is obtained from manually selected DAS channels. 

(v) STANFORD-1 and STANFORD-2 
he events and geometries are provided by the authors under re-
uest. 
he known locations can be found in the USGS catalogue,

especti vel y: ( https://ear thquake.usgs.gov/ear thquakes/eventpage/
c72751160/e xecutiv e ) ( https://ear thquake.usgs.gov/ear thquakes/
v entpage/nc73355340/e xecutiv e ). 

(vi) FORESEE 

or the specific event navigate to August data and then
o PSUDAS UTC 20190827 075804.511.tdms : https:
/www.datacommons.psu.edu/commonswizard/MetadataDisplay. 
spx?Dataset=6290 . The cable geometry is provided in the
enodo repository. An additional repository for the geometry:
ttps://doi.org/10.1785/0220220279 . 
he known location can be found in the PASEIS network catalogue
ttp://paseis.geosc.psu.edu/ . 
(vii) AZUMA-VOLCANO 

he event and geometry are provided in the Zenodo repository. The
nown location is reported in (Nishimura et al. 2021 ). 
(viii) HENGILL-NORSAR/GFZ 

he events and geometries are provided in the Zenodo repository. 
he known location is provided by the authors:
vent id, 23/07/2021 09:56:16; 204371.4668, 258504

63, 3483.657209, 1.52, (EPSG:8088) . 
(ix) HCMR-NESTOR-MEUST 

or the events and the geometry navigate to earthquake waveforms
n the following link: https://osf.io/4bjph/ . 
he known locations are reported in (Lior 2020 ), for the
vents corresponding to this origin times, respecti vel y:
CMR, 19/04/2019 03:30:19; NESTOR, 23/04/2019 19:

5:51, MEUST, 21/07/2019 23:01:58 . 
(x) MONTEREY 

avigate to the event and geometry using the following link: https:
/github.com/njlindsey/Photonic- seismology- in- Monterey- Bay- 
ark- fiber1DAS- illuminates- offshore- faults- and- coastal- ocean . 
he known location can be found at the same link. 
(xi) CANARY 

avigate to 2020/08/01 03:40:44.03 for the event recording at
he following link: https://www.fdsn.org/networks/detail/ZI 2020/ . 
he known location is reported here: https://www.ign.es/web/

esources/sismologia/www/dir images terremotos/fases/2020/ 
s2020oznpu.dat . 
he geometry of the cable is provided by the authors under request.

Details about the McMC algorithm can be found in (Ri v a et al.
024 ). 

The automatic picker is available as a Python package at this
ink: https://docs.obsp y.org/master/packages/autogen/obsp y.signal.
rigger .pk baer .html . 

Figures have been prepared using PyGMT ( https://www.
ygmt.org/latest ) and MatPlotLib ( https://matplotlib.org/stable/
ndex.html ) packages. 
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uto Tecnol ógico y de Energ ́ıas Renovables (ITER) and Cabildo de
enerife, for the permission to work with the CANARY data set.
unding for this project (CANARY data set) was provided through

he ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-
00928-S) and the European Union NextGenerationEU/PRTR Pro-
ram under projects PSI (ref. PLEC2021-007875) and TREMORS
ref. CPP2021-008869). We thank Nate Lindsey for assistance with
he Monterey data set. 

This paper and the related research activities have been
onducted during the PhD course in ‘Chemical, Geological
nd Environmental Sciences’ at the University of Milano-
icocca. ( https://www.disat.unimib.it/it/r icer ca/dottorato-scienze
 chimiche- geologiche- e- ambientali ). 

https://doi.org/10.5281/zenodo.8177033
https://doi.org/10.5281/zenodo.4728303
https://gdr.openei.org/submissions/980
https://gdr.openei.org/submissions/980
https://earthquake.usgs.gov/earthquakes/eventpage/nc72751160/executive
https://earthquake.usgs.gov/earthquakes/eventpage/nc73355340/executive
https://www.datacommons.psu.edu/commonswizard/MetadataDisplay.aspx?Dataset=6290
https://doi.org/10.1785/0220220279
http://paseis.geosc.psu.edu/
https://osf.io/4bjph/
https://github.com/njlindsey/Photonic-seismology-in-Monterey-Bay-Dark-fiber1DAS-illuminates-offshore-faults-and-coastal-ocean
https://www.fdsn.org/networks/detail/ZI_2020/
https://www.ign.es/web/resources/sismologia/www/dir_images_terremotos/fases/2020/es2020oznpu.dat
https://docs.obspy.org/master/packages/autogen/obspy.signal.trigger.pk_baer.html
https://www.pygmt.org/latest
https://matplotlib.org/stable/index.html
http://www.canalink.tel
https://www.disat.unimib.it/it/ricerca/dottorato-scienze-chimiche-geologiche-e-ambientali


14 E. Bozzi et al . 
S U P P O RT I N G  I N F O R M AT I O N  

Supplementary data are available at GJIRAS online. 
suppl data 
Please note: Oxford University Press is not responsible for the 

content or functionality of any supporting materials supplied by 
the authors. Any queries (other than missing material) should be 
directed to the corresponding author for the paper. 

R E F E R E N C E S  

Ajo-Franklin , J.B. et al. , 2019. Distributed acoustic sensing using dark fiber 
for near-surface characterization and broadband seismic event detection, 
Sci. Rep., 9 (1328), 1–14. 

Baer , M. & Kradolfer, U., 1987. An automatic phase picker for local and 
teleseismic events, Bull. seism. Soc. Am., 77 (4), 1437–1445. 

Bakulin , A. , Silvestrov, I. & P evzner , R., 2020. Surface seismics with DAS: 
an emerging alternative to modern point-sensor acquisition, Leading 
Edg e , 39 (11), 808–818. 

Bayes , T. & Price, 1763. LII. An essay towards solving a problem in the 
doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated 
by Mr. Price, in a letter to John Canton, A. M. F. R. S, Phil. Trans. R. Soc. 
Lond., 53, 370–418. 

Beyreuther , M. , Barsch, R., Krischer, L., Megies, T., Behr, Y. & Wassermann, 
J., 2010. Obspy: a python toolbox for seismology, Seismol. Res. Lett., 
81 (3), 530–533. 
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